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ABSTRACT

We present a novel differentiable grid-based representation for efficiently solving
differential equations (DEs). Widely used architectures for neural solvers, such
as sinusoidal neural networks, are coordinate-based MLPs that are both compu-
tationally intensive and slow to train. Although grid-based alternatives for im-
plicit representations (e.g., Instant-NGP and K-Planes) train faster by exploiting
signal structure, their reliance on linear interpolation restricts their ability to com-
pute higher-order derivatives, rendering them unsuitable for solving DEs. Our
approach overcomes these limitations by combining the efficiency of feature grids
with radial basis function interpolation, which is infinitely differentiable. To ef-
fectively capture high-frequency solutions and enable stable and faster compu-
tation of global gradients, we introduce a multi-resolution decomposition with
co-located grids. Our proposed representation, ∂∞-Grid, is trained implicitly us-
ing the differential equations as loss functions, enabling accurate modelling of
physical fields. We validate ∂∞-Grid on a variety of tasks, including the Pois-
son equation for image reconstruction, the Helmholtz equation for wave fields,
and the Kirchhoff-Love boundary value problem for cloth simulation. Our results
demonstrate a 5–20× speed-up over coordinate-based MLP-based methods, solv-
ing differential equations in seconds or minutes while maintaining comparable
accuracy and compactness.

1 INTRODUCTION

Finding representations and parametrisations for fields, which are both accurate and fast to evaluate,
is challenging and has many applications in many machine learning domains (vision, graphics, sim-
ulation of physical systems, solving PDEs, engineering) (Xie et al., 2022). We desire representations
that model global structure and capture high-frequency as well as local details. Not only do we want
to represent known signals well, but also to recover unknown fields by modelling physical systems
governed by differentiable equations. At their core, many of these problems involve mapping spatial
or spatio-temporal coordinates x ∈ Rd to signals or fields u(x) ∈ Rm. Such systems governed by
differential equations can be represented as implicit functions F of the form:

F
(
x,u,∇xu,∇2

xu, . . . ; g(x)
)
= 0, (1)

where g represents known vectors or functions controlling the system.

Replacing the traditional numerical solvers for equation 1 with neural networks has gained signifi-
cant traction in recent years, particularly in the context of physics-informed machine learning (Kar-
niadakis et al., 2021; Hao et al., 2022). The optimisation of network weights can emulate the process
of solving physical equations; we refer to such networks as neural solvers for brevity. Current neural
solvers are predominantly based on coordinate-based multi-layer perceptrons (MLPs) or extensions
thereof for efficiency, accuracy, etc.; while effective, such solvers exhibit several limitations. For
instance, they tend to favour low-frequency fitting of signal u, requiring techniques like positional
encoding (Vaswani et al., 2017) to handle high-frequency signals. Moreover, not all networks are
suitable for solving DEs, as they are not differentiable beyond the first order with respect to the input
coordinates (e.g., those with ReLU activation lead to ∇2

xu = 0). Siren (Sitzmann et al., 2020), a
sinusoidal activation-based architecture, addresses some of these issues by being infinitely differen-
tiable and capable of fitting high-frequency signals, making it a preferred choice as a neural field for
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Figure 1: Our proposed method, ∂∞-Grid, is a feature grid-based representation capable of accurately
modelling signals and their higher-order derivatives. We demonstrate its effectiveness in solving complex
differential equations, including the Helmholtz equation (top) and neural cloth simulation (bottom) (Kairanda
et al., 2024) (reference adapted from (Clyde et al., 2017)), achieving both high speed and accuracy.

physical problems as in equation 1. However, Siren and other neural solvers do not account for the
spatial structure of signals and their derivatives in their architecture. Consequently, they are com-
putationally expensive, requiring long training times, sometimes up to several hours. On the other
hand, to overcome the slow training and inference of neural fields (Mildenhall et al., 2020), explicit
grid-based or hybrid architectures (Sara Fridovich-Keil and Alex Yu et al., 2022; Fridovich-Keil
et al., 2023; Müller et al., 2022; Cao & Johnson, 2023) that leverage the spatial locality have been
proposed for scene representation. While they offer significantly faster training, they rely on d-linear
interpolation, which is not differentiable at the grid boundaries (∇xu = 0) and not infinitely often
differentiable in the grid interiors (∇2

xu, · · · = 0). This severely limits their applicability as neural
representations for solving DEs.

To address the computational overhead of neural solvers and the failure of grid-based representa-
tions (Fridovich-Keil et al., 2023; Müller et al., 2022) in solving differential equations F(.) = 0, we
propose a novel feature grid representation capable of accurately modeling fields u and their deriva-
tives ∇xu,∇2

xu, . . .. We combine the efficiency of feature grids with a differentiable interpolation
technique supporting higher-order derivatives for effectively solving DEs. Our method leverages
radial basis function (RBF) interpolation, which is smooth and infinitely differentiable, where the
gradients can be computed analytically using automatic differentiation. To represent high-frequency
details as well as the low-frequency global structure, we propose a multi-resolution co-located fea-
ture grid representation. Our approach offers several advantages. First, the feature grid localises
learning, significantly speeding up training compared to global neural solvers. Second, our method
provides continuous parameterisation despite using a grid, allowing queries at arbitrary points sim-
ilar to neural fields. Consequently, it achieves accuracy comparable to (Sitzmann et al., 2020) or
better than (Raissi et al., 2019), i.e., MLP-based methods, while being significantly (up to 20×)
faster. In summary, core technical contributions of our ∂∞-Grid method are as follows:

• A feature grid-based representation for physical fields and a formulation recovering fields
from differential equations (Sec. 3.1).

• Differentiable RBF interpolation for accurately modelling higher-order derivatives (Sec. 3.2).
• Multi-resolution grids for faster global gradient flow (Sec. 3.3).

We validate ∂∞-Grid on diverse physical problems; see Fig. 1, where we learn the solutions for

• Image with Poisson Equation: A mapping from 2D coordinates to colours for high-resolution
images using only gradient or Laplacian supervision;

• Helmholtz Equation: Mapping a spatial domain to complex steady-state wavefields;
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• Cloth Simulation: Mapping 2D material space to 3D deformations for cloth quasi-statics, mod-
elled as a thin-shell boundary-value problem;

• Eikonal Equation: A signed distance function learned directly from oriented point cloud;
• Advection and Heat Equations: Spatio-temporal transport and diffusion of physical quantities.

We prepared the source code for release, which can act as a drop-in model for both representing
fields and solving fields from governing equations.

2 RELATED WORK

Traditionally, differential equations are solved with numerical methods (Butcher, 2016). Classi-
cal solvers discretise governing equations but struggle with data incorporation, meshing, and high-
dimensional costs, motivating neural representations as a promising alternative.

Neural Fields and DE Solvers. Neural fields are continuous and non-linear mapping functions
parametrised by trainable neural network weights. They have been widely used in representing
radiance fields (Mildenhall et al., 2020), signed distance and occupancy fields (Park et al., 2019;
Mescheder et al., 2019; Yang et al., 2021), scene reconstruction (Li et al., 2023; Wang et al.,
2023; Guédon & Lepetit, 2024; Yariv et al., 2021), and beyond. Physics-Informed Neural Net-
works (PINNs) are neural fields that model solutions to differential equations, solved as optimisa-
tion problems supervised by physical laws (Raissi et al., 2019; Hao et al., 2022). A wide range of
problems, such as solving fluid dynamics (Cai et al., 2021), Eikonal equations (Smith et al., 2021),
simulation (Bastek & Kochmann, 2023), and many more, have been achieved with neural fields.
Early works that used coordinate-based MLPs struggled to model high-frequency details in signals
and derivatives. Siren (Sitzmann et al., 2020) introduces periodic activation functions for MLPs,
facilitating gradient supervision with higher-order derivatives, enabling more complex applications
(Chen et al., 2023a; Novello et al., 2023; Kairanda et al., 2024). However, Siren and similar global
MLP-based methods have shortcomings: they ignore the spatial structure of physical fields, require
back-propagating through the full MLP for every coordinate sample, thus leading to slower training
times compared to our proposed grid-based representation.

