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Abstract

Estimating the parameters of a probabilistic directed graphical model from in-1

complete data remains a long-standing challenge. This is because, in the pres-2

ence of latent variables, both the likelihood function and posterior distribution are3

intractable without further assumptions about structural dependencies or model4

classes. While existing learning methods are fundamentally based on likeli-5

hood maximization, here we offer a new view of the parameter learning problem6

through the lens of optimal transport. This perspective licenses a framework that7

operates on many directed graphs without making unrealistic assumptions on the8

posterior over the latent variables or resorting to black-box variational approxima-9

tions. We develop a theoretical framework and support it with extensive empirical10

evidence demonstrating the flexibility and versatility of our approach. Across11

experiments, we show that not only can our method recover the ground-truth pa-12

rameters but it also performs competitively on downstream applications, notably13

the non-trivial task of discrete representation learning.14

1 Introduction15

Learning probabilistic directed graphical models (DGMs, also known as Bayesian networks) with16

latent variables is an important ongoing challenge in machine learning and statistics. This paper17

focuses on parameter learning, i.e., estimating the parameters of a DGM given its known structure.18

Learning DGMs has a long history, dating back to classical indirect likelihood-maximization ap-19

proaches such as expectation maximization [EM, 15]. However, despite all its success stories, EM20

is well-known to suffer from local optima issues. More importantly, EM becomes inapplicable when21

the posterior distribution is intractable, which arises fairly often in practice.22

A large family of related methods based on variational inference [VI, 30, 27] have demonstrated23

tremendous potential in this case, where the evidence lower bound (ELBO) is not only used for24

posterior approximation but also for point estimation of the model parameters. Such an approach25

has proved surprisingly effective and robust to overfitting, especially when having a small number of26

parameters. From a high-level perspective, both EM and VI are based on likelihood maximization27

in the presence of latent variables, which ultimately requires carrying out expectations over the28

commonly intractable posterior. In order to address this challenge, a large spectrum of methods29

have been proposed in the literature and we refer the reader to [5] for an excellent discussion of30

these approaches. Here we characterize them between two extremes. At one extreme, restrictive31

assumptions about the structure (e.g., as in mean-field approximations) or the model class (e.g.,32

using conjugate exponential families) must be made to simplify the task. At the other extreme, when33

no assumptions are made, most existing black-box methods exploit very little information about the34

structure of the known probabilistic model (for example, in black-box and stochastic variational35

inference [44, 27], hierarchical approaches [45] and normalizing flows [42]).36
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Addressing the problem at its core, we hereby propose an alternative strategy to likelihood maxi-37

mization that does not require the estimation of expectations over the posterior distribution. Con-38

cretely, parameter learning is now viewed through the lens of optimal transport [54], where the data39

distribution is the source and the true model distribution is the target. Instead of minimizing a Kull-40

back–Leibler (KL) divergence (which likelihood maximization methods are essentially doing), here41

we aim to find a point estimate θ∗ that minimizes the Wasserstein distance [WD, 31] between these42

two distributions.43

This perspective allows us to leverage desirable properties of the WD in comparison with other44

metrics. These properties have motivated the recent surge in generative models, e.g., Wasserstein45

GANs [1, 9] and Wasserstein Auto-encoders [50]. Indeed, the WD is shown to be well-behaved46

in situations where standard metrics such as the KL or JS (Jensen-Shannon) divergences are either47

infinite or undefined [43, 4]. The WD thus characterizes a more meaningful distance, especially48

when the two distributions reside in low-dimensional manifolds [9]. Ultimately, this novel view49

enables us to pursue an ambitious goal towards a model-agnostic and scalable learning framework.50

Contributions. We present an entirely different view that casts parameter estimation as an optimal51

transport problem [54], where the goal is to find the optimal plan transporting “mass” from the data52

distribution to the model distribution. To achieve this, our method minimizes the WD between these53

two distributions. This permits a flexible framework applicable to any type of variable and graphical54

structure. In summary, we make the following contributions:55

• We introduce OTP-DAG - an Optimal Transport framework for Parameter Learning in Directed56

Acyclic Graphical models. OTP-DAG is an alternative line of thinking about parameter learning.57

Diverging from the existing frameworks, the underlying idea is to find the parameter set associated58

with the distribution that yields the lowest transportation cost from the data distribution.59

