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Abstract

Graph Transformers (GTs), which effectively capture long-range dependencies and
structural biases simultaneously, have recently emerged as promising alternatives
to traditional Graph Neural Networks (GNNs). Advanced approaches for GTs to
leverage topology information involve integrating GNN modules or modulating
node attributes using positional encodings. Unfortunately, the underlying mecha-
nism driving their effectiveness remains insufficiently understood. In this paper, we
revisit these strategies and uncover a shared underlying mechanism—Cross Aggre-
gation—that effectively captures the interaction between graph topology and node
attributes. Building on this insight, we propose the Universal Graph Cross-attention
Transformer (UGCFormer), a universal GT framework with linear computational
complexity. The idea is to interactively learn the representations of graph topology
and node attributes through a linearized Dual Cross-attention (DCA) module. In
theory, this module can adaptively capture interactions between these two types of
graph information, thereby achieving effective aggregation. To alleviate overfitting
arising from the dual-channel design, we introduce a consistency constraint that
enforces representational alignment. Extensive evaluations on multiple benchmark
datasets demonstrate the effectiveness and efficiency of UGCFormer.

1 Introduction

Node classification, aimed at accurately predicting node categories based on the graph topology and
node attributes, is a fundamental task in identifying the properties of individual nodes [12, 19, 14, 30,
11, 10]. As a powerful class of models for fusing topology and attribute information in graphs, Graph
Neural Networks (GNNs) have achieved initial successes in this task [27, 15, 58, 51, 5, 50]. In general,
they follow the graph-bound Message Passing (MP) paradigm [17]. While this paradigm endows
GNNs with the localizing property, it also restricts their ability to capture long-range dependencies
[9], resulting in well-known challenges such as over-smoothing [6, 59] and over-squashing [18].
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Inspired by the remarkable success of Transformers in NLP [33], Graph Transformers (GTs) have
emerged as powerful architectures for node classification tasks. The core component of Transformers
is the Self-Attention (SA) module [44], which models full interactions among tokens within a
sequence, thereby endowing the Transformers with globalizing properties. The initial success of
GTs can be attributed to the strategic integration of discriminative graph topology into Transformer
architectures, enabling the simultaneous capture of structural biases and long-range dependencies.
To date, two primary strategies have achieved SOTA performance in existing GTs: (1) integrating
GNN blocks [29, 48, 7, 61], and (2) modulating node attributes utilizing Positional Encodings (PEs)
[2, 47, 42]. However, both strategies face inherent limitations. The first tends to inherit drawbacks
from GNNs due to its reliance on them, whereas the second introduces additional computational
complexity due to the use of PEs, thereby restricting the models’ universality1 and scalability.

This leads to a fundamental question:

What underlying mechanism drives the effectiveness of diverse Graph Transformers?

A thorough understanding of the underlying mechanisms can offer valuable insights for developing
more advanced and efficient architectures. Following this line, this paper theoretically investigates
the mechanism shared by the aforementioned types of GTs and, based on this insight, proposes a
novel GT architecture. In particular, the unified cross-aggregation mechanism (as formally defined
in Definition 1) is explored by analytically decoupling topology and attribute representations from
node representations. Specifically, the GNN block in GTs can be interpreted as aggregating topology
representations into attribute representations (in Theorem 1), indicating that this category of GTs
inherently incorporates cross-aggregation. Furthermore, GTs employing PEs contain diverse forms of
cross-aggregation between topology and attribute representations. Therefore, the shared underlying
mechanism among these GTs is cross-aggregation between graph topology and node attributes.

This understanding naturally leads to a key question:

How can we design an effective and efficient GT architecture grounded in cross-aggregation?

To this end, this paper proposes the Universal Graph Cross-attention Transformer (UGCFormer),
which implements the cross-aggregation mechanism via cross-attention. To be specific, it separately
encodes graph topology and node attributes to obtain their initial representations. At its core lies a
linearized Dual Cross-Attention (DCA) module that updates the topology and attribute representations
by computing cross-attention scores among nodes and utilizing them for weighted aggregation. In
theory, the DCA module adaptively captures both correlation and exclusion relationships between
graph topology and node attributes, making it simple yet effective. Finally, the two representations
are integrated to yield a comprehensive node representation. To prevent representation distortion, a
consistency constraint is introduced to enforce mutual alignment between them.

The main contributions of this work are summarized as follows:

• Mechanism Revelation: We theoretically reveal a unified mechanism across typical Graph
Transformers, namely cross-aggregation between graph topology and node attributes.

• Model Innovation: We propose UGCFormer, a GT architecture equipping with a linearized
Dual Cross-Attention (DCA) module that implements the cross-aggregation mechanism.

• Comprehensive Evaluation: Extensive evaluations conducted on sixteen homophilic, het-
erophilic, and large-scale graphs demonstrate the universality and scalability of UGCFormer.

2 Preliminaries

This section begins by presenting the notation used throughout this paper. Then, it introduces the
concepts of Graph Neural Networks (GNNs) and Graph Transformers (GTs).

2.1 Notations

The subject of this paper is the widely-used undirected attribute graph, denoted as G(V, E), where
V and E represent the node set and edge set. V consists of n node instances {(xv,yv)}v∈V , where

1The ability of models to handle both homophilic and heterophilic graphs.
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xv ∈ Rf and yv ∈ Rc denote the node attribute and label of node v, respectively. f is the dimension
of attributes and c is the dimension of labels. E = {(vi, vj)} terms the edge set. Typically, graph
topology is described by the adjacency matrix A ∈ Rn×n where ai,j = 1 only if (vi, vj) ∈ E , and
ai,j = 0 otherwise. In formal terms, the graph G can be redescribed as G(A,X). In the context of
semi-supervised learning, the node labels are segmented into two sets: YL ∈ Rnl×c for the labeled
nodes and YU ∈ Rnu×c for the unlabeled nodes.

To verify the model’s universality, this paper examines graphs with varying degrees of homophily.
In homophilic graphs, edges are typically formed between nodes with similar labels. Conversely, in
heterophilic graphs, edges tend to form between nodes with dissimilar labels [35, 6, 60, 62].

2.2 Graph Neural Networks

Message Passing (MP)-based Graph Neural Networks (GNNs) follow an aggregation-combination
strategy. Specifically, the representation of each node is iteratively updated by aggregating the features
from its local neighbors and combining the aggregated features with its features, which is given by

hl
v ≜ COM l

(
hl−1
v , AGGl

(
{hl−1

u |u ∈ N (v)}
))

, (1)

whereN (v) denotes the set of neighboring nodes of node v. For the functions AGG(·) and COM(, ),
vanilla GNNs, e.g., GCN [27], adopt the sum function to implement them, that is,

GCN(A,H) : Hl+1 = σ(ÃHlW), H0 = X, (2)

where σ(·) stands for the nonlinear activation functions, and Ã = D̂− 1
2 ÂD̂− 1

2 is the normalized
adjacency matrix with Â = A+ I. W denotes the trainable projection parameters.

2.3 Transformers

Inspired by the success of Transformers in NLP [44], numerous variant models have been designed
for multiple fields, including CV [22] and Graph Learning. They typically consist of four functional
components: attention module, feed-forward network, residual connection, and normalization.

Self-attention Module. This is a core component of the vanilla Transformer to model intra-sequence
relationships among all tokens [44]. Given a sequence containing n tokens H = [hi]

n−1
i=0 ∈ Rn×d, the

module first projects H into Query q(H), Key k(H), and Value k(H). It then employs the attention
scores calculated from all Query-Key pairs to perform a weighted sum of the Value vectors.