Feature Grids. In contrast to coordinate-based MLPs, discrete or hybrid representations learn com-
pact localised features, reducing computation and training time while improving quality. Various
discrete representations, such as grids (Sara Fridovich-Keil and Alex Yu et al., 2022; Martel et al.,
2021), octrees (Takikawa et al., 2021) and feature planes (Fridovich-Keil et al., 2023; Chan et al.,
2022; Chen et al., 2022; Cao & Johnson, 2023), in combination with MLPs, have been introduced
for faster learning. Müller et al. (2022) employ a multi-resolution structure with a hash encoding
to provide a faster lookup, significantly speeding up computation. Unfortunately, the linear com-
ponents (linear interpolation, ReLU) of these feature learning methods do not support higher-order
derivative supervision required for solving DEs. While some methods (Li et al., 2023; Huang &
Alkhalifah, 2024; Wang et al., 2024) support higher-order derivative supervision using finite dif-
ference methods, they are known to be approximations and are susceptible to discretisation errors.
Chetan et al. (2025) recently introduced a post-hoc differential operator for pre-trained hybrid fields,
such as Instant-NGP. Due to the reliance on a pre-trained representation, they fail to solve differen-
tial equations. On the other hand, our proposed method combines the advantages of localised grid
feature learning with high-order differentiability to enable faster training and convergence.

Radial Basis Functions. (Mai-Duy & Tran-Cong, 2003) were among the first to employ RBFs as
activation functions, with later works such as (Ramasinghe & Lucey, 2022) and GARF (Chng et al.,
2022) further demonstrating the utility of Gaussian activations. Recently, methods inspired by 3D
Gaussian Splatting (Kerbl et al., 2023), including Lagrangian Hashing (Govindarajan et al., 2025)
and SC-GS (Huang et al., 2024), leverage Gaussian interpolation for feature aggregation, though
their focus is on radiance fields rather than solving DEs. The closest to ours is NeuRBF (Chen
et al., 2023b), which introduced feature grids with RBF interpolation. However, its objectives and
therefore the design differ fundamentally: NeuRBF proposes neural field representations that adapt
to known target signals (images, SDFs, or Instant-NGP-distilled NeRFs), whereas ∂∞-Grid solves
PDEs from derivative-only supervision without observing the target field; see App. B for details.
Their Gaussian interpolation remains discontinuous across grid cells due to the single-ring neigh-
bourhood, and the method requires signal-dependent RBF initialisation with ground-truth signals
(or proxy hybrids) in the loss formulation, leading to failure of NeuRBF for our problem setting.
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Figure 2: Illustration of ∂∞-Grid. Our grid-based representation accurately represents fields u : Ω → Rm

and efficiently solves differential equations F . We first sample query coordinates x from the input domain
Ω (here, 2D). We apply infinitely differentiable RBF interpolation φ(x) to extract smooth, query-dependent
features from the multi-scale learnable feature grids {Fs}s∈[0,...,S]. These interpolated features {fs(x)}s at
different scales are concatenated as f(x) and then passed through a decoder d(f(x);Θ) to produce the final
signal u(x) (e.g., image or cloth deformation). The converged neural field (solution) is obtained by optimising
the governing equation F as the loss.

3 METHOD

Our goal is to represent and solve for the field u subject to physical constraints F , expressed as dif-
ferentiable equations, as shown in Eq. (1). The solution must be accurate, and the optimisation needs
to be fast. This section presents our feature grid-based representation, which is computationally ef-
ficient (Sec. 3.1). While grid-based representations have been explored in prior work (Müller et al.,
2022; Fridovich-Keil et al., 2023), these approaches often lack differentiability with respect to inputs
x, making them unsuitable for solving differential equations accurately. In contrast, our method sup-
ports higher-order derivatives by combining feature grids with the smoothness and differentiability
of RBF interpolation (Sec. 3.2). Additionally, we introduce a multi-resolution technique to effec-
tively capture high-frequency signals which ensures stable optimisation with fast global gradient
propagation (Sec. 3.3). An overview of our approach is provided in Fig. 2.

3.1 FEATURE GRID FORMULATION

We aim to parameterise the field u(x) : Ω → Rm, where Ω ⊂ Rd is a low-dimensional (d = 2, 3)
spatio-temporal input domain. Directly processing the query coordinates x with a coordinate-based
MLP, as in neural fields (Xie et al., 2022; Hao et al., 2022), requires updating all weights during
backpropagation, which is computationally expensive and bypasses the opportunity to exploit the
local structure of the spatial domain. To address these limitations, we propose a novel encoding-
decoding framework. The signal u is computed as a composition of two functions:

u(x) = d(f(x;F); Θ), (2)
where f is a feature encoder parametrised by the feature grid F, and d is a small decoder. This for-
mulation leverages the spatial structure in the feature encoder, requiring only a small set of trainable
parameters of grid F—adjacent to the query coordinate x—to be updated during optimisation.

Feature Encoder. We adopt a grid-based representation, where the domain of interest is discre-
tised into a regular grid. Each grid node stores a learnable feature vector, which is optimised during
training. Unlike traditional coordinate-based MLPs, this representation exploits spatial locality, en-
abling efficient computation. Since feature grids are discrete, interpolation is required to query
continuous points. Formally, let F ∈ R(N+1)d×F denote the feature grid, where N is the resolution
(assumed identical along all spatial dimensions d for simplicity), and F is the feature dimension at
each grid node. Given a query coordinate x ∈ Rd, the corresponding feature vector f(x) ∈ RF is
obtained via interpolation over the grid. The interpolated feature is computed as:

f(x) =
∑

i∈N (x)

w(x,xi)F(xi), (3)
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where N (x) is the set of neighbouring grid nodes enclosing x; F(xi) and w(x,xi) are the learnable
feature vector and the scalar interpolation weight corresponding to node xi, respectively.

Feature Decoder. To map the interpolated feature f(x) to the target signal u(x), we employ a
feature decoder d(·; Θ) : RF → Rm with weights Θ. The decoder can be implemented as either a
simple linear layer or a small MLP (with smooth activation e.g., tanh), depending on the complexity
of the task. This additional decoding step allows the model to map the features to the target flexibly.

Differential Equation Solver. We propose to compute gradients, Jacobians, and Laplacians of
the decoded interpolated features with respect to query samples x using automatic differentiation
(autograd). These derivatives are essential for solving differential equations. Recalling our goal of
optimising for u in problems of the form Eq. (1), we define the loss function as:

L(F,Θ) =

∫

Ω

F(.) dx =
∑

i∈D
F
(
xi,u(xi),∇xi

u(xi),∇2
xi
u(xi), . . . ; g(xi)

)
, (4)

where u(F,Θ) is parameterised as in Eq. (2). The loss function represents the PDE residual over the
spatio-temporal domain, optionally including boundary constraints or data terms. Our framework
accommodates various formulations: strong form (e.g., Poisson), variational form with boundary
constraints (e.g., cloth simulation), and data-driven terms (e.g., SDF). To guarantee uniqueness and
stability, we typically impose Dirichlet boundary or initial conditions as hard constraints, which
are known to improve convergence (Kairanda et al., 2024; Lu et al., 2021). This is achieved by
modulating the predicted field in Eq. (2) with a boundary-aware function:

u(x) = d(f(x;F); Θ)B(x) + h(x)
(
1− B(x)

)
, (5)

where h denotes the known boundary function and B(x) = 1 − e−∥x−x∂Ω∥2/σ is a distance-based
weighting that enforces u(x) = h(x) for all x ∈ ∂Ω. This formulation is equally applicable to
initial conditions, where the boundary is defined by t = 0.

During training, we optimise both the feature grid F and the decoder Θ using gradient-based op-
timisation. In practice, the integral in Eq. (4) is estimated by sampling points from the domain Ω.
A dataset D = {(xi, g(xi))}i is constructed by stratified random sampling of coordinates xi ∈ Ω
for PDE evaluation, optionally including data coordinates for loss terms and their associated known
quantities g(xi). The dataset D is sampled dynamically during training, progressively refining the
approximation of L as the number of samples increases.