• We present theoretical developments showing that minimizing the transport cost is equivalent to60

minimizing the reconstruction error between the observed data and the model generation. This61

renders a tractable training objective to be solved efficiently with stochastic optimization.62

• We provide empirical evidence demonstrating the versatility of our method on various graphical63

structures. OTP-DAG is shown to successfully recover the ground-truth parameters and achieve64

competitive performance across a range of downstream applications.65

2 Background and Related Work66

We first introduce the notations and basic concepts used throughout the paper. We reserve bold67

capital letters (i.e., G) for notations related to graphs. We use calligraphic letters (i.e. X ) for spaces,68

italic capital letters (i.e. X) for random variables, and lower case letters (i.e. x) for their values.69

A directed graph G = (V,E) consists of a set of nodes V and an edge set E ⊆ V2 of ordered70

pairs of nodes with (v, v) /∈ E for any v ∈ V (one without self-loops). For a pair of nodes i, j with71

(i, j) ∈ E, there is an arrow pointing from i to j and we write i→ j. Two nodes i and j are adjacent72

if either (i, j) ∈ E or (j, i) ∈ E. If there is an arrow from i to j then i is a parent of j and j is a child73

of i. A Bayesian network structure G = (V,E) is a directed acyclic graph (DAG), in which the74

nodes represent random variables X = [Xi]
n
i=1 with index set V := {1, ..., n}. Let PAXi

denote75

the set of variables associated with parents of node i in G.76

In this work, we tackle the classic yet important problem of learning the parameters of a directed77

graph from partially observed data. Let O ⊆ V and XO = [Xi]i∈O be the set of observed nodes78

and H := V\O be the set of hidden nodes. Let Pθ and Pd respectively denote the distribution79

induced by the graphical model and the empirical one induced by the complete (yet unknown) data.80

Given a fixed graphical structure G and some set of i.i.d data points, we aim to find the point es-81

timate θ∗ that best fits the observed data XO. The conventional approach is to minimize the KL82

divergence between the model distribution and the empirical data distribution over observed data83

i.e., DKL(Pd(XO), Pθ(XO)), which is equivalent to maximizing the likelihood Pθ(XO) w.r.t θ.84

In the presence of latent variables, the marginal likelihood, given as Pθ(XO) =
∫
XH

Pθ(X)dXH,85

is generally intractable. Standard approaches then resort to maximizing a bound on the marginal86

log-likelihood, known as the evidence lower bound (ELBO), which is essentially the objective of87

EM [38] and VI [30]. Optimization of the ELBO for parameter learning in practice requires many88
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considerations. For vanilla EM, the algorithm only works if the true posterior density can be com-89

puted exactly. Furthermore, EM is originally a batch algorithm, thereby converging slowly on large90

datasets [36]. Subsequently, researchers have tried exploring other methods for scalability, including91

attempts to combine EM with approximate inference [56, 40, 14, 10, 13, 36, 41].92

When exact inference is infeasible, a variational approximation is the go-to solution. Along this93

line, research efforts have concentrated on ensuring tractability of the ELBO via the mean-field94

assumption [11] and its relaxation known as structured mean field [47]. Scalability has been one95

of the main challenges facing the early VI formulations since it is a batch algorithm. This has96

triggered the development of stochastic variational inference (SVI) [27, 26, 16, 29, 8, 7] which97

applies stochastic optimization to solve VI objectives. Another line of work is collapsed VI that98

explicitly integrates out certain model parameters or latent variables in an analytic manner [23,99

32, 48, 34]. Without a closed form, one could resort to Markov chain Monte Carlo [18, 19, 21],100

which however tends to be slow. More accurate variational posteriors also exist, namely, through101

hierarchical variational models [45], implicit posteriors [49, 58, 37, 49], normalizing flows [33], or102

copula distribution [51]. To avoid computing the ELBO analytically, one can obtain an unbiased103

gradient estimator using Monte Carlo and re-parameterization tricks [44, 57]. As mentioned in104

the introduction, an excellent summary of these approaches is discussed in [5, §6]. Extensions of105

VI to other divergence measures than KL divergence e.g., α−divergence or f−divergence, also106

exist [35, 24, 55]. In the causal inference literature, a related direction is to learn both the graphical107

structure and parameters of the corresponding structural equation model [60, 17]. These frameworks108

are often limited to additive noise models while assuming no latent confounders.109

