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Abstract001

Diagrams and figures are a powerful medium of002
communication in scientific research. There is003
a recent spark in interest in the development of004
Machine Learning-driven applications involv-005
ing scientific figures such as multimodal ques-006
tion answering, multimodal document retrieval,007
text-to-image generation or image captioning.008
Challenging tasks in this domain may be depen-009
dent only on a specific category of scientific fig-010
ures. But there are no datasets in prior literature011
which provide a domain-specific broad classi-012
fication of scientific figures. To fill this gap,013
we introduce AI-FIGURES a large scale dataset014
containing scientific figure-caption pairs which015
are classified into 9 different categories. We016
create this dataset by leveraging the idea of im-017
age segmentation and classification using the018
YOLO model. Our automated data acquisition019
pipeline can be implemented on other datasets020
also in order to classify their figures. We bench-021
mark 6 Large Language Vision models and 5022
Large Language models on our dataset for vari-023
ous tasks such as figure captioning, tag classi-024
fication, text-to-figure generation, multimodal025
question answering and multimodal document026
retrieval. We show that there is a significant in-027
crease in a model’s inference capabilities when028
we finetune it on our dataset. Our dataset and029
code will be released in the final version.030

1 Introduction031

Images create a visual imprint on our brain that032

is immediately able to trigger the human percep-033

tual system to process the simultaneous conceptual034

representation. Images serve as vital elements in035

conveying crucial aspects of scholarly content too,036

such as methodological explanations, experimental037

results, and comparative analyses. Scientific fig-038

ures encompasses diverse visual elements, which039

may be categorized as diagrams employing shapes040

and lines, charts using axes, labels, and data points,041

or images depicting real-word scenes (Huang et al.,042

2024). Recognizing the intrinsic importance of 043

figures and tables, recent research endeavors have 044

underscored the necessity of developing robust sys- 045

tems capable of extracting and interpreting these 046

visual elements. 047

Vast strides have been made in multimodal tasks 048

in the open domain like text-to image generation 049

(Xu et al., 2018; Ramesh et al., 2021; Saharia et al., 050

2022; Ramesh et al., 2022; Rombach et al., 2022; 051

Esser et al., 2024), multimodal document retrieval, 052

multimodal document summarization (Jangra et al., 053

2023) and multimodal question answering (Masry 054

et al., 2022; Yue et al., 2024; Lu et al., 2024). 055

Scientific figures with additional cues like their 056

types and captions can prove quite useful in each 057

of these tasks. For example, figures in a Computer 058

Science research paper might be related to commu- 059

nication networks, computer architecture, graphs or 060

line plots. For text-to-image synthesis, (Rodriguez 061

et al., 2023b) filter figures by searching for key- 062

words, such as “architecture”, “model diagram” or 063

“pipeline,” in their captions. Clearly, it would be 064

useful if there is a large corpus of scientific figures 065

with a fine-grained classification. It would be a 066

useful resource in other multimodal tasks as well. 067

To address this need, in this paper we introduce 068

AI-FIGURES (Figure 1), which is large fine grained 069

dataset obtained through a YOLO-based distantly 070

supervised pipeline. Our dataset has 9 different cat- 071

egories for representing various kinds of scientific 072

figures that are particularly common in Artificial 073

Intelligence research papers. 074

We evaluate a wide spectrum of pre-trained foun- 075

dational models on our proposed dataset for a di- 076

versity of vision-to-text and text-to-vision tasks. 077

Our experiments demonstrate the challenging na- 078

ture as well as the effectiveness of our dataset. The 079

challenging nature is exhibited by the low results 080

obtained by state-of-the-art Large Vision Language 081

Models (LVLMs) on the standard “figure caption- 082

ing” and the relatively new “text-to-figure” tasks. 083
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(a) AI-FIGURES-HUMAN (b) AI-FIGURES

Figure 1: The class-wise distribution in the human annotated and the distantly-supervised AI-FIGURES dataset.

We show the effectiveness of our dataset as a train-084

ing resource which can improve the scientific liter-085

ature understanding capability of LVLMs.086

Our contributions are the following:087

(a) We introduce AI-FIGURES, a multimodal088

dataset that is expected to aid researchers in model-089

ing new tasks in scientific literature understanding090

that are dependent on figure types. We also present091

AI-FIGURES-HUMAN, a corpus of scientific fig-092

ures and captions, that is manually annotated and093

has been used to distantly supervise the annotation094

of AI-FIGURES.095

(b) We analyze three different tasks using our096

dataset which demonstrate the limitations of pre-097

trained LVLMs in scientific literature understand-098

ing.099

(c) We demonstrate that training on our dataset can100

lead to performance improvement on tasks such101

as multimodal question-answering and multimodal102

document retrieval.103

2 AI-FIGURES-HUMAN104

We introduce a human-annotated dataset compris-105

ing of a corpus of figures in the Artificial Intelli-106

gence/Machine Learning domain paired with their107

textual contexts, i.e., figure captions. We have la-108

beled bounding boxes for figure and caption re-109

gions for each document page. The Roboflow An-110

notate1 platform was used to assist annotators to111

mark the bounding regions. This platform facil-112

itated dataset pre-processing, division into train,113

validation, and test sets. Human annotations were114

performed on a set of 200 research documents, with115

100 each from ACL Anthology (Annual Meeting116

of the Association for Computational Linguistics)2117

and CVPR (IEEE/CVF Conference on Computer118

Vision and Pattern Recognition)3. The final dataset119

1https://roboflow.com/annotate
2https://aclanthology.org/
3https://openaccess.thecvf.com/

stood at 4975 images split into training (3790 im- 120

ages), validation (803 images) and test (382 im- 121

ages) sets. 122

We have designed our schema keeping in mind 123

the taxonomy of figures of research papers in the 124

Computer Science domain. The 10 figure category 125

classes and 1 caption class that were curated for 126

the inferential segregation of the figures are: 127

The Algorithm/Code/Flowchart class contains 128

figures involving flowcharts, code snippets and 129

pseudo-code algorithm outlines. The Diagram 130

category consists of abstract schematic representa- 131

tions with labeling. The Graph plots class shows 132

non-performance and non-statistical plotting. The 133

Illustrations and Examples category represents 134

the visual depiction of an idea or feature. The 135

Model architecture class, in the context of Ar- 136

tificial Intelligence, shows a detailed probe into 137

a machine learning model structure. The Model 138

Performance with Metrics class represents plots 139

of baselines, plots of variations of different met- 140

rics with training. The Overview/Procedure class 141

comprises figures showing high-level glances at the 142

structural and functional aspects of the proposed 143

technique or the step-wise details of a procedure. 144

The Pipeline class contains figures representing a 145

step by step workflow showing the organization or 146

the ideation of a topic. The Real Image category 147

comprises real-world images which may be either 148

instances from a dataset used in the research pa- 149

per or any other image in the open-domain. The 150

Statistics and Analysis category Distributions of 151

parameters, Statistical variations, Ablation study 152

results and Analytical experimentation. Captions 153

are also segmented and put into a common class 154

for all figure captions. 155

The annotation guidelines that have been used 156

for the human annotation of AI-Figures are pro- 157

vided in Appendix B. 158
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Figure 2: The construction pipeline used for the AI-FIGURES dataset.

