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Abstract001

While LLMs in the RAG paradigm have shown002
remarkable performance on a variety of tasks,003
they still under-perform on unseen domains, es-004
pecially on complex tasks like procedural ques-005
tion answering. In this work, we introduce a006
novel formalism and structure for manipulating007
text-based procedures. Based on this formal-008
ism, we further present a novel dataset called009
LCStep, scraped from the LangChain Python010
docs. Moreover, we extend the traditional RAG011
system to propose a novel system called Anal-012
ogy Augmented Generation (AAG), that draws013
inspiration from human analogical reasoning014
and ability to assimilate past experiences to015
solve unseen problems. The proposed method016
uses a frozen language model with a custom017
procedure memory store to adapt to specialized018
knowledge. We demonstrate that AAG outper-019
forms few-shot and RAG baselines on LCStep,020
RecipeNLG, and the CHAMP datasets under a021
pairwise LLM-based evaluation.022

1 Introduction023

Procedural knowledge, or “knowledge-how”, is024

a form of knowledge involving the ability to do025

something, as opposed to prepositional knowledge,026

which is the awareness of a fact (“knowledge-that”)027

(Pavese, 2022). Philosophers debate whether pro-028

cedural knowledge is always reducible to preposi-029

tional knowledge, but the functional distinction is030

regardless significant in the study of LLM-based031

agents, which are expected to not only understand032

facts about their environment but also plan and033

reason about actions in that environment.034

To that end, efforts have been made both theoret-035

ically (Georgeff and Lansky, 1986) and empirically036

(Huang et al., 2022) to enable information systems037

that explicitly handle procedural knowledge, but038

the recent success of LLMs on a wide variety of039

tasks has led to a new interest in LLM agents which040

are expected to plan, reason, and act within a world041
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Figure 1: An illustration of using the AAG system to
generate a recipe for an unseen food.

of some kind, whether in the real world (Wang 042

et al., 2024b) or in a virtual environment (Huang 043

et al., 2022; Wang et al., 2024a; Tan et al., 2024). 044

Unfortunately, one way LLMs consistently strug- 045

gle is in underrepresented or specialized domains 046

not well-represented in training data, or domains 047

which require up-to-date knowledge (Kandpal et al., 048

2023). In these circumstances, rather than report 049

a lack of knowledge LLMs tend to ‘hallucinate’ 050

responses that are incoherent or factually incor- 051

rect (Zhang et al., 2023). A popular approach to 052

mitigate these limitations is Retrieval-Augmented 053

Generation (RAG) (Lewis et al., 2021), which inte- 054

grates text retrieved from an external set of docu- 055

ments into the prompt to the language model. This 056

approach has been shown empirically to increase 057

the accuracy of LLM responses across a wide range 058

of tasks (Gao et al., 2024). 059

While LLMs in a RAG paradigm have made 060

drastic improvements on factual knowledge tasks, 061

procedural knowledge applications have been rela- 062

tively less explored. Several recent works have ex- 063

plored procedural tasks in the domain of planning 064

where the purpose is to create a step-by-step plan to 065

achieve a goal (Brahman et al., 2023; Huang et al., 066

2022). However, these works focus on leverag- 067
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ing model’s internal knowledge or limited external068

knowledge by better prompt engineering.069

Inspired by the analogical reasoning capability070

of human cognition (Parsons and Davies, 2022), we071

propose Analogy-Augmented Generation (AAG),072

a novel system built upon the traditional RAG073

paradigm, for the use-case of procedural question074

answering. This AAG pipeline retrieves from a075

specialized procedural memory during a multi-step076

process that generates and refines a candidate proce-077

dure that accomplishes the input task (see Figure 1).078

AAG especially shines on tasks outside the training079

domain of the LLM. We expect AAG to surpass080

the performance of traditional RAG on knowledge-081

intensive procedural datasets like CHAMP (Mao082

et al., 2024) and our self-curated Langchain dataset.083

Our contributions in this paper are the following:084

• We provide a formalism for text-based procedu-085

ral knowledge that fits easily into existing infor-086

mation retrieval systems while also providing a087

minimal structure to be leveraged by specialized088

procedure storage in the future.089

• We collect a dataset of procedures for accom-090

plishing tasks with the Langchain Python library091

(Chase and contributors, 2022), and name this092

dataset LCStep. Since Langchain was introduced093

in October 2022, it does not feature in the train-094

ing data of many LLMs, making LCStep a good095

test of a system’s ability to handle procedural096

knowledge outside the distribution familiar to the097

LLM.098

• Based on our procedural knowledge formal-099

ism, we devise a new RAG system called100

analogy-augmented generation (AAG), which101

leverages a store of existing procedural knowl-102

edge to solve procedural question answering103

tasks. We evaluate this system on LCStep, plus104

two other datasets (CHAMP (Mao et al., 2024)105

and RecipeNLG (Bień et al., 2020)) which we106

adapt for the procedural knowledge task. We107

show that leveraging this procedural knowledge108

improves the generated procedure steps accord-109

ing to LLM-based pairwise comparisons.110

2 Related Work111

Built upon the traditional RAG paradigm (Lewis112

et al., 2021), AAG differs from the conventional113

RAG in three key aspects: analogical reasoning, the114

iterative refinement workflow (section 3) and appli-115

cation in knowledge-intensive procedural QA. An116

extensive survey covering the status-quo of RAG 117

research can be found in (Gao et al., 2024). 118

Standard Prompting Methods: Zero-shot 119

prompting (Chang et al., 2024), few-shot prompt- 120

ing (Brown et al., 2020), and RAG (Lewis et al., 121

2021) are the most common LLM-based ap- 122

proaches to natural language generation. Few-shot 123

prompting requires a fixed set of labeled examples, 124

and RAG requires some supporting set of docu- 125

ments, although these documents may not be of 126

the same form as the final text being generated by 127

the system, e.g. when augmenting with a set of 128

general-knowledge Wikipedia articles to answer 129

factual questions. 130

Analogical Reasoning in LLMs: Many papers 131

attempt to elicit reasoning in LLMs by various 132

prompting methods (Zhou et al., 2024; Wang et al., 133

2023). Specific to analogical reasoning, early at- 134

tempts show by case study that LLMs can do ana- 135

logical reasoning just like humans (Webb et al., 136

2023). Recent works explore analogy generation 137

and analogy reasoning with knowledge graphs on 138

LLMs (Yuan et al., 2023; Bhavya et al., 2023, 139

2022). These works are applied to prepositional 140

knowledge, and rely on large-scale external knowl- 141

edge bases to store entity relationships to perform 142

analogical reasoning. More closely related to our 143

work are Yu et al. (2023) and Yasunaga et al. (2024), 144

in which they prompt the model to propose anal- 145

ogous problems, whose solutions (also created by 146

the model) are then related by analogy to the origi- 147

nal problem in order to inform the final solution. In 148

our work, we retrieve real solutions to analogous 149

real problems from memory, which benefits perfor- 150

mance especially in knowledge-intensive domains. 151

Iterative Pipeline: Numerous recent works based 152

on the RAG paradigm undertake an iterative work- 153

flow to generate the response to an input query. 154

Asai et al. (2023) train a separate LM to predict 155

reflection tokens like ‘retrieve’, ‘relevant’, ‘irrele- 156

vant’, etc. within the response, and these tokens de- 157

termine subsequent control flow to accordingly gen- 158

erate or refine subsequent chunks of the response. 159

On the contrary, (Shao et al., 2023) intersperse 160

Generation-Augmented Retrieval (GAR) and RAG 161

to sequentially expand the search query in the mem- 162

ory and obtain relevant information to plug into the 163

final response. Our work comes close to (Shao 164

et al., 2023) where we expand the search query to 165

retrieve relevant info from the procedural memory 166

at the granularity of procedural steps. To facilitate 167

this finer search capabilities, we have organized our 168
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procedural memory as objects with a schema that169