A general formulation of the Self-Attention (SA) module is given by

SA(H) : ĤSA = Softmax

(
q(H)k(H)⊤√

d

)
v(H), (3)

where q(·), k(·), and v(·) generate the Query, Key, and Value via MLPs [39] with learnable parameters
W. The attention score Softmax(q(H)k(H)⊤/

√
d) ∈ Rn×n is computed via the scaled dot product

of full-token pairs, resulting in a quadratic computational complexity.

Graph Transformers (GTs). Most existing models [49, 1, 37, 34, 4, 52, 61, 3] build upon the SA
module. GTs differ from traditional Transformers in how they leverage topology information to
capture structural biases. As discussed in the Introduction, two main strategies for incorporating
topology information have achieved SOTA performance on node-level tasks: (1) integrating GNN
blocks, and (2) modulating node attributes utilizing Positional Encodings (PEs).

Cross-Attention Module. Unlike self-attention, which models the intra-source relationships, cross-
attention captures the interactions between two distinct sources. For the features from two different
sources H ∈ Rn1×d and Z ∈ Rn2×d, the Cross-Attention (CA) module can be expressed as

CA(Z,H) : ĤCA = Softmax

(
q(Z)k(H)⊤√

d

)
v(H). (4)

After the representation ĤCA is obtained, it is typically used as the cross-source representation to
update Z. Due to its exceptional capacity for modeling inter-source relationships, this module has
been applied in diverse domains, e.g., NLP [16] and CV [24]. However, it has received little attention
in Graph Learning, largely due to the lack of motivation and well-defined applied target. Moreover,
similar to the self-attention (Eq. 3), its computational complexity is quadratic, i.e., O(n1n2).

3



0

2

4
5

3
1

0

2

4
5

3
1

0
1
2
3
4
5

0
1
2
3
4
5

To
po
lo
gy
Sp
ac
e

A
tt
ri
bu
te
Sp
ac
e

0
1
2
3
4
5

𝑓!

𝑓"

𝑞!, 𝑘!

𝑞", 𝑘"

𝑣!

𝑣"

Cross-attention mechanism

Input graph

Node attributes

Graph topology

Attribute 
embeddings 𝐁&

Topology 
embeddings 𝐙(

Comprehensive 
representations 𝐇&

(a) The pipeline of UGCFormer.                                            (b) Linear Attention Module.
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Figure 1: Overview of the proposed GT architecture UGCFormer and its linear attention module.
(a) The pipeline of UGCFormer, which incorporates a dual cross-attention (DCA) module. First,
two basic elements of graphs (i.e., graph topology and node attributes) are independently processed
in their respective spaces utilizing distinct projection layers fA(·) and fX(·). Next, the dual cross-
attention (DCA) module with residual connections operates across the topology and attribute spaces,
updating each representation by integrating correlated features from the other space. Finally, the
two representations are combined to produce the final output representation. (b) Illustration of the
proposed efficient cross-attention module, where parameters are shared between the query (Q) and
key (K), and the representations are computed using linearized attention, given by Q(K⊤V).

3 Methodology

This section starts by theoretically exploring the functional mechanism shared by Graph Transformers
(GTs) that use Graph Neural Network (GNN) blocks and GTs that utilize Positional Encodings (PEs).
Inspired by this mechanism, it introduces UGCFormer, a simple yet universal graph cross-attention
Transformer with linear complexity. Finally, it gives a comprehensive analysis of UGCFormer.

3.1 Motivations

As previously discussed, the underlying mechanism behind the effectiveness of typical GTs remains
insufficiently explored. To address this issue, this subsection proposes a cross-aggregation mechanism
and theoretically examines how it is manifested in the two types of SOTA GTs.

The cross-aggregation mechanism is formally defined as follows.
Definition 1. (Cross-aggregation mechanism) Given two representations B ∈ Rn1×d1 and Z ∈
Rn2×d2 from different modalities (sources), which share at least one same dimension, i.e., n1 = n2

or d1 = d2. A general formula for two types of cross-aggregations can be expressed as

Ẑ ≜

{
Sim(Z,B)B, if d1 = d2,

BSim(B,Z), if n1 = n2,
(5)

where Sim(Z,B) denotes a similarity function between Z and B, such as cosine similarity.

The first case corresponds to sample (node)-level aggregation, e.g., cross-attention (Eq. 4), while
the second corresponds to dimension (feature)-level aggregation [55, 56, 61]. When Z = B, Eq. 5
reduces to a self-aggregation (e.g., self-attention). Accordingly, two theorems are presented.
Theorem 1. In typical Graph Transformers, the diffusion matrix of GNN blocks can be expressed via
eigendecomposition as S = UΛU⊤, where U and Λ = diag([λ1, . . . , λn]) represents eigenvectors
and eigenvalues, respectively (in descending order). Accordingly, the GNN block can be viewed as a
cross-aggregation between attribute representations XW and topology representations U

√
Λ.

Theorem 2. Given the modulated node attributes using any PE, i.e., X̂ = [X;P], where P ∈ Rn×k

represents the PE and [; ] denotes concatenation operator. PE-based GTs (Eq. 3) inherently contain
a cross-aggregation between attribute representations XW and topology representations PW.

The proofs for Theorems 1 and 2 are provided in Sections B and C, respectively. In short, the key
mechanism of GTs using GNNs and PEs is Cross-Aggregation between topology and attributes.
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3.2 UGCFormer

Motivated by the cross-aggregation mechanism explored in the previous subsection, this subsection
introduces UGCFormer, a simple yet universal GT. At its core, UGCFormer employs a linearized
cross-attention module that implements the cross-aggregation mechanism to capture interactions
between graph topology and node attributes. UGCFormer consists of four modules, each of which is
described below. The detailed implementation is provided in Algorithm 1.

Initial Representation Layer. Two different projection layers are utilized to independently generate
initial representations for the two types of graph information. For simplicity, MLPs are used to process
the adjacency matrix A ∈ Rn×n and the attribute matrix X ∈ Rn×f , producing the corresponding
initial representations Z and B, that is,

Z0 = MLPA(A), B0 = MLPX(X) ∈ Rn×d, (6)

where MLPA(·) and MLPX(·) term the MLPs for processing topology and attributes, respectively.

Dual Cross-attention Module. As an implementation of the cross-aggregation (in Definition 1),
this module is designed to capture the interactions between these two types of graph information.
However, directly employing the cross-attention (Eq. 4) may result in two issues: (1) unacceptable
quadratic computational complexity due to the calculation of dot products for all node pairs, and (2)
an increased number of parameters and overfitting risk due to the use of two separate channels.

To alleviate these drawbacks, the proposed Dual Cross-Attention (DCA) module adopts two strategies:
(1) linearized attention computation [48] and (2) parameter sharing, as shown in Fig. 1(b). Firstly,
through approximating or replacing the Softmax attention utilizing separate kernel functions, the
computation order in the SA module can be reordered from the standard (Query×Key)×Value (Eq.
3) to the more efficient Query×(Key×Value) format [26]. However, this strategy is unsuitable for the
cross-attention module. Specifically, the attention score k(B)⊤v(B) ∈ Rd×d computes the similarity
between features within the same space, rather than across different spaces. To ensure cross-space
interaction, DCA sets the Key to originate from the same space as the Query. Moreover, DCA shares
parameters between the Query and Key to reduce the number of parameters.