3 AI-FIGURES159

We now introduce the process of large-scale ex-160

traction of figures and captions from scientific pa-161

pers in a distantly supervised fashion based on AI-162

FIGURES-HUMAN. Figure 2 shows the entire con-163

struction pipeline to create AI-FIGURES.164

3.1 Dataset Construction Methodology165

3.1.1 PDF to Images166

Our dataset construction process leverages the idea167

that if we consider a single page of a research paper168

we only need to segment the area containing the fig-169

ure and the small chunk of text that is most adjacent170

to it. Therefore, we handle the figure and caption171

extraction task with an object detection pipeline.172

Each page of every PDF document is converted173

into an image using a Python program that utilized174

the pdf2image4 library. Thus, the figures and cap-175

tions in the page are only objects in the image. This176

would allow us to assign separate classes to each177

figure. Captions, which are present alongside fig-178

ures, are naturally treated as objects as well and179

can be classified into a separate class.180

3.1.2 Object Detection with YOLO181

YOLO (You Only Look Once) (Redmon et al.,182

2015) is a hugely popular fast object detection and183

image segmentation model, that was initially re-184

leased in 2015. In YOLO, object detection is re-185

formulated as a regression problem from image186

pixels to bounding box coordinates and class prob-187

abilities. The original YOLO model consisted of188

a single convolutional network which simultane-189

ously predicts multiple bounding boxes and class190

probabilities for those boxes on full images.191

4https://pypi.org/project/pdf2image/

Model mAP mAP
0.5-0.95 P R

YOLOv5s 0.506 0.434 0.461 0.607
YOLOv5m 0.497 0.449 0.471 0.558
YOLOv5l 0.51 0.458 0.434 0.644
YOLOv8s 0.49 0.441 0.424 0.62
YOLOv8m 0.515 0.462 0.445 0.667
YOLOv8l 0.505 0.456 0.42 0.695

Table 1: Results of YOLO on AI-FIGURES (Human). P
represents Precision while R represents Recall

We train several versions of YOLO mod- 192

els including YOLOv5s, YOLOv5m, YOLOv5l, 193

YOLOv8s, YOLOv8m and YOLOv8l on AI- 194

FIGURES-HUMAN. Based on the mean Average 195

Precision (mAP) scores on the test set of AI- 196

FIGURES-HUMAN, as shown in Table 1, we select 197

YOLOv8m for figure and caption extraction on the 198

larger corpus. 199

3.2 Data Collection 200

We use the URLs present in the PapersWithCode5 201

repository to curate a corpus of open-access re- 202

search papers as PDF documents. The open- 203

sourced corpus covers a wide variety of research 204

papers in the AI-ML domain across multiple con- 205

ferences and journal. We use the YOLOv8m model 206

to extract figures from them. Subsequently, we run 207

an OCR (Optical character recognition) model6 208

over the Captions objects to convert them to texts. 209

3.3 Dataset Refinement Process 210

After manual assessment of the extracted figures 211

and captions, two issues were revealed with our 212

above approach. Firstly, if the image of the page 213

5https://paperswithcode.com/
6https://github.com/tesseract-ocr/tesseract
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from a document contains two or more figures be-214

longing to the same category, the YOLO model ex-215

tracts only the last extracted figure despite the fact216

that it detects both the figures. However, the model217

extracts all the captions in the input page image.218

This leads to a mismatch in the number of captions219

and images. To circumvent this problem, we map220

the selected figure bounding box co-ordinate to the221

bounding box co-ordinate of the closest caption222

by calculating the Euclidean distance between the223

centres of the bounding boxes.224

Secondly, if a detected figure crop has been clas-225

sified into multiple classes at the same time with226

varying confidence scores, then the YOLO model227

allots the figure to both classes. To remove such228

ambiguity, we first detect multiple class assign-229

ments based on the maximal overlap of bounding230

box co-ordinates. We then assign the class with the231

greatest confidence score to the figure.232

Dataset Cleaning: We remove all figures which233

have captions shorter than 5 words. Also, phrases234

like Figure x:/Figure x./Fig. x:/ Fig. x are deleted235

from the beginning of each caption.236

Finally, we remove the Algo-237

rithm/Code/Flowchart class from the dataset due238

to the high occurrence of hallucinations in this239

category. The frequent hallucinations arise because240

the model often confuses an Algorithm/Code241

image with a regular text snippet.242

3.4 Dataset Statistics243

Our final dataset contains 1, 33, 749 scientific244

figure-caption pairs. We present the class-wise245

statistics of both the human-annotated dataset and246

the larger inferred dataset in Table 2. Figure 3247

shows the distribution of document sources in AI-248

FIGURES. Our dataset contains a total of 4,925,626249

words with the average caption length being 36.83250

words and the quartile length being [13, 27, 49].251

3.5 Construction Approach Comparison252

PDFFigures: The original approach (Clark and253

Divvala, 2015) is based on the analysis of docu-254

ments pages and has three phases: Caption Detec-255

tion using keyword search, Region Identification256

using paragraph grouping with classification and257

Figure Assignment using a scoring function to rate258

the proposed regions. We use the PDFFigures 2.0259

version (Clark and Divvala, 2016) for the purpose260

of testing which extends the original algorithm for261

a wider variety of paper formats.262

Model AI-FIGURES-HUMAN AI-FIGURES
Algo./Flowchart 183 -

Diagram 402 12,975
Graph Plots 956 52,932
Illustrations 1,351 39,359
Model Arch. 500 12,169

Metrics 324 4,305
Overview 340 2,095
Pipeline 179 59

Real Image 296 1,910
Stat./Analysis 313 7,945

Total 4,844 133,749

Table 2: Class-wise statistics of AI-FIGURES-HUMAN
and AI-FIGURES

1 10 100 1000 10000 100000

Arxiv (89452)
ACL Anthology (21282)

NeurIPS (8543)
OpenReview (6776)

CVF (5407)
MLR (1074)

Others (432)
bioArxiv (144)
MDPI (143)

Zenodo (110)
Springer (56)

HAL (50)
Nature (43)
ACM (42)
IJCAI (41)