explicitly contains the inputs, goal and the steps.170

3 Our Method171

We describe the details of our Analogy-Augmented172

(AAG) system in the sections below. Our sys-173

tem extends the traditional RAG system (Lewis174

et al., 2021) and introduces three novel modules to175

perform better on the task of procedural question-176

answering: 1) procedural memory store, a novel177

representation of memory, designed specifically for178

procedures; 2) query rewriting and summariza-179

tion: rewrites the input query as a set of questions,180

answers to which can be procured through analo-181

gous procedures in the memory; and 3) iterative182

refinement with self-critic: an LLM-based critic183

evaluates the candidate response and suggests edits,184

which are then performed by the ‘LLM edit per-185

former’ module. A schematic view of our system186

can be seen in Figure 2. We now describe each of187

these novel modules in more detail, followed by an188

end-to-end description of the overall control flow.189

Please refer to the appendix for detailed prompts190

used by each module.191

3.1 Procedural Memory192

We define a procedure as (x, y, (s1, . . . , sk))193

where:194

• x is an input string,195

• y is an output string, and196

• (s1, . . . , sk) is a sequence of ordered steps, each197

of which is a string.198

The task of procedural generation then is to gener-199

ate (s1, . . . , sk) given x and y.200

This definition is simpler than other conceptions201

of procedures that use directed acyclic graphs202

(Georgeff and Lansky, 1986), depending on the text203

of the steps to define any non-linear control flow.204

It also allows procedures to be composable: two205

procedures (x, y, (s1, . . . , sk)), (y, z, (t1, . . . , tℓ))206

can be composed into a procedure207

(x, z, (s1, . . . , sk, t1, . . . , tℓ)) that produces208

result z given input x.209

This loose formalism allows systems to easily210

benefit from text embeddings as they see fit, while211

also relying on their sequential structure. In the212

custom procedure store for AAG, this is done by213

representing the procedure in a natural text format214

appropriate to the type of procedure when creat-215

ing embeddings, while otherwise maintaining the216

input, output, and steps as Python str, str, and 217

list[str] types respectively when these proce- 218

dures are retrieved, generated, etc. 219

3.2 Query Rewriting 220

The input to the AAG system is comprised of the 221

goal to be achieved (the procedure output) and the 222

resources we have access to (the procedure input). 223

Using this input query directly to search the mem- 224

ory can yield insufficient supporting information 225

when the necessary information doesn’t use words 226

similar to words in the query. Humans solve this 227

problem by linking and assimilating knowledge 228

from relevant past concepts and experiences (Pi- 229

aget, 1968; Vosniadou and Ortony, 1989), compos- 230

ing a solution by recombining components of past 231

tasks. Most recently, Yasunaga et al. (2024) demon- 232

strated the merits of analogical prompting where 233

the LLM is asked to recall relevant analogous prob- 234

lems to the problem in hand and then leverage them 235

to solve the given problem. 236

Inspired by these works, we rewrite the input 237

query to the system as a set of questions required 238

to prepare an appropriate procedure for achieving 239

the specified goal. We prompt the LLM to first gen- 240

erate a high-level outline of the procedure that will 241

lead to the specified goal, like in HyDE (Gao et al., 242

2022), and then based on these high-level steps sug- 243

gest relevant questions which can be answered with 244

relevant procedures in the memory. We extend the 245

query rewriting prompt used by Ma et al. (2023) 246

for our case and generate a maximum of N = 4 247

queries for a given input query. For example, given 248

the input query: ‘create a custom LLM agent that 249

can interact with users in a conversational manner 250

using a specific language style using an LLM, Serp 251

API’, the following 4 queries are generated by the 252

query re-writer: 253

• How to train a language model for a specific 254

language style? 255

• Best practices for integrating a language model 256

into a conversational interface? 257

• How to use the Serp API to extract relevant in- 258

formation from search engine results? 259

• Strategies for optimizing performance of a cus- 260

tom LLM agent in conversational interactions? 261

3.3 Summarization 262

Each of the queries received from the query re- 263

writing module is individually used to retrieve from 264

the procedure memory. The challenge, however, is 265
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Figure 2: Schematic view of the AAG Architecture. The input and the intermediate outputs are enclosed in red
rounded rectangles whereas all the modules involving an LLM have been enclosed in blue rectangles. The boxes 1
and 2 denote our architectural contributions, where 1 shows the query re-writing and the summarization step and
the 2 shows the iterative refinement with self-critic step. The procedural memory store holds objects structured as
procedures (see sec 3.1). The RAG module and the summarizer module interact with the memory store to retrieve K
and N * K procedures relevant to the input query and all the re-written queries (one at a time) respectively.

that the retrieved procedures often contain the re-266

quired information hidden between irrelevant steps.267

Thus, motivated by this observation, the summa-268

rization module prompts the LLM with the question269

and the retrieved procedures, asking it to generate270

a summary of the retrieved procedures as an an-271

swer to the question. This module abstracts out the272

unnecessary details and includes only the useful273

information from all the retrieved procedures, thus274

overcoming the issue of duplicates in retrieved pro-275

cedures for different queries as well. Each question276

along with its summary is stacked together as "Q:277

<Question> [newline] A: <Summary>" to build up278

high quality context which is used by both the Up-279

date Response and the Edit performer module.280

3.4 Iterative Refinement with Self-Critic281

LLMs have been show to act as powerful self-282

critics for their own outputs, evaluating the outputs283

across several dimensions and suggesting feedback284

crucial to improving their output (Madaan et al.,285

2023; Saunders et al., 2022). We augment the286

AAG system with an iterative refinement proce-287

dure guided by the same LLM acting as a critic288

for the output it has generated. As seen in Fig-289

ure 2, LLM critic takes the output of the Update 290

Response module, evaluates if any edits are re- 291

quired, and suggests them as a bulleted list. In case 292

no edits are required, the critic appends the string 293

‘NO UPDATE REQUIRED’ to its response. The 294

suggested edits are then performed by the LLM 295

with a prompt including the list of edits, context 296

from the summarizer, and the current version of 297

the output procedure steps. This edited version is 298

then re-evaluated by the LLM critic and the cycle 299

continues for a maximum of T = 3 cycles. The 300

output at the end of the iterative refinement is the 301

final answer of the AAG system to the input query. 302

3.5 End-to-End Workflow 303

On a very high level, the AAG system takes as 304

input a query by the user and outputs a bulleted list 305

of steps that will lead the user to the desired goal. 306

Using the terminologies defined in Section 3.1, the 307

input query is of the format “output using input”, 308

where the user specifies the goal and the resources 309

available to use to reach the goal. Assuming we 310

have a procedural memory instantiated with the 311

procedure objects as outlined in Sections 3.1 and 312

4.3, the detailed workflow of the AAG system is as 313
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follows (refer to Figure 2):314

