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Abstract
We introduce Plixer, a two-stage generative model
for de novo drug design that generates small-
molecule ligand binders conditioned on an empty
protein pocket. Plixer combines a conditional
voxel inpainting network to generate 3D ligand hy-
potheses with an independently trained voxel-to-
SMILES decoder that translates these voxel rep-
resentations into valid chemical structures. By de-
coupling the learning of spatial protein–ligand in-
teractions from the learning of chemical grammar,
our approach leverages large libraries of 3D lig-
and conformers to augment the limited data avail-
able for protein–ligand complexes. We show that
this approach generates molecules with higher
predicted binding affinity than recent methods.

1. Introduction
Discovering drug-like molecules that can effectively tar-
get specific protein pockets remains a central challenge in
computational drug discovery. Traditional methods rely
on either docking, which is computationally intensive, or
on ligand-based screening, which is often limited by the
availability of known actives. Recently, generative mod-
els have emerged as promising tools for exploring the vast
chemical space in a data-driven manner. However, most
of these generative models restrict themselves to training
on the relatively few examples of experimentally resolved
protein-ligand complexes.

In this work, we propose Plixer, a novel framework that in-
tegrates two complementary stages: (1) a conditional voxel
inpainting model that generates a soft 3D voxel representa-
tion of a bound ligand given an empty protein pocket, and (2)
a voxel-to-SMILES decoder that translates these voxelized
ligand hypotheses into valid SMILES strings. The key in-
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novation in Plixer is the decoupling of the tasks of learning
spatial relations between protein pockets and ligands from
the task of learning the chemical syntax and valid molecular
structures. While only a limited dataset of protein–ligand
complexes is available (a few thousand non-redundant sam-
ples), we can leverage millions of ligand-only examples to
robustly train the decoder, thereby learning the manifold of
valid molecules and energy landscape of 3D poses.

The inpainting model learns to predict the missing ligand
voxels in the given pocket, while the decoder ensures that
the inferred ligand lies on the manifold of chemically valid
molecules. This two-stage framework not only improves
the overall validity and diversity of generated SMILES
strings but also allows for effective ranking of any candi-
date molecule via the conditional likelihood of the SMILES
string.

2. Related work
2.1. Protein-Conditioned Generative Models for Ligand

Design

Recent pocket-conditioned generators fall into three repre-
sentational classes: (i) voxel models that predict an atomic-
density grid inside the binding pocket, (ii) graph models
that place discrete atoms via coordinates, and (iii) SMILES
models that treat ligand design as a language problem.
Voxel outputs can be converted to graphs by atom-fitting,
and any graph can be rendered as a SMILES string, linking
the three families. Orthogonally, their generation strategies
can be one-shot, autoregressive, or based on diffusion.

Voxel, one-shot. The early voxel ligand predictor of Skalic
et al. (2019) produced channel-wise densities but no dis-
crete molecule. liGAN (Ragoza et al., 2022) and VoxBind
(Pinheiro et al., 2024) improved this by decoding the density
to a 3D graph with a fixed atom-placement heuristic, yet
they cannot assign a likelihood to an arbitrary candidate and
cannot exploit large ligand-only corpora during training.

Graph, autoregressive. Pocket2Mol (Peng et al., 2022)
and GraphBP (Liu et al., 2022) sequentially add atoms
conditioned on the pocket. Graph, diffusion. DiffSBDD
(Schneuing et al., 2024), TargetDiff (Guan et al., 2023),
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Figure 1. Plixer overview

DiffBP (Lin et al., 2025a), ShapeMol (Chen et al., 2023),
and PMDM (Huang et al., 2024) replace autoregression with
a diffusion process that adds and moves atoms in 3D space.

Sequence-conditioned SMILES. DrugGPT (Li et al.,
2023) and DrugGen (Sheikholeslami et al., 2025) use auto-
regressive language models to generate SMILES strings
conditioned on a protein sequence.

Plixer. Our method is the first to generate a ligand voxel den-
sity and then translate it to SMILES with an autoregressive
decoder trained on millions of 3D ligand structures. This
design (i) yields a calibrated log-likelihood for any SMILES,
enabling ranking as well as generation; (ii) leverages vast
ligand-only data; (iii) allows us to sample multiple SMILES
strings from a given voxel hypothesis. To assess Plixer as
a ranking model that recovers hits from large libraries, we
compare it against the latest SMILES string autoregressive
model, DrugGen, (Sheikholeslami et al., 2025) and find
that Plixer likelihood scores are more effective at separating
hits from decoys although both machine learning methods
are slightly worse than docking scores. For assessment of
de novo binder generation, we compare against a recent
autoregressive graph generative model, Pocket2Mol (Peng
et al., 2022) that was shown to be competitive in a recent
benchmark evaluation of many methods (Lin et al., 2025b).
Here we find Plixer molecules are similar or better in com-
putational assessment of target specificity.