MIT (33)
JMLR (24)
Berkeley (22)

NDSS (16)
CEUR-WS (9)
TREC (9)
IOS Press (9)
Biomedical Engineering (8)
KDD (8)

Semantic Scholar (7)
ECML PKDD (5)

chemArxiv (4)

Figure 3: Domain Distribution of the figures in our
dataset

We test the approach of PDFFigures 2.0 with our 263

construction pipeline on the test set of our human- 264

annotated dataset, AI-FIGURES-HUMAN. The re- 265

sults are present in Table 3, where we see that our 266

method comprehensively outperforms the PDFFig- 267

ures approach on all metrics. Upon qualitative eval- 268

uation, we find that there are two major reasons for 269

the performance of PDFFigures, firstly there are a 270

lot of tables extracted along with the figures and 271

secondly, this algorithm randomly extracts many 272

blank strips. 273

PaperMage (Lo et al., 2023): It is an open- 274

source Python toolkit which allows the represen- 275

tation and manipulation of both textual and visual 276

elements in a document. 277

In the test set used for evaluating PaperMage 278

there were 5532 PDF page images out of which 279

4325 pages contained figures. In 55 out of 4325 280

pages, PaperMage showed some signs of figure 281

recognition. In the remaining 4270 pages, no 282

figures were detected, indicating false negatives 283
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Model P R F1 Avg. P
(IOU 0.5)

PDFFigures 0.395 0.634 0.487 0.333
YOLOv8m 0.445 0.667 0.534 0.515

Table 3: P represents Precision while R represents Re-
call

across these pages. In 27% of the 55 pages, Pa-284

perMage exhibits poor extraction quality, with the285

bounding box placed in the middle of the figure,286

failing to properly define the figure’s boundaries.287

As a result, most of these extractions are sliced and288

unsuitable for evaluation. However, in 41 images,289

the extractions were decent and suitable for evalu-290

ation, where we observed an average Intersection291

over Union (IoU) score of 0.6818.292

3.6 Human Evaluation293

We construct the following manual evaluation setup294

to evaluate our dataset construction process. We295

randomly construct 6 different sets with 100 figure-296

caption-category triplets in each of them. Each297

annotator is provided with the extracted figure, the298

extracted caption, the selected category and also299

the URL to the original paper PDF from where they300

have been extracted.301

We select 6 graduate students with knowledge302

in Computer Science as annotators to evaluate our303

distantly-supervised dataset. We ask the annotators304

to categorize the dataset samples into the following305

four categories: (1) Acceptable, where the image306

segmentation is done correctly, the figure is cate-307

gorized into an acceptable class and the caption is308

extracted correctly; (2) Figure Segmentation Er-309

ror, where the figure crop is done incorrectly; (3)310

Figure Classification Error, where the model in-311

accurately classifies the figure into an unrelated cat-312

egory; (4) Figure-Caption Pairing Error, where313

the figure is paired with an incorrect caption.314

83.3%

3.1%
3.9%

9.7%

Acceptable
Figure Segmentation Error
Figure Classification Error
Figure-Caption Pairing Error

Figure 4: Results for the manual analysis of our distantly
supervised dataset, AI-FIGURES

Figure 4 shows the aggregated results of the man- 315

ual evaluation of the dataset construction pipeline 316

by human annotators. We see that in most cases the 317

dataset samples are in the Acceptable category. The 318

Figure-Caption pairing error is the largest contribu- 319

tor to the error list, followed by the classification 320

and segmentation errors, respectively. 321

4 Comparison with Related Datasets 322

Table 4 contains a list of related datasets and 323

shows them in comparison with our dataset. CS- 324

150 (Clark and Divvala, 2015) a human-annotated 325

dataset containing 150 Computer Science papers 326

with the ground-truth labels demarcating the lo- 327

cations of the figures, tables and captions within 328

them. The CS-Large dataset (Clark and Divvala, 329

2016) comprises annotations from 346 papers. The 330

Paper2Fig100k (Rodriguez et al., 2023b) dataset 331

contains 102, 453 images from 183, 427 papers that 332

were downloaded from arXiv in areas of Machine 333

Learning, Artificial Intelligence, Computer Vision 334

and Pattern Recognition, and Computation and 335

Language. The images were extracted from the 336

documents using the popular GROBID tool. Fig- 337

ures in Paper2Fig100k are not labeled into named 338

classes. The Multimodal ArXiv dataset (Li et al., 339

2024b) has also been extracted from ArXiv but on 340

a larger domain set including 32 domains. This 341

dataset contains a subset called ArXivCap which 342

consists 6.4M images and approximately 3.9M 343

main captions. VisImages (Deng et al., 2022) 344

presents 12,267 images with captions from IEEE 345

conferences, but they are limited to graph plots. 346

ACL-FIG (Karishma et al., 2023) contains 112,05 347

unlabeled figures from 55,760 papers in ACL An- 348

thology. It is accompanied with its labeled subset 349

ACL-FIG-PILOT, that contains 1671 scientific fig- 350

ures with 19 manually verified labels. However, 351

ACL-FIG figures do not contain captions, and this 352

limits their utility. 353

5 Downstream tasks 354

5.1 Figure Captioning 355

Single figure captioning for scientific figures aims 356

to capture the complex architectures, illustrations 357

and data trends in a concise yet informative man- 358

ner. Therefore, given a figure F and an instruction 359

prompt P , a chosen model M is required to gener- 360

ate a suitable caption Ĉ for F : 361

Ĉ = M(F, P ) (1) 362
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Dataset Source Annotation Papers Figures Classes
CS-150 (Clark and Divvala, 2015) CS-conferences Manual 150 458 ✗
CS-Large (Clark and Divvala, 2016) Semantic Scholar Manual 346 952 ✗
Paper2Fig100k (Rodriguez et al., 2023b) ArXiv GROBID 183,427 102,453 ✗
ArXivCap (Li et al., 2024b) ArXiv ImageMagick 572K 6.4M ✗
ACL-FIG-PILOT (Karishma et al., 2023) ACL Anthology Manual - 1,671 19
ACL-FIG (Karishma et al., 2023) ACL Anthology - 55,760 112,052 ✗
VisImages (Deng et al., 2022) IEEE InfoVis and VAST Manual 1,397 12,267 34
AI-FIGURES-HUMAN PaperswithCode Manual 200 4,844 10
AI-FIGURES PaperswithCode YOLO 26,969 133,749 9

Table 4: Comparison with prior scientific figure datasets.