3.2 RADIAL BASIS FUNCTION INTERPOLATION

In Eq. (3), the interpolation weights w(x,xi) play a crucial role in determining the contribution
of neighbouring grid points to the interpolated features. These weights can be computed using
various methods. Prior works on scene representations often rely on d-linear interpolation (Müller
et al., 2022; Fridovich-Keil et al., 2023), where the weights are determined based on the relative
distances between the query point x and the nearest grid points along each dimension. Formally,
let x = (x1, x2, . . . , xd) represent the query point, and xi = (xi1, xi2, . . . , xid) denote a grid node.
The weight for d-linear interpolation is given by:

w(x,xi) =

d∏

k=1

(
1− |xk − xik|

σ

)
, (6)

where σ is the grid cell size. While linear interpolation is computationally efficient, it is only C0(R)
(continuous but not differentiable) at grid nodes, and C1(R) in the grid interior, when differentiating
with respect to query coordinates. The lack of support for higher-order derivatives prohibits the
computation of differential quantities, such as Jacobians and Laplacians, which are essential for
solving DEs as described in Eq. (4). An alternative to linear interpolation is to employ higher-order
basis functions, such as quadratic, cubic, or RBFs. We employ RBF interpolation (Wright, 2003),
which is smooth across neighbourhoods and infinitely differentiable (C∞(R)). The interpolation
weights are defined as

w(x,xi) =
φ(∥x− xi∥)∑

j∈N (x) φ(∥x− xj∥)
, (7)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

where N (x) denotes the neighbourhood of x, and the denominator normalises the weights. We
use Gaussian RBF kernels, φ(r) = e−(εr)2 , where ε controls the kernel width. RBFs provide a
general-purpose, differentiable representation that supports higher-order derivatives when required.
For instance, fourth-order PDEs such as the Euler–Bernoulli beam or Kirchhoff–Love plate equa-
tions (Guo et al., 2021) demand differentiability beyond what cubic bases can provide, particularly in
strong-form settings. Moreover, RBFs offer tunable support via the shape parameter ε (which we set
as a hyperparameter), enabling a flexible trade-off between locality and accuracy that fixed-degree
polynomials cannot achieve.

(b) RBF support region in 2D

(a) RBF interpolation in 1D
xϕ

(‖
x
−

x
i‖
)

x

F

N2(x)

N2(x)

Figure 3: Illustration of effective
neighbourhoods N2(x) in d =
1, 2, determined by the shape pa-
rameter ε. An additional ring ac-
counts for stratified sampling.

Efficient RBF Interpolation. In RBF interpolation, neighbour-
ing grid points N (x) are weighted according to their distance from
the query point x. As shown in Eqs. (3) and (7), Gaussian RBFs
(φ(r) = e−(εr)2 ) are globally supported, requiring the neighbour-
hood to be the full grid—leading to high memory and computa-
tional costs. Consequently, standard RBF interpolation becomes
impractical for high-resolution grids or large numbers of samples.

To match the efficiency of linear interpolation with the smooth-
ness of RBFs, we sample the domain in a structured way and pre-
compute neighbourhood indices. At each training step, we stratify
samples x over a domain Ω, ensuring they are both uniformly dis-
tributed and random for a more accurate approximation of Eq. (4).

In conjunction with stratified sampling, we propose precompu-
tation of the neighbourhood N (x), which can be reused across
training iterations. For a given query point x, the effective neigh-
bourhood Nρ(x), where the RBF weights are non-zero, is deter-
mined by the shape parameter ε of the RBF kernel. For example,
if ε = 2, only the 1-ring neighbourhood N1(x) needs to be con-
sidered, whereas for ε = 1, the 2-ring neighbourhood N2(x) is
required. Since the sample point may lie anywhere within a grid
cell, including near boundaries, we include an additional ring in practice. For instance, N2(x) is
used for ε = 2; see Fig. 3 for an illustration in d = 1, 2. This approach ensures smooth interpolation
with feature overlap across query samples, ensuring accurate learning of the feature grid.

3.3 MULTI-RESOLUTION FEATURE GRID

We observe that our feature encoder with a single-resolution grid captures local gradients effectively
and requires many time steps to propagate gradient information across the entire domain. This
limitation stems from the small interpolation neighbourhoods used in relatively large feature grids.
Drawing inspiration from recent advances in scene representations (Müller et al., 2022; Fridovich-
Keil et al., 2023), we propose a multi-resolution approach to overcome this challenge. We define
a set of multi-scale feature grids, each representing a different resolution. Formally, for a given
the base grid resolution Nmax and the number of scales S, the feature grids {Fs}s∈[0,...,S−1] are
learnable parameters: Fs ∈ R(N+1)d×F where N = Nmax/2

s is the resolution at scale s. With
this formulation, the interpolated features from all scales are concatenated to form a multi-scale
feature vector f(x) = (f0(x), f1(x), . . . , fS−1(x)) ∈ RS·F , where fs(x) is computed using the RBF
interpolation described in Eqs. (3) and (7).

The multi-resolution feature grid offers several advantages. First, it is computationally efficient,
as the hierarchical structure reduces the cost of global gradient propagation. Second, it is highly
expressive, as the combination of coarse and fine features, along with their gradients, enables the
stable and accurate recovery of complex signals without requiring adaptive RBF shapes.

4 EXPERIMENTS

We experimentally demonstrate the versatility of our representation across diverse signal types, in-
cluding the Poisson equation (Sec. 4.1), the Helmholtz equation (Sec. 4.2), and neural cloth sim-
ulation (Sec. 4.3). Unlike prior grid-based methods such as Instant-NGP (Müller et al., 2022),
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Figure 4: Image Reconstruction. Comparison of ∂∞-Grid with Siren (Sitzmann et al., 2020) for the recon-
struction from gradient and Laplacian fields (Poisson equation). Results are visualised at training time marked
by “•” and “•”, and the supervision signal is highlighted with a green border. Our method achieves higher PSNR
with faster convergence for high-resolution images, while Siren struggles, especially for Laplacian.

Table 1: Comparison against Siren (Sitzmann et al., 2020) and K-planes (Fridovich-Keil et al., 2023) for image
reconstruction (Fig. 4). ∂∞-Grid achieves higher PSNR with substantially reduced training time than Siren.
K-planes struggle (for gradient supervision) or fail (for Laplacian) due to non-differentiable interpolation.

Model K-Planes Siren Ours
Supervision Grad. Lapl. Grad. Lapl. Grad. Lapl.

PSNR 17.96 - 32.12 11.82 32.24 12.19
Training time 9.5mins - 10mins 1hr56mins 25s 15mins
Parameters 8.4m - 329.99k 1.32m 702.94k 700.81k

K-Planes (Fridovich-Keil et al., 2023), and NeuRBF (Chen et al., 2023b), our feature grid repre-
sentation accurately solves for fields. We show that ∂∞-Grid achieves significant speed-ups over
sinusoidal neural networks (Sitzmann et al., 2020) while maintaining comparable accuracy, and that
it can recover high-frequency solution fields where PINNs struggle (see Sec. B). Apart from solving
DEs, we demonstrate that our representation supports direct signal fitting (Sec. 4.4). We also include
ablations on the RBF kernel size and the multiscale design of the feature grid (Sec. 4.5). Additional
experiments are provided in the appendices, i.e., SDF solutions to the Eikonal equation, the spatio-
temporal heat equation, and 1D/2D advection with Gaussian waves (with comparison to (Chen et al.,
2023a)). We further demonstrate highly challenging cases, such as Zalesak’s disk and Helmholtz
problems with higher wavenumbers.