To streamline the description of the update process for topology representations and attribute rep-
resentations, two abstract representations H1 and H2 are introduced. For clarity, layer indices are
omitted. The general formulation of the DCA module is given as follows:

DCA(H1,H2) : Q = q(H1),K = k(H1),V = v(H2), (7)

Q̃ =
Q

∥Q∥F
, K̃ =

K

∥K∥F
, (8)

H∗
1 = D−1

(
V +

1

n
Q̃(K̃⊤V)

)
, (9)

where q(·) and k(·) stand for the Query and Key functions, respectively, with q(·) = k(·). And
vA(·) represents the Value function. These functions are implemented as MLPs. ∥ · ∥F denotes the
Frobenius norm. D = Diag(1+ 1

nQ̃(K̃⊤1)) stands for a diagonal matrix and 1 is an all-one vector.

The topology-related attribute representations can be obtained as B∗
DCA = DCA(B,Z). Then, the

topology representations are updated via

Ẑ = (1− λ̃)ÃV + λ̃B∗
DCA, (10)

where Ã denotes the normalized adjacency matrix. The first term denotes the topology representation
updated purely from the topology space, which can be viewed as being obtained via spectral clustering
[46, 53] (see Theorem 3). λ̃ = Tanh(λ) stands for a scalar to balance these two terms, where λ is a
learnable parameter. Combining these two terms allows for the fusion of topological details alongside
the topology-related attribute information into the final topology representations.

Similarly, the attribute representations are updated by incorporating relevant information from the
topology space, that is, Z∗

DCA = DCA(Z,B), with their representations. This can be expressed as

B̂ = (1− γ̃)B0 + γ̃Z∗
DCA, (11)

where γ̃ = Tanh(γ) denotes a scalar to trade off the two terms with γ denotes a learnable parameter.
Note that DCA requires two separate sets of network parameters to generate the attribute and topology

5



Algorithm 1: UGCFormer
Input: Graph G(A,X) with labels Y, hyperparameters α, β and τ .
Output: Trained network parameters Θ∗.
Initialization: Network parameters Θ,
while not converged do

1. Generate two initial node representations Z0 and B0 via Eq. 6;
2. Get two updated node representations Ẑ and B̂ via Eqs. 10 and 11;
3. Obtain the final predictions Ŷ via Eq. 12;
4. Calculate the overall loss Lfinal via Eqs. 13 and 14;
5. Optimize the parameters via Θ∗ ← Adam(L,Θ);

end
return Parameters Θ∗

representations, e.g., qA(·) and qX(·) represent the Query for graph topology and node attributes,
respectively, as shown in Fig. 1.

Prediction Layer. After obtaining the topology representations Ẑ and attribute representations B̂
through l layers, the final node representations can be generated by weight combining them. Next,
the predictions are generated via an MLP network and nonlinearities (i.e., Softmax(·)), that is,

Ŷ = Softmax
(
MLP

(
(1− α)Ẑ+ αB̂

))
, (12)

where α denotes a scalar that adjusts attention to topology and attribute representations. Ŷ ∈ Rn×c

represents the predictions, indicating the estimated outcomes for each of the n nodes across c classes.

Objective Function. Note that the proposed DCA module, with a large number of parameters across
two distinct spaces, is susceptible to representation distortion caused by overfitting [8], especially
when the number of training nodes is limited. Thus, a consistency constraint is introduced to align the
two representations Ẑ and B̂. First, pseudo-labels are derived by averaging the two representations.
For a node v, its pseudo-label can be computed as yv = 1

2 (ẑv+ b̂v). Next, low-entropy pseudo-labels
are obtained through a sharpening technique that controls the sharpness of the distribution. This can
be formulated as ȳi,j = y

1
τ
i,j/

∑c−1
k=0 yi,j , (0 ≤ j ≤ c− 1), where τ ∈ (0, 1] denotes a scaling factor

that controls the sharpness of the distribution.

Once the pseudo-label is obtained, the next step is to calculate the squared Euclidean distance between
it and the two representations, which is given by

Lcon(Ẑ, B̂) =
1

2

n−1∑
i

(
∥ȳi − ẑi∥22 + ∥ȳi − b̂i∥22

)
. (13)

The overall objective of UGCFormer is to minimize the weighted sum of the cross-entropy loss and
the consistency loss, defined as follows:

Loverall = Lce + βLcon, (14)

where Lce = −
∑

v∈VL
yv log ŷv and β stands for a balance hyperparameter.

3.3 Model Analysis

This subsection provides a comprehensive analysis of UGCFormer. First, the computational complex-
ity of UGCFormer is analyzed. Then, the simplicity of UGCFormer is examined through architectural
comparison with existing GTs. Finally, the effectiveness of UGCFormer is theoretically justified.

Complexity Analysis. UGCFormer operates with linear time complexity. The time complexity for
generating initial representations through the projection layer is O(md+nd2) as the adjacency matrix
is sparse, where m represents the number of edges. Secondly, owing to the linearized cross-attention
module, the aggregation operator incurs a computational overhead of O(nd2). Finally, obtaining the
predictions involves feature mapping and element-wise operations, resulting in a complexity of O(nd).
UGCFormer operates with linear space complexity. The space required to store the input topology
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Table 1: Accuracy (ACC) or ROC-AUC in percentage (mean±std) over 10 trials of the node classifica-
tion task on homophilic graphs. Best and runner-up models are in bold and underlined, respectively.

Model Cora CiteSeer PubMed Photo CS Physics Questions
Metric ACC ↑ ACC ↑ ACC ↑ ACC ↑ ACC ↑ ACC ↑ ROC-AUC ↑ Avg ↑ Rank ↓
GCN 81.60±0.40 71.60±0.40 78.80±0.60 92.70±0.20 92.92±0.12 96.18±0.07 76.28±0.64 84.30 13.29
GAT 83.00±0.70 72.10±1.10 79.00±0.40 93.87±0.10 93.61±0.14 96.17±0.08 74.94±0.56 84.67 11.43
GraphSAGE 82.68±0.47 71.93±0.85 79.41±0.53 94.59±0.14 93.91±0.13 96.49±0.06 76.44±0.62 85.06 9.71
APPNP 83.30±0.50 71.80±0.50 80.10±0.20 94.32±0.14 94.49±0.07 96.54±0.07 75.51±0.23 85.15 8.14
GPR-GNN 84.20±0.50 71.60±0.80 80.07±0.92 94.49±0.16 95.13±0.09 96.85±0.08 67.15±1.92 84.21 8.71
LINKX 77.95±0.12 68.25±0.24 77.36±0.42 91.97±0.19 94.77±0.19 96.29±0.13 75.71±1.40 83.19 13.14
GloGNN 82.17±0.29 71.74±0.88 80.37±0.95 95.10±0.20 95.00±0.10 96.97±0.15 67.15±1.92 84.07 8.43

GraphGPS 82.84±1.03 72.73±1.23 79.94±0.26 95.06±0.13 93.93±0.12 97.12±0.19 71.73±1.47 84.76 8.29
NodeFormer 82.20±0.90 72.50±1.10 79.90±1.00 93.46±0.35 95.64±0.22 96.24±0.24 74.27±1.46 84.89 9.57
NAGphormer 82.12±1.18 71.47±1.30 79.73±0.28 95.49±0.11 95.75±0.09 97.34±0.03 74.98±0.63 85.27 7.71
Exphormer 82.77±1.38 71.63±1.19 79.46±0.35 95.35±0.22 94.93±0.01 96.89±0.09 74.67±0.79 85.10 8.86
GOAT 83.18±1.27 71.99±1.26 79.13±0.38 92.96±1.48 94.21±0.38 96.45±0.28 75.76±1.66 84.81 10.00
SGFormer 84.50±0.80 72.60±0.20 80.30±0.60 95.10±0.47 94.78±0.20 96.60±0.18 72.15±1.31 85.14 6.57
Polynormer 83.25±0.93 72.31±0.78 79.24±0.43 96.46±0.26 95.53±0.16 97.27±0.08 76.91±1.63 85.85 4.71
Gradformer 82.95±0.73 72.80±0.59 80.14±0.48 95.76±0.28 94.21±0.29 97.06±0.16 74.71±1.07 85.38 6.14