Model Zero-shot Captioning Context = Title Context = Title + Abstract
BLEU-2 R-L B-S BLEU-2 R-L B-S BLEU-2 R-L B-S

MOLMO-7B 1.42 8.13 81.41 1.27 7.99 81.49 1.35 7.91 81.61
InternVL2_5-8B 1.31 7.83 81.01 1.40 7.96 81.18 1.15 7.09 80.83
Qwen2-VL-7B 1.91 9.00 81.40 2.35 9.62 81.92 2.28 9.50 81.75
MiniCPM-V 1.94 9.54 81.66 1.47 8.53 82.38 1.64 7.56 81.07
Janus-Pro-7B 1.60 8.59 81.10 1.62 8.73 81.22 1.79 8.86 81.42

Table 5: Evaluation results of the Figure Captioning task. R-L refers to the ROUGE-L score and B-S refers to
BERTscore

Model BLEU-2 Rouge-L BERTscore
GIT-base 1.58 10.74 83.22
GIT-large 3.01 10.01 81.61

Table 6: Results for finetuning for captioning

Ĉ is then compared to the original caption C and363

its quality is assessed. To provide more context364

to the model, we propose a modified version of365

this task, where we provide the model M with366

metadata from the research paper such as the title367

t and the abstract a. This tests whether additional368

in-domain information relating to the figure F can369

aid in the task.370

We benchmark the following Large Vision371

Language models on the figure-captioning task:372

MOLMO-7B (Deitke et al., 2024), InternVL2_5-373

8B (Chen et al., 2024), Qwen2-VL-7B (Wang374

et al., 2024), Janus-Pro-7B (Chen et al., 2025)375

and MiniCPM-V (Yao et al., 2024). For each376

model, we report the BLEU-2 (Papineni et al.,377

2002), ROUGE-L (Lin, 2004) and the BERT-Score378

(Zhang et al., 2019) in all the three settings, i.e.,379

captioning without context, captioning with title380

as context, and captioning with both title and ab-381

stract as context. We also fine-tune the GIT-base382

and GIT-large (Wang et al., 2022) models on the383

uncleaned version of our dataset so that me may384

train on as many figure caption pairs as possible,385

but while testing we use the cleaned version.386

Table 5 and Table 6 show the results of the vari-387

ous models on the figure captioning task. We see388

that in spite of being very proficient in the cap-389

tioning task in the open-domain, the LVLMs per- 390

form poor on scientific figures, which shows that 391

there is lot of scope for improvement on this task. 392

Fine-tuning the GIT models provide slightly better 393

results than fine-tuning the LVLMs. 394

Figure 5: Manual Analysis for Figure Captioning

Manual Analysis: We also construct a manual 395

evaluation setup for the Figure Captioning task. We 396

construct two different sets with 25 captions each 397

and ask three annotators to analyze the quality of 398

the generated captions for each model. Each anno- 399

tator is provided with the figure, the gold standard 400

caption from our dataset and the generated cap- 401

tions from the MOLMO-7B (Deitke et al., 2024), 402

InternVL2_5-8B (Chen et al., 2024), Qwen2-VL- 403

7B (Wang et al., 2024), Janus-Pro-7B (Chen et al., 404

2025) and the MiniCPM-V (Yao et al., 2024) mod- 405

els. We select two doctoral students who work in 406

allied areas and have at least one publication in the 407

domain of Artificial Intelligence/Machine Learn- 408

ing/Computer Vision/Natural Language Processing 409

as the annotators for this task. The details about the 410
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Model Training Corpus FID ↓ IS ↑ KID ↓ LongCLIP
image-image sim.

SDXL_base_1.0 Zero-shot inference 96.15 9.655± 0.641 0.069± 0.002 0.64
SDXL_base_1.0 AI-FIGURES 84.38 6.406 ± 0.314 0.062± 0.002 0.67

Table 7: Text-to-Figure

Model All Modality Reasoning Type
Table Figure COM DE LOC VU

GPT-4o 0.5 0.52 0.454 0.443 0.565 0.57 0.418
Qwen2-VL-7B-Instruct 0.1334 0.112 0.1863 0.1233 0.1135 0.1667 0.1708
Qwen2-VL-7B-Instruct(fine-tuned) 0.2021 0.1848 0.2446 0.2187 0.1727 0.2272 0.1966

Table 8: Mean reciprocal rank (MRR) on M3SciQA. Reasoning types: COM: comparison, DE: data extraction,
LOC: location, VU: visual understanding. GPT-4o results are taken from the original paper. The second best results
are underlined.

annotation and the annotation guidelines for this411

task are provided in Appendix D.412

In line with the quantitative results, we see in413

Figure 5 that the there are only a few acceptable re-414

sponses across all models with the Qwen model per-415

forming the best among the given models, whereas416

MOLMO performs the worst.417

5.2 Text-to-Figure418

Based on the success of text-to-image (T2I) gen-419

eration, there have have been some introductory420

trials in the scientific and allied domains to gener-421

ate figures and diagrams (Zala et al., 2023). In the422

text-to-figure task, when a generator model M is423

presented the image caption C as a textual prompt,424

it is required to generate the corresponding figure425

F̂ , which is then compared to the original figure F ,426

F̂ = M(C) (2)427

We select the Diagram, Model Architecture,428

Overview/Procedure and the Pipeline categories429

from our dataset to create a training set comprising430

of 21, 839 images and the test set with 5, 461 im-431

ages. We then fine-tune the Stable Diffusion-XL432

model for 20 epochs with a batch size of 8 and a433

learning rate of 1e-06. We compute the Fréchet434

Inception Distance (FID) (Heusel et al., 2017), In-435

ception Score (Salimans et al., 2016), the Kernel436

Inception Distance (Bińkowski et al., 2021) and the437

LongCLIP image-image similarity metrics (Regen-438

wetter et al., 2023) for this task.439

Table 7 shows the results for the text-to-figure440

task. Quantitatively, the results are better than that441

obtained by (Rodriguez et al., 2023a). However,442

manual review shows that the generated images443

are hardly comprehensible. A set of images that444

are received as output from the zero-shot and the 445

fine-tuned models are presented in the Appendix. 446

5.3 Tag Classification 447

We introduce a task in which we test the capability 448

of a pre-trained language model to deduce the type 449

of the figure when it is provided with only the 450

caption associated with the figure. 451

We test it on our dataset by inferencing on LLMs 452

including Llama-3.2-1B, Llama-3.1-8B (Grattafiori 453

et al., 2024), Mistral-7B (Jiang et al., 2023), 454

Qwen2.5-0.5B and Qwen2.5-7B (Team, 2024). 455

T̂ = M(C) (3) 456

Model Prec. Recall F1
Llama-3.2-1B-Instruct 24.10 12.71 12.94
Llama-3.1-8B-Instruct 42.66 20.82 20.84