4.1 IMAGE RECONSTRUCTION AS POISSON EQUATION SOLVE

To demonstrate that our feature grid representation can accurately reconstruct a field and its deriva-
tives, we first consider a simple differentiable equation—the Poisson equation. This equation rep-
resents a class of problems where the objective is to estimate an unknown signal g from discrete
samples of its Laplacian ∆g = ∇ · ∇g. As a simpler variant, we additionally estimate the signal
from its gradients ∇g, which can be formulated as minimising one of the following losses (as an
instance of Eq. (4)):

Lgrad =

∫

Ω

∥∇xu(x)−∇xg(x)∥ dx, Llapl =

∫

Ω

∥∆u(x)−∆g(x)∥ dx. (8)

We solve the Poisson equation for images by supervising the model solely with higher-order deriva-
tives—either ground-truth gradients, as in Lgrad, or Laplacians Llapl. Our model successfully recon-
structs the target image, as shown in Figs. I, 4, IV and 7. For colour images we supervise gradients
channel-wise and visualise the red-channel field for clarity. Global intensity variations remain due
to the ill-posedness of the inverse problem, as boundary conditions are not explicitly specified.

To assess computational efficiency against coordinate-based MLPs, we evaluate high-resolution im-
age reconstruction with our method and compare it to Siren (Sitzmann et al., 2020). While the
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Figure 5: Helmholtz Equation. Comparison for solving the Helmholtz equation (second-order PDE) for a
single point source at the centre. Prior hybrid architectures, such as K-Planes (Fridovich-Keil et al., 2023)
and Instant-NGP (Müller et al., 2022), break down as their linear components equate to zero for second-order
derivatives. Our method matches reference with significantly faster training time compared to Siren, as shown
in the ℓ1 error plot on the right and ℓ2-error visualisations in Fig. VI.

original Siren paper reports results on 256 × 256 images, we use the full 512 × 512 resolution for
a fairer comparison and clearer demonstration of training speed. We adopt the smallest Siren ar-
chitecture that converges reliably, as reducing capacity can speed up training but could also lead to
underfitting. As shown in Fig. 4-(right), our method captures both global structure and fine local
detail more accurately—and converges significantly faster (20×). Quantitative comparisons for the
Poisson equation are reported in Tab. 1 for our method, Siren, and K-Planes (Fridovich-Keil et al.,
2023). Notably, existing grid-based approaches such as K-Planes cannot handle higher-order super-
vision: with linear interpolation, first derivatives are discontinuous at grid boundaries and second
derivatives vanish everywhere, preventing recovery from Laplacian fields.

4.2 HELMHOLTZ EQUATION

We further demonstrate the applicability of our method to wave propagation problems governed by
complex boundary conditions. Specifically, we consider the Helmholtz equation, a second-order
partial differential equation commonly used to model steady-state wave behaviour and diffusion
phenomena. The Helmholtz equation is given by:

H(m)u(x) = −g(x), with H(m) =
(
∆+m(x)ω2

)
, (9)

where g(x) denotes a known source function, u(x) is the unknown complex-valued wavefield, ω is
the wave number, and m(x) = 1

c(x)2 represents the squared slowness as a function of wave velocity
c(x). To solve for the wavefield, we parameterise u(x) using our proposed ∂∞-Grid representa-
tion. The decoder outputs two channels corresponding to the real and imaginary components of the
wavefield. We set up the input domain as Ω =

{
x ∈ R2

∣∣ ∥x∥∞ < 1
}
, and consider a spatially

uniform wave velocity with a single point source, modelled as a Gaussian with variance σ2 = 10−4.
The model is trained using a loss function derived directly from the Helmholtz formulation:

LHelmholtz =

∫

Ω

λ(x) ∥H(m)u(x) + g(x)∥1 dx, (10)

where λ(x) = k (a tunable hyperparameter) for locations where g(x) ̸= 0, corresponding to the
inhomogeneous part of the domain, and λ(x) = 1 elsewhere. Unlike the image reconstruction task
from derivative fields—where data sampling is required—we employ stratified sampling here, since
LHelmholtz can be evaluated at arbitrary points within the domain. We incorporate perfectly matched
layers (PML), which modify the Helmholtz PDE to attenuate outgoing waves near the boundary,
ensuring uniqueness of the solution (see Sec. E for implementation details). All methods, including
ours, predict only the interior of the domain, as the PML-modified Helmholtz formulation absorbs
steady-state wavefields generated by the point source. The reference solution is computed in closed
form using Hankel functions and therefore extends across the entire domain.

Our representation achieves high-fidelity reconstructions of the wavefield, as shown in Figs. 1 and 5
for ω = 20, where we compare against the closed-form solution. While both methods match the

8
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K-Planes OursInstant-NGP

Figure 6: Kirchhoff-Love Simulation (Kairanda
et al., 2024). ∂∞-Grid captures fine-grained cloth
wrinkles by solving a highly nonlinear problem.

Table 2: Ablation study for varying RBF shapes ε and
neighbourhood sizes ρ for the high-resolution gradient-
based image reconstruction in Fig. I.

Shape ε Ring ρ PSNR ↑ SSIM ↑ Training ↓
0.6 4 28.74 0.87 15 min
1 4 28.74 0.87 17 min
1 3 28.73 0.87 12 min
1 2 28.82 0.86 12 min
1∗ 1 27.50 0.82 15 min
2∗ 1 17.72 0.74 6 min

reference closely, our approach converges faster, yielding a 4×speed-up over Siren; see Fig. 5-
(right). Additional results for more challenging cases with ω = 30, 40 are presented in Sec. E
and Tab. I. We also compare with prior feature grid methods: (Fig. 5-(left)): They fail as effective
solvers since they cannot capture the higher-order derivatives required by the Helmholtz equation.

4.3 CLOTH SIMULATION

NeuralClothSim (Kairanda et al., 2024) introduces a quasistatic cloth simulation framework that
models surface deformations as a coordinate-based implicit neural deformation field (NDF). Given
a simulation setup—defined by the cloth’s initial configuration, material parameters, boundary con-
straints and applied external forces—the method learns the equilibrium deformation field governed
by the Kirchhoff-Love thin shell theory. The deformation is represented as an NDF u(x) : Ω → R3,
where Ω ⊂ R2 denotes the cloth’s parametric domain. In the context of volumetric thin shells
such as cloth, the Kirchhoff-Love model (Wempner & Talaslidis, 2003) provides a reduced kine-
matic formulation, where the shell midsurface fully characterises the strain distribution across the
thickness. Following standard thin shell assumptions, the deformation field u is used to compute
the Green strain, which is decomposed into membrane strain ε and bending strain κ, capturing in-
plane stretching and out-of-plane curvature changes, respectively. The internal hyperelastic energy
Ψ[ε,κ;Φ] is then formulated as a functional of these geometric strains and the material properties
Φ. Under the action of external forces g and boundary conditions b, the simulation seeks an equilib-
rium configuration by minimising the total potential energy, combining internal energy and external
work. This principle is implemented by defining the loss as (see Sec. F for further details):

Lcloth =

∫

Ω

Ψ[ε(u(x)),κ(u(x));Φ]− g(x) · u(x) dx, subject to u(x) = b(x) on ∂Ω. (11)

Note that Kairanda et al. (2024) employ Siren as the representation for NDF u, while we use our
∂∞-Grid. As a specific example, we consider an analytically defined square piece of cloth of mass
density ρ held with two handles and subject to a gravity force g = [0, 0,−9.8ρ]. We incorpo-
rate Dirichlet constraints directly into the loss following Eq. (5), and assume a linear elastic material
model for Φ. See Fig. 6 for results, where we recover realistic simulations, including folds and wrin-
kles, by solving a highly non-linear PDE where stretching and bending strains depend non-linearly
on the deformation. Additional comparisons with K-Planes and Instant-NGP show their failure, as
they are unable to model the membrane and bending strains, which require higher-order derivatives
of the deformation field. As multiple equilibria are possible for the cloth deformation (thus, no
single reference solution), we exclude cloth simulation from the numerical accuracy evaluation.