1. The RAG module interacts with the procedural315

memory using the user input query and retrieves316

the top K = 3 relevant procedures (highest317

cosine similarity in the embedding space) from318

the memory.319

2. The query re-writer module takes input the user320

input query, prepares a high-level mind map321

to solve the query and re-writes into N = 4322

queries about information required at different323

steps to arrive at the solution.324

3. The summarizer module interacts with the proce-325

dural memory and generates a summary answer326

to each re-written query through their retrieved327

procedures from the memory.328

4. The update response module performs the first329

update to the RAG response using the context330

provided by the generated summaries and passes331

the updated response to the critic.332

5. The LLM critic decides if edits are required and333

suggests them in a bulleted list.334

6. The LLM performs edits to its own response335

using the edits suggested by the critic (same336

LLM) and the context from the summaries.337

7. The edited procedure is then re-evaluated for338

edits. Repeat step 5 for a maximum of T = 3339

cycles. The self-refined version is then returned340

as the output of the system.341

4 Experiments342

To demonstrate the effectiveness of analogy-343

augmented generation (AAG) for generating proce-344

dures, we apply it to three procedural knowledge345

datasets. Here the task is to generate the list of346

steps, given the input text and output text.347

RecipeNLG is a corpus of more than 2 million348

food recipes collected from the internet (Bień et al.,349

2020). Under our procedural knowledge frame-350

work, we construct a procedure by using the recipe351

title as output, the ingredients as input, and the352

directions as the procedural steps. For our experi-353

ments, we select a random subset of 10,000 recipes354

from this dataset. From these we select 2,000 test355

examples and 1,000 validation examples.356

LCStep dataset is a self-curated dataset where the357

goal is the procedure output. The dataset was pre-358

pared by scraping the LangChain python docs and359

filtering out 180 tutorials and guides. For the 180360

tutorials/guides, we prompted GPT-4 to extract a361

list of high-level steps necessary to accomplish the362

goal and rate those extracted procedures using a list 363

of criteria. Those not matching the criteria were 364

revised both manually and through GPT-4 before 365

the final human filtering (more details in the ap- 366

pendix). We sorted the 276 procedures in LCStep 367

by increasing length and selected the final (longest) 368

56 examples as the test set, with the preceding 369

27 examples as a validation set. We selected the 370

longest examples for the test set because we want 371

to observe AAG’s ability to leverage simpler pro- 372

cedural knowledge when proposing steps for more 373

complicated tasks. 374

CHAMP is a dataset of 270 competition-level math 375

problems annotated with concepts, hints, and, step- 376

by-step solutions (Mao et al., 2024). For the proce- 377

dure generation task, we use the problem statement 378

as the output, the hints and problem category as in- 379

put, and the step-by-step solutions as the procedure 380

steps. We also append “The answer is answer” as 381

a final step in the procedure. We randomly shuf- 382

fle the problems and choose 54 test examples and 383

27 validation examples. Random shuffling is im- 384

portant to ensure diversity so that each data split 385

contains problems of all types. 386

The remaining examples in each of the dataset form 387

the procedural memory for that respective dataset. 388

4.1 Baselines 389

We compare our system against widely-used nat- 390

ural language generation approaches that involve 391

prompting an LLM. For our experiments, we use 392

gpt-3.5-turbo-0125 from OpenAI as the lan- 393

guage model for all approaches. 394

Zero-Shot: We prompt the language model to gen- 395

erate the steps for a procedure, given the proce- 396

dure’s input and output. 397

Few-Shot: We sample k = 3 random procedures 398

from the training set, and include those in the 399

prompt after the task instructions, which are the 400

same as in the zero-shot case. 401

RAG: We retrieve k = 3 procedures based on the 402

provided input and output, and then use those 3 403

procedures in the prompt like the few-shot case. 404

4.2 Evaluation Methodology 405

For all our plots, we perform a pairwise evalua- 406

tion between the proposed AAG system and the 407

concerned method using the LLM. The LLM is 408

prompted to evaluate the two procedures on 409

• their ability to accomplish the specified goal, 410

• the clarity and flow of the steps and the level of 411

detail, and 412
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Figure 3: The three plots show the pairwise evaluation results (see section 4.2) of the three baselines against AAG.
The red bar with forward slash pattern represents the ’wins’ i.e. when the concerned method was chosen over AAG,
the blue bar with backward slash pattern represents the ’loss’, i.e. when the AAG system was chosen over the
concerned method and the green bar with cross pattern is when the pairwise evaluator equally likes both the systems’
responses. Higher length of the ’loss’ bar than the ’win’ bar for each method in each dataset highlights that AAG is
chosen over its counterpart on all the datasets in a pairwise scenario.
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Figure 4: The three plots show the pairwise evaluation results (see section 4.2) of the four ablation methods against
AAG. The red bar with forward slash pattern represents the ’wins’ i.e. when the concerned method was chosen over
AAG, the blue bar with backward slash pattern represents the ’loss’, i.e. when the AAG system was chosen over
the concerned method and the green bar with cross pattern is when the pairwise evaluator equally likes both the
systems’ responses. Higher length of the ’loss’ bar than the ’win’ bar for each method in each dataset highlights that
AAG is preferred over its ablation counterparts on all the datasets in a pairwise scenario.