Mistral-7B-Instruct-v0.2 49.81 26.84 24.66
Qwen2.5-0.5B-Instruct 37.14 39.27 31.50
Qwen2.5-7B-Instruct 54.51 35.76 39.33

Table 9: Tag Classification

The results for the tag-classification task are 457

present in Table 9, wherein we see that Qwen fam- 458

ily of LLMs perform best followed by the Mistral 459

and the LLaMa models. We also see that this task 460

proves to be challenging for the LLMs since no 461

model has even crossed the 40 F1 score mark. 462

6 Improving LVLMs with AI-FIGURES 463

Finetuning Hypothesis: We choose a certain sub- 464

set of categories from our dataset and then fine-tune 465

a LVLM on this subset. We posit that the finetuned 466

model will work better than the original model. 467

Experimental Setup We use the "Graph Plots" 468

and the "Statistics and Analysis" classes to form a 469

7



Data Qwen2-VL-7B QWEN2-VL-7B
(Finetuned)

PaperQA 53.85 61.54
ScienceQA 55.56 55.56

IQTest 25 50
TabMWP 44.44 55.56
ChartQA 66.67 83.33

Table 10: Accuracy score over Multiple Choice ques-
tions (MCQs) in the MathVista dataset

Data Qwen2-VL-7B QWEN2-VL-7B
(Finetuned)

CLEVR-Math 67.74 72.58
DVQA 82.26 85.48

TabMWP 26.42 43.4

Table 11: Accuracy score over Freeform questions in
the MathVista dataset

subset of our entire dataset i.e. we choose a com-470

bined 48, 716 figures from our training set to create471

this subset. We then prompt the InternVL2_5-8B472

(Chen et al., 2024) model to generate 3 unique sets473

of question-answer pairs for each figure. We then474

finetune the Qwen2-VL-7B (Wang et al., 2024)475

on this derived question answering set. We use476

QLoRA in the HuggingFace Ecosystem (TRL) to477

train the model for 10 epochs with a train batch size478

of 4, learning rate of 2e-04, maximum sequence479

length of 1024. MathVista (Lu et al., 2024) is a480

mathematical reasoning benchmark within visual481

contexts. We show the performance of five sub-482

sets of MCQ questions and three subsets of Free483

form questions of the MathVista dataset which are484

present in its testmini version. We choose the sub-485

sets such that they align with our problem setup i.e.486

they are dependent on either academic papers or487

charts or scientific knowledge and require numeri-488

cal rationale.489

Tables 10 and 11 show the results on the five490

MCQ subsets and three free form subsets of the491

MathVista dataset. Clearly, domain-specific fine-492

tuning helps in achieving better results.493

6.1 Multimodal Document Retrieval494

This task necessitates both multimodal and495

multi-document reasoning over scientific papers.496

M3SCIQA (Li et al., 2024a) is a benchmark which497

contains expert-annotated questions from paper498

clusters. The questions are divided into four rea-499

soning categories: comparisons, data extraction,500

locations and visual understanding. Therefore,501

given a locality-specific question Q, the corre-502

sponding image I and the list of documents D =503

{d1, d2, ..., dn}, the task is to determine the rank- 504

ing R = {r1, r2, ..., rn} of papers based on the 505

relevance of D to Q and I . 506

R = M(Q, I,D) (4) 507

We only consider the locality-specific document 508

retrieval setup here, since it tests the capability of 509

VLVMs. Table 8 shows the results for this task. 510

The fine-tuned model outperforms the naive model, 511

supporting our hypothesis. 512

7 Related work 513

There have been some introductory work in the area 514

of scientific figure and caption extraction. Most of 515

them include the extraction of tables within their 516

ambit, and consider tables as a form of figures. Al- 517

most none of these methods propose an taxonomy 518

for the categorization of the extracted figures. 519

Figure extraction: Software tools which are 520

ideal for the off-the-shelf-processing of scientific 521

documents include GROBID (GRO, 2008–2024), 522

ParsCit (Isaac Councill and Kan, 2008) and CER- 523

MINE (Tkaczyk et al., 2015). They use varios 524

Machine Learning algorithms like CRFs (Condi- 525

tional Random Fields), recurrent neural networks, 526

and even recent deep learning models. PDFFigures 527

(Clark and Divvala, 2015), a widely used figure 528

extractor, performs structural analysis of individual 529

pages of a document and can identify, with high 530

accuracy, figures, tables, and captions in the pages. 531

Related datasets: Datasets of figure-caption 532

pairs in the domain of scientific literature typically 533

focus only on scientific plots. Example datasets in- 534

clude FigureQA (Kahou et al., 2017), DVQA-cap 535

(Kafle et al., 2018), FigJAM (Qian et al., 2021), 536

SciCap (Hsu et al., 2021), Paper2Fig100k (Ro- 537

driguez et al., 2023b), and ACL-FIG (Karishma 538

et al., 2023). While the first 4 of these datasets 539

exclusively contain graph plots like line plots, bar- 540

charts, etc., the remaining has more diverse figures. 541

8 Conclusion 542

We introduce the AI-FIGURES dataset in this paper. 543

We also propose a construction pipeline which can 544

be used to extract and label figure-caption pairs. 545

Our dataset is divided into fine-grained categories, 546

which makes it possible to use it on category- 547

specific tasks. We show the challenging nature 548

of the captioning, text-to-figure and the tag clas- 549

sification tasks. We also show the improvements 550

achieved on fine-tuning a LVLM on our dataset. 551
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Limitations552

We hereby state the limitations of our work. We553

understand that the scientific domain is extremely554

challenging and large, and Artificial Intelligence,555

i.e., the area we choose for the creating the dataset556

here is a very niche and evolving area. So the557

dataset may need to be regularly updated for high558

practical utility to researchers. Since we use distant559

supervision, the AI-FIGURES dataset is likely to560

contain some errors. Nevertheless, we believe that561

our dataset construction pipeline can be used in any562

domain very easily.563

Furthermore, the space of language-vision mod-564

els and language models is rapidly evolving and565

therefore, we have not been able to exhaustively566

test on many of these models.567
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A Dataset Statistics822