4.4 2D AND 3D SIGNAL REPRESENTATION

The following additional experiment underscores the versatility of our representation (although not
being the central focus of our work). Beyond solving DEs, our method can also fit signals directly
by instantiating Eq. (4) with a supervision signal, i.e.,

Lsignal =

∫

Ω

∥u(x)− g(x)∥ dx, (12)

where g(x) denotes the known target 2D or 3D signal such as a 2D image or an SDF. We showcase
both cases in Fig. 7-(a,c), where our method preserves high-frequency details on par with previous

9
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Figure 7: Results of signal representation. Our ∂∞-Grid matches high-frequency details when fitting images
and SDFs directly (a,c) and, unlike prior grid methods (Müller et al., 2022; Chen et al., 2023b) (Figs. I and V
and Tab. 1), also succeeds with gradient and Eikonal supervision (b,d). Inputs are outlined in green.

competitive grid-based baselines (Müller et al., 2022; Chen et al., 2023b). Our representation further
supports indirect supervision: We recover images from gradient fields and SDFs from oriented point
clouds by solving the Eikonal equation (Sec. C.0), as illustrated in Fig. 7-(b,d). In these settings, the
competing grid-based methods fail (Figs. I and V and Tab. 1 in the Appendix). Together, these results
show that a single differentiable grid accommodates both direct signal fitting and PDE-constrained
reconstruction without architectural changes.

4.5 ABLATIONS AND FURTHER COMPARISONS

Neighbourhood Ring Selection. The choice of RBF shape parameter ε, and consequently the
effective neighbourhood Nρ, balances computational efficiency and accuracy. To study the trade-off
between truncation, accuracy, and speed—as well as potential instabilities—we conducted ablations
on image recovery from the higher-resolution 768×768 gradient image in Fig. I. First, we vary ε
and adjust the neighbourhood size adaptively, so that the RBF weights are non-zero (e.g., ρ = 4 for
ε = 0.6). Smaller ε values with larger rings produce smoother, more accurate reconstructions but at
higher computational cost, while overly narrow kernels (e.g., ε = 2, ρ = 1) introduce discontinuities
resembling linear interpolation. Second, we fixed ε = 1 and varied the ring size ρ. The 1-ring setting
showed visible artefacts, whereas ε = 1 with a 2- or 3-ring neighbourhood offers stable training and
smooth interpolation without artefacts, matching our intuition from Fig. 3.

Multi-resolution Grid. We demonstrate the effectiveness of multi-resolution feature grids in Fig. II.
In the SDF example, the single-resolution grid restricts the Eikonal loss to local regions, leading to
noticeable artefacts. In contrast, the multi-resolution grids enable gradient propagation across the
entire domain while incurring minimal additional parameter overhead. Next, as illustrated by the
image recovery example (Fig. II), this design leads to significantly faster convergence for PSNR.

Comparisons to NeuRBF (Chen et al., 2023b). We modified NeuRBF’s image-fitting objective
to use our gradient-based Poisson loss and retained their gradient-weighted RBF initialisation; the
reconstruction failed to converge at PSNR/SSIM 10.85/0.17 with visible artefacts (cf. Fig. I). Ap-
plying the same pipeline to Eikonal SDF fitting from oriented point clouds also failed to recover a
smooth surface (cf. Fig. V), highlighting the difficulty of training NeuRBF under purely differential
supervision. Please refer to App. B for the detailed analysis.

5 CONCLUSION

The experiments demonstrate that ∂∞-Grid enables computation of higher-order derivatives di-
rectly from the interpolated features, thanks to smooth and infinitely differentiable RBF interpola-
tion weights. We can reliably compute gradients, Jacobians, and Laplacians for solving PDEs. This
leads to accurate results for Poisson and Helmholtz equations, allows recovery of high-frequency
fields for challenging and non-linear PDEs, such as the Kirchhoff-Love boundary value problem for
cloth simulation and the Eikonal equation. Moreover, we experimentally show faster convergence
compared to coordinate-based MLPs. One current limitation is that the interpolation becomes ex-
pensive for higher-dimensional inputs, similar to numerical solvers, and a potential solution for that
in future could be projection to lower-dimensional spaces.
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Figure I: Comparisons to NeuRBF (Chen et al., 2023b) for fitting 2D images with direct image supervision
(left) and gradient image supervision (right). Note that while NeuRBF can fit signals well, it fails to compute
accurate gradients (bottom left) and, consequently, cannot recover images with gradient supervision.

A REPRODUCIBILITY DETAILS

∂∞-Grid Implementation. Our method is implemented in PyTorch, and all our experiments and the
speed comparison for Siren are conducted on a single H100 GPU. Following (Müller et al., 2022),
each feature grid is initialised with small random values drawn from a uniform distribution, i.e.
Fs ∼ U(−10−4, 10−4), whereas the decoder (whether linear or MLP) weights are initialised with
Xavier (Glorot & Bengio, 2010) and biases are set to zero. In the case of MLP decoder, we employ
tanh as the activation. A learning rate of 5× 10−3 is used with the Adam optimiser. We set ε = 1,
which selects the neighbourhood N3(x) (i.e., ρ = 3) around each query point x. Because a ring
Nρ(x) contains (2ρ)d neighbours per scale, the Gaussian RBF therefore uses 6d neighbours at every
scale/grid. Neighbourhood indices N3(xi) are precomputed for all training and test samples {xi}i.
Additional hyperparameters, including the scale S, grid resolution Nmax, and feature dimension F ,
are experiment specific and detailed in the respective section for reproducibility.

K-Planes Comparison. We provide the settings used to reproduce our K-Planes results with the offi-
cial implementation (Fridovich-Keil et al., 2023) on neural cloth simulation (Sec. 4.3) and Helmholtz
equation (Sec. 4.2). We extend K-Planes using the same losses as in our method. The architectures
are summarised as follows:

• NeuralClothSim: single-resolution 2D grid of size 64 × 64 with feature dimension 16, followed
by an MLP with two 64-wide ReLU layers and a linear head; learning rate 10−2 with 0.1 decay
every 2000 steps for 10000 epochs.

• Helmholtz: single-resolution 2D grid of size 128×128 with feature dimension 32, followed by an
MLP with two 64-wide ReLU layers and a linear head; learning rate 2× 10−5 for 50000 epochs.
We employ single resolution as the multi-grid K-Planes struggles to converge otherwise.
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Figure II: Effectiveness of the multi-resolution grids. While the single-resolution feature encoder converges
at a similar rate to the multi-resolution grid in terms of the differential equation loss (as shown in the gradient
loss plot), the ∂∞-Grid multi-resolution architecture enables faster and more accurate field reconstruction (as
illustrated in the PSNR plot, achieves higher PSNR in fewer iterations). The image reconstruction results are
visualised at ≈30 seconds of training.

ϕ
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x
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x
i‖
)

(a) Linear Interpolation
xi+1xi−1 xi

(b) NeuRBF Interpolation (c) Our RBF interpolation
xi+1xi−1 xixi+1xi−1 xi

Figure III: Comparison of interpolation schemes. Linear interpolation in Instant-NGP/K-Planes (Müller
et al., 2022; Fridovich-Keil et al., 2023) is only C0 at grid nodes xi, whereas our RBF interpolation is C∞

because centres are fixed on the grid with overlapping neighbourhoods. NeuRBF (Chen et al., 2023b) also
uses RBFs but places adaptive centres off-grid and restricts each query to a single neighbourhood, leading to
discontinuities.

Instant-NGP Comparison. We use the PyTorch implementation (Tang, 2022) of Instant-NGP (that
supports autograd) and apply the same losses as in our method. The architecture details are as
follows:

• NeuralClothSim: eight-level hash grid (base resolution 4, final resolution 64) with feature dimen-
sion 2, followed by a linear head; learning rate 10−4 with 0.1 decay every 1000 steps for 10000
epochs.

• Helmholtz equation: eight-level hash grid (base resolution 4, final resolution 128) with feature
dimension 2, followed by an MLP with two 64-wide ReLU layers and a linear head; learning rate
2× 10−5 for 50000 epochs.

• SDF fitting: sixteen-level hash grid (base resolution 16, final resolution 2048) with feature dimen-
sion 2, followed by an MLP with two 64-wide ReLU layers and a linear head; learning rate 10−4

for 20 epochs.

B FURTHER COMPARISONS

B.1 COMPARISON WITH NEURBF (CHEN ET AL., 2023B)

NeuRBF and ∂∞-Grid both use RBF-interpolated feature grids, yet they target very different prob-
lems. NeuRBF focuses on signal fitting: it reconstructs images and SDFs from ground-truth signals
and tackles NeRFs via distillation, always coupled with a hybrid backbone such as Instant-NGP, K-
Planes, or TensoRF. It does not attempt to solve PDEs directly from differential constraints, which
is precisely our setting.