3. Motivation
Our goal is to generate a drug-like molecule for a given
receptor pocket R, i.e. to learn the map

R 7−→ S,

where S is a SMILES string. Directly fitting P (S | R) to the
≲ 104 protein–ligand complexes in the PDB is challenging
as the corpus is far too small to cover the vast chemical and
syntactic space of valid SMILES.

We therefore split the problem.

1. Voxel inpainting. A 3D convolutional U-Net deter-
ministically produces a ligand atomic density grid V
from the receptor atomic density grid R

V = fθ(R),

exploiting the shared spatial frame of receptor and
ligand.

2. SMILES decoding. A vision–language model learns
the probabilistic decoder

Pϕ(S | V ).

Because billions of drug-like molecules can be paired
with their own voxelised conformers, Pϕ is first pre-
trained on (V, S) pairs from the Zinc database of drug-
like molecules (Irwin & Shoichet, 2005), then lightly
fine-tuned on the smaller set of grids emitted by fθ.

Sampling from Pϕ yields multiple chemically valid
SMILES for a single voxel hypothesis, accommodating
pockets that admit diverse chemotypes. Thus we harness
the chemical knowledge of massive small-molecule cor-
pora while exploiting 3D locality in fθ, making data-limited
pocket-specific design tractable.

4. Methods
Plixer consists of two independent models that operate se-
quentially. The first component, a 3D voxel inpainting net-
work, generates ligand-atom density grids conditioned on
voxelized protein pockets. The second component translates
these voxelized ligand representations into valid SMILES
strings.

4.1. Protein-to-Ligand Voxel Generation
(PocVox2MolVox)

The PocVox2MolVox model employs a 3D U-Net archi-
tecture to generate voxelized ligand representations from
protein pocket inputs. The model takes as input a 4-channel
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voxel grid representing protein atom types (carbon, oxy-
gen, nitrogen, and sulfur) and outputs a 9-channel voxel
grid corresponding to ligand atom types (carbon, oxygen,
nitrogen, sulfur, chlorine, fluorine, iodine, bromine, and
other). We use a a cubic box of 24 Å with 0.75 Å voxels,
resulting in a 32³ voxel grid. During training, we employ a
combined loss function of equally weighted binary cross-
entropy (BCE) and Dice loss (Sudre et al., 2017). Early
experiments with BCE alone typically produced all zero
values while Dice loss alone resulted in false-positives on
the rare-atom channels.

4.2. Voxel-to-SMILES Generation (Vox2Smiles)

The Vox2Smiles model follows an encoder-decoder archi-
tecture that combines a Vision Transformer (ViT) encoder
with a GPT-style decoder to translate 3D voxelized ligands
into SMILES strings. The encoder processes the 9-channel
ligand voxel grid by dividing it into patches of size 4 × 4 ×
4, resulting in a sequence of embedded patches. The ViT
encoder consists of 8 transformer layers with 8 attention
heads each. The decoder follows a GPT-2 architecture that
autoregressively generates SMILES tokens conditioned on
the encoded voxel representation. We use a custom SMILES
tokenizer with a vocabulary size of 76 (one token for each of
the common atom-types represented in Zinc plus additional
tokens for the SMILES syntax plus special tokens).

4.3. Data Processing and Voxelization

Both protein pockets and ligands are represented as 3D
voxel grids. Atoms are mapped to their respective chan-
nels based on atom type (e.g., carbon, oxygen, nitrogen).
Each atom contributes to the voxel grid using a Gaussian
distribution centered at the atom’s coordinates with the oc-
cupancy/decay rate based on the atom type’s van der Waals
radius. During training, we apply random rotations and
translations of up to 6 Å to ensure model robustness to dif-
ferent orientations and translations, including those induced
by pocket mis-specification.

