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Abstract

We develop a neural network architecture which, trained in an unsupervised manner
as a denoising diffusion model, simultaneously learns to both generate and segment
images. Learning is driven entirely by the denoising diffusion objective, without
any annotation or prior knowledge about regions during training. A computational
bottleneck, built into the neural architecture, encourages the denoising network to
partition an input into regions, denoise them in parallel, and combine the results.
Our trained model generates both synthetic images and, by simple examination of
its internal predicted partitions, semantic segmentations of those images. Without
fine-tuning, we directly apply our unsupervised model to the downstream task of
segmenting real images via noising and subsequently denoising them. Experiments
demonstrate that our model achieves accurate unsupervised image segmentation
and high-quality synthetic image generation across multiple datasets.

1 Introduction

Supervised deep learning yields powerful discriminative representations, and has fundamentally
advanced many computer vision tasks, including image classification [13, 58, 21, 28], object detec-
tion [18, 49, 41], and semantic and instance segmentation [42, 22, 33]. Yet, annotation efforts [13],
especially those involving fine-grained labeling for tasks such as segmentation [39], can become
prohibitively expensive to scale with increasing dataset size. This motivates an ongoing revolution in
self-supervised methods for visual representation learning, which do not require any annotated data
during a large-scale pre-training phase [7, 15, 67, 35, 23, 10, 12]. However, many of these approaches,
including those in the particularly successful contrastive learning paradigm [23, 10, 12], still require
supervised fine-tuning (e.g., linear probing) on labeled data to adapt networks to downstream tasks
such as classification [23, 10] or segmentation [8, 69].

In parallel with the development of self-supervised deep learning, rapid progress on a variety of
frameworks for deep generative models [32, 19, 65, 66, 60, 37, 27, 59, 50] has lead to new systems for
high-quality image synthesis. This progress inspires efforts to explore representation learning within
generative models, with recent results suggesting that image generation can serve as a good proxy
task for capturing high-level semantic information, while also enabling realistic image synthesis.

Building upon generative adversarial networks (GANs) [19] or variational autoencoders (VAEs) [32],
InfoGAN [11] and Deep InfoMax [26] demonstrate that generative models can perform image
classification without any supervision. PerturbGAN [4] focuses on a more complex task, unsupervised
image segmentation, by forcing an encoder to map an image to the input of a pre-trained generator so
that it synthesizes a composite image that matches the original input image. However, here training is
conducted in two stages and mask generation relies on knowledge of predefined object classes.

∗This work was completed while Xin Yuan was a PhD student at the University of Chicago.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



(a) Simultaneous Image and Region Generation (b) Segmentation of a Novel Input Image

(c) Generated Images (d) Generated Regions (e) Real Images (f) Segmentations

Figure 1: Unifying image generation and segmentation. (a) We design a denoising diffusion
model with a specific architecture that couples region prediction with spatially-masked diffusion over
predicted regions, thereby generating both simultaneously. (b) An additional byproduct of running
our trained denoising model on an arbitrary input image is a segmentation of that image. Using a
model trained on FFHQ [31], we achieve both high quality synthesis of images and corresponding
semantic segmentations (c-d), as well as the ability to accurately segment images of real faces (e-f).
Segmenting a real image is fast, requiring only one forward pass (one denoising step).

Denoising diffusion probabilistic models (DDPMs) [27] also achieve impressive performance in
generating realistic images. DatasetDDPM [2] investigates the intermediate activations from the
pre-trained U-Net [51] network that approximates the Markov step of the reverse diffusion process in
DDPM, and proposes a simple semantic segmentation pipeline fine-tuned on a few labeled images.
In spite of this usage of labels, DatasetDDPM demonstrates that high-level semantic information,
which is valuable for downstream vision tasks, can be extracted from pre-trained DDPM U-Net. Diff-
AE [48] and PADE [70] are recently proposed methods for representation learning by reconstructing
images in the DDPM framework. However, their learned representations are in the form of a latent
vector containing information applicable for image classification.

In contrast to all of these methods, we demonstrate a fundamentally new paradigm for unsupervised
visual representation learning with generative models: constrain the architecture of the model with a
structured bottleneck that provides an interpretable view of the generation process, and from which
one can simply read off desired latent information. This structured bottleneck does not exist in
isolation, but rather is co-designed alongside the network architecture preceding and following it.
The computational layout of these pieces must work together in a manner that forces the network,
when trained from scratch for generation alone, to populate the bottleneck data structure with an
interpretable visual representation.