3 Optimal Transport for Learning Directed Graphical Models110

We begin by explaining how parameter learning can be reformulated into an optimal transport prob-111

lem [53] and thereafter introduce our novel theoretical contribution.112

We consider a DAG G(V,E) over random variablesX = [Xi]
n
i=1 that represents the data generative113

process of an underlying system. The system consists of X as the set of endogenous variables114

and U = {Ui}ni=1 as the set of exogenous variables representing external factors affecting the115

system. Associated with every Xi is an exogenous variable Ui whose values are sampled from a116

prior distribution P (U) independently from other exogenous variables. For the purpose of this work,117

our framework operates on an extended graph consisting of both endogenous and exogenous nodes118

(See Figure 1b). In the graph G, Ui is represented by a node with no ancestors that has an outgoing119

arrow towards node i. Consequently, for every endogenous variable, its parent set PAXi
is extended120

to include an exogenous variable and possibly some other endogenous variables. Henceforth, every121

distribution Pθi
(
Xi|PAXi

)
can be reparameterized into a deterministic assignment122

Xi = ψi
(
PAXi , Ui

)
, for i = 1, ..., n.

The ultimate goal is to estimate θ = {θi}ni=1 as the parameters of the set of deterministic functions123

ψ = {ψi}ni=1. We will use the notation ψθ to emphasize this connection from now on.
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Figure 1: (a) A DAG represents a system of 4 endogenous variables where X1, X3 are observed
(black-shaded) andX2, X4 are hidden variables (non-shaded). (b): The extended DAG that includes
an additional set of independent exogenous variables U1, U2, U3, U4 (grey-shaded) acting on each
endogenous variable. U1, U2, U3, U4 ∼ P (U) where P (U) is a prior product distribution. (c)
Visualization of our backward-forward algorithm, where the dashed arcs represent the backward
maps involved in optimization.

124
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Given the data distribution Pd(XO) and the model distribution Pθ(XO) over the observed set O,125

the optimal transport (OT) goal is to find the parameter set θ that minimizes the cost of transport126

between these two distributions. The Kantorovich’s formulation of the problem is given by127

Wc

(
Pd;Pθ

)
:= inf

Γ∼P(X∼Pd,Y∼Pθ)
E(X,Y )∼Γ

[
c(X,Y )

]
, (1)

where P(X ∼ Pd, Y ∼ Pθ) is a set of all joint distributions of
(
Pd;Pθ

)
and c : XO×XO 7→ R+ is128

any measurable cost function over XO (i.e., the product space of the spaces of observed variables)129

that is defined as c(XO, YO) :=
∑
i∈O ci(Xi, Yi) where ci is a measurable cost function over a130

space of a certain observed variable.131

Let Pθ(PAXi , Ui) denote the joint distribution of PAXi and Ui factorized according to the graphical132

model. Let Ui denote the space over random variable Ui. The key ingredient of our theoretical133

development is local backward mapping. For every observed node i ∈ O, we define a stochastic134

“backward” map ϕi : Xi 7→ Πk∈PAXi
Xk × Ui such that ϕi ∈ C(Xi) where C(Xi) is the constraint135

set given as136

C(Xi) :=
{
ϕi : ϕi#Pd(Xi) = Pθ(PAXi

, Ui)
}
.

Essentially, ϕi pushes the data marginal of Xi forward to the model marginal of its parent variables.137

If PAXi
are latent variables, ϕi can be viewed as a stochastic decoder mappingXi to the conditional138

density ϕi(PAXi
|Xi).139

Theorem 1 presents the main theoretical contribution of our paper. Our OT problem is concerned140

with finding the optimal set of deterministic “forward” maps ψθ and stochastic "backward" maps141 {
ϕi ∈ C(Xi)

}
i∈O

that minimizes the cost of transporting the mass from Pd to Pθ over O. While142

the formulation in Eq. (1) is not trainable, we show that the problem is reduced to minimizing the143

reconstruction error between the data generated from Pθ and the observed data. To understand how144

reconstruction works, let us examine Figure 1c. Given X1 and X3 as observed nodes, we sample145

X1 ∼ Pd(X1), X3 ∼ Pd(X3) and evaluate the local densities ϕ1(PAX1 |X1), ϕ3(PAX3 |X3) where146