5. Results
5.1. Plixer can generate drug-like molecules that are

target specific

We evaluate Plixer by measuring the following properties
of the generated molecules: (i) the Vina docking score, (ii)
hit-similarity enrichment, (iii) drug-likeness (QED), (iv) sol-
ubility: defined as the proportion of generated molecules
in the desirable range for LogP (between -0.4 and 5.6) and
(v) diversity: the number of unique molecules when gen-
erating one-per-target divided by the total number of tar-
gets (table 1). We find that Plixer performs better than the
SMILES generative model DrugGen on all metrics and out-

performs DrugGen and Pocket2Mol on predicted affinity
metrics such as the Vina score and similarity enrichment,
while Pocket2Mol outperforms Plixer on QED, LogP and
diversity.

5.2. Plixer can rank molecules by likelihood to recover
hits

In addition to assessing properties of Plixer’s generated com-
pounds, we can also use model to rank arbitrary compounds
S against a target R according to Plixer’s SMILES like-
lihood score Pϕ

(
S | fθ(R)

)
. Given a set of compounds,

the ROC-AUC score is computed from the model likeli-
hoods and the binary labels for hit or decoy. The score
has an intuitive interpretation as the expected probability
that the model will rank a hit higher than a decoy. In our
case, the hit is the single experimentally confirmed binder
from the PDB file, while the decoy set is composed of all
other molecules from the test set, excluding the confirmed
binder. This ability to rank arbitrary molecules is not avail-
able in most generative models; as such, we only compare
against DrugGen, and find Plixer outperforms this method,
achieving a ROC AUC score of 0.58 on the PLINDER test
set while using AutoDock Vina’s docking score to rank the
same compounds achieves a ROC AUC score of 0.62 (table
5.2).

5.3. Structural similarity enrichment

In the context of drug discovery, methods are typically eval-
uated by considering the enrichment factor, defined as the
ratio of the hit-rate observed among model-selected com-
pounds to the hit-rate expected at random. Our evaluation
in this paper is limited by the fact that we do not have ex-
perimental measurements for Plixer-generated molecules,
therefore as a weak proxy for hit-identification we accept a
generated molecule as a hit if it has a Morgan Fingerprint
Tanimoto Similarity (MFTS) greater than 0.3 with the PDB
experimentally confirmed binder. Thus, we define the simi-
larity enrichment factor as the proportion of similarity hits
among the generated molecules divided by the proportion of
similarity hits among the decoy molecules. Where the decoy
set is taken to be all molecules in the test set, excluding the
true binder from the PDB. Table 1 shows Plixer is better
than other benchmarked models at generating hits according
to this metric, increasing the hit rate by a factor of 5.5 on
novel protein pockets. Figure 3 shows the distribution of
MFTS scores for Plixer-generated molecules with MFTS
scores of decoys shown for reference.

6. Discussion
Plixer shows that a seemingly modest recipe of CNNs on
voxel grids, one-shot generation, and extensive data augmen-
tation remains competitive with contemporary favourites
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Table 1. Docking and generative metrics on chronological (chron) and PLINDER-cluster splits of the PDB (best in bold).

Vina score ↓ Sim. enrich. ↑ QED ↑ LogP in range ↑ Diversity ↑
chron PLINDER chron PLINDER chron PLINDER chron PLINDER chron PLINDER

Plixer -8.31 -7.52 7.58 5.50 0.60 0.56 0.70 0.45 0.86 0.88
Pocket2Mol -8.28 -7.51 0.00 0.00 0.61 0.62 0.87 0.81 1.00 1.00
DrugGen -7.51 -6.58 3.40 1.59 0.41 0.52 0.19 0.15 0.24 0.23

Figure 2. Distribution of voxel reconstruction loss scores on the PLINDER test set, with visualisations across different loss values with
the Plixer prediction on the left and ground-truth on the right, lower row shows protein voxels in mauve.

Table 2. SMILES Likelihood ROC AUC scores on chronological,
PLINDER and sequence similarity test splits

SMILES Likelihood ROC AUC

chron PLINDER seq sim

Plixer 0.67 0.58 0.61
DrugGen 0.57 0.55 0.56
AutoDock Vina - 0.62 -

such as GNNs with SE(3) equivariance and diffusion sam-
plers. The chief obstacle for all pocket-conditioned gener-
ators is not model capacity but the limited availability of
non-redundant protein–ligand complexes. By decoupling
spatial reasoning (voxel inpainting) from chemical validity
(voxel-to-SMILES decoding) and pre-training the decoder
on millions of ligand-only conformers, we match or exceed
state-of-the-art pocket-conditioned models on docking score
and enrichment metrics. It is reassuring to see that model
likelihoods on SMILES strings are discriminative in prefer-
ring true binders over decoys. Although Plixer likelihood
scores are slightly less effective in ranking than docking
scores from AutoDock Vina, the computation time is much
faster.