Consequently, NeuRBF assumes access to the full target signal (or a proxy provided by the hybrid
model), whereas our losses (Eqs. (8) and (13)) only require derivative supervision. We recover solu-
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tions from gradients, Laplacians, or oriented point clouds without seeing the ground-truth field. For
images and SDFs, NeuRBF augments its adaptive RBFs with Instant-NGP features for C0 continu-
ity; for NeRF, it first warms up K-Planes or TensoRF for 1–2k steps and then distils their predictions
to initialise the RBFs. Such proxy supervision is infeasible in our PDE setting because Instant-
NGP/K-Planes themselves fail when trained with purely differential signals.

NeuRBF chooses adaptive RBFs to position and scale kernels based on the known signal, while
we adopt fixed-shape Gaussian RBFs to guarantee smooth, differentiable interpolation suitable for
PDE losses. Even if one tried to adapt NeuRBF to PDEs, several critical problems remain that we
summarise below:

• Signal-dependent initialisation. NeuRBF requires hand-crafted initialisation of RBF centres
and shapes via weighted k-means. This biases the RBF distribution towards data points with
higher weights (making their RBFs adaptive). Weights depend on the GT signal: wi = ∥∇I(xi)∥
for images, wi = 1/(|SDF(xi)| + 10−9) for SDFs. For NeRF, NeuRBF first warms up K-
Planes or TensoRF for 1–2k steps and distils their predictions to initialise the RBFs as wi =
(1 − exp(−σ(xi)δ))∥∇fc(xi)∥. Such proxy supervision is infeasible for PDEs, because Instant-
NGP/K-Planes themselves fail in our settings, and no ground-truth field is available. By contrast,
we place fixed-shape Gaussian RBFs on grid nodes without bespoke initialisation, which allows
us to additionally precompute the effective neighbourhood; see Fig. III for RBF placement of ours
vs NeuRBF.

• Discontinuities in interpolation. NeuRBF restricts interpolation to a single RBF ring, causing
sharp discontinuities whenever the active neighbour set changes; they lean on Instant-NGP to en-
force C0 continuity at grid nodes (Fig. III), which is insufficient for PDE supervision. Expanding
the neighbourhood is non-trivial because it would require KD-tree lookups at every query point
as RBF centres change, and their signal-dependent initialisation scheme is provided only for the
single-ring case. PDE losses such as the Eikonal constraint demand smooth gradients across cell
boundaries, so we precompute overlapping N3 neighbourhoods on the grid for arbitrary query
points, guaranteeing continuous interpolation and stable higher-order derivatives (Figs. 3 and III).

Empirical comparison. To check if NeuRBF can handle PDE supervision, we modify the of-
ficial NeuRBF implementation to (i) replace its image-fitting objective with our gradient-based
Poisson loss (Eq. (8)) and (ii) optimise the Eikonal loss (Eq. (13)) for SDF reconstruction from
oriented point clouds. We keep their initialisation scheme—weighting k-means by gradient mag-
nitudes for images and by inverse SDF magnitudes for point clouds—yet note that no analogous
scheme exists for higher-order PDE supervision (e.g., Kirchhoff-Love problem for cloth simulation).
Even under this favourable setup, NeuRBF failed to converge: Poisson reconstruction plateaued at
PSNR/SSIM 10.85/0.17 versus 29.44/0.87 for ours (Fig. I), and the Eikonal experiment did not
recover a smooth surface (Fig. V). These observations reinforce that NeuRBF’s reliance on hybrid
architecture (Instant-NGP), signal-dependent initialisation and discontinuous interpolation make it
unsuitable for PDE solving, whereas our differentiable grid is explicitly engineered for derivative-
only supervision.

B.2 COMPARISON WITH PINNS

We also compare against neural PDE solvers such as PINNs (Raissi et al., 2019). While PINNs
perform reasonably on smooth signals, they struggle with high-frequency content, failing to capture
wrinkles in cloth simulations or oscillations in Helmholtz. For instance, in the image reconstruction
experiment, a GELU-based PINN achieves only PSNR/SSIM ≈19/0.65, compared to 29.44/0.87
with our method; results for image reconstruction from gradient field (Sec. 4.1) and Helmholtz
equations (Sec. 4.2) are shown in Fig. IV. This limitation arises from their use of smooth activation
functions (e.g., Swish, GELU, tanh), which, though highly differentiable, are known to underfit high-
frequency signals. We, therefore, adopt and primarily compare with Siren, which is better suited for
such cases and widely used in physics-informed neural fields (Chen et al., 2023a; Kairanda et al.,
2024).

C EIKONAL EQUATION
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In addition to the experiments presented in the main paper, we demonstrate the learning of 3D shapes
represented as signed distance functions (SDFs) by solving the Eikonal equation.

Helmholtz WavefieldImage Reconstruction

∇xu(x)

O
ur

s
PI

N
N

Figure IV: Comparison to PINN. We compare ∂∞-
Grid to MLP with GELU activation function, which
struggles with the high-frequency content.

An SDF defines a mapping from 3D space to
the distance of a point from a watertight sur-
face, with the zero level set corresponding to
the surface itself. Rather than assuming ac-
cess to ground-truth SDF values, we explore
fitting SDFs directly to oriented point clouds.
This task corresponds to solving the Eikonal
boundary value problem, a non-linear PDE,
that enforces the constraint ∥∇xu(x)∥ = 1 al-
most everywhere in the domain. Following the
training procedure described in Sitzmann et al.
(2020), we formulate the loss function as:

Leikonal =

∫

Ω

|∥∇xu(x)∥ − 1| dx+
∫

Ω0

(∥u(x)∥+ [1− ⟨∇xu(x),n(x)⟩]) dx+
∫

Ω\Ω0

ψ(u(x)) dx,

(13)
where Ω denotes the full domain, and Ω0 refers to the zero level set of the SDF. The regularisation
function is defined as ψ(·) = exp(−α · |u(·)|), with α ≫ 1, which penalises off-surface points
that produce SDF values close to zero. As illustrated in Figs. II and V-(right), ∂∞-Grid is able to
accurately solve the Eikonal equation and recover high-quality SDFs from oriented point clouds.

Although the encoder lives on a spatio-temporal grid [−1, 1]3, we support irregular geometries by
sampling PDE residuals and boundary terms on the target (potentially unstructured) domain Ω0. This
works because u(x) in Eq. (5) is interpolated continuously, so arbitrary off-grid query sets (points
and normals) can be supervised, enabling fits to surfaces (2D manifolds in 3D) from oriented point
clouds. The trade-off is efficiency: empty grid points still store feature parameters, making our grid
less parameter-efficient than coordinate-based MLPs.

C.1 IMPLEMENTATION DETAILS

Dataset. In the SDF experiment, we learn a mapping u(x) : [−1, 1]3 → R using the loss function
described above. The dataset D = {(xi,n(xi))}i comprises samples on the point cloud x and their
ground-truth surface normals n(x).

Architecture. The feature encoder comprises S = 4 learnable grids, with the finest grid having a
resolution of Nmax = 56, and each grid possessing a feature dimension of F = 1. Each query point
is interpolated using 63 = 216 features per scale. The feature decoder is a linear layer that maps the
3D input features to a 1D SDF.

Training. We employ stratified sampling over the domain, using 56 training samples along each
input dimension. Additionally, an equal number of points are sampled on the surface, resulting
in a total batch size of 2 × 562. A learning rate of 10−2 is used with the Adam optimiser. The
SDF converges within 3000 iterations, requiring approximately six minutes of training time. For
visualisation, the predicted SDF is evaluated on a uniformly sampled 112 × 112 grid covering the
same domain, and meshes are extracted using the Marching Cubes algorithm.