PAX1 = {X2, X4, U1} and PAX3 = {X4, U3}. The next step is to sample PAX1 ∼ ϕ1(PAX1 |X1)147

and PAX3
∼ ϕ3(PAX3

|X3), which are plugged back to the model ψθ to obtain the reconstructions148

X̃1 = ψθ1(PAX1
) and X̃3 = ψθ3(PAX3

). We wish to learn θ such that X1 and X3 are reconstructed149

correctly. For a general graphical model, this optimization objective is formalized as150

Theorem 1 For every ϕi as defined above and fixed ψθ,151

Wc

(
Pd(XO);Pθ(XO)

)
= inf[

ϕi∈C(Xi)
]
i∈O

EXO∼Pd(XO),PAXO
∼ϕ(XO)

[
c
(
XO, ψθ(PAXO

)
)]
, (2)

where PAXO
:=

[
[Xij ]j∈PAXi

]
i∈O

.152

The proof is provided in Appendix A. It is seen that Theorem 1 set ups a trainable form for our153

optimization solution. Notice that the quality of the reconstruction hinges on how well the back-154

ward maps approximate the true local densities. To ensure approximation fidelity, every back-155

ward function ϕi must satisfy its push-forward constraint defined by C. In the above example,156

the backward maps ϕi and ϕ3 must be constructed such that ϕ1#(X1) = Pθ(X2, X4, U1) and157

ϕ3#(X3) = Pθ(X4, U3). This gives us a constraint optimization problem, and we relax the con-158

straints by adding a penalty to the above objective.159

The final optimization objective is therefore given as160

JWS = inf
ψ,ϕ

EXO∼Pd(XO),PAXO
∼ϕ(XO)

[
c
(
XO, ψθ(PAXO

)
)]

+ η D
(
ϕ, Pθ

)
, (3)

where D is any arbitrary divergence measure and η > 0 is a trade-off hyper-parameter. D
(
ϕ, Pθ

)
is161

a short-hand for divergence between all pairs of backward and forward distributions.162

This theoretical result provides us with several interesting properties: (1) to minimize the global163

OT cost between the model distribution and the data distribution, one only needs to characterize the164

local densities by specifying the backward maps from every observed node to its parents and opti-165

mizing them with appropriate cost metrics; (2) all model parameters are optimized simultaneously166

within a single framework whether the variables are continuous or discrete ; (3) the computational167

process can be automated without deriving an analytic lower bound or restricting to certain graph-168
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ical structures. In connection with VI, OTP-DAG is also optimization-based. We in fact leverage169

modern VI techniques of reparameterization and amortized inference [6] for solving it efficiently170

via stochastic gradient descent. However, unlike such advances as hierarchical VI, our method does171

not place any prior over the variational distribution on the latent variables underlying the variational172

posterior [45]. For providing a guarantee, OTP-DAG relies on the condition that the backward maps173

are sufficiently expressive to cover the push-forward constraints. We prove further in Appendix A174

that given a suitably rich family of backward functions, our algorithm OTP-DAG can converge to the175

ground-truth parameters. Details on our algorithm can be found in Appendix B. In the next section,176

we illustrate how OTP-DAG algorithm is realized in practical applications.177

4 Applications178

We apply OTP-DAG on 3 widely-used graphical models for a total of 5 different sub-tasks. Here we179

aim to demonstrate the versatility of OTP-DAG: OTP-DAG can be exploited for various purposes180

through a single learning procedure. In terms of estimation accuracy, OTP-DAG is capable of re-181

covering the ground-truth parameters while achieving the comparable or better performance level of182

existing frameworks across downstream tasks.1183

We consider various directed probabilistic models with either continuous or discrete variables. We184

begin with (1) Latent Dirichlet Allocation [12] for topic modeling and (2) Hidden Markov Model185

(HMM) for sequential modeling tasks. We conclude with a more challenging setting: (3) Discrete186

Representation Learning (Discrete RepL) that cannot simply be solved by EM or MAP (maximum a187

posteriori). It in fact invokes deep generative modeling via a pioneering development called Vector188

Quantization Variational Auto-Encoder (VQ-VAE) [52]. We investigate an application of OTP-DAG189

algorithm to learning discrete representations by grounding it into a parameter learning problem.190