Our dataset contains the following fields:823

• Figure Filename824

• Figure Caption 825

• Paper Abstract 826

• Paper Title 827

• PDF URL 828

B Dataset Construction - Annotation 829

Guidelines 830

• Each figure and its corresponding caption 831

must have a separate bounding box. 832

– Figures should be assigned to exactly 1 833

of the 10 predefined classes . 834

– Captions are always assigned the class 835

"Caption". 836

– Ensure no overlap between figure and 837

caption annotations. 838

• Bounding Box Rules 839

– Draw tight bounding boxes around each 840

figure and its caption. 841

– The caption box should cover only the 842

text of the caption, not surrounding text. 843

– The figure box should include only the vi- 844

sual content of the figure, avoiding page 845

borders or surrounding text. 846

• Classifying Figures 847

– Carefully examine the content and con- 848

cept behind each figure. 849

– Assign the most appropriate class from 850

the predefined categories listed below. 851

– If a figure could belong to multiple cate- 852

gories, choose the most dominant or rel- 853

evant one. 854

• Subfigures and Complex Figures 855

– If a figure consists of multiple subfigures 856

labeled as (a), (b), (c), etc., annotate the 857

entire figure as one bounding box. 858

– If subfigures have separate captions, an- 859

notate them individually with their re- 860

spective captions. 861

• For the Algorithms Code or Flowchart class, 862

ensure that only the code or flowchart is in- 863

cluded in the bounding box, excluding body 864

text explanations. 865
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Model AI-FIGURES-HUMAN AI-FIGURES-Before Clean AI-FIGURES
Algo./Flowchart 183 10,014 -

Diagram 402 14,704 12,975
Graph Plots 956 55,676 52,932
Illustrations 1,351 42,066 39,359
Model Arch. 500 15,839 12,169

Metrics 324 4,548 4,305
Overview 340 2,201 2,095
Pipeline 179 59 59

Real Image 296 2,321 1,910
Stat./Analysis 313 8,756 7,945

Total 4,844 1,56,184

Table 12: AI-FIGURES Dataset Across Categories and Cleaning Stages

Figure 6: Roboflow Annotate Platform

• Do not include surrounding text or unrelated866

parts of the page in the bounding box.867

• Do not annotate tables or equations; this task868

is only for figures and captions.869

• There should be no overlapping or duplicate870

annotations.871

• Class Definitions: Each figure must be as-872

signed exactly one of the following classes:873

– Caption: Text that describes a figure.874

Example: "Figure 3: Architecture of the875

proposed model."876

– Diagrams: Schematic representations,877

flowcharts, or conceptual illustrations.878

Examples: System design diagrams,879

logic flow representations.880

– Graphs/Plots: Graphs, charts and math-881

ematical plots.882

Examples: Line graphs, bar charts, scat-883

ter plots, histograms.884

– Illustrations and Examples: Figures885

providing explanatory visual aids for a886

concept or process.887

Examples: Illustrative sketches, educa- 888

tional examples, artistic depictions. 889

– Model Architecture: Figures depicting 890

the structural design of machine learning 891

or deep learning models. 892

Examples: Transformer model, LSTM 893

or YOLO architectural diagram 894

– Statistics and Analysis: Figures contain- 895

ing statistical results, experimental com- 896

parisons, or analytical visualizations. 897

Examples: Performance comparison 898

graphs, confusion matrices, regression 899

analysis plots. 900

– Overview/Procedure: Figures illustrat- 901

ing a high level overview of multi-step 902

processes, workflows, or methodologies 903

without detailed representations of each 904

component. 905

Examples: Overview of the object detec- 906

tion process using YOLO 907

– Pipeline: Figures representing entire pro- 908

cessing workflows, often spanning multi- 909

ple steps and modules. 910

Examples: End-to-end ML pipeline dia- 911

grams 912

12



– Model Performance and Metrics: Fig-913

ures showing model evaluation results,914

benchmarking, and performance graphs.915

Examples: Precision-recall curves, ac-916

curacy vs. epochs graphs, performance917

tables.918

– Real Images: Photographic images or re-919

alistic visual content extracted from real-920

world sources.921

Examples: Images from datasets, cap-922

tured photographs, images of people, an-923

imals, places or objects.924

– Algorithms/Code/Flowchart: Figures925

containing algorithmic representations,926

such as code snippets, pseudo code, or927

flowcharts.928

Examples: Code blocks (e.g., Python,929

C++, pseudo code), Flowcharts detailing930

algorithmic steps, Structured representa-931

tions of an algorithm’s execution flow.932

C Dataset Construction - Manual933

Evaluation934

C.1 Annotation Guidelines935

For each figure, its corresponding caption, class936

category and a link to the original pdf from which937

the figure was extracted is provided. The evaluator938

must :939

• Choose "Yes" under "Acceptable" if the figure940

is segmented and classified correct and paired941

with the correct caption as per the parent paper942

pdf supplied.943

• If "No" is selected, then the issue must be944

narrowed down to one of the following cases:945

– Choose "Figure Segmentation Error" if946

the figure is cropped in a wrong fashion.947

– Choose "Figure Classification Error" if948

the figure is classified into the wrong cat-949

egory.950

– Choose "Figure-Caption Pairing Error"951

if the figure is paired with the wrong cap-952

tion.953

D Captioning - Manual Evaluation954

D.1 Annotation Guidelines955

For each model, evaluate whether the caption gen-956

erated provides a comprehensive description of its957

figure. An exact match is not expected with the958

ground truth caption, but there must be some de- 959

gree of alignment in the content. 960

• If the caption generated by a particular model 961

is acceptable, select "Yes". 962

• If you have selected "No" then narrow down 963

the issue to one of the following: 964

– Oversimplification: The oversimplified 965

caption is too short compared with the 966

original ground truth caption. 967

– Contextual misunderstanding : Contex- 968

tual Misinterpretation refers to captions 969

with unmentioned content in the figure. 970

– Recognition Error : Recognition Error 971

denotes the model wrongly identified the 972

number or text in the figure. 973

E Model Description 974

E.1 Models for Figure Captioning 975

Molmo-7B: Molmo-7B-D-0924 (Deitke et al., 976

2024) is a multimodal AI model developed by 977

the Allen Institute for AI, designed to integrate 978

vision and language understanding. Built upon 979

the Qwen2-7B architecture and utilizing OpenAI’s 980

CLIP as its vision backbone, this model has been 981

trained on PixMo, a curated dataset of 1 million 982

image-text pairs. Molmo-7B-D-0924 achieves an 983

average score of 77.3% across 11 academic bench- 984

marks and holds a human preference Elo rating of 985

1056, positioning its performance between GPT- 986

4V and GPT-4o. The model is fully open-source, 987

with all associated artifacts, including the PixMo 988

dataset, training code, evaluations, and intermedi- 989

ate checkpoints, available to the public. 990

InternVL2_5-8B: This is a multimodal large 991

language model developed as part of their In- 992

ternVL 2.5 series. This model integrates a vision 993

component, InternViT-300M-448px-V2_5, with a 994

language component, InternLM2_5-7B-Chat, con- 995

nected through a randomly initialized MLP pro- 996

jector. The architecture follows the "ViT-MLP- 997

LLM" paradigm, employing a pixel unshuffle op- 998

eration to reduce the number of visual tokens and 999

a dynamic high-resolution strategy to handle var- 1000

ious data types, including single images, multi- 1001

ple images, and videos. The training process is 1002

structured across three stages: MLP warmup, con- 1003

trastive learning, and generative learning, aiming 1004

to enhance the model’s visual perception and mul- 1005

timodal capabilities. InternVL2_5-8B (Chen et al., 1006
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2024) has demonstrated proficiency in tasks such as1007