C.2 COMPARISON WITH GRID-BASED METHODS

Many grid-based methods (Müller et al., 2022; Li et al., 2023) represent signed distance functions
(SDFs) using linear interpolation. In contrast to solving the Eikonal equation from oriented point
clouds as in Eq. (13), these methods usually overfit to ground-truth SDFs computed from meshes,
typically using a loss of the form:

Lsdf =

∫

Ω

∥u(x)− SDF(x)∥ dx, (14)

where the loss penalises deviations from the ground-truth SDF. This approach is often used either
directly (Müller et al., 2022; Chen et al., 2023b) or indirectly, for example, in multi-view surface

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Instant-NGP Ours
Input:

Oriented Point cloud NeuRBF

Figure V: Solutions to the Eikonal equation from oriented point clouds. For each method, we visualise 2D
slices (left) and the mesh extracted from the SDF (right). Instant-NGP and NeuRBF can overfit when ground-
truth SDF supervision (Lsdf) is available, but they cannot reliably solve the Eikonal equation given partial point-
cloud observations (Leikonal) because their gradients are not differentiable across grid boundaries (Fig. III).
In contrast, our smooth formulation handles these gradients and solves the Eikonal problem comparably to
baselines such as a sinusoidal MLP.

reconstruction (Li et al., 2023; Wang et al., 2023) (sometimes with additional regulariser enforcing
the Eikonal condition). While such methods can produce accurate reconstructions when provided
with high-quality ground-truth SDFs, they struggle when solving the Eikonal equation directly using
Leikonal (Eq. (13)). In particular, the Eikonal loss is not smoothly optimised across grid boundaries
when using linear interpolation, which often results in incorrect SDF values (e.g., incorrect sign)
on either side of the boundary. This issue is visualised in 2D slices for Instant-NGP in Fig. V. In
contrast, our method employs differentiable grid interpolation, enabling the recovery of consistent
and smooth SDFs directly from oriented point clouds.

D POISSON EQUATION

D.1 IMPLEMENTATION DETAILS

Dataset. We use the Camera image from sci-kit (Pedregosa et al., 2011). Following Siren (Sitz-
mann et al., 2020), the ground-truth gradient image is computed using the Sobel filter and scaled by
a constant factor of 10 for training. The ground-truth Laplacian image is computed using a Laplace
filter and scaled by a factor of 10k.

Architecture. The feature encoder comprises S = 4 learnable grids, with the finest grid of the
resolution Nmax = 512, and each grid of the feature dimension F = 2. We vary these hyperparame-
ters for gradient and Laplacian supervision; see Tab. 1 for the number of trainable parameters. Each
query point is interpolated using 62 = 36 features per scale. The feature decoder is a linear layer.

Training. We train by evaluating on every pixel of the gradient or Laplacian image at each it-
eration. With regular fixed sampling over the domain, i.e., 512 training samples along each input
dimension, results in a total batch size of 5122. A learning rate of 10−3 is used with the Adam
optimiser. The convergence varies per experiment and is visualised in Fig. 4 and Tab. 1.

E HELMHOLTZ EQUATION

We describe the full details of the Helmholtz experiment, as provided in Sec. 4.2 of the main paper.
The Helmholtz equation is a second-order partial differential equation commonly used to model
steady-state wave behaviour and diffusion phenomena. It is expressed as:

(
∆+m(x)ω2

)
u(x) = −g(x), (15)

where g(x) denotes a known source function, u(x) is the unknown complex-valued wavefield, and
m(x) = 1

c(x)2 represents the squared slowness, defined in terms of the wave velocity c(x). We solve
for the wavefield u using the ∂∞-Grid representation, with results presented in Figs. 1 and 5 and
error visualisation in Fig. VI. In the following, we outline the specific formulation of the Helmholtz
equation variant used in our implementation.
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Figure VI: ℓ2-error for the solution to the Helmholtz equation. As presented in Fig. 5, while both ours and
(Sitzmann et al., 2020) closely match the reference solution, our method trains significantly faster.

E.1 PERFECTLY MATCHED LAYERS FORMULATION

To obtain a unique solution to the Helmholtz equation within a bounded domain, we adopt a per-
fectly matched layer (PML) strategy, following the formulation introduced in (Chen et al., 2013;
Sitzmann et al., 2020). The PML serves to absorb outgoing waves at the domain boundaries, thereby
preventing artificial reflections. This results in the following variant of the Helmholtz equation:

∂

∂x1

(
ex1

ex2

∂u(x)

∂x1

)
+

∂

∂x2

(
ex1

ex2

∂u(x)

∂x2

)
+ ex1

ex2
k2u(x) = −g(x), (16)

where x = (x1, x2) ∈ Ω, the complex coefficients are given by exi
= 1− j

σxi

ω , and k = ω/c. The
damping term σxi

along each spatial axis is specified as:

σxi
=

{
a0ω

(
lxi

LPML

)2

if xi ∈ ∂Ω,

0 otherwise,
(17)

where a0 determines the attenuation strength (set to a0 = 5), and c = 1 is the wave propagation
speed. The term lxi

represents the distance to the nearest PML boundary along the xi-axis, while
LPML denotes the total PML width. The PML is applied exclusively near the domain boundary,
defined as ∂Ω = {x | 0.5 < ∥x∥∞ < 1}, and the original Helmholtz equation remains unchanged
elsewhere. We optimise Equation 16 using the loss function introduced in the main text (Eq. 9-
(main)), with the spatial weighting factor set to λ(x) = k = batch size

5×103 .

E.2 IMPLEMENTATION DETAILS

Dataset. In the Helmholtz experiment, we learn a mapping u(x) : [−1, 1]2 → R2 using the loss
function described above. The dataset D = {(xi, g(xi))}i comprises sampled spatial coordinates
xi and values of the Gaussian source function, defined as g(x) = N (x; [0, 0], 10−4).

Architecture. The feature encoder comprises S = 4 learnable grids, with the finest grid having
a resolution of Nmax = 128, and each grid possessing a feature dimension of F = 2. Each query
point is interpolated using 62 = 36 features per scale. The feature decoder is an MLP that takes the
concatenated features as input, projects them to a hidden layer of width 64 with Swish activation,
and produces a 2D output through a final linear layer. The total number of trainable parameters is
approximately 45.19k.

Training. We employ stratified sampling over the domain, with 256 training samples along each
input dimension, resulting in a total batch size of 2562. A learning rate of 1 × 10−3 is used with
the Adam optimiser. The Helmholtz wavefields converge within 2500 iterations, requiring approx-
imately 6 minutes of training time. For visualisation, the predicted wavefield is evaluated on a
uniformly sampled 256× 256 grid covering the same domain.
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Figure VII: Results for Helmholtz equation with ω = 30, 40 compared
with closed-form solutions. Our ∂∞-Grid method remains accurate
overall, with minor errors near the source at ω = 40.

ω Real Error Imag Error

20 0.0008 0.0007
30 0.0040 0.0040
40 0.0250 0.0240

Table I: Helmholtz equation with
higher wavenumbers: We report ℓ1
error with the reference solution for
the real and imaginary parts of the
wavefield. Parameter count: 45.19k
for ω = 20, 30; 176.71k for ω = 40.

PDE Residual

Training Time (mins)

MAEt=4st=0s

Heat Field

Figure VIII: Solutions of the Heat Equation. We solve the spatio-temporal heat equation successfully, where
an initial sinusoidal wave diffuses over time (visualised at t = 4s). Compared to a coordinate-based MLP (Sitz-
mann et al., 2020), ours converges to the analytical solution more accurately and efficiently, as demonstrated
with PDE residual and mean absolute error of the heat field.

E.3 HIGHER WAVENUMBER

To further evaluate our method under more challenging settings, we reproduce the Helmholtz equa-
tion experiments with higher wavenumbers, ω. While Fig. 5 presented results for ω = 20, here
we extend the experiments to ω = 30 and ω = 40. Comparisons with the closed-form reference
solutions are shown in Fig. VII and Tab. I. For ω = 30, our method closely matches the analyti-
cal solution, whereas for ω = 40 we observe noticeable errors near the wave source but otherwise
maintain good accuracy across the domain.