UGCFormer 84.94±0.43 73.41±0.27 81.79±0.81 96.21±0.31 95.91±0.23 97.35±0.17 77.02±0.76 86.66 1.14

and attributes is O(m+ nd), where m corresponds to the number of edges and nd accounts for the
feature matrix. The aggregated and updated representations each require O(nd) space, since their
dimensions do not exceed those of the input feature matrix. In the linearized attention computation
(Fig. 1(b)), the attention matrix contributes an additional O(d2) space overhead.

Components. To leverage discriminative graph topology and capture structural biases, existing GTs
often resort to auxiliary components that compromise their efficiency and effectiveness. Specifically,
the positional or structural encodings (e.g., Laplacian eigenvector encodings) used in GraphGPS [37],
NAGphormer [2], Exphormer [42], and GOAT [29] as well as augmented training losses (e.g., edge
regularization loss) in NodeFormer, often necessitate cubic computational complexity and quadratic
space consumption. Moreover, the GNN module tends to generate representations that are susceptible
to issues caused by the limited message passing. In contrast, the proposed UGCFormer features a
streamlined and efficient design that relies solely on a linear cross-attention module.

Theoretical Justification. Though designed to be simple and intuitive, the proposed UGCFormer is
theoretically guaranteed to be effective from a graph optimization perspective [54, 57].
Theorem 3. Let Z and B denote the topology representations and attribute representations, respec-
tively. The representation update in the dual cross-attention module DCA (Eq. 10 and Eq. 11) is
equivalent to solving an optimization problem with the objective function:

argmin
Z,B

λTr(Z⊤L̃Z) + ∥B−MLP (X)∥2F − η∥Z⊤B∥2F , (15)

where L̃ terms the Laplacian matrix of Ã, λ and η are the scalars used to balance these three terms.

In Eq. 15, the first term stands for a relaxed optimization problem widely used in spectral clustering
[46]. Thus, the DCA seeks to generate topology representations that capture mesoscopic community
structures. The second term measures the distance between the attribute representation B and its initial
representation MLP (X). The third term denotes the statistical dependence measure, approximated by
the Hilbert-Schmidt Independence Criterion (HSIC) [20], that is, HSIC(Z,B) ≈ Tr(ZZ⊤BB⊤) =
∥Z⊤B∥2F , which reflects the dependence between topology and attribute representations. Therefore,
the interaction, whether mutual correlation (positive weights) or exclusion (negative weights), can be
modulated by the parameters. In summary, Theorem 3 indicates that UGCFormer focuses on learning
representations by mining the interactions of two basic graph information.

4 Experiments

This section evaluates the effectiveness and universality of the proposed UGCFormer by comparing its
performances against various diverse graph learning models on the node classification task. Moreover,
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Table 2: Accuracy (ACC) in percentage (mean±std) over 10 trials of the node classification task on
heterophilic graphs. Best and runner-up models are in bold and underlined, respectively.

Model Cornell Texas Wisconsin Actor Chameleon Squirrel Ratings
Metric ACC ↑ ACC ↑ ACC ↑ ACC ↑ ACC ↑ ACC ↑ ACC ↑ Avg ↑ Rank ↓
GCN 58.41±3.28 65.61±4.80 61.28±5.87 30.63±0.62 43.43±1.92 41.30±0.94 47.77±0.69 49.78 11.57
GAT 58.29±3.52 60.73±6.20 63.64±6.18 30.36±0.94 40.14±1.57 35.09±0.70 47.95±0.53 48.03 14.57
GraphSAGE 75.95±5.31 82.43±6.07 81.18±4.56 34.23±1.07 39.11±5.05 36.46±2.16 53.11±0.54 57.50 11.00
APPNP 73.68±3.97 74.57±2.48 70.61±3.47 35.18±1.21 39.42±3.87 38.13±2.67 49.78±0.72 54.49 12.71
GPR-GNN 78.11±6.55 81.35±5.32 82.55±6.23 35.16±0.85 39.93±3.30 38.95±1.99 43.90±0.48 57.14 11.86
LINKX 77.84±5.81 74.60±8.37 75.49±5.72 36.10±1.55 40.02±2.35 39.88±2.53 51.36±0.47 56.47 11.00
GloGNN 83.51±4.26 84.32±4.15 87.06±3.53 37.35±1.30 38.43±3.74 30.30±1.92 37.28±0.66 56.89 8.14

GraphGPS 82.06±5.73 82.21±6.14 85.36±4.24 36.18±1.27 40.79±4.03 39.67±2.84 53.10±0.42 59.91 7.29
NodeFormer 82.15±6.72 81.68±4.65 83.41±5.51 36.28±1.25 43.09±2.81 40.61±1.25 50.12±0.64 59.62 7.43
NAGphormer 79.97±6.07 80.18±4.57 82.97±2.98 34.36±0.75 44.61±3.10 41.27±1.09 52.51±0.83 59.41 7.86
Exphormer 83.07±4.31 82.81±3.52 83.90±4.31 36.82±1.95 41.63±3.12 40.32±1.59 52.08±0.81 60.06 6.00
GOAT 83.18±1.27 71.99±1.26 79.13±0.38 36.55±1.19 42.56±3.17 40.81±0.54 49.68±0.50 57.70 8.53
SGFormer 81.64±3.88 84.29±5.67 83.59±5.42 37.79±1.89 44.93±3.91 41.80±2.27 48.01±0.49 60.29 4.86
Polynormer 81.90±4.17 82.57±5.11 83.95±2.98 37.01±1.10 41.97±3.18 40.87±1.96 53.29±0.23 60.22 5.14
Gradformer 83.06±5.16 82.19±5.24 84.26±2.24 36.58±0.71 40.73±3.69 40.29±1.88 53.11±0.29 60.03 6.43

UGCFormer 85.14±5.83 84.59±4.69 87.36±3.30 37.41±0.79 43.28±2.17 41.56±2.01 53.48±0.14 61.83 1.71

it provides additional analysis experiments to enhance the understanding of UGCFormer. Refer to
Section E for details on the datasets, baselines, and experimental setups.

4.1 Experimental Results

Homophilic Graphs. The experiment results for node classification on homophilic graphs are shown
in Tab. 1, from which three key observations can be made. Firstly, the performance of the backbone
GNNs (e.g., GCN and GAT) lags behind that of GTs. To be specific, on six of the seven homophilic
graphs, the models that rank in the top two positions are GTs. This is primarily because most GTs,
such as NAGphormer, are built upon these backbone GNNs and specifically address the shortcomings
of GNNs in capturing long-range dependencies. Secondly, the proposed UGCFormer outperforms
all baseline GTs across six of the seven datasets and achieves the optimal rank, demonstrating its
consistent superior performance. In particular, on PubMed, UGCFormer achieves a performance
that is 2.55% higher than the baseline Polynormer, which has an average rank of second, and its
average rank is significantly lower. Thirdly, compared with the baseline LINKX, which also processes
graph topology and node attributes separately and does not leverage message passing, UGCFormer
consistently achieves better results across all datasets. This can be attributed to its ability to capture the
interactions between these two types of graph information and alleviate the representation distortion,
which LINKX does not account for. This highlights the rationality of UGCFormer’s design.