We demonstrate this concept in the scenario of a DDPM for image generation and semantic segmenta-
tion as the interpretable representation to be read from the bottleneck. Thus, we frame unsupervised
image segmentation and generation in a unified system. Moreover, experiments demonstrate that
domain-specific bottleneck design not only allows us to accomplish an end task (segmentation) for
free, but also boosts the quality of generated samples. This challenges the assumption that generic
architectures (e.g., Transformers [61]) alone suffice; we find synergy by organizing such generic
building blocks into a factorized architecture which generates different image regions in parallel.

Figure 1 provides an overview of our setting alongside example results, while Figure 2 illustrates
the details of our DDPM architecture which are fully presented in Section 3. This architecture
constrains the computational resources available for denoising in a manner that encourages learning
of a factorized model of the data. Specifically, each step of the DDPM has the ability to utilize
additional inference passes through multiple copies of a subnetwork if it is willing to decompose
the denoising task into parallel subproblems. The specific decomposition strategy itself must be
learned, but, by design, is structured in a manner that reveals the solution to our target task of image
segmentation. We summarize our contributions as three-fold:
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Figure 2: Factorized diffusion architecture. Our framework restructures the architecture of the
neural network within a DDPM [27] so as to decompose the image denoising task into parallel
subtasks. All modules are end-to-end trainable and optimized according to the same denoising
objective as DDPM. Left: Component factorization. An Encoder, equivalent to the first half of
a standard DDPM U-Net architecture, extracts features henc. A common Middle Block processes
Encoder output into shared latent features hmid. Note that Middle Block and hmid exist in the standard
denoising DDPM U-Net by default. We draw it as a standalone module for a better illustration of the
detailed architectural design. A Mask Generator, structured as the second half of a standard U-Net
receives hmid as input, alongside all encoder features henc injected via skip connections to layers
of corresponding resolution. This later network produces a soft classification of every pixel into
one of K region masks, m0,m1, ...,mK . Right: Parallel decoding. A Decoder, also structured as
the second half of a standard U-Net, runs separately for each region. Each instance of the Decoder
receives shared features hmid and a masked view of encoder features henc ⊙mi injected via skip
connections to corresponding layers. Decoder outputs are masked prior to combination. Though not
pictured, we inject timestep embedding t into the Encoder, Mask Generator, and Decoder.

• Unified learning of generation and segmentation. We train our new DDPM architecture once,
obtaining a model directly applicable to two different tasks with zero modification or fine-tuning:
image generation and image segmentation. Segmenting a novel input image is fast, comparable in
speed to any system using a single forward pass of a U-Net [51] like architecture.

• Unsupervised segmentation for free. Our method automatically learns meaningful regions
(e.g., foreground and background), guided only by the DDPM denoising objective; no extra
regularization terms, no use of labels.

• Higher quality image synthesis. Our model generates higher-quality images than the baseline
DDPM, as well as their corresponding segmentations simultaneously. We achieve excellent
quantitative and qualitative results under common evaluation protocols (Section 4).

Beyond improvements to image generation and segmentation, our work is a case study of a new
paradigm for using generation as a learning objective, in combination with model architecture as a
constraint. Rather than viewing a pre-trained generative model as a source from which to extract and
repurpose features for downstream tasks, design the model architecture in the first place so that, as a
byproduct of training from scratch to generate, it also learns to perform the desired task.

2 Related Work

Image Segmentation. Generic segmentation, which seeks to partition an image into meaningful
regions without prior knowledge about object categories present in the scene, is a longstanding
challenge for computer vision. Early methods rely on combinations of hand-crafted features based on
intensity, color, and texture cues [6, 44], clustering algorithms [57], and a duality between closed
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contours and the regions they bound [1]. Deep learning modernized the feature representations used
in these pipelines, yielding systems which, trained with supervision from annotated regions [43],
reach near human-level accuracy on predicting and localizing region boundaries [3, 56, 64, 34].

Semantic segmentation, which assigns a category label to each pixel location in image, has been
similarly revolutionized by deep learning. Here, the development of specific architectures [42, 51, 20]
enabled porting of approaches for image classification to the task of semantic segmentation.