F CLOTH SIMULATION

We describe the further details of the cloth simulation experiment, as presented in Section 4.3 of
the main paper. Given the rest state of the cloth and the material elastic parameters Φ, quasistatic
cloth simulation involves finding the equilibrium deformation field u : Ω → R3 of the midsurface
under the influence of external forces g and boundary constraints on ∂Ω. The stable equilibrium
configuration is obtained by minimising the total potential energy functional subject to Dirichlet
boundary constraints:

u∗ = argmin
u

∫

Ω

Ψ[ε(u(x)),κ(u(x));Φ]− g · u(x) dx,

u(x1, x2) = b(x1, x2) on ∂Ω,
(18)

where Ψ is the internal elastic energy density, and ε, κ represent the membrane and bending strain
components, respectively. We solve for the deformation field u using the ∂∞-Grid representation.
Results are shown in Figures 1 and 6 of the main paper.
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Table II: 1D Advection comparison with INSR (Chen et al., 2023a) and Grid solver (Fedkiw et al., 2001).

Method Error (MAE) Training Time Memory

INSR (Chen et al., 2023a) 0.0030 5.33h 3.53KB
Grid (Fedkiw et al., 2001) 0.0029 1.80s 27.35KB
Our ∂∞-Grid approach 0.0023 1.5mins 16.52KB

F.1 IMPLEMENTATION DETAILS

Dataset. In the simulation experiment, we learn a mapping u(x) : [−1, 1]2 → R3 using the loss
function described above. The dataset D consists of sampled spatial coordinates x and their corre-
sponding rest state positions, set as [x1, x2, 0]. The material properties are defined by the parameter
set Φ, with values:ρ = 0.144, h = 0.0012, E = 5000, and ν = 0.25. We impose Dirichlet boundary
conditions as hard constraints (following NeuralClothSim (Kairanda et al., 2024)) by displacing the
top-left and top-right vertices of the cloth towards the centre of the input domain by 0.4 units each.
The external force is modelled as a constant gravitational acceleration [0,−9.8, 0].

Architecture. The feature encoder consists of a single learnable grid (S = 1) with a feature
dimension of F = 4. We use a grid resolution of N = 32 for the simulation in Fig. 1-(main),
and N = 64 for that in Fig. 6-(main). Each query point is interpolated using 62 = 36 features
per scale. The feature decoder is a linear layer that maps the 3-dimensional input features to a 3D
deformation field. The total number of trainable parameters is approximately 4.37k for the results
shown in Fig. 1-(main), and 16.91k for those in Fig. 6-(main).

Training. Similar to the Helmholtz experiment, we employ stratified sampling over the domain,
using 64 and 128 training samples along each input dimension for Figs. 1 and 6-(main), respectively.
A learning rate of 1 × 10−2 is used with the Adam optimiser. The cloth simulation converges
within 500 iterations, requiring at most 5 minutes of training time. For visualisation, the predicted
deformation field is evaluated on a uniformly sampled 64× 64 grid spanning the same domain.

G HEAT EQUATION

Here, we additionally demonstrate our result for the 1D heat equation. The heat equation is a diffu-
sion PDE used to model temporal smoothing of signals:

∂u

∂t
= α

∂2u

∂x2
, (19)

where u(x, t) represents the temperature at position x and time t, and α is the thermal diffusivity
constant. We consider a spatial domain x ∈ [−1, 1] and a temporal domain t ∈ [0, 4] with Dirichlet
boundary conditions and an initial sinusoidal condition u(x, 0) = sin(πx) with α = 1. It admits an
analytical solution:

u(x, t) = e−απ2t sin(πx), (20)
which we use to quantitatively evaluate reconstruction fidelity. We train with the PDE loss with
hard boundary constraints. Fig. VIII summarises the experiment: the sinusoidal wave diffuses as
expected and matches the analytical solution with a mean absolute error of 0.004 over uniformly
sampled space-time points. Relative to the coordinate-based MLP baseline (Sitzmann et al., 2020),
the PDE residual and the heat-field error reduce faster. Thus, ∂∞-Grid faithfully recovers the spatial
and temporal evolution of the diffusion process.

H ADVECTION EQUATION

We consider the spatio-temporal advection equation
∂u

∂t
+ a · ∇xu = 0, (21)

which describes the transport of a field with advection velocity a. We demonstrate our method on 1D
and 2D cases, including Gaussian wave propagation and the Zalesak benchmark with a challenging
discontinuous boundary.
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t=4s

2D Gaussian Wave 2D Zalesak’s Disk1D Gaussian Wave

t=2st=4s

u(x, 0) u(x, t)u(x, 0) u(x, t) u(x, t)u(x, 0)

Figure IX: We solve spatio-temporal advection successfully for various 1D and 2D fields, including 1D and
2D Gaussian waves as well as 2D Zalesak’s disk.

H.1 1D ADVECTION

We follow the INSR setup (Chen et al., 2023a), where a Gaussian-shaped wave, centred at µ = −1.5
propagates rightwards in the spatial domain [−2, 2], with advection velocity a = 0.25. In contrast to
INSR, we impose boundary and initial conditions as hard constraints and treat time as a continuous
input to our feature grid, rather than discretising it (they use midpoint integration). We present the
results in Tab. II and Fig. IX. Our results closely match both the analytical solution and INSR, with a
mean absolute error (MAE) reported at t = 4 seconds. The INSR and the finite difference-based grid
solver (Fedkiw et al., 2001) values are taken from Tab. 1 of (Chen et al., 2023a). ∂∞-Grid suffers
minimal dissipation; we observe an MAE of 2.3 × 10−3 at t = 4s, i.e., less than 0.3% amplitude
loss compared to the analytical solution, while still training 200× faster than INSR. Overall, our
approach achieves lower error relative to the ground truth, reduced training time compared to INSR,
and lower memory use compared to numerical solvers.

H.2 2D ADVECTION

For the 2D Gaussian wave, we adopt the domain and initial conditions of Chetan et al. (2025), sim-
ulating for 4 seconds. Relative to the closed-form solution, our method achieves mean advection
errors of 0.0047 (after 3 minutes), 0.0032 (after 6 minutes), and 0.00246 (after 15 minutes, fully
converged); see Fig. IX-(centre) for qualitative results. Note that in Chetan et al. (2025) advec-
tion example, they employ forward/explicit Euler (possible with a post hoc gradient operator) for
timestepping, unlike INSR (Chen et al., 2023a) (which can support mid-point due to underlying
Siren representation) and ours (which supports auto diff and mid-point similar to Siren/INSR).

H.3 ZALESAK’S DISK PROBLEM

For the Zalesak benchmark, we follow the setup in Dupont & Liu (2003), and solve for the signed
distance function (SDF) of the slotted disk under advection. The results converge and preserve the
overall shape, although some numerical diffusion is visible as blurring along the slot edges; see
Fig. IX-(right). After half a revolution, we obtain an ℓ1-error of 0.065 compared to the closed-form
rigid-body rotation solution with constant angular velocity.

I LIMITATIONS AND FUTURE WORK

While our method leverages differentiable interpolation to enable accurate representation of signals
and their derivatives, it exhibits several limitations. First, the interpolated features are sensitive to
the choice of the Gaussian RBF shape parameter, which in turn determines the effective neighbour-
hood. As a result, the representation can introduce some degree of smoothing, depending on this
configuration. A well-studied drawback of RBF methods, particularly near the domain boundaries,
is the occurrence of boundary errors (Runge’s phenomenon), which can negatively impact recon-
struction accuracy in those regions. Moreover, training with RBF interpolation is generally more
computationally intensive than with linear interpolation, due to the need to aggregate contributions
from multiple neighbouring points, which slows convergence. Our grid approach also suffers from
curse of dimensionality; for example, fitting SDFs in 3D is notably slower than in 2D. As a direc-
tion for future work, we suggest exploring planar projection strategies to improve scalability and
computational efficiency in high-dimensional domains.
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Moreover, our novel representation, although it improves speed over neural solvers and introduces
differentiability into feature grids, it might not be as efficient as traditional numerical solvers, such
as multi-grid methods. Since this requires further thorough investigation, in our evaluations, we
provided initial experiments and comparisons to numerical methods help guide future work in this
direction. In the future, a custom CUDA kernel implementation of ∂∞-Grid could further accelerate
optimisation compared to our current PyTorch implementation.
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