multimodal reasoning, OCR, chart and document1008

understanding, and video comprehension.1009

Qwen2-VL-7B-Instruct: This is an advanced1010

vision-language model developed by Qwen, de-1011

signed to handle a variety of visual and textual1012

tasks. This model supports arbitrary image res-1013

olutions, dynamically converting them into vi-1014

sual tokens for more human-like visual process-1015

ing. Qwen2-VL (Wang et al., 2024) achieves1016

state-of-the-art performance on visual understand-1017

ing benchmarks, including MathVista, DocVQA,1018

RealWorldQA, MTVQA, etc. Additionally, it of-1019

fers multilingual support, understanding texts in1020

languages such as English, Chinese, most Euro-1021

pean languages, Japanese, Korean, Arabic, and1022

Vietnamese.1023

MiniCPM-V: MiniCPM-V (Yao et al., 2024) is1024

a multimodal large language model designed for1025

deployment on devices ranging from GPU cards1026

to mobile phones. By compressing image repre-1027

sentations into 64 tokens via a perceiver resam-1028

pler, it achieves high efficiency with reduced mem-1029

ory usage and faster inference speeds. Despite its1030

compact size of 3 billion parameters, MiniCPM-V1031

demonstrates state-of-the-art performance on mul-1032

tiple benchmarks, surpassing existing models of1033

comparable size and even rivaling larger models1034

like Qwen-VL-Chat. Notably, it supports bilingual1035

multimodal interactions in English and Chinese,1036

making it versatile for diverse applications.1037

Janus-Pro-7B: Janus-Pro-7B (Chen et al., 2025)1038

is an advanced multimodal AI model developed by1039

DeepSeek, designed to unify text and image pro-1040

cessing capabilities within a single framework. In1041

text-to-image tasks, Janus-Pro-7B excels in gen-1042

erating high-quality images from textual descrip-1043

tions, outperforming models like OpenAI’s DALL-1044

E 3 and Stability AI’s Stable Diffusion in various1045

benchmarks. For image-to-text tasks, Janus-Pro-1046

7B employs a decoupled visual encoding approach,1047

utilizing the SigLIP-L vision encoder to process1048

images at resolutions up to 384x384 pixels. This1049

design allows the model to effectively understand1050

and generate textual descriptions of visual content,1051

making it versatile for applications requiring both1052

image generation and comprehension.1053

GIT (Base and Large): GIT (Generative Image-1054

to-Text) (Wang et al., 2022) is a Transformer-based1055

model developed by Microsoft for vision-language1056

tasks such as image and video captioning, visual1057

question answering (VQA), and image classifica-1058

tion. The model is conditioned on both CLIP image 1059

tokens and text tokens, enabling it to generate tex- 1060

tual descriptions based on visual inputs. GIT is 1061

available in two primary configurations: 1062

• GIT-Base: This version comprises approxi- 1063

mately 177 million parameters and is trained 1064

on 10 million image-text pairs. 1065

• GIT-Large: This larger variant contains 1066

around 395 million parameters and is trained 1067

on 20 million image-text pairs. The expanded 1068

parameter count enhances its capacity to gen- 1069

erate more detailed and accurate textual de- 1070

scriptions from images, making it well-suited 1071

for complex vision-language tasks. 1072

Both versions utilize a Transformer decoder ar- 1073

chitecture, where the model has full bidirectional 1074

attention over image patch tokens and causal at- 1075

tention over text tokens. This design enables the 1076

models to predict the next text token by consider- 1077

ing both the visual input and the preceding text, 1078

facilitating coherent and contextually relevant text 1079

generation based on images. 1080

E.2 Tag Classification 1081

Llama 3.2-1B Instruct: The Llama 3.2 collec- 1082

tion of multilingual large language models (LLMs) 1083

(Grattafiori et al., 2024) is a collection of pre- 1084

trained and instruction-tuned generative models in 1085

1B and 3B sizes (text in/text out). The Llama 3.2 1086

instruction-tuned text only models are optimized 1087

for multilingual dialogue use cases, including agen- 1088

tic retrieval and summarization tasks. They outper- 1089

form many of the available open source and closed 1090

chat models on common industry benchmarks. 1091

Llama-3.1-8B-Instruct: Llama-3.1-8B-Instruct 1092

(Grattafiori et al., 2024) is an 8-billion-parameter 1093

language model developed by Meta as part of the 1094

Llama 3.1 series, released in July 2024. This model 1095

is fine-tuned for instruction-based tasks, enhanc- 1096

ing its performance in understanding and generat- 1097

ing human-like text responses. It supports eight 1098

languages: English, German, French, Italian, Por- 1099

tuguese, Hindi, Spanish, and Thai. Notably, Llama- 1100

3.1-8B-Instruct features an expanded context win- 1101

dow of up to 128,000 tokens, allowing it to process 1102

and generate longer sequences of text effectively. 1103

Mistral 7B Instruct v0.2: Mistral-7B-Instruct- 1104

v0.2 (Jiang et al., 2023) is an instruction fine-tuned 1105

version of the Mistral-7B-v0.2 language model, de- 1106

veloped by Mistral AI. This iteration introduces 1107
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key improvements over its predecessor, including1108