Heterophilic Graphs. Tab. 2 shows the results of the node classification task on seven heterophilic
graphs, highlighting three key observations. Firstly, the baseline GTs perform slightly better than
the baseline GNNs, but the difference is not substantial. In specific, the baseline GNNs, particularly
GloGNN on Cornell, Texas, and Wisconsin, and GraphSAGE on the Ratings, achieve top-two results
on five of the seven datasets. This can be attributed to the high complexity and large number of
parameters in GTs, which make them prone to overfitting. Therefore, the baseline SGFormer, which
linearly combines the local representation from the GNN module and the global representation from
the GT module, achieves superior performance. This is evidenced by its ranking in the top two for
three datasets. Secondly, the proposed UGCFormer outperforms the GT baselines on the majority
of heterophilic graphs, proving its effectiveness. For example, on Cornell, UGCFormer exceeds the
second-ranked GT, i.e., GOAT, by a significant margin of 1.96%. Thirdly, UGCFormer consistently
outperforms the baseline LINKX on all heterophilic datasets, highlighting the significance of capturing
the relevance between graph topology and node attributes. Overall, UGCFormer achieves performance
improvements on both homophilic and heterophilic graphs, demonstrating its universality.

Scalability Study. To evaluate the scalability of the proposed UGCFormer, this experiment quantita-
tively changes the network size and records the running time and GPU memory usage. Specifically, it
utilizes the ogbn-arxiv to randomly sample subsets of nodes, with the node numbers varying from
10K to 100K. As shown in Fig. 2, the running time and GPU memory usage of UGCFormer increase
linearly with the size of the sampled graph. For example, the training time and memory usage with
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100k nodes are approximately five times higher than with 20k nodes. This indicates that UGCFormer
exhibits linear time and space complexity, consistent with the conclusion in Section 3.3.

Figure 2: Training time and GPU memory usage of UGCFormer.

Node Property Prediction. This experiment seeks to eval-
uate the effectiveness and scalability of GTs by comparing
them with GNNs on two large-scale benchmark datasets.
Upon examining Tab. 3, which presents the results of the
node property prediction task on these two datasets, two
key conclusions can be drawn. Firstly, the backbone GTs
generally outperform the backbone GNNs, which not only
highlights the superiority of GTs but also underscores their
scalability—a key challenge that GTs aim to address. This
can be attributed to the integration of the GNN blocks in
GTs, exemplified by SGFormer. These GTs generate the fi-
nal prediction by combining the local representations from
the GNN module with the global representations from the
GT module. Secondly, the proposed UGCFormer achieves
optimal performance on these two datasets, indicating its
effectiveness and scalability on large graphs.

Table 3: Node property prediction per-
formances on two large-scale graphs.

Model ogbn-proteins ogbn-arxiv
Metric ROC-AUC ↑ ACC ↑
GCN 72.51±0.35 71.74±0.29

GAT 72.02±0.44 71.95±0.36

GPRGNN 71.10±0.12 71.10±0.12

LINKX 66.18±0.33 71.59±0.71

GraphGPS 76.83±0.26 70.97±0.41

NodeFormer 77.45±1.15 67.19±0.83

NAGphormer 73.61±0.33 70.13±0.55

Exphormer 74.58±0.26 72.44±0.28

GOAT 74.84±1.16 72.41±0.40

SGFormer 79.53±0.38 72.63±0.13

Polynormer 78.97±0.47 73.46±0.16
Gradformer 77.64±0.51 72.71±0.20

UGCFormer 79.95±0.75 74.02±0.17

4.2 Additional Analysis

Ablation Study. This experiment evaluates the contributions of the proposed cross-attention module
and the consistency constraint by comparing UGCFormer with two variants lacking these components.
Fig. 3 shows that these variants consistently underperform UGCFormer across the four datasets. This
illustrates that the efficacy of UGCFormer stems from the collective contribution of all components.
Besides, even without the consistency loss, the variant model (w/o Lcon) still provides competitive
performance compared to the baseline GTs, as seen in Table 1. This highlights the effectiveness of
the cross-attention module and thereby reaffirms the rationality of the UGCFormer architecture.
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Figure 3: Impact of functional components
(i.e., the CA and consistency constraint).

Figure 4: Performance
variations for varying l.

Figure 5: Performance
variations for varying d.

Parameter Sensitivity Analysis. These experiments aim to provide an intuitive understanding for
the selection of hyperparameters. Performance changes due to varying the number of layers (l)
and layer dimensions (d) are shown in Figs. 4 and 5, respectively. Number of Layers. Fig. 4
shows that UGCFormer achieves stable performance across various layer numbers {1, 2, 3, 4, 5}.
Specifically, performance fluctuations are minimal, within 2.2% on the Cora, 1.4% on the CiteSeer,
and 1.3% on PubMed. This indicates that UGCFormer is relatively insensitive to the number of layers.
Additionally, optimal performance is achieved with {3, 4}, likely due to the risk of over-smoothing in
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deeper models. Hidden Layer Dimension. As shown in Fig. 5, UGCFormer maintains consistent
performance across the hidden dimension range {64, 128, 256, 512}. For example, on the Cora,
which shows the most significant performance variation, the difference is less than 2%. This indicates
that UGCFormer is not sensitive to this parameter. Additionally, optimal performance on the three
datasets corresponds to d ∈ {128, 256}, rather than the highest value of 512. This suggests that
larger dimensions can lead to overfitting and distorted representations. Additional hyper-parameters
(including α and β) are analyzed in Section E.4.

5 Conclusions

By revisiting two typical Graph Transformers (GTs), this study has uncovered a potential functional
mechanism: cross-aggregation between graph topology and node attributes. To effectively implement
this mechanism, this paper introduces UGCFormer, a linearized graph cross-attention Transformer.
Extensive experiments on sixteen graph benchmarks demonstrate its effectiveness and efficiency.
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A Algorithm Description

A layer of the proposed dual cross-attention module DCA is depicted in Algorithm 2.

Algorithm 2: PyTorch-style Code for DCA layer
# N: instance number
# D: hidden dimension
# z: data embeddings sized [N, D]
# b: data embeddings sized [N, D]
# H: head number
# Wq, Wk, Wv: parameter matrices for feature transformation
q = Wq(z) # [N, H, D]
k = Wk(z) # [N, H, D]
v = Wv(b) # [N, H, D]
# numerator
kv = torch.einsum("lhm, lhd→ hmd", k, v)
num = torch.einsum("nhm, hmd→ nhd", q, kv)
num += N ∗ v # [N, H, D]
# denominator
all_ones = torch.ones(N)
k_sum = torch.einsum("lhm, l→ hm", k, all_ones)
den = torch.einsum("nhm, hm→ nh", q, k_sum) # [N, H]
# aggregated results
den += torch.ones_like(den) ∗ N
output = num / den.unsqueeze(2) # [N, H, D]
# head average
output = output.mean(dim=1) # [N, D]

B Proof for Theorem 1

Proof. The proof unfolds in three stages: firstly, a concise description of the model to be validated is
provided; subsequently, the model is decomposed into its topology and attribute components; and
finally, it is verified that this structure aligns with the cross-aggregation form.