Note that our goal is not to achieve the state-of-the-art performance, rather to prove OTP-DAG as a191

versatile approach for learning parameters of directed graphical models. Figure 2 illustrates the em-192

pirical DAG structures of the 3 applications. Unlike the standard visualization where the parameters193

are considered hidden nodes, our graph separates model parameters from latent variables and only194

illustrates random variables and their dependencies (except the special setting of Discrete RepL). We195

also omit the exogenous variables associated with the hidden nodes for visibility, since only those196

acting on the observed nodes are relevant for computation. There is also a noticeable difference197

between Figure 2 and Figure 1c: the empirical version does not involve learning the backward maps198

for the exogenous variables. This stems from an experimental observation that sampling the noise199

from an appropriate prior distribution at random suffices to yield accurate estimation. We find it200

to be beneficial in that training complexity can be greatly reduced. In the following, we report the201

main experimental results, leaving the discussion of the formulation and technicalities in Appendix202

C. In all tables, we report the average results over 5 random initializations and the best ones are203

highlighted in bold. In addition, ↑, ↓ indicate higher/lower performance is better, respectively.204
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Figure 2: Empirical structure of (a) latent Dirichlet allocation model (in plate notation), (b) standard
hidden Markov model, and (c) discrete representation learning.

4.1 Latent Dirichlet Allocation205

Let us consider a corpus D of M independent documents where each document is a sequence of N206

words denoted by W = (W1,W2, · · · ,WN ). Documents are represented as random mixtures over207

K latent topics, each of which is characterized by a distribution over words. Let V be the size of a208

vocabulary indexed by {1, · · · , V }. Latent Dirichlet Allocation (LDA) [12] dictates the following209

generative process for every document in the corpus:210

1Our code is anonymously published at https://anonymous.4open.science/r/OTP-7944/.
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1. Sample θ ∼ Dir(α) with α < 1,211

2. Sample γk ∼ Dir(β) where k ∈ {1, · · · ,K},212

3. For each of the word positions n ∈ {1, · · · , N},213

• Sample a topic Zn ∼ Multi-nominal(θ),214

• Sample a word Wn ∼ Multi-nominal(γk),215

where Dir(.) is a Dirichlet distribution. θ is a K−dimensional vector that lies in the (K −216

1)−simplex and γk is a V−dimensional vector represents the word distribution corresponding to217

topic k. In the standard model, α, β,K are hyper-parameters and θ, γ are learnable parameters.218

Throughout the experiments, the number of topics K is assumed known and fixed.219

Parameter Estimation. To test whether OTP-DAG can recover the true parameters, we generate220

synthetic data in a simplified setting: the word probabilities are parameterized by a K × V matrix221

γ where γkn := P (Wn = 1|Zn = 1); γ is now a fixed quantity to be estimated. We set α = 1/K222

uniformly and generate small datasets for different number of topics K and sample size N . Inspired223

by the setup of [20], for every topic k, the word distribution γk can be represented as a square grid224

where each cell, corresponding to a word, is assigned an integer value of either 0 and 1, indicating225

whether a certain word is allocated to the kth topic or not. As a result, each topic is associated with a226

specific pattern. For simplicity, we represent topics using horizontal or vertical patterns (See Figure227

3). Following the above generative model, we sample 3 sets of data w.r.t 3 sets of configuration228

triplets {K,M,N}: {10, 1000, 100}, {20, 5000, 200} and {30, 10000, 300}.229

We compare OTP-DAG with Batch EM [38] and SVI [25, 27]. For the baselines, only γ is learnable230

whereas α is set fixed to be uniform, whereas for our method OTP-DAG, we take on a more chal-231

lenging task of learning both parameters. We report the fidelity of the estimation of γ in Table 1232

wherein OTP-DAG is shown to yield estimates closest to the ground-truth values. At the same time,233

our estimates for α (averaged over K) are nearly 100% faithful at 0.10, 0.049, 0.033 (recall that the234

ground-truth α is uniform over K where K = 10, 20, 30 respectively).235

Figure 3 illustrates the model topic distribution at the end of training. OTP-DAG recovers all of236

the ground-truth patterns, and as further shown Figure 4, most of the patterns in fact converge well237

before training ends.

Ground
truth

OTP

EM

SVI

Figure 3: The topic-word distributions recovered from each method after 300−epoch training. A
grid corresponds to the word distribution of a topic. We use horizontal and vertical patterns in
different colors to distinguish topics from one another. OTP-DAG recovers all ground-truth patterns.