an expanded context window of 32,000 tokens (up1109

from 8,000), a RoPE-theta value of 1e6, and the1110

removal of Sliding-Window Attention. These en-1111

hancements enable the model to generate coherent1112

and contextually rich responses, making it suitable1113

for a wide range of natural language processing1114

tasks.1115

Qwen2.5-0.5B-Instruct and Qwen2.5-7B-1116

Instruct: Qwen2.5-0.5B-Instruct (Team, 2024) is1117

a 0.5 billion parameter instruction-tuned language1118

model developed by the Qwen team at Alibaba1119

Cloud. As part of the Qwen2.5 series, this model1120

offers significant improvements in instruction1121

following, coding, mathematics, and multilingual1122

support across over 29 languages, including1123

Chinese, English, French, and Spanish. It features1124

a context length of up to 32,768 tokens and can1125

generate sequences up to 8,192 tokens.1126

F Task Prompts1127

In this section we provide the prompts that we have1128

used for the various tasks in our study. Each prompt1129

is designed to guide the model in performing spe-1130

cific operations, ensuring clarity, coherence, and1131

consistency in the generated outputs. In a task, the1132

same prompt is used for all models under compar-1133

ative evaluation. Below, we list the prompts used1134

under each task.1135

F.1 Figure Captioning1136

Zeroshot Captioning:1137

“Generate a concise and articulate caption for a1138

diagram retrieved from a research paper. Focus1139

on explaining the key idea or concept represented1140

by the diagram in no more than 100 words. Avoid1141

describing the structural elements or layout of the1142

diagram, and ensure the caption is self-contained1143

and conceptually meaningful without external ref-1144

erences."1145

Captioning using paper title as context:1146

“Using the context provided in the following title:1147

<title>, generate a concise and meaningful caption1148

for the image that explains the key concept or core1149

idea represented by the figure in no more than 1001150

words."1151

Captioning using paper title and abstract as con-1152

text:1153

context = “ Title: <title>1154

Abstract: <abstract>"1155

“Using the context provided below, generate a con-1156

cise and meaningful caption for the image that 1157

explains the key concept or core idea represented 1158

by the figure in no more than 100 words: 1159

<context>" 1160

F.2 Tag Classification 1161

"You will receive a figure caption and a list of 1162

predefined figure categories. Your task is to classify 1163

the caption into exactly one category based on the 1164

concept it represents. If the caption aligns with 1165

multiple categories, choose the most appropriate 1166

one that best describes the figure type. 1167

Categories: 1168

- Diagram: schematic figures or sketches. 1169

- Graphs-plots: charts and plots. 1170

- Illustrations and examples: figures providing 1171

examples or visual aids. 1172

- Model architecture: figures depicting the architec- 1173

ture of models. 1174

- Statistics and Analysis: figures or graphs 1175

involving statistical results and analysis. 1176

- Overview-procedure: figures that illustrate a high 1177

level overview of methods or procedures. 1178

- Pipeline: figures showing complete workflows. 1179

- Model performance and metrics: figures or 1180

graphs showing performance evaluation of models. 1181

- Real image: photographs or realistic images. 1182

Examples: 1183

Example 1: 1184

Caption: A scatter plot showing the relationship 1185

between training time and model accuracy, with a 1186

trend line fitted to the data. 1187

Your response: Graph-plots 1188

1189

Example 2: 1190

Caption: A step-by-step workflow illustrating the 1191

data preprocessing, model training, and evaluation 1192

stages in a deep learning pipeline. 1193

Your response: Pipeline 1194

Instructions: 1195

- Identify the most relevant category for the caption. 1196

- The classification must reflect only one category, 1197

avoiding overlaps. If multiple categories seem 1198

relevant, choose the broadest and most appropriate 1199

one 1200

- Return only the category name. Do not add extra 1201

explanation, reasoning, or special characters to 1202

your response. 1203

- Return the exact category name as it appears in 1204

the list without any variations 1205

Figure Caption : 1206

<caption> 1207
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Your Response:1208

1209

F.3 Generating QA pairs using InternVL1210

<image>1211

<caption>1212

Using the visual content of this image and the1213

context provided by the caption, generate 3 simple1214

and self-contained question-answer pairs.1215

Ensure that:1216

1. The questions are directly answerable using the1217

content of the image and/or the caption.1218

2. The questions are straightforward and do not1219

require multi-step reasoning.1220

3. The answers are contained entirely within the1221

image and caption.1222

4. The questions do not point to any external1223

references.1224

Provide the output in the format:1225

Q1: ...1226

A1: ...1227

Q2: ...1228

A2: ...1229

1230

F.4 Finetuning Qwen for Question-Answering1231

You are a Vision Language Model specialized in1232

interpreting visual data from graphs, charts and1233

figures depicting statistical analysis. Your task is to1234

analyze the provided figure and respond to queries1235

with concise and informative answers, usually in1236

one or two sentences. Focus on delivering accurate,1237

succinct answers based on the visual information.1238

Avoid additional explanation unless absolutely nec-1239

essary.1240

F.5 Using finetuned Qwen for1241

question-answering on MathVista1242

Provide a clear, short, and succinct numerical an-1243

swer to the question based entirely on the given1244

figure, without any external references or extra1245

words.Follow the hint given below closely:1246

<hint>1247

Question:1248

<question>1249

Answer:1250

F.6 Locality-Specific Question Response1251

Generation on M3SciQA1252

You are given a figure, a question, and a list of pa-1253

per candidates of titles and abstracts. Your task is1254

to answer the question based on the figure informa- 1255

tion, then order the paper candidates that I provide 1256

to you so that the paper that is more relevant to the 1257

question comes first in the list. Return a minimum 1258

of 1 and a maximum of 5 paper candidates in the 1259

rank list. Ideally there should be 3 paper candi- 1260

dates. 1261

Provide your answer at the end in a json file 1262

of this format using S2_id only:{{"ranking":[ 1263

rank_1_s2_id, rank_2_s2_id] }}. 1264

Make sure the responded list is in a valid format 1265

and that it only contains the S2_id. Do not include 1266

the title or abstract in the answer list. Also report 1267

the s2 ids in a comma separated manner. 1268

<question> 1269

{question} 1270

</question> 1271

<paper candidates> 1272

{reference_title_abstract_list} 1273

</paper candidates> 1274

G Tag Classification: Confusion Matrix 1275

Evaluation 1276

We present confusion matrices for each model used 1277

in Tag classification task. These confusion matrices 1278

illustrate the distribution of predicted tags against 1279

the actual tags, highlighting patterns of correct and 1280

incorrect classifications. 1281

By analyzing these matrices, we can identify com- 1282

mon misclassifications and assess how well each 1283

model distinguishes between different tag cate- 1284

gories. 1285

H Human Evaluation Platforms 1286

H.1 Evaluation of Figure Extraction and 1287

Classifcation in AI Figures 1288

We present a view of the interface that was used by 1289

our evaluators for assessing the quality of figures 1290

and captions present in our dataset. 1291

H.2 Evaluation of Figure Captioning 1292

We present a view of the interface that was used by 1293

our evaluators for assessing the quality of captions 1294

generated by each model under evaluation. 1295

1296

I Finetuned SDXL Figure Generation 1297

results 1298
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(a) Llama-3.2-1B (b) Llama-3.1-8B (c) Mistral-7B-v0.2

(d) Qwen2.5-0.5B (e) Qwen2.5-7B

Figure 7: Confusion Matrix for Tag Classification

Figure 8: Human Evaluation of AI Figures
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Figure 9: Human Evaluation of Captioning Results

18



Figure 10: A comparative analysis of figure generations by the fine-tuned SDXL model, with the original figure and
zero-shot generations from the base SDXL model.
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