For a single-layer GNN block, such as GCN [27] widely used in GTs [37, 2, 48], the feature update
can be expressed as

H = σ(ÃXW). (16)

where the diffusion matrix Ã denotes the normalized adjacency matrix.

By omitting the nonlinear activation function and performing eigendecomposition on the adjacency
matrix, the above equation can be reformulated as

H = ÃXW

= UΛU⊤XW

= U
√
Λ
√
ΛU⊤XW.

(17)

Next, let B = U
√
Λ and Z = XW. The similarity function Sim(·, ·) is implemented as matrix

multiplication. With the definitions in Eq. 5, the GCN block can be interpreted as a cross-aggregation
from the attribute space to the topology space.

Extension to Multi-layer GNN Blocks. Following the discussion on single-layer GNNs, the solution
for multi-layer GNNs is presented. Under the above assumptions, the node representations in the l-th
layer can be formulated as

Hl = (Ã1Ã2 . . . Ãl)X(W1W2 . . .Wl)

= S XW,
(18)
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where Ãi and Wi denote the diffusion matrix and the parameter matrix, respectively, in the i-th
layer. S =

∏l
i=0 S

l and W =
∏l

i=0 W
l stand for the product of the diffusion matrices and the

projection matrices. Given the properties of the diffusion matrix, the product diffusion matrix can be
eigen-decomposed as S = UΛ(l)U⊤, where Λ(l) represents the l power of Λ. Therefore, the above
conclusion still holds in the context of multi-layer GNNs.

Remark. This interpretation holds under the assumption that the diffusion operators across layers
share a common eigenspace (i.e., identical or mutually commutative Ã across layers). Otherwise, the
equivalence serves as a first-order approximation of the aggregation process.

C Proof for Theorem 2

Proof. This proof first expands the model based on the feature and parameter matrices. Then, it
identifies the representation updates of the topology and attributes within it. Finally, it establishes the
relationship between these updated expressions and the cross-aggregation.

Firstly, the function Softmax(·) can be approximated using Random Features mappings, that is,
H = Softmax(QK⊤)V ≈ ϕ(Q)ϕ(K)⊤V. Here, ϕ(·) denotes a kernel-based feature mapping
that linearizes the attention computation. In practice, the learnable projection matrix W applied to X
can be viewed as a parametric approximation to this mapping.

By expanding node attributes X = [X;P], where X ∈ Rn×f and P ∈ Rn×k, it can be obtained as

H =

(
[X;P]Wq(Wk)⊤

[
X⊤

P⊤

])
[X;P]Wv (19)

Then, by expanding the Query (like Wq =

[
Wq

1
Wq

2

]
), and the Key and Value, it can be derived as

H =
(
(XWq

1 +PWq
2)

(
(Wk

1)
⊤X⊤ + (Wk

2)
⊤P⊤)) (XWv

1 +PWv
2)

=
(
(XWq

1 +PWq
2)

(
(Wk

1)
⊤X⊤ + (Wk

2)
⊤P⊤))XWv

1

+
(
(XWq

1 +PWq
2)

(
(Wk

1)
⊤X⊤ + (Wk

2)
⊤P⊤))PWv

2 .

(20)

It is evident that the equation includes several terms that describe the self-aggregation of topol-
ogy and attributes. For instance, PWq

2(PWk
2)

⊤PWv
2 and XWq

1(XWk
1)

⊤XWv
1 stand for the

self-aggregation of topology and attributes, respectively. Furthermore, this equation contains sev-
eral terms that include cross-aggregation across topology and attributes. Exampled by the term
XWq

1(PWk
2)

⊤PWv
2 , by setting Z = XWq

1 and B = PW2, the cross-aggregation from the
topology space to the attribute space can be obtained. Similarly, terms (e.g., PWq

2(PWk
2)

⊤XWv
1)

describing cross-aggregation from the attribute space to the topology space can be found.

D Proof for Theorem 3

Proof. This proof includes two main steps. First, we plan to derive the closed-form solutions for Z
and B from the convex optimization objective (Eq. 15). These solutions are denoted as Z∗ and B∗,
respectively. Second, we aim to establish the equivalence between these derived solutions Z∗ and B∗

and the feature updates in Eq. 10 and Eq. 11, respectively.

Let us denote the objective function (Eq. 15) as O(Z,B), that is

O(Z,B) = λTr(Z⊤L̃Z) + ∥B−MLP (X)∥2F − η∥Z⊤B∥2F
= λTr(Z⊤(I− Ã)Z)

+ Tr
(
(B−MLP (X))⊤(B−MLP (X))

)
− ηTr((Z⊤B)⊤(Z⊤B))

(21)

Firstly, the partial derivatives of O(Z,B) with respect to Z can be calculated as

∂O(Z,B)

∂Z
= 2λ(I− Ã)Z− 2η(BB⊤Z) (22)
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The closed-form solution Z∗ for the objective function O can be derived by setting ∂O(Z,B)
∂Z = 0,

that is
2λ(I− Ã)Z− 2η(BB⊤Z) = 0 (23)

⇒ Z∗ = ÃZ+
η

λ
BB⊤Z (24)

Then, by setting ω1 = η
λ+η , we obtain

Z∗ = (1− ω1)ÃZ+ ω1BB⊤Z (25)

For the update of topology representations in the proposed DCA module, i.e., Eq. 10, the process can
be rewritten as

Ẑ = (1− λ̃)ÃV + λ̃SV, (26)

where S ∈ Rn×n stands for the cross-attention score matrix, with the scores si,i =
n+qi,:k

⊤
i,:

n+
∑

t qi,:k⊤
t,:

and

si,j =
qi,:k

⊤
j,:

n+
∑

t qi,:k⊤
t,:

for i ̸= j.

To demonstrate the equivalence between Eq. 25 and Eq. 26, the first step is to set ω1 = λ̃. With this
condition met, the required proof is to derive a matrix B that satisfies the equation BB⊤ = S.

Let us denote the diagonal matrix as D, where di,i =
√

n+1
n+

∑
t qi,:q⊤

t,:
, the construction of B = DQ

ensures that the above equation holds.

For the diagonal elements of BB⊤, there is

(BB⊤)i,i =

d−1∑
j=0

b2i,j =

d−1∑
j=0

(di,i · qi,j)2 = d2i,i

d−1∑
j=0

q2i,j (27)

Given that the rows of Q are L2-normalized, we have
∑d−1

j=0 q
2
i,j = 1. Due to the same source and

parameter sharing, it follows that Q = K. Thus, we obtain (BB⊤)i,i = d2i,i =
n+1

n+
∑

t qi,:q⊤
t,:

, which
matches the definition of the score sv,v on the main diagonal.

For the off-diagonal elements of BB⊤ where v ̸= u, there is

(BB⊤)i,j =

d−1∑
t=0

bi,t · bj,t =
d−1∑
t=0

(di,i · qi,t) (dj,j · qj,t)

= di,i · dj,j
d−1∑
t=0

qi,t · qj,t = c
qi,:q

⊤
j,:

n+
∑

k qi,:q⊤
k,:

(28)

Since di,i and dj,j are the square roots of the denominators in the formula for si,i and sj,j , respectively,
and qi,:q

⊤
j,: is the dot product of the i-th and j-th rows of Q, this matches the definition of si,j .

Therefore, the correct construction of B should be B = DQ.