238

Topic Evaluation. In this application, we use OTP-DAG to infer the topics of 3 real-world239

datasets:2 20 News Group, BBC News and DBLP. We here revert to the original generative process240

where the topic-word distribution follows a Dirichlet distribution parameterized by the concentra-241

tion parameters β, instead of having γ as a fixed quantity. β is now initialized as a matrix of real242

values
(
β ∈ RK×V ) representing the log concentration values. Table 2 reports the quality of the243

inferred topics from OTP-DAG, in comparison with Batch EM and SVI. For every topic k, we select244

top 10 most related words according to γk to represent it. Topic quality is evaluated via the diversity245

and coherence of the selected words. Diversity refers to the proportion of unique words, whereas246

Coherence is measured with normalized pointwise mutual information [2], reflecting the extent to247

which the words in a topic are associated with a common theme.248

2https://github.com/MIND-Lab/OCTIS.
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Table 1: Fidelity of estimates of the topic-word distribution γ across 3 settings. Fidelity is measured
via KL, JS divergence and Hellinger (HL) distance [22] with the ground-truth distributions.

Metric K M N OTP-DAG (Ours) Batch EM SVI
KL ↓ 10 1, 000 100 0.90± 0.14 1.61± 0.02 1.52± 0.12
JS ↓ 10 1, 000 100 0.68± 0.04 0.98± 0.06 0.97± 0.09
HL ↓ 10 1, 000 100 2.61± 0.08 2.69± 0.03 2.71± 0.09

KL ↓ 20 5, 000 200 1.29± 0.23 2.31± 0.11 2.28± 0.04
JS ↓ 20 5, 000 200 1.49± 0.12 1.63± 0.06 1.61± 0.03
HL ↓ 20 5, 000 200 3.91± 0.03 4.26± 0.08 4.26± 0.10

KL ↓ 30 10, 000 300 1.63± 0.01 2.69± 0.07 2.66± 0.11
JS ↓ 30 10, 000 300 1.53± 0.01 2.03± 0.04 2.02± 0.07
HL ↓ 30 10, 000 300 4.98± 0.02 5.26± 0.08 5.21± 0.09

Ground
truth

Epoch 0

Epoch 100

Epoch 200

Epoch 300

Figure 4: Converging patterns of 10 ran-
dom topics from our OTP-DAG after
100, 200, 300 iterations.

Table 2: Coherence and Diversity of the inferred
topics for the 3 real-world datasets (K = 10)

Metric OTP-DAG (Ours) Batch EM SVI
20 News Group

Coherence (%) ↑ 7.98± 0.69 6.71± 0.16 5.90± 0.51
Diversity (%) ↑ 75.33± 2.08 72.33± 1.15 85.33± 5.51

BBC News

Coherence (%) ↑ 9.79± 0.58 8.67± 0.62 7.84± 0.49
Diversity (%) ↑ 86.00± 2.89 86.00± 1.00 91.00± 2.31

DBLP

Coherence (%) ↑ 3.90± 0.76 4.52± 0.53 1.47± 0.39
Diversity (%) ↑ 84.67± 3.51 81.33± 1.15 92.67± 2.52

249

4.2 Hidden Markov Models250

Poisson Time-series Data Segmentation. This application deals with time-series data following a251

Poisson hidden Markov model (See Figure 2b). Given a time series of T steps, the task is to segment252

the data stream intoK different states, each of which is associated with a Poisson observation model253

with rate λk. The observation at each step t is given as254

P (Xt|Zt = k) = Poi(Xt|λk), for k = 1, · · · ,K.
Following [39], we use a uniform prior over the initial state. The Markov chain stays in the current255

state with probability p and otherwise transitions to one of the other K − 1 states uniformly at256

random. The transition distribution is given as257

Z1 ∼ Cat

({
1

4
,
1

4
,
1

4
,
1

4

})
, Zt|Zt−1 ∼ Cat

({
p if Zt = Zt−1
1−p
4−1 otherwise

})
Let P (Z1) and P (Zt|Zt−1) respectively denote these prior transition distributions. We generate a258

synthetic dataset D of 200 observations at rates λ = {12, 87, 60, 33} with change points occurring259

at times (40, 60, 55). We would like to learn the concentration parameters λ1:K = [λk]
K
k=1 through260

which segmentation can be realized, assuming that the number of states K = 4 is known.