• using only the resources specified in user input.413

The prompt example can be found in the ap-414

pendix. Note that the ground-truth steps are not415

given as input in the prompt, to prevent biasing416

the LLM towards only matching the keywords in417

the generated and ground-truth procedure steps.418

To further control for randomness and de-bias the419

LLM evaluation towards ordering of procedures in420

the prompt, we run a total of 10 prompt requests421

for each sample, with 5 requests having AAG pro-422

cedure placed first and other 5 having the other423

method placed first. Moreover, the LLM is set to424

a temperature of 0.7 and each of the 10 calls is425

on a different seed to the LLM, but the 10 seeds426

remain fixed when evaluating all samples. Finally,427

the result for a sample is calculated using majority428

voting amongst the results of 10 LLM calls.429

In the bar plots in figures 3 and 4, the ‘win’430

bar denotes the number of samples where the con-431

cerned method was chosen over AAG, the ‘loss’ bar 432

denotes where AAG was preferred, and the ‘ties’ 433

bar represents the number of samples where the 434

LLM selects both the AAG and the other method 435

equally in the 10 LLM calls. It is imperative to 436

note that we report pairwise comparison of meth- 437

ods with respect to AAG, therefore the numbers 438

of one method cannot be directly compared with 439

the numbers of another method. A tall bar for any 440

method means that the LLM is more confident that 441

the one system is better than the other in the pair 442

considered, not that the one system is better as com- 443

pared to other systems not in the pair with shorter 444

bar lengths. 445

4.3 System Design Choices 446

The AAG system has no trainable parameters and 447

simply relies on frozen LLMs. The temperature of 448

the OpenAI language model is kept to the default 449
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value of 0.7 for all the results and the evaluations.450

Lack of any training makes the AAG system flexi-451

ble to be used with even the commercial black-box452

LLMs like GPT-4 etc. We use the all-mpnet-base-453

v2 model from sentence-transformers (Reimers and454

Gurevych, 2019) as the embedding model for the455

objects in the procedural memory Weaviate store,456

creating dense 768 dimensional embeddings for457

each procedure object. All the three data fields of a458

procedure (input, output, and steps) are embedded459

together in one embedding.460

4.4 Results461

Figure 3 shows the result of pairwise comparison462

of AAG with each of the three baselines discussed463

in section 4.1, i.e. Zero-Shot, Few-Shot and RAG.464

The three bars for each method describe the ’win’,465

’loss’ and ’ties’ as explained in section 4.2. Higher466

value of ’loss’ bar for a given method and dataset467

means that AAG was preferred over that method468

on that dataset. From figure 3, it can be clearly ob-469

served that the AAG outperforms its counterpart for470

all methods on all datasets by a significant margin,471

highlighting the efficacy of our method.472

However, on the RecipeNLG dataset, it can be473

seen that the Zero-Shot method performs better474

than the AAG system. This can be attributed to475

the fact that the LLM has already seen recipes and476

information related to them in its training dataset.477

Due to this, it performs best when no context is478

provided since any form of context is going to intro-479

duce more noise for the LLM. Although AAG per-480

forms worse than Zero-Shot on RecipeNLG, it still481

surpasses the performance of Few-Shot and RAG482

which emphasizes that AAG generates a better con-483

text from the procedural memory and subsequently484

outputs a better response to the user query. For LC-485

Step and CHAMP datasets, which are relatively un-486

seen and hard for the LLM, AAG outperforms the487

Zero-Shot method by considerable margin, thereby488

bolstering our claim that AAG outshines on tasks489

outside the domain of the LLM. Refer to figures 5490

and 6 for a qualitative comparison of the generated491

procedure.492

4.5 Ablation Study493

We perform a rigorous ablation study of our pro-494

posed AAG architecture. We experiment with re-495

moving the three architectural contributions in all496

permutations, i.e. the query re-writer, summarizer497

and the self-critic guided iterative refinement. We498

summarize each of the ablation method below:499

• AAG-NOSUM: This represents the AAG sys- 500

tem but without the summarizer. Instead of creat- 501

ing summary answers for each re-written query, 502

we simply concatenate all the retrieved proce- 503

dures for all the queries, removing the duplicates 504

and form one big context with all the procedures. 505

This context is used in place of the summary 506

based context in the AAG pipeline, keeping ev- 507

erything else same. 508

• AAG-NOCR: This represents the AAG system 509

but without the self-critic guided iterative refine- 510

ment. Every other pipeline component still re- 511

mains. The output of the Update Response mod- 512

ule is considered as the final output of the system. 513

• AAG-NOSUM-NOCR: This represents the 514

AAG system but without both summarizer and 515

the self-critic guided iterative refinement. The 516

Update Response module receives the context as 517

in AAG-NOSUM and its output is considered as 518

the final output of the system. 519

• AAG-NOQR: This represents the AAG system 520

but without the query re-writing module. Since 521

there are no re-written queries, there is no sum- 522

marizer and Update Response module in this 523

method. The response from RAG is directly fed 524

into self-critic based iterative refinement, whose 525

output is considered as system’s final output. 526

Results: Figure 4 demonstrates the results for the 527

pairwise comparison between AAG and each of the 528

ablation methods above on all the three datasets. 529

From the figure, it can be clearly observed that 530

AAG performs better than AAG-NOCR with a 531

large margin on all the three datasets, highlighting 532

the importance of using the self-critic based itera- 533

tive refinement for better performance. Moreover, 534

AAG-NOSUM bars prove that removing the sum- 535

marizer module from the AAG pipeline hampers 536

the performance, thus performing worse than the 537

AAG. These findings, along with the bars for AAG- 538

NOSUM-NOCR, further strengthen the claim that 539

the combination of summarizer and the critic is 540

crucial to high performance of the AAG system. 541

In absence of any of these components, there is a 542

reduction in performance. 543

However, the case of AAG-NOQR is interesting 544

as it performs at par with AAG on RecipeNLG and 545

LCStep datasets. Since the numbers for these exper- 546

iments in the figure 4 are very close, the conclusion 547

is ambiguous. On the other hand, the addition of 548

the query re-writing module provides significant 549

advantage to AAG on the CHAMP dataset. 550
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Input: 1 lb. lean ground beef, 1 c. chopped onion, 1 c. chopped celery, 4 c. hot water, 2 c. 1/2-inch potato cubes, 1 c. thinly sliced carrots, 1 tsp. salt, 1/2 tsp. dried basil leaves, 1/4 
tsp. ginger, 1 bay leaf, 3 tomatoes, cut into eighths and sliced in half
Output:  Autumn Soup(Microwave Recipe)

Ground Truth

- Mix ground beef, onion and 
celery in 5-quart casserole 
dish. 
- Microwave at High (100%) 
until ground beef loses its pink 
color, 5 to 7 minutes, stirring 
after half of cooking time.

Zero Shot

- In a large microwave-safe bowl, 
combine the lean ground beef, chopped 
onion, and chopped celery.
- Microwave on high for 5-7 minutes, 
stirring occasionally, until the beef is 
browned and the vegetables are tender.
- Drain any excess fat from the beef 
mixture.
- Add the hot water, potato cubes, sliced 
carrots, salt, dried basil leaves, ginger, 
bay leaf, and tomatoes to the bowl. Stir 
well to combine.
- Microwave on high for 15-20 minutes, or 
until the vegetables are cooked through, 
stirring occasionally.
- Remove the bay leaf before serving.
- Enjoy your delicious Autumn Soup 
straight from the microwave!

RAG

- In a microwave-safe dish, combine lean 
ground beef, chopped onion, and chopped 
celery. Microwave on high until beef is browned 
and vegetables are tender.
- Add hot water, potato cubes, sliced carrots, 
salt, dried basil leaves, ginger, and bay leaf to 
the dish. Microwave on high until potatoes are 
tender, stirring occasionally.
- Add tomatoes to the soup and microwave 
until heated through.
- Serve the autumn soup hot.