Recent research has refocused on the challenge of learning to segment without reliance on detailed
annotation for training. Hwang et al. [29] combine two sequential clustering modules for both
pixel-level and segment-level to perform this task. Ji et al. [30] and Ouali et al. [46] follow the
concept of mutual information maximization to partition pixels into two segments. Savarese et al.
[54] further propose a learning-free adversarial method from the information theoretic perspective,
with the goal of minimizing predictability among different pixel subsets. Note that even completely
unsupervised foreground/background segmentation is a non-trivial task. Liu et al. [40], a recent
advance in this regime, produces similar region mask output, yet depends entirely upon motion cues
from video for training. We achieve such unsupervised learning from static images alone.

Learning Segmentation in Generative Models. Previous generative model-based approaches learn
semantic segmentation by perturbing [4] or redrawing [9] generated foreground and background
masks. Despite good performance, these methods apply only to two-class partitions and require extra
loss terms based upon object priors in training datasets.

Denoising diffusion probabilistic models (DDPMs) [27] achieve state-of-the-art performance in
generating realistic images. Their noise schedule in training may offer advantages for scaling up
models in a stable manner. Recent works [2, 48, 70] explore representation learning capability in
DDPMs. DatasetDDPM [2] examines few-shot segmentation with pre-trained diffusion models, but
requires human labels to train a linear classifier. With the default U-Net architecture [51], it loses the
efficiency and flexibility of generating image and masks in a single-stage manner. Diff-AE [48] and
PADE [70] perform representation learning driven by a reconstruction objective in the DDPM frame-
work. Unfortunately, their learned latent vectors are not applicable to more challenging segmentation
tasks and they require a pre-trained interpreter to perform downstream image classification.

DiffuMask [63] takes a pre-trained Stable Diffusion model [50], which is built using large-scale
text-to-image datasets (and thus solves a far less challenging problem), and conducts a post-hoc
investigation on how to extract segmentation from its attention maps. Neither our system, nor the
baseline DDPM to which we compare, makes use of such additional information. Furthermore,
DiffuMask does not directly output segmentation; it is basically a dataset generator, which produces
generated images and pseudo labels, which are subsequently used to train a separate segmentation
model. Our method, in contrast, is both completely unsupervised and provides an end-to-end solution
by specifying an architectural design in which training to generate reveals segmentations as a bonus.

MAGE [38] shares with us a similar motivation of framing generation and representation learning
in a unified framework. However, our approach is distinct in terms of both (1) task: we tackle a
more complex unsupervised segmentation task (without fine-tuning) instead of image classification
(with downstream fine-tuning), and (2) design: ‘masks’ play a fundamentally different role in our
system. MAGE adopts an MAE [24]-like masking scheme on input data, in order to provide a
proxy reconstruction objective for self-supervised representation learning. Our use of region masks
serves a different purpose, as they are integral components of the model being learned and facilitate
factorization of the image generation process into parallel synthesis of different segments.

BlobGAN [16] is a generative model for creating images with fine-grained control over the spatial
arrangement of content. It leverages blob-like components instead of accurate region masks as
basic building blocks for the synthesis process, allowing for intuitive content manipulation. In the
generative modeling space, BlobGAN serves a different purpose than our method: BlobGAN excels
in scenarios requiring explicit spatial control and interactive editing, while our factorized diffusion
approach provides a framework for learning high-quality image generation and segmentation.

3 Factorized Diffusion Models

Figure 2 illustrates the overall architecture of our system, which partitions the denoising network
within a diffusion model into an unsupervised region mask generator and parallel per-region decoders.
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3.1 Unsupervised Region Factorization

To simultaneously learn representations for both image generation and unsupervised segmentation,
we first design the region mask generator based on the first half (encoder) of a standard DDPM U-Net.
We obtain input xt, a noised version of x0, via forward diffusion:

q(xt|x0) := N (xt;
√
ᾱtx0, (1− ᾱt)I),

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, ϵ ∼ N (0, 1), (1)

where αt = 1− βt, ᾱt =
∏t

s=1 αt.

In addition to the encoder half of the U-Net, we instantiate a middle block consisting of layers
operating on lower spatial resolution features. Parameterizing these subnetworks as θenc and θmid,
we extract latent representations:

henc = θenc(xt, t), (2)
hmid = θmid(henc, t) (3)

where henc encapsulates features at all internal layers of θenc, for subsequent use as inputs, via skip
connections, to corresponding layers of decoder-style networks (second half of a standard U-Net).