6.1. Model limitations and potential improvements.

Interpretability. Soft voxel densities are less interpretable
than discrete atoms with coordinates; Adding an explicit
coordinate prediction step would improve the usefulness
of the model as a design tool. One-shot artefacts. The
deterministic voxel generator can average multiple plausible
chemotypes, sometimes producing non-physical densities.
Autoregressive or diffusion generation may be preferable
to mitigate this issue. Feature representation. Replacing

Figure 3. MFTS scores between the Plixer sampled molecule and
the bound ligand from PDB versus decoys (a random PDB ligand
from test set) and bound ligand from PDB. Additionally, we show
paired molecules for a range of similarity scores with the Plixer
sampled molecule on top and the true-binder PDB ligand on the
bottom.

atom-type channels with broader pharmacophore-like fea-
tures (e.g. hydrogen-bond donors/acceptors) could enhance
generalisation and novelty. Protein flexibility. The current
model assumes a rigid receptor. Training on apo structures
or on ensembles of receptor conformations could allow the
network to account for pocket dynamics. Non-structural
binding data. Many binders are confirmed via chemical
assays without known complex structures. Incorporating
such data via preference optimization or contrastive learning
could enhance model performance.

Code Availability
https://github.com/judeWells/plixer
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Impact Statement
Plixer aims to make pocket-guided molecule generation
more efficient, potentially accelerating therapeutic discovery.
As with any molecular design tool, dual-use risks exist but
the principal barriers to causing deliberate or accidental
harm are not significantly altered by this work.
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A. Datasets
We trained our models on multiple datasets:

A.1. Protein-Ligand training data

The PocVox2MolVox model was trained on the HiQBind dataset (Wang et al., 2025), a filtered collection of protein-ligand
complexes derived from the PDB. We first applied a chronological split keeping all entries from 2020 and later for the
test set with the remainder held for training and validation. The validation dataset was created by applying MMSEQS2
(Steinegger & Söding, 2017) to generate clusters with 30% sequence identity and at least 50% coverage. 10% of the protein
clusters are removed from training to be used as validation samples. Ligands were also clustered using Morgan fingerprint
representation and the rdkit Butina clustering algorithm each sample in the dataset gets a cluster identity which is formed
from the tuple of the protein cluster and the ligand cluster and one training epoch is defined as a single pass over all clusters.
A chronological split of the PDB is insufficient to determine model performance on novel proteins, therefore we created two
subsets of the chronological test set, one using the PLINDER (Durairaj et al., 2024) pocket clusters (removing all samples
from the test set which shared a PLINDER pocket cluster label with any training sample) and one using MMSEQS protein
sequence similarity: removing all samples from the test set which had 30% sequence similarity with any protein in the
training set.

A.2. Ligand-only training data

ZINC20: The Vox2Smiles model was initially trained on a subset of the ZINC20 database (Irwin et al., 2020), which
provides 3D conformers of small molecules. This enabled the model to learn the relationship between 3D structural
representations and SMILES strings without requiring protein context. Combined Dataset: For fine-tuning the Vox2Smiles
model, we created a combined dataset that includes both ZINC20 molecules and outputs from the PocVox2MolVox model.
15% of the training samples came from PocVox2MolVox outputs while 85% came from ZINC20. Additionally, we filtered
PocVox2MolVox outputs to include only those with a Dice+BCE loss value below 0.7 to ensure quality voxel representations.

B. Performance at different levels of protein novelty
Generative models for structural biology have been found to generalise poorly beyond their training data (Buttenschoen et al.,
2024). We observed moderate decreases in our model performance when we assess on the more strict splits using PLINDER
cluster exclusion or sequence similarity exclusion compared to the chronological split. However, figure 4 suggests that
MFTS is not particularly correlated with the maximum sequence similarity found between the test example and another
example in the training set. We attribute this to two factors: first, we use a strict validation split (not just chronological)
and stop training when the validation loss starts to increase. Second, similar proteins in the PDB may have quite different
ligands present in the pocket.

Figure 4. Morgan fingerprint tanimoto similarity (MFTS) of generated molecule and PDB molecule for different levels of maximum
protein similarity with any sample in the training set
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