AAG

- In a large microwave-safe casserole dish of at 
least 2-quart capacity, combine the lean ground 
beef, chopped onion, and chopped celery. 
Microwave on high until the beef is cooked 
through, breaking it up as it cooks. Look for the 
beef to be browned and no longer pink.
- Add hot water, potato cubes, sliced carrots, 
salt, dried basil leaves, ginger, and bay leaf to the 
casserole dish. Stir well to combine all the 
ingredients thoroughly.
- Cover the casserole dish with a 
microwave-safe lid or microwave-safe plastic 
wrap, leaving a small vent for steam to escape. 
Microwave on high for about 15 minutes or until 
the vegetables are tender. Check the tenderness 
of the vegetables with a fork.
- Add the tomatoes to the soup, stir, and 
microwave for an additional 2-3 minutes until the 
tomatoes are heated through.
- Remove the bay leaf before serving. Taste the 
soup and adjust seasoning with salt and pepper 
if needed. Enjoy your Autumn Soup straight from 
the microwave.

Figure 5: Qualitative example showing comparison between the ground-truth steps and the steps generated by Zero
Shot, RAG and the AAG system on the RecipeNLG dataset. The AAG procedure clearly includes more details on
how to perform each step and is easier to follow, for example in checking the tenderness of vegetables and how to
serve. The baselines on the other hand suggest steps but on a coarser granularity.

Input: an LLM
Output:  set up a custom input schema for a tool with strict requirements and custom validation logic

Ground Truth

-  Define a class `ToolInputSchema` that inherits 
from `pydantic.BaseModel`. Include the fields you 
require, in this case a URL, and a root validator 
method that checks the domain of the URL against a 
list of approved domains.
- Initialize your tool (e.g. 
`langchain.tools.requests.tool.RequestsGetTool`) with 
`ToolInputSchema` as args_schema and requests 
wrapper (e.g. `langchain.tools. 
requests.tool.TextRequestsWrapper`).
- Initialize your agent with 
`langchain.agents.initialize_agent`, providing the tool, 
the language model (e.g. `langchain.llms.OpenAI`), 
and the agent type 
(e.g.`langchain.agents.AgentType.ZERO_SHOT_REACT
_DESCRIPTION`).
4. Run the agent with a valid request using the `run` 
method. For example, a request to get the main title 
of an approved website.
5. If you try to run the agent with a request for a 
non-approved website, it will raise a 
`ValidationError`.

RAG

- Define a function for your tool that takes the 
custom input schema and includes custom 
validation logic.
- Create a `StructuredTool` using 
`langchain.tools.StructuredTool.from_function`, 
providing the function you defined in step 1.
- Initialize your agent with 
`langchain.agents.initialize_agent`, providing a 
list containing the `StructuredTool`, the 
language model, and the agent type 
`langchain.agents.AgentType.STRUCTURED_CHA
T_ZERO_SHOT_REACT_DESCRIPTION`.

AAG

-  Define a function for the tool with custom validation logic to 
enforce strict requirements, e.g. a function 
`custom_input_function(input1, input2)` with specific validation 
conditions.
- Create a `StructuredTool` using the defined function with 
`langchain.tools.StructuredTool.from_function`.
- Define a custom LLM class inheriting from 
`langchain.llms.base.LLM` and implement `_llm_type`, `_call`, 
and `_identifying_params` methods.
- Instantiate the custom LLM class with any necessary parameters 
like validation rules.
- Initialize the agent with `langchain.agents.initialize_agent` 
providing the custom LLM, the language model, and the agent type 
`langchain.agents.AgentType.STRUCTURED_CHAT_ZERO_SHOT_RE
ACT_DESCRIPTION`.
- Test the setup by running sample inputs through the tool to 
confirm the custom input schema and validation logic function 
correctly.

Figure 6: Qualitative example showing comparison between the ground-truth steps and the steps generated by RAG
and the AAG system on the LCStep dataset. The AAG procedure includes more details like function names and
signatures and good practices like testing the built systems, in contrast to the RAG system.

5 Conclusion551

We have introduced a simple framework for op-552

erating on procedural knowledge, created a novel553

LLM system that leverages this framework, and554

demonstrated its increased performance over stan-555

dard RAG, especially when generating procedures556

in domains unfamiliar to the LLM. The case where557

AAG was shown to harm performance over the558

baseline was for RecipeNLG, a domain extremely559

familiar to general-purpose LLMs like GPT-3.5.560

The system performed especially well on the LC-561

Step dataset we collected, demonstrating that AAG562

can better augment a frozen LLM with the knowl- 563

edge needed to answer questions on unseen do- 564

mains. These results show that structured proce- 565

dural memory, query rewriting, response summa- 566

rization, and iterative critique/refinement all bolster 567

the performance of our system on procedure gen- 568

eration tasks. Furthermore, these results suggest 569

that our theoretical framework provides a basis for 570

more effectively solving high-level planning tasks 571

in varied domains. 572
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Limitations and Future Work573

This framework deliberately ignores procedure574

structure that is non-linear, meaning that a non-575

linear procedure must express its non-linearity in576

the text of the steps. This is a reasonable assump-577

tion for many tasks performed by humans, but not578

for computer algorithms.579

Our AAG method as presented here does not yet580

leverage all of the structure afforded by our pro-581

cedure definition. In future work we plan to more582

tightly couple our system with the formal structure583

we have proposed, by leveraging the composable584

nature of our procedure definition to perform finer-585

grained search and reasoning over sub-procedures.586

Ethical Considerations587

The use of automated systems to generate and ex-588

ecute plans can and will result in unintended con-589

sequences, whether humans are in the loop or on590

the loop (Leins and Kaspersen, 2021). In addi-591

tion, automating actions generally done by humans592

(here planning and reasoning) has the social effect593

of anthropomorphizing these systems, leading to a594

gradual shift in accountability from human stake-595

holders onto the systems themselves (Weidinger596

et al., 2021).597

The domains which we have applied our system598

to in this work do not constitute immediate risks.599

For LCStep, the generated steps cannot easily be600

converted into code, although this could become in-601

creasingly easy as planning-based code generation602

continues to improve (Jiang et al., 2024). Mathe-603

matical problem solving poses no real-world risks.604

Thanks to Google’s AI Overviews feature, there605

has already been at least one instance of a genera-606

tive AI system producing a food recipe that would607

be harmful if followed (Robison, 2024).1 While it608

might be obvious to most that it’s a bad idea to add609

glue to food, it’s clear that automated recipe gener-610

ation could result in worse than a botched meal. No611

matter how many safeguards are added, systems612

that generate content ought to appropriately inform613

users of the risks of relying on the content without614

verification. We hope that the general public con-615

tinues to be made aware of humorous mistakes like616

this so that people learn to approach AI content617

with healthy skepticism.618

1See https://web.archive.org/web/
20240222195427/https://stayhealthyhacks.com/
can-you-freeze-off-a-mole/ for another humorous
example of incorrect food-related content generated by AI.
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A Appendix813