Table 3: Estimates of λ1:4 at various transition probabilities p and L1 distance to the true values.

p λ1 = 12 λ2 = 87 λ3 = 60 λ4 = 33 λ1 = 12 λ2 = 87 λ3 = 60 λ4 = 33

OTP-DAG Estimates (Ours) MAP Estimates
0.05 11.83 87.20 60.61 33.40 14.88 85.22 71.42 40.39
0.15 11.62 87.04 59.69 32.85 12.31 87.11 61.86 33.90
0.35 11.77 86.76 60.01 33.26 12.08 87.28 60.44 33.17
0.55 11.76 86.98 60.15 33.38 12.05 87.12 60.12 33.01
0.75 11.63 86.46 60.04 33.57 12.05 86.96 59.98 32.94
0.95 11.57 86.92 60.36 33.06 12.05 86.92 59.94 32.93

L1 ↓ 0.30 0.19 0.25 0.30 0.57 0.40 2.32 1.43

261

Table 3 demonstrates the quality of our estimates, in comparison with MAP estimates. Our es-262

timation approaches the ground-truth values comparably to MAP. We note that the MAP solution263

requires the analytical marginal likelihood of the model, which is not necessary for our method. Fig-264
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ure 5a reports the most probable state for each observation, inferred from our backward distribution265

ϕ(X1:T ). It can be seen that the partition overall aligns with the true generative process the data.266
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Figure 5: (a) Segmentation of Poisson time series inferred from the backward distribution ϕ(X1:T ).
(b) Training time ↓ (in minutes) and Negative log-likelihood ↓ on the test dataset at various K.

Polyphonic Music Modeling. We consider another application of HMM to model sequences of267

polyphonic music. The data under analysis is the corpus of 382 harmonized chorales by J. S. Bach268

[3]. The training set consists of N = 229 sequences, each of which has a maximum length of269

T = 129 and D = 51 notes. The data matrix is a Boolean tensor of size N × T ×D. We follow the270

standard preprocessing where 37 redundant notes are dropped.3271

The observation at each time step is modeled using a factored observation distribution of the form272

P (Xt|Zt = k) =

D∏
d=1

Ber(Xtd|Bd(k)),

where Bd(k) = P (Xtd = 1|Zt = k) and k = 1, · · · ,K. Similarly, we use a uniform prior over273

the initial state. Following [39], the transition probabilities are sampled from a Dirichlet distribution274

with concentration parameters α1:K , where αk = 1 if the state remains and 0.1 otherwise,275

Z1 ∼ Cat
({

1/K
})
, Zt|Zt−1 ∼ Cat

(
p
)
, p ∼ Dir

({
1.0 if Zt = Zt−1

0.1 otherwise

})
.

The parameter set θ is a matrix size D ×K where each element θij ∈ [0, 1] parameterizes Bdk(.).276

The goal is to learn these probabilities with underlying HMM sharing the same structure as Figure277

2b. The main difference is that the previous application only deals with one sequence, while here we278

consider a batch of sequences. For larger datasets, estimating MAP of an HMM can be expensive.279

Figure 5b reports negative log-likelihood of the learned models on the test set, along with training280

time (in minutes) at different values of K. Our fitted HMM closely approaches the level of perfor-281

mance of MAP. Both models are optimized using mini-batch gradient descent, yet OTP-DAG runs282

in constant time (approx. 3 minutes), significantly faster than solving MAP with SGD.283

4.3 Learning Discrete Representations284

Many types of data exist in the form of discrete symbols e.g., words in texts, or pixels in images.285

This motivates the need to explore the latent discrete representations of the data, which can be useful286

for planning and symbolic reasoning tasks. Viewing discrete representation learning as a parameter287

learning problem, we endow it with a probabilistic generative process as illustrated in Figure 2c.288

The problem deals with a latent space C ∈ RK×D composed of K discrete latent sub-spaces of D289

dimensionality. The probability a data point belongs to a discrete sub-space c ∈ {1, · · · ,K} follows290

aK−way categorical distribution π = [π1, · · · , πK ]. In the language of VQ-VAE, each c is referred291

to as a codeword and the set of codewords is called a codebook. Let Z ∈ RD denote the latent292

variable in a sub-space. On each sub-space, we impose a Gaussian distribution parameterized by293