We instantiate a mask generator, θmask, as one such decoder-style subnetwork. A softmax layer
produces an output tensor with K channels, representing K different regions in image x0:

mk = θmask(hmid,henc, t) (4)

Following a U-Net architecture, henc feeds into θmask through skip-connections.

3.2 Parallel Decoding Through Weight Sharing

We aim to extend a standard DDPM U-Net decoder θdec to consider region structure during generation.
One simple design is to condition on m = {m0,m1, ...} by concatenating it with input hmid and
henc along the channel dimension:

ϵ̂ = θdec(concat[hmid,m], concat[henc,m], t), (5)

where hmid and henc are generated from Eq. 2 and Eq. 3. We downsample m accordingly to the
same resolution as hmid and henc at different stages. However, such a design significantly modifies
(e.g., channel sizes) the original U-Net decoder architecture. Moreover, conditioning with the whole
mask representation may also result in a trivial solution that simply ignores region masks.

To address these issues, we separate the decoding scheme into multiple parallel branches of weight-
shared U-Net decoders, each masked by a single segment. Noise prediction for k-th branch is:

ϵ̂k = θdec(hmid,henc ⊙mk, t) (6)

and the output is a sum of region-masked predictions:

ϵ̂ =

K−1∑
k=0

ϵ̂k ⊙mk (7)

3.3 Optimization with Denoising Objective

We train our model in an end-to-end manner, driven by the simple DDPM denoising objective. Model
weights θ = {θenc, θmid, θdec, θmask} are optimized by minimizing the noise prediction loss:

L = E||ϵ− ϵ̂||22 (8)

Unlike previous work, our method does not require a mask regularization loss term [54, 4, 9], which
predefines mask priors (e.g., object size). Algorithm 1 summarizes training.
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3.4 Segmentation via Reverse Diffusion

Once trained, our model can both segment novel input images and synthesize images from noise.

Real Image Segmentation. Given clean input image x0, we first sample a noisy version xt through
forward diffusion in Eq. 1. We then perform one-step denoising by passing xt to the model. We
collect the predicted region masks as the segmentation for x0 using Eq. 4.

Image and Mask Generation. Using reverse diffusion, our model can generate realistic images and
their corresponding segmentation masks, starting from a pure noise input xT ∼ N (0, 1). Reverse
diffusion predicts xt−1 from xt:

xt−1 = 1/
√
αt(xt −

1− αt√
1− ᾱt

θ(xt, t)) + σtz, (9)

z ∼ N (0, 1) if t > 1 else z = 0. (10)

where σt is empirically set according to the DDPM noise scheduler. We perform T steps of reverse
diffusion to generate an image. We also collect its corresponding masks using Eq. 4 when t = 1.
Algorithm 2 summarizes this process.

Algorithm 1
Training Masked Diffusion

Input: Data x0

Output: Trained model θ
Initialize:

Model weights θ, Timesteps T
for iter = 1 to Itertotal do

Sample t ∈ [1, T ]
Sample xt using Eq. 1
Calculate ϵ̂ using Eq. 7
Backprop with Eq. 8
Update θ

end for
return θ

Algorithm 2
Image and Mask Generation

Input: Noise xT , trained model θ
Output:

Image x̂0 and segmentation m̂0

Initialize: xT ∼ N (0, 1)
for t = T to 1 do

Sample z using Eq. 10
Perform reverse diffusion using Eq. 9
if t = 1 then

Collect m̂0 using Eq. 4
Return x̂0 and m̂0

end if
end for

4 Experiments

We evaluate on: (1) real image segmentation, (2) image and region mask generation, using Flower [45],
CUB [62], FFHQ [31], CelebAMask-HQ [36], and ImageNet [53]. In addition to the design of flat
set of K regions, we also conduct a preliminary investigation into reorganizing our architectural
design to support hierarchical segmentations; see Section A.1.

Evaluation Metrics. For unsupervised segmentation on Flower and CUB, we follow the data splitting
in IEM [54] and evaluate predicted mask quality under three commonly used metrics, denoted as Acc.,
IOU and DICE score [54, 9]. Acc. is the (per-pixel) mean accuracy of the foreground prediction. IOU
is the predicted foreground region’s intersection over union with the ground-truth foreground region.
DICE score is defined as 2 F̂∩F

|F̂ | [14]. On ImageNet, we evaluate our method on Pixel-ImageNet [68],
which provides human-labeled segmentation masks for 0.485M images covering 946 object classes.
We report Acc., IOU and DICE score on a randomly sampled subset, each class containing at most
20 images. For face datasets, we train our model on FFHQ and only report per-pixel accuracy on the
CelebAMask test set, using provided ground-truth.