Similarly, the closed-form solution B∗ of the objective in Eq. 15 can be obtained by setting its
derivative to 0 as

∂O(Z,B)

∂B
= 2(B−MLP (X)) + 2η(ZZ⊤B) = 0 (29)

⇒ B∗ = MLP (X) + ηZZ⊤B (30)

Then, by defining ω2 = 1
1+η , there is

B∗ = (1− ω2)MLP (X) + ω2ZZ
⊤B (31)

The proposed dual cross-attention module for updating the attribute representations, i.e., Eq. 11, can
be rephrased as

B̂ = (1− γ̃)MLP (X) + γ̃SV (32)
Similarly, considering that matrix S maintains the same structure as described in Eq. 26, the crucial
step to ensure B∗ = B̂ is to establish the parameter ω2 = γ̃ and to set Z = DQ. This approach
guarantees that the necessary conditions for the equivalence are met.

16



E Experimental Details

E.1 Datasets and Splitting

Datasets. In the node classification experiments, sixteen publicly available benchmark datasets are
utilized. These graphs can be classified into two categories based on whether their Edge Homophily
[35] exceeds 0.5: seven graphs are tagged as homophilic graphs, including Cora [40], CiteSeer [40],
PubMed [40], Photo [41], CS [41], Physics [41], and Questions [36]. The remaining seven graphs
are marked as heterophilic graphs, containing Cornell [35], Texas [35], Wisconsin [35], Actor [43],
Chameleon [38], Squirrel [38], and Ratings [36]. It is worth noting that the original Chameleon and
Squirrel exhibit neighborhood overlap, and are thus filtered according to the study [36]. Additionally,
two large-scale graph datasets, i.e., ogbn-arxiv [23] and ogbn-proteins [23], are employed for node
property prediction experiment. Statistics are shown in Tab. 4.

Table 4: Statistics of sixteen graph datasets. #h denotes the edge homophily shown in [35].

Dataset Nodes Edges Features Classes #h

Cora 2,708 5,278 1,433 7 0.81
CiteSeer 3,327 4,552 3,703 6 0.74
PubMed 19,717 44,324 500 3 0.80
Photo 7,650 238,163 745 8 0.83
CS 18,333 81,894 6,805 15 0.81
Physics 34,493 247,962 8,415 5 0.93
Questions 48,921 153,540 301 2 0.84

Cornell 183 280 1,703 5 0.30
Texas 183 295 1,703 5 0.11
Wisconsin 251 466 1,703 5 0.21
Actor 7,600 33,544 931 5 0.22
Chameleon 890 8,854 2,325 5 0.24
Squirrel 2,223 46,998 2,089 5 0.21
Ratings 24,492 93,050 300 5 0.38

ogbn-proteins 132,534 39,561,252 8 2 0.38
ogbn-arxiv 169,343 1,157,799 300 128 0.65

Dataset Splitting. To ensure that the experimental results are credible and reproducible, this paper
follows well-established dataset splitting strategies. For the Cora, CiteSeer, and PubMed, the public
standard splitting described in [27] is adopted, with 20 nodes per class for training, 500 for validation,
and 1000 for testing. The Photo, CS, and Physics are randomly divided into training, validation, and
testing sets in a 60%, 20%, and 20% ratio, respectively. For the heterophilic datasets Cornell, Texas,
Wisconsin, Actor, and Chameleon, this paper employ 10 standard train/validation/test splits with a
division ratio of 48%, 32%, and 20%, respectively. Note that the Chameleon and Squirrel used here
are duplicates-removed filtered versions as referenced in [36]. The Ratings, and Questions follow a
50%/25%/25% train/validation/test random split pattern. For the two datasets from the OGB [23],
i.e., ogbn-arxiv and ogbn-proteins, the provided standard splits are utilized.

E.2 Introduction of Baselines

The comparative analysis in the experiments involves seven Graph Neural Networks (GNNs) as well
as seven Graph Transformers (GTs) as the baseline models. To be specific, the GNNs include four
standard GNNs, i.e., GCN [27], GAT [45], GraphSAGE [21], and APPNP [28], and two universal
GNNs for graphs with diverse homophily, i.e., GPR-GNN [6] and GloGNN [31], and a non-message-
passing GNN with a separate topology and attribute design, i.e., LINKX [32]. Besides, the baseline
GTs encompass eight state-of-the art models, namely, GraphGPS [37], NAGphormer [2], Exphormer
[42], GOAT [29], NodeFormer [47], SGFormer [48], Polynormer [7], and Gradformer [34]. These
models are implemented following the released code of the original paper.

E.2.1 Graph Neural Networks (GNNs)

The following specifies the GNN baselines employed in our comparative analysis.
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• GCN [27]: A seminal GNN that integrates graph topology and node attributes via graph
convolution.

• GAT [45]: A classic graph attention network that weights propagation using an attention
mechanism.

• GraphSAGE [21]: A scalable variant of GCN that employs neighbor sampling and diverse
aggregation strategies.

• APPNP [28]: A variant of GCN that weights propagation based on personalized PageRank.
• GPR-GNN [6]: A universal variant of GCN that weights propagation using learnable layer

coefficients.
• LINKX [32]: A non-message-passing GNN that directly combines representations of graph

topology and node attributes.
• GloGNN [31]: A universal variant of GCN that obtains the propagation matrix from an

optimization objective describing node relationships.

E.2.2 Graph Transformers (GTs)

The following specifies the GT baselines utilized in our comparative analysis.

• GraphGPS [37]: A general GT architecture incorporating positional encodings and lo-
cal/global modules.

• NodeFormer [47]: A scalable GT architecture that learns layer-specific graph structures via
a kernelized Gumbel-Softmax operator.

• NAGphormer [2]: A creative GT architecture constructing token vectors using neighborhood
aggregation.

• Exphormer [42]: A general GT architecture combining local, extended, and virtual node-
based global attention.

• GOAT [29]: A comprehensive GT architecture linearizing computational complexity based
on the k-means algorithm.

• SGFormer [48]: A lightweight GT architecture featuring a single-layer self-attention module.
• Polynormer [7]: A polynomial-expressive GT architecture learning high-degree polynomials

on input features.
• Gradformer [34]: An effective GT architecture dynamically modeling node relationships by

exponentially diminishing values in the decay mask matrix.

For the four GNN baselines, including GCN, GAT, GraphSAGE, and APPNP, we utilize the public
library, PyTorch Geometric (PyG) [13], for their implementation. For the other three GNN baselines,
we utilize their original code. The sources are outlined as

• GPR-GNN: https://github.com/jianhao2016/GPRGNN
• LINKX: https://github.com/CUAI/Non-Homophily-Large-Scale
• GloGNN: https://github.com/RecklessRonan/GloGNN

For the GT baselines, including GraphGPS, NodeFormer, NAGphormer, Exphormer, GOAT, SG-
Former, Polynormer, and Gradformer, we utilize their source code. The sources are detailed as

• GraphGPS: https://github.com/rampasek/GraphGPS
• NodeFormer: https://github.com/qitianwu/NodeFormer
• NAGphormer: https://github.com/JHL-HUST/NAGphormer
• Exphormer: https://github.com/hamed1375/Exphormer
• GOAT: https://github.com/devnkong/GOAT
• SGFormer: https://github.com/qitianwu/SGFormer
• Polynormer: https://github.com/cornell-zhang/Polynormer
• Gradformer: https://github.com/LiuChuang0059/Gradformer
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E.3 Experimental Setups

Configurations. The experiment is performed on two Linux machines using a single GeForce
RTX4090 24 GB GPU and a single NVIDIA A800 80GB GPU, respectively. The reported results
are averaged over ten random trials. All models operate under a semi-supervised learning paradigm,
where the results on validation sets are referenced to fine-tune hyperparameters.