µc,Σc where Σc is diagonal. The data generative process is described as follows:294

1. Sample c ∼ Cat(π),295

2. Sample Z ∼ N (µc,Σc)296

3https://pyro.ai/examples/hmm.html.
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3. Quantize µc = Q(Z),297

4. X = ψθ(Z, µc).298

where ψ is a highly non-convex function with unknown parameters θ and often parameterized with299

a deep neural network. Q refers to the quantization of Z to µc defined as µc = Q(Z) where300

c = argminc dz
(
Z;µc

)
and dz =

√
(Z − µc)TΣ

−1
c (Z − µc) is the Mahalanobis distance.301

The goal is to learn the parameter set {π, µ,Σ, θ} with µ = [µk]
K
k=1,Σ = [Σk]

K
k=1 such that the302

model captures the key properties of the data. Fitting OTP-DAG to the observed data requires303

constructing a backward map ϕ : X 7→ RD from the input space back to the latent space. In304

connection with vector quantization, the backward map is defined via Q and an encoder fe as305

ϕ(X) =
[
fe(X), Q(fe(X))

]
, Z = fe(X), µc = Q(Z).

Following VQ-VAE [52], our practical implementation considers Z as an M−component latent306

embedding. We experiment with images in this application and compare OTP-DAG with VQ-VAE307

on 3 popular datasets: CIFAR10, MNIST and SVHN. Since the true parameters are unknown, we308

assess how well the latent space characterizes the input data through the quality of the reconstruction309

of the original images. Our analysis considers various metrics measuring the difference/similarity310

between the two images on patch (SSIM), pixel (PSNR), feature (LPIPS) and dataset (FID) levels.311

We also compute Perplexity to evaluate the degree to which the latent representations Z spread312

uniformly over K sub-spaces. Table 4 reports our superior performance in preserving high-quality313

information of the input images. VQ-VAE suffers from poorer performance mainly due to an issue314

called codebook collapse [59] where most of latent vectors are quantized to few discrete codewords,315

while the others are left vacant. Meanwhile, our framework allows for control over the number of316

latent representations assigned to each codeword through learning π, ensuring all codewords are317

utilized. See Appendix C.3 for detailed formulation and qualitative examples.318

Table 4: Quality of the image reconstructions (K = 512).

Dataset Method Latent Size SSIM ↑ PSNR ↑ LPIPS ↓ rFID ↓ Perplexity ↑
CIFAR10 VQ-VAE 8 × 8 0.70 23.14 0.35 77.3 69.8

OTP-DAG (Ours) 8 × 8 0.80 25.40 0.23 56.5 498.6
MNIST VQ-VAE 8 × 8 0.98 33.37 0.02 4.8 47.2

OTP-DAG (Ours) 8 × 8 0.98 33.62 0.01 3.3 474.6
SVHN VQ-VAE 8 × 8 0.88 26.94 0.17 38.5 114.6

OTP-DAG (Ours) 8 × 8 0.94 32.56 0.08 25.2 462.8

5 Limitations319

Our framework employs amortized optimization that requires continuous relaxation or reparameter-320

ization of the underlying model distribution to ensure the gradients can be back-propagated effec-321

tively. For discrete distributions and for some continuous ones (e.g., Gamma distribution), this is not322

easy to attain. To this end, a recent proposal on Generalized Reparameterization Gradient [46] is323

a viable solution. OTP-DAG also relies on the expressivity of the backward maps. Since our back-324

ward mapping only considers local dependencies, it is however simpler to find a good approximation325

compared to VI where the variational approximator should ideally characterize the entire global de-326

pendencies in the graph. We use neural networks to model the backward conditionals. With enough327

data, network complexity, and training time, the difference between the modeled distribution and328

the true conditional can be assumed to be smaller than an arbitrary constant ϵ based on the universal329

approximation theorem [28].330

6 Conclusion and Future Work331

This paper contributes a novel approach based on optimal transport to learning parameters of di-332

rected graphical models. The proposed algorithm OTP-DAG is general and applicable to any di-333

rected graph with latent variables regardless of variable types and structural dependencies. As for334

future research, this new perspective opens up promising avenues, for instance applying OTP-DAG335

to structural learning problems where edge existence and directionality can be parameterized for336

continuous optimization, or extending it to learning undirected graphical models.337
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