For image and mask generation, we use Fréchet Inception Distance (FID) [25] for generation quality
assessment. Since we can not obtain the ground-truth for generated masks, we apply a supervised
U-Net segmentation model, pre-trained on respective datasets, to the generated images and measure
the consistency between masks in terms of per-pixel accuracy. In addition to quantitative comparisons,
we show extensive qualitative results.

Implementation Details. We train Flower, CUB and Face models at both 64× 64 and 128× 128
resolution. We also train class-conditioned ImageNet models with 64 × 64 resolution. For all
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(a) Real Images (b) Segmentation

Figure 3: Segmentation on Flower.

Methods Acc. IOU DICE

GrabCut [52] 82.0 69.2 79.1
ReDO [9] 87.9 76.4 -
IEM [54] 88.3 76.8 84.6

IEM+SegNet [54] 89.6 78.9 86.0

Ours 90.1 79.7 87.2

Table 1: Comparisons on Flower.

(a) Real Images (b) Segmentation

Figure 4: Segmentation on CUB.

Methods Acc. IOU DICE

GrabCut [52] 72.3 36.0 48.7
PerturbGAN [4] - 38.0 -

ReDO [9] 84.5 42.6 -
IEM [54] 88.6 52.2 66.0

IEM+SegNet [54] 89.3 55.1 68.7

Ours 89.6 56.1 69.4

Table 2: Comparisons on CUB.

experiments, we use the U-Net [51] encoder-middle-decoder architecture similar to [27]. We use the
decoder architecture as our mask generator and set the number of factorized masks K as 3. We note
that K is the maximum number of regions the model may use. It could learn fewer components during
training. For binary segmentation, we found setting K = 3 rather than K = 2 to assist training,
with learned regions emerging as foreground, background, and a contour or transition between the
two. For segmentation evaluation, we simply select the mask channel that emerges as foreground
and apply standard benchmarks. For 64 × 64 the architecture is as follows: The downsampling
stack performs four steps of downsampling, each with 3 residual blocks. The upsampling stack
is setup as a mirror image of the downsampling stack. From highest to lowest resolution, U-Net
stages use [C, 2C, 3C, 4C] channels, respectively. For 128× 128 architecture, the down/up sampling
block is 5-step with [C,C, 2C, 3C, 4C] channels, each with two residual blocks, respectively. We set
C = 128 for all models.

We use Adam to train all the models with a learning rate of 10−4 and an exponential moving average
(EMA) over model parameters with rate 0.9999. For all datasets except ImageNet, we train 64× 64
and 128× 128 models on 8 and 32 Nvidia V100 32GB GPUs, respectively. For Flower, CUB and
FFHQ, we train the models for 50K, 50K, 500K iterations with batch size of 128, respectively. For
ImageNet, we train 500K iterations on 32 Nvidia V100 GPUs with batch size 512. We adopt the
linear noise scheduler as in Ho et al. [27] with T = 1000 timesteps.

4.1 Image Segmentation

To evaluate our method on real image segmentation, we set t as 30 for the forward diffusion process.
We also investigate the segmentation results with different noise levels in Figure 18. For Flower
and CUB, Figures 3 and 4 show test images and predicted segmentations. Tables 1 and 2 provide
quantitative comparison with representative unsupervised image segmentation methods: GrabCut [52],
ReDO [9] and IEM [54]. As shown in Table 1 and Table 2, our method outperforms all competitors.

We also visualize the predicted face parsing results on FFHQ and CelebAMask datasets in Fig-
ure 1(c)(d) and Figure 5. Our model learns to accurately predict three segments corresponding to
semantic components: skin, hair, and background. This particular semantic partitioning emerges
from our unsupervised learning objective, without any additional prior. With ground-truth provided
on CelebAMask-HQ, we also compare the pixel accuracy and mean IOU with a supervised U-Net
and DatasetDDPM [2]. For the former, we train a supervised segmentation model with 3-class
cross-entropy loss. For the unsupervised setting, we perform K-means (K=3) on the pre-trained
DDPM, denoted as DatasetDDPM-unsup. Table 3 shows that we outperform DatasetDDPM by a
large margin and achieve a relatively small performance gap with a supervised U-Net.
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(a) Real Images (b) Segmentation

Figure 5: Segmentation on CelebA.