A.1 LCStep Dataset Creation814

LCStep contains three sets of documents: API ref-815

erence, conceptual documentation, and procedures.816

In this paper, we only used the procedures, but we817

plan to leverage the supporting material in future818

systems. See Figure 7 for a diagram of the process819

of generating the LCStep data.820

As Langchain was unstable and changing821

quickly at the time we collected the data, we made822

sure to capture the state of the code and documen-823

tation at version 0.0.249.824

A.1.1 API Reference825

We generate the API reference material from the826

source files in the LangChain GitHub repository827

using Sphinx. These files contain descriptions of828

all APIs in the Python package, including call sig-829

natures and argument descriptions. These files do830

not contain any usage examples or high-level ex-831

planation.832

A.1.2 Conceptual Documentation and 833

Procedures 834

We collected these resources by scraping the 835

Langchain Python docs when v0.0.249 was the 836

version live on the website. We manually filter out 837

topic pages and stubs, leaving 228 documents. We 838

then manually classified these into around 30 doc- 839

uments of conceptual documentation, and around 840

180 documents containing tutorials/guides. 841

For the 180 tutorials/guides, we prompted GPT- 842

4 (see Listing ??) to extract a list of high-level 843

steps necessary to accomplish the goal. We then 844

prompted GPT-4 (see Listing 2) to rate those ex- 845

tracted procedures using a list of criteria. We found 846

that this caught many mistakes where GPT-4 did 847

not follow all the stated instructions. In those cases, 848

we had the model revise the steps to meet the re- 849

quirements, and then we manually checked the 850

revised versions. 851

Listing 1: prompt for extracting procedures
852

You are helping convert tutorials 853
for a Python library into step -by- 854
step procedures. The tutorials 855
describe how to perform various 856
tasks with code and examples that 857
use relevant APIs in the library. 858
Your task is to simplify a tutorial 859
into two parts: a description of the 860
specific goal , and a minimal set of 861
the necessary instructions. Write " 862

Goal: {description }", and use 863
ordered numbering for the steps. 864

865
The goal should be a complete and 866
specific task rather than a general 867
approach , e.g. "integrate a 868
calculator into a chat model" 869
instead of "integrate custom 870
functions with OpenAI functions 871
agent". You usually should not refer 872
to specific APIs in the goal 873

description; focus on describing 874
functionality rather than a 875
particular approach. 876

877
Each instruction is a logically 878
distinct action , and explicitly 879
refers to the library methods used 880
for that action. Remove all 881
unnecessary details , code , 882
parameters , and example usage; keep 883
only the information strictly 884
necessary to accomplish the 885
procedure. A side note with 886
auxiliary info may be provided after 887
the steps , but this note must not 888

contain information relevant to 889
accomplishing the described goal. 890

891
Do not mention importing the 892
required modules as a separate step. 893
Instead , always use the full path 894

11
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Figure 7: The workflow used to generate the LCStep dataset.

to APIs (e.g. `langchain.chat_models895
.ChatOpenAI `) when referring to them896
in the steps. Do not mention897

specific API parameters unless they '898
re important to understanding how899
the procedure fits together , e.g.900
don 't include things like the901
verbosity or the model temperature902
unless those matter for903
accomplishing the stated goal.904

905
If the raw text actually contains906
more than one logically distinct907
procedure , you may then output908
multiple sets of goals and909
instructions for each different910
procedure (delimited by NEW911
PROCEDURE), but this should only be912
done if the goals are fundamentally913
different. Don 't create separate914
procedures if one procedure could be915
expressed in a side note. These916

separate procedures must not make917
reference to one another , as in "918
follow steps 2-4 from the previous919
procedure ".920921

Listing 2: prompt for checking procedures
922

You are judging the output of another923
language model on a particular task. The924
original instructions are provided925

below:926
927

BEGIN INSTRUCTIONS928
{instructions from Listing 1}929
END INSTRUCTIONS930

931
Below is an example of how you should932
judge the text. Please list whether the933
provided text passes or fails each934
requirement in the list:935

936
- [PASS] format is as expected937
- [PASS] the goal is a specific task938
rather than general approach939
- [PASS] the resources line includes940
only the required external APIs or941
models that must be accessible for the942
steps to work943
- [PASS] the steps fully achieve the944
task described in the goal945

- [PASS] does not unnecessarily refer to 946
APIs in the goal description 947

- [PASS] instructions are logically 948
distinct 949
- [FAIL] no unnecessary details , code , 950
or parameters like verbosity or 951
temperature , etc. (INSERT REASON FOR 952
FAIL) 953
- [PASS] side note is relevant if 954
present 955
- [PASS] all API references use the full 956
path 957

- [PASS] if there are multiple 958
procedures , they 're describing two 959
independent processes , not two sub 960
processes that succeed one another 961
- [PASS] if there are multiple 962
procedures , they 're describing two 963
different goals , not the same process 964
with a simple variation 965

966
If any requirement fails , correct the 967
procedure by rewriting it in a manner 968
that passes all checks. If either of the 969
last two checks fail , join the 970

procedures together and specify any 971
necessary variation in the instructions 972
or a side note. 973974

A.2 Full Example of AAG with Prompts 975

Here we’ll take an example from the LCStep test 976

set. See the attached code for the prompts adapted 977

to the other datasets. The output is set up a 978

custom input schema for a tool with strict 979

requirements and custom validation logic, 980

and the input is an LLM. The reference steps are the 981

following: 982

Listing 3: reference steps for this example
983

1. Define a class `ToolInputSchema ` 984
that inherits from `pydantic. 985
BaseModel `. Include the fields you 986
require , in this case a URL , and a 987
root validator method that checks 988
the domain of the URL against a list 989
of approved domains. 990

2. Initialize your tool (e.g. ` 991
langchain.tools.requests.tool. 992
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RequestsGetTool `) with the `993
ToolInputSchema ` as the args_schema994
and a requests wrapper (e.g. `995
langchain.tools.requests.tool.996
TextRequestsWrapper `).997
3. Initialize your agent with `998
langchain.agents.initialize_agent `,999
providing the tool , the language1000
model (e.g. `langchain.llms.OpenAI `)1001
, and the agent type (e.g. `1002
langchain.agents.AgentType.1003
ZERO_SHOT_REACT_DESCRIPTION `).1004
4. Run the agent with a valid1005
request using the `run ` method on1006
your agent. For example , a request1007
to get the main title of an approved1008
website.1009

5. If you try to run the agent with1010
a request for a non -approved website1011
, it will raise a `ValidationError `.10121013