Table 5: Hyperparameters of UGCFormer per dataset.

Dataset # layers l # dimensions d lr α β wd

Cora 4 256 0.001 0.5 1 5e-3
CiteSeer 3 256 0.001 0.6 0.1 5e-3
PubMed 3 128 0.001 0.5 0.1 1e-2
Photo 4 512 0.001 0.3 0.1 5e-5
CS 3 512 0.001 0.6 0.1 5e-4
Physics 3 512 0.001 0.5 1 5e-4
Questions 2 256 0.005 0.3 0.1 5e-4

Cornell 5 256 0.001 0.9 0.001 1e-2
Texas 4 128 0.001 0.7 0.001 1e-2
Wisconsin 4 128 0.001 0.9 0.001 1e-2
Actor 5 512 0.001 0.9 0.01 1e-2
Chameleon 2 512 0.001 0.2 0.01 5e-3
Squirrel 4 512 0.001 0.2 0.01 5e-5
Ratings 2 64 0.001 0.3 0.001 0

ogbn-proteins 1 128 0.001 0.7 0.01 5e-4
ogbn-arxiv 2 512 0.01 0.3 0.01 5e-4

Hyper-parameters. The hyperparameters are selected via a grid search strategy. In the node
classification task, models are trained employing an Adam optimizer with the learning rate among
{0.001, 0.005, 0.01} and the weight decay among {0, 1e − 5, 5e − 5, 1e − 4, 5e − 4, 1e − 3, 5e −
3, 1e− 2}. The number of layers is selected from {1, 2, 3, 4, 5}, and the dimension of hidden layers
is chosen from {64, 128, 256, 512}, and their impacts on model performance are analyzed in Section
4.2. For the node property prediction task, the hyperparameter selection follows the baseline [48]. For
the unique hyperparameters in UGCFormer, α is chosen from a range starting at 0.1 and increasing
by increments of 0.1, up to 0.9, β is selected from {0.001, 0.01, 0.1, 1}, and τ is fixed to 0.5. Refer
to Tab. 5 for the chosen parameters that correspond to the reported results.

Table 6: Training time and GPU memory usage on three graphs.

CiteSeer PubMed ogbn-arxiv

Method Train/Epoch (ms) Mem. (MB) Train/Epoch (ms) Mem. (MB) Train/Epoch (ms) Mem. (MB)

GraphGPS 16.82 140 46.99 470 166.10 8,102
NodeFormer 10.20 110 11.14 218 84.00 2,066
NAGphormer 10.81 166 17.65 352 760.50 1,962
Exphormer 14.20 159 25.00 696 145.70 6,758
SGFormer 5.80 84 6.07 142 36.90 1,024
Polynormer 9.20 174 15.20 307 170.07 4,729

UGCFormer 8.80 106 10.60 246 69.60 2,050

E.4 Additional experiment results

Running Time and Space Consumption. To further illustrate the efficiency and scalability of the
proposed UGCFormer, this experiment compares it with other GTs in terms of runtime and GPU
memory usage. Common hyperparameters are uniformly applied across all models to highlight the
impact of their components, particularly the attention modules. As depicted in Table 6, UGCFormer
consistently has the second-lowest running time and ranks among the top three in terms of lowest
GPU memory usage across three datasets. Despite utilizing linearized attention mechanisms, most
linearized GTs, including GraphGPS, NodeFormer, Exphormer, and Polynormer, perform worse than
UGCFormer. This highlights the lightweight and efficient design of UGCFormer.
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Figure 6: Performance variations for varying α. Figure 7: Performance variations for varying β.

Hyperparameter α. As depicted in the Fig. 6, UGCFormer exhibits stable performance within a
specific parameter range for each dataset. For instance, on Cora, performance variation is minimal
within the set {0.3, 0.4, 0.5, 0.6}, indicating that the model is robust to changes in hyperparameter α.
Similar observations are made for heterophilic graphs.

Hyperparameter β. From the Fig. 7, it can be observed that the performance remains stable across
the selection range of β, demonstrating that the model is not sensitive to this parameter. Even in the
worst case of parameter selection, the model achieves performance that is comparable to the baseline.

F Discussion

Comparison with Edge-augmented Graph Transformer (EGT). The proposed UGCFormer shares
a conceptual connection with EGT [25], yet their core mechanisms differ substantially. EGT augments
pairwise attribute-based attention between nodes using graph topology, whereas UGCFormer captures
the interaction between topology and attributes through a cross-attention mechanism. Although EGT
introduces an additional edge channel alongside the attribute channel, this design primarily aims to
utilize edge features to modulate the attention process (via addition or gating) rather than to explicitly
model the interaction between the two channels. Moreover, EGT requires large-scale edge features of
size O(n2d) (where n denotes the number of nodes and d the feature dimension), which significantly
increases computational complexity and limits scalability. In contrast, UGCFormer adopts a linear
cross-attention module that efficiently models topology-attribute interactions with linear time and
space complexity.

Broader Relation to Other Categories of Graph Transformers. The proposed cross-aggregation
mechanism can also provide a unified interpretation for other two types of Graph Transformers, that
is, those based on context-node sampling or edge rewriting. Although both categories of GTs are
implemented in different ways, their essence is to determine the subgraph for each node to perform
local message passing (via graph convolution or self-attention). Thus, they can be uniformly expressed
by obtaining the graph structure. As a result, the topology representation can be straightforwardly
determined based on the eigenvalue decomposition of the adjacency matrix, as described in the
manuscript. Ultimately, a formulation similar to that of cross-aggregation can be derived. Therefore,
their underlying mechanism can be attributed to a cross-aggregation between topology and attribute
representations.

G Limitations

The proposed UGCFormer, like other Graph Transformers (GTs), relies on a fixed set of hyperparam-
eters, requiring significant tuning and prior knowledge to optimize results. This not only limits their
applicability but also increases computational costs. Future work should explore adaptive learning
mechanisms to automate hyperparameter adjustment based on input data characteristics, reducing
manual intervention and enhancing generalizability.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly outline the contributions of our paper,
including the motivation and design of the proposed UGCFormer.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed the limitations in Section G, particularly regarding the large
number of hyperparameters commonly found in GTs. We have outlined potential directions
for future research to address this concern.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

21



Answer: [Yes]
Justification: All theoretical results are accompanied by clearly stated assumptions and
complete proofs, provided in the main paper and referenced appropriately.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The supplemental material contains a file of our model’s code, enabling the
replication of the experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have included complete and executable code within the supplemental
material, ensuring the reproducibility of our results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have provided detailed descriptions of our experimental setup in Section E,
including data splits, hyperparameters, and optimizer, etc.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The experimental results are presented as the mean and standard deviation
over 10 runs, as shown in Tabs. 1 and 2, as well as Figs. 4 and 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have provided the computational resources used for all experiments in
Section E.3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research adheres to the NeurIPS Code of Ethics, and we have ensured that
all aspects of our work.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Due to the nature of this work, there may be no potential negative social impact
that is easily predictable.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work does not involve releasing data or models that pose a high risk for
misuse, so no specific safeguards are necessary.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have accurately credited the sources and provided URLs in Section E.2.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The supplemental material includes the file of our model’s code
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:This paper does not involve crowdsourcing or research with human subjects, so
this information is not applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This research does not involve human subjects, so IRB approvals or equivalent
reviews are not required.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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