Methods Acc. mIOU

Supervised UNet 95.7 90.2

DatasetDDPM-unsup. [2] 78.5 69.3

Ours 87.9 80.3

Table 3: Seg. comparisons on CelebA.

(a) Real Images (b) Segmentation

Figure 6: Segmentation on ImageNet.

Methods Acc. mIOU

Supervised UNet 85.7 74.1

DatasetDDPM-unsup. [2] 74.1 60.4

Ours 80.7 67.7

Table 4: Seg. comparisons on ImageNet.

Figure 6 shows the accurate segmentation results for ImageNet classes: ostrich, pekinese, papillon,
and tabby. We compare with supervised U-Net and DatasetDDPM-unsup in Table 4. We show more
visualizations in the Appendix.

4.2 Image and Mask Generation

We evaluate our method on image and mask generation. As shown in Figure 7, 8, 1(c)(d) and 9,
our method is able to generate realistic images. In the upper row of Table 5, we see a consistent
quality improvement over the original DDPM. This suggests that our method is a better generation
architecture than the standard U-Net; separate computational paths for denoising individual image
regions is a beneficial prior to impose when learning to model the image distribution. Additionally,
our method produces accurate corresponding masks, closely aligned with the semantic partitions in
the generated image.

We also evaluate the quality of these segmentations. Since there is no ground-truth mask provided
for generated images, we apply the U-Net segmentation models (pre-trained on respective labeled
training sets) to the generated images to produce reference masks. We measure the consistency
between the reference and the predicted parsing results in terms of pixel-wise accuracy. We compare
our method with a pre-trained DDPM baseline, in which we first perform image generation, then pass
them to DatasetDDPM-unsup to get masks. As shown in Table 5 (bottom), our method consistently
achieves better segmentation on generated images than the DDPM baseline. Note that, different from
the two-stage baseline, our method performs the computation in a single stage, generating image and
mask simultaneously. The Appendix shows more visualizations.

(a) Generated Images (b) Generated Masks

Figure 7: Generation on Flower.
(a) Generated Images (b) Generated Masks

Figure 8: Generation on CUB.
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Table 5: Image and mask generation comparison on all datasets (top: FID(↓) bottom: Acc. (↑)).

Models Flower-64 Flower-128 CUB-64 CUB-128 FFHQ-64 FFHQ-128 ImageNet-64

DDPM 15.81 14.62 14.45 14.01 13.72 13.35 7.02
Ours 13.33 11.50 10.91 10.28 12.02 10.79 6.54

DDPM 80.5 82.9 84.2 83.7 84.2 84.2 71.2
Ours 92.3 92.7 91.4 91.2 90.3 90.7 84.1

(a) Generated Images (b) Generated Masks

Figure 9: Conditional generation on ImageNet.

Methods IOU.(↑) FID (↓)

Concat 20.7 14.21
Masking hmid 20.2 14.33

w/o weight sharing 50.5 17.21

Ours 56.1 10.28

Table 6: Ablations of decoding scheme on CUB.

4.3 Ablation Study and Analysis

Multi-branch Decoders with Weight Sharing. Separating computation in multi-branch decoders
with weight sharing is an essential design in our method. We show the effectiveness of this design by
varying how to apply factorized masks in our decoding scheme: (1) concat: we use single branch
to take concatenation of h and m. (2) masking hmid: we use m to mask hmid instead of henc.
(3) w/o weight sharing: we train decoders separately in our design. Table 6 shows separate design
consistently yields better visual features than other designs for CUB. This suggests that our design
benefits from fully utilizing mask information in the end-to-end denoising task and avoids a trivial
solution where masks are simply ignored.

Investigation on Mask Factorization. Our architecture is able to generate factorized representations,
each representing a particular segment of the input image. We show this by visualizing the individual
channels from softmax layer output in our mask generator. As shown in Figure 10, skin, hair, and
background are separated in different channels.

Mask Refinement along Diffusion Process. In the DDPM Markov process, the model implicitly
formulates a mapping between noise and data distributions. We validate that this occurs for both
images and latent region masks by visualizing image and mask generation along the sequential reverse
diffusion process in Figure 11. We observe gradual refinement as denoising steps approach t = 0.