Given the input and output strings, the first prompt1014

generates the queries:1015

Listing 4: query rewriting prompt
1016

Please output high -level steps to1017
complete the task below.1018

1019
Then , given this high -level solution ,1020
think carefully step by step and provide1021
4 search engine queries for knowledge1022

that you need to refine the solution to1023
the question.1024

1025
The output should be 'steps:' followed1026
by a bulleted list with elements1027
starting with '- ', and then 'queries:'1028
followed by another bulleted list.1029

1030
---1031

1032
I want to create set up a custom input1033
schema for a tool with strict1034
requirements and custom validation logic1035
using these resources: an LLM.10361037

The output is the following:1038

Listing 5: query rewriting output
1039

steps:1040
- Understand the requirements and1041
constraints for the tool 's input1042
schema.1043
- Identify the necessary fields and1044
validation rules based on the LLM.1045
- Implement the custom input schema1046
with the strict requirements and1047
validation logic.1048
- Test the custom input schema to1049
ensure it functions correctly.1050

1051
queries:1052
- How to define custom input schema in1053
[tool name]?1054

- Best practices for implementing1055
custom validation logic in [tool name1056
]?1057

- How to integrate an LLM into custom 1058
input schema? 1059
- Common pitfalls to avoid when 1060
setting up a custom input schema in [ 1061
tool name]? 10621063

Each of those queries is then used to retrieve 3 1064

procedures from the procedure store. Those are 1065

listed here: 1066

Listing 6: retrieved procedure titles for each query
1067

- How to define custom input schema in [ 1068
tool name]? 1069

- set up a tool that requires multiple 1070
inputs for an agent 1071

- build a structured tool chat agent 1072
capable of using multi -input tools and 1073
handling memory 1074

- set up a tool that requires a single 1075
string input for an agent 1076

- Best practices for implementing custom 1077
validation logic in [tool name]? 1078
- create custom tools for a LangChain 1079
agent and handle tool errors 1080
- create a prompt template with 1081
variable validation 1082
- set up a tool that requires multiple 1083
inputs for an agent 1084

- How to integrate an LLM into custom 1085
input schema? 1086

- set up a tool that requires multiple 1087
inputs for an agent 1088

- create a custom LLM that returns the 1089
first N characters of the input 1090

- Create a custom MRKL agent with a 1091
custom LLMChain that takes multiple 1092
inputs , capable of answering queries 1093
in a specific language 1094

- Common pitfalls to avoid when setting 1095
up a custom input schema in [tool name]? 1096

- build a structured tool chat agent 1097
capable of using multi -input tools and 1098
handling memory 1099

- set up a tool that requires multiple 1100
inputs for an agent 1101

- create custom tools for a LangChain 1102
agent and handle tool errors 11031104

Then another prompt summarizes the knowledge. 1105

For the first generated query (How to define 1106

custom input schema in [tool name]?) that 1107

looked like this: 1108

Listing 7: summarization prompt
1109

[Instruction] 1110
You are a human expert whose job is to 1111
summarise the retrieved information 1112
below to answer the question. Please 1113
include the information only from the 1114
provided knowledge and make sure that 1115
the summary is complete , short and 1116
concise. Avoid introductory and closing 1117
lines at the start and end of your 1118
response. Don 't directly refer to the 1119
titles in the provided knowledge when 1120
generating the summary. 1121

1122
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---1123
1124

[BEGIN QUESTION]1125
How to define custom input schema in [1126
tool name]?1127
[END QUESTION]1128

1129
[BEGIN INFORMATION]1130
DOCUMENTATION 'set up a tool that1131
requires multiple inputs for an agent '1132
using an LLM:1133

1134
1. Define a function for your tool that1135
takes multiple inputs.1136
2. Create a `StructuredTool ` using `1137
langchain.tools.StructuredTool.1138
from_function `, providing the function1139
you defined.1140
3. Initialize your agent with `langchain1141
.agents.initialize_agent `, providing a1142
list containing the `StructuredTool `,1143
the language model , and the agent type `1144
langchain.agents.AgentType.1145
STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION1146
`.1147

1148
DOCUMENTATION 'build a structured tool1149
chat agent capable of using multi -input1150
tools and handling memory ' using an LLM ,1151
PlayWrightBrowserToolkit:1152

1153
1. Initialize a PlayWrightBrowserToolkit1154
using `langchain.agents.agent_toolkits.1155

PlayWrightBrowserToolkit.from_browser `1156
with an asynchronous browser created1157
using `langchain.tools.playwright.utils.1158
create_async_playwright_browser `.1159
2. Get the tools from the browser1160
toolkit using the `get_tools ` method.1161
3. Initialize your language model using1162
`langchain.chat_models.ChatOpenAI `.1163
4. Initialize your agent using `1164
langchain.agents.initialize_agent `,1165
providing the tools , the language model ,1166
and the agent type `langchain.agents.1167

AgentType.1168
STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION1169
`.1170
5. Execute the `arun ` method on your1171
agent with a string as the input.1172

1173
DOCUMENTATION 'set up a tool that1174
requires a single string input for an1175
agent ' using an LLM:1176

1177
1. Define a function for your tool that1178
takes a single string input and parses1179
it into multiple inputs for the actual1180
operation.1181
2. Create a `Tool ` using `langchain.1182
agents.Tool `, providing the tool name ,1183
the function you defined , and a1184
description.1185
3. Initialize your agent with `langchain1186
.agents.initialize_agent `, providing a1187
list containing the `Tool `, the language1188
model , and the agent type `langchain.1189

agents.AgentType.1190
ZERO_SHOT_REACT_DESCRIPTION `.1191
[END INFORMATION]11921193

Then the exact prompt from our RAG implemen- 1194

tation is used to create an initial candidate set of 1195

steps: 1196

Listing 8: RAG prompt
1197

Please generate high -level steps to 1198
accomplish the specified goal using the 1199
LangChain Python library. Don 't include 1200
code , extraneous commentary , or examples 1201
, but do refer to the specific LangChain 1202
APIs (or other APIs) used in each step. 1203
Don 't produce any text other than the 1204

list of steps. Use any of the provided 1205
reference documentation to answer the 1206
question. Think carefully about your 1207
steps and enclose any steps you are 1208
uncertain about in the format like '[[ < 1209
step > ]]' 1210

1211
--- 1212

1213
DOCUMENTATION 'set up a tool that 1214
requires multiple inputs for an agent ' 1215
using an LLM: 1216

1217
1. Define a function for your tool that 1218
takes multiple inputs. 1219
2. Create a `StructuredTool ` using ` 1220
langchain.tools.StructuredTool. 1221
from_function `, providing the function 1222
you defined. 1223
3. Initialize your agent with `langchain 1224
.agents.initialize_agent `, providing a 1225
list containing the `StructuredTool `, 1226
the language model , and the agent type ` 1227
langchain.agents.AgentType. 1228
STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION 1229
`. 1230