Zero-shot Object Segmentation. We evaluate zero-shot object segmentation on both PASCAL
VOC 2012 [17] and DAVIS-2017 videos [47]. Baseline DDPM generation is not solved for these
datasets when training from scratch without external large-scale datasets (e.g., LAION [55] used in
Stable Diffusion [50]). We directly adopt zero-shot transfer from our pre-trained ImageNet model
by applying the conditional label mapping to VOC. Table 7 details the mapping rule. Figure 13
shows the accurate segmentation results for images of classes: aeroplane, monitor, person, and sofa
from VOC. Since our method does not require any pixel labels, we evaluate the performance of

Figure 10: Mask factorization (3 parts) on FFHQ. Figure 11: Gen. refinement along diffusion.
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Figure 12: Interpolations on FFHQ with 250 timesteps of diffusion.

(a) Real Images (b) Segmentation

Figure 13: Segmentation on VOC-2012.

(a) Frames of ‘Bear’

(b) Frames of ‘Dog’

Figure 14: Segmentation on DAVIS-17.

each object class individually. We report pixel accuracy and mIOU of each class in VOC in Table 7,
which demonstrates that our method can achieve reasonably high performance. Our method achieves
an accuracy of 0.78 and mIOU of 0.54 when averaging over all 20 classes. We also show video
segmentation on DAVIS-2017 in Figure 14 and the Appendix, without any labeled video pre-training.

Face Interpolation. We also investigate face interpolation on FFHQ. Similar to standard DDPM [27],
we perform the interpolation in the denoising latent space with 250 timesteps of diffusion. Figure 12
shows good reconstruction in both pixels and region masks, yielding smoothly varying interpolations
across face attributes such as pose, skin, hair, expression, and background.

5 Conclusion

We propose a factorized architecture for diffusion models that is able to perform unsupervised image
segmentation and generation simultaneously, while being trained once, from scratch, for image
generation via denoising alone. Using model architecture as a constraint, via carefully designed
component factorization and parallel decoding schemes, our method effectively and efficiently bridges
these two challenging tasks in a unified framework, without the need for fine-tuning or altering the
original DDPM training objective. Our work is the first example of engineering an architectural
bottleneck so that learning a desired end task becomes a necessary byproduct of training to generate.

Our work is at the stage of a new architectural design for diffusion-based segmentation and generation,
with 2- or 3-class segmentation results demonstrating improvements across multiple datasets, scaling
up to ImageNet. Our initial investigation into hierarchical extensions suggests a promising future
path towards handling complex scenes.
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A Appendix

A.1 Hierarchical Factorized Diffusion

We conduct a further investigation to reorganize our architectural design to support hierarchical mask
factorization in place of a flat set of K regions. We formulate a hierarchical factorized diffusion
architecture to progressively refine segmentation results from a coarse initial prediction to a fine,
detailed final segmentation. This approach helps in capturing both global context and fine details
in the segmentation task. As shown in Figure 15, the first level replicates the factorized diffusion
architecture depicted in Figure 2 to generate initial region masks m0

0,m
0
1, ..., each applied on the

noisy input for the next level factorized diffusion process. Each branch of the second level architecture
generates finer representations of region masks m1

0,m
1
1, ..., constructing the final denoising output

as
∑

i m
0
i

(h0
i+

∑
j h1

jm
1
j )

2 . This nested architectural design can be instantiated as repeated levels of
factorized diffusion, which is a promising way to handle multiscale scenes. As a proof of concept, we
experiment on the shape 3D dataset [5] with a 2-level hierarchy. We first visualize each level’s region
mask in Figure 16. We observe that the first level generates a coarse segmentation, based on which,
second-level factorized diffusion generates fine segmentations of 3D shapes. Figure 17 provides a
more direct visualization of partitions at each level through a 3-class mapping.
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Figure 15: Hierarchical factorized diffusion architecture.

A.2 Additional Segmentation Results

We show more segmentation results for Flower, CUB, FFHQ, CelebA and ImageNet. As shown
in Figures 19, 20, 21, 22, and 23, our method consistently predicts accurate segmentations for real
image inputs.

A.3 Additional Generation Results

We show more generation results for Flower, CUB, FFHQ, and ImageNet (classes: flamingo, water
buffalo, garbage truck, and sports car). As shown in Figures 24, 25, 26, and 27, our method
consistently produces images and masks with high quality.
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Level 1 Level 2-1

Level 2-3

Level 2-2

Figure 16: Mask factorization for each level. Level 1: visualization of each mask channel at the
first level. Level 2-1, 2-2, 2-3: visualization of each mask channel per branch at the second level.

A.4 Additional Zero-shot Results on VOC

We provide more segmentation results of ‘bicycle’, ‘chair’, ‘potted plant’ and ‘train’ in Figure 28.

A.5 Additional Zero-shot Results on DAVIS

We provide more DAVIS-2017 video segmentation results of ‘classic-car’, ‘dance-jump’ in Figure 29.
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Level 1

Level 2-1

Level 2-3

Level 2-2 Level 2

Combined
Segmentations

Figure 17: Segmentations for each level. Level 1: 3-color-coded region assignments at the first
level. Level 2-1, 2-2, 2-3: 3-color-coded region assignments per branch at the second level. Level 2
combined segmentations: 9-color-coded region assignments at the second level.

(a) Acc. (b) IOU. (c) DICE

Figure 18: Segmentation results on CUB with t ∈ {0, 10, 20, 30, 40, 50, 60}.
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Table 7: We perform class label mapping from ImageNet to VOC, and report zero-shot transfer
Accuracy and mIOU per class on VOC validation dataset.

VOC Class. ImageNet Class. Num. of VOC-val Image Accuracy mIOU

1:aeroplane 895:warplane 136 0.82 0.57
2:bicycle 671:mountain-bike 108 0.79 0.47
3:bird 94:hummingbird 168 0.83 0.58
4:boat 814:speedboat 115 0.81 0.51
5:bottle 907:wine-bottle 133 0.76 0.47
6:bus 779:school-bus 114 0.73 0.54
7:car 817:sports-car 191 0.74 0.48
8:cat 281:tabby 206 0.82 0.66
9:chair 765:rocking-chair 175 0.75 0.64
10:cow 346:water-buffalo 102 0.82 0.45
11:diningtable 532:dining-table 89 0.69 0.62
12:dog 153:maltese-dog 204 0.82 0.67
13:horse 603:horsecart 104 0.84 0.53
14:motorbike 670:motorscooter 117 0.76 0.52
15:person 981:ballplayer 584 0.77 0.46
16:potted plant 883:vase 116 0.74 0.46
17:sheep 348:ram 89 0.84 0.64
18:sofa 831:studio-couch 109 0.73 0.51
19:train 466:bullet-train 126 0.76 0.56
20:tv/monitor 664:monitor 106 0.73 0.47

Average - - 0.78 0.54

(a) Real Images (b) Segmentation

Figure 19: Segmentation on Flower.
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(a) Real Images (b) Segmentation

Figure 20: Segmentation on CUB.

(a) Real Images (b) Segmentation

Figure 21: Segmentation on FFHQ.
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(a) Real Images (b) Segmentation

Figure 22: Segmentation on CelebA.

(a) Real Images (b) Segmentation

Figure 23: Segmentation on ImageNet.

(a) Generated Images (b) Generated Masks

Figure 24: Generation on Flower.
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(a) Generated Images (b) Generated Masks

Figure 25: Generation on CUB.

(a) Generated Images (b) Generated Masks

Figure 26: Generation on FFHQ.

(a) Generated Images (b) Generated Masks

Figure 27: Conditional ImageNet generation.
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(a) Real Images (b) Segmentation

Figure 28: Segmentation on VOC-2012.

(a) Frames of ‘Classic-car’

(b) Frames of ‘Dance-jump’

Figure 29: Segmentation on DAVIS-2017.
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paper’s contributions and scope?

Answer: [Yes]

Justification: [NA]
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made in the paper.
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much the results can be expected to generalize to other settings.
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Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: [NA]
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• The answer NA means that the paper has no limitation while the answer No means that
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• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to
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model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
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• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
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used reliably to provide closed captions for online lectures because it fails to handle
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• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
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Answer: [NA]
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Justification: [NA]
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]
Justification: We will release the code upon acceptance.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

27


	Introduction
	Related Work
	Factorized Diffusion Models
	Unsupervised Region Factorization
	Parallel Decoding Through Weight Sharing
	Optimization with Denoising Objective
	Segmentation via Reverse Diffusion

	Experiments
	Image Segmentation
	Image and Mask Generation
	Ablation Study and Analysis

	Conclusion
	Appendix
	Hierarchical Factorized Diffusion
	Additional Segmentation Results
	Additional Generation Results
	Additional Zero-shot Results on VOC
	Additional Zero-shot Results on DAVIS