1231
DOCUMENTATION 'set up a tool that 1232
requires a single string input for an 1233
agent ' using an LLM: 1234

1235
1. Define a function for your tool that 1236
takes a single string input and parses 1237
it into multiple inputs for the actual 1238
operation. 1239
2. Create a `Tool ` using `langchain. 1240
agents.Tool `, providing the tool name , 1241
the function you defined , and a 1242
description. 1243
3. Initialize your agent with `langchain 1244
.agents.initialize_agent `, providing a 1245
list containing the `Tool `, the language 1246
model , and the agent type `langchain. 1247

agents.AgentType. 1248
ZERO_SHOT_REACT_DESCRIPTION `. 1249

1250
DOCUMENTATION 'create a custom LLM that 1251
returns the first N characters of the 1252
input ' using LangChain 's base LLM class: 1253

1254
1. Define a custom LLM class that 1255
inherits from `langchain.llms.base.LLM `. 1256
2. Implement the `_llm_type ` property in 1257
the custom class to return a string 1258

that identifies the type of LLM. 1259
3. Implement the `_call ` method in the 1260
custom class to accept a string prompt 1261
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and optional stop words , and return the1262
first N characters of the prompt.1263
4. Implement the `_identifying_params `1264
property in the custom class to return a1265
dictionary with "n" as the key and the1266

number of characters to return as the1267
value.1268
5. Instantiate the custom LLM class ,1269
providing the number of characters to1270
return as an argument.1271

1272
Please generate a list of instructions1273
to accomplish 'set up a custom input1274
schema for a tool with strict1275
requirements and custom validation logic1276
' using the procedures above. Create and1277
use these resources in your response:1278

an LLM.12791280

The resulting candidate is listed below:1281

Listing 9: RAG result
1282

1. DOCUMENTATION 'set up a custom input1283
schema for a tool with strict1284
requirements and custom validation logic1285
' using an LLM:1286
2.1287
3. Define a function for your tool that1288
takes the desired multiple inputs and1289
includes custom validation logic to1290
enforce strict requirements.1291
4. Create a `StructuredTool ` using `1292
langchain.tools.StructuredTool.1293
from_function `, providing the function1294
you defined.1295
5. Define a custom LLM class that1296
inherits from `langchain.llms.base.LLM `.1297
6. Implement the `_llm_type ` property in1298
the custom class to return a string1299

that identifies the type of LLM.1300
7. Implement the `_call ` method in the1301
custom class to accept the structured1302
inputs from the tool function and apply1303
custom validation logic.1304
8. Implement the `_identifying_params `1305
property in the custom class to return a1306
dictionary with the required input keys1307
and their corresponding validation1308

criteria.1309
9. Instantiate the custom LLM class ,1310
providing any necessary parameters such1311
as validation rules.1312
10. Initialize your agent with `1313
langchain.agents.initialize_agent `,1314
providing a list containing the custom1315
LLM , the language model , and the agent1316
type `langchain.agents.AgentType.1317
STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION1318
`.13191320

Now we insert one of the generated summaries and1321

ask the LLM to update the candidate according to1322

the new knowledge:1323

Listing 10: update prompt
1324

Please update the provided high -level1325
steps to accomplish the specified goal1326
using the LangChain Python library.1327

Focus more on improving the uncertain 1328
steps enclosed in '[[]]'. Don 't include 1329
code , extraneous commentary , or examples 1330
, but do refer to the specific LangChain 1331
APIs (or other APIs) used in each step. 1332
Don 't produce any text other than the 1333

list of steps. Use any of the provided 1334
reference answers to relevant questions 1335
on the steps to achieve the specified 1336
goal. 1337

1338
--- 1339

1340
[BEGIN KNOWLEDGE] 1341
Q: How to define custom input schema in 1342
[tool name]? 1343
A: To define a custom input schema in [ 1344
tool name], you can follow the steps 1345
outlined in the documentation. For a 1346
tool that requires multiple inputs , 1347
define a function that takes multiple 1348
inputs , create a `StructuredTool ` using 1349
`langchain.tools.StructuredTool. 1350
from_function `, and initialize the agent 1351
with the `StructuredTool `, the language 1352
model , and the agent type `langchain. 1353

agents.AgentType. 1354
STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION 1355
`. If the tool requires a single string 1356
input , define a function that parses the 1357
string into multiple inputs , create a ` 1358

Tool ` using `langchain.agents.Tool `, and 1359
initialize the agent with the `Tool `, 1360

the language model , and the agent type ` 1361
langchain.agents.AgentType. 1362
ZERO_SHOT_REACT_DESCRIPTION `. 1363

1364
Q: Best practices for implementing 1365
custom validation logic in [tool name]? 1366
A: To implement custom validation logic 1367
in [tool name], you can follow these 1368
best practices: 1369

1370
1. Define a function that takes a single 1371
string as input and returns a string as 1372
output for the tool. 1373

2. Create a new tool using `langchain. 1374
tools.Tool.from_function `, specifying 1375
the function , a unique name , and a 1376
description. 1377
3. Handle tool errors by defining a 1378
function that takes a `ToolException ` as 1379
a parameter and returns a string , then 1380

set the `handle_tool_error ` parameter of 1381
your tool to this error handling 1382

function. 1383
4. Initialize your agent with the 1384
necessary tools , language model , and 1385
agent type according to the specific 1386
requirements. 1387

1388
Q: How to integrate an LLM into custom 1389
input schema? 1390
A: To integrate a custom LLM into a 1391
custom input schema , you can follow 1392
these steps: 1393

1394
1. Define a custom LLM class that 1395
inherits from `langchain.llms.base.LLM `. 1396
2. Implement properties and methods in 1397
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the custom class to handle input and1398
return the desired output.1399
3. Instantiate the custom LLM class with1400
the necessary parameters.1401

4. Create a `StructuredTool ` using the1402
defined function.1403
5. Initialize your agent with the custom1404
`StructuredTool `, the language model ,1405

and the appropriate agent type.1406
1407

Q: Common pitfalls to avoid when setting1408
up a custom input schema in [tool name1409

]?1410
A: When setting up a custom input schema1411
in [tool name], it is important to1412

avoid common pitfalls such as:1413
1414

- Ensuring proper initialization of1415
PlayWrightBrowserToolkit and language1416
model for structured chat agents.1417
- Defining functions correctly for tools1418
that require multiple inputs.1419

- Handling tool errors by defining error1420
handling functions for tools created1421

using SerpAPIWrapper and OpenAI.1422
[END KNOWLEDGE]1423

1424
[BEGIN STEPS]1425
1. DOCUMENTATION 'set up a custom input1426
schema for a tool with strict1427
requirements and custom validation logic1428
' using an LLM:1429
2.1430
3. Define a function for your tool that1431
takes the desired multiple inputs and1432
includes custom validation logic to1433
enforce strict requirements.1434
4. Create a `StructuredTool ` using `1435
langchain.tools.StructuredTool.1436
from_function `, providing the function1437
you defined.1438
5. Define a custom LLM class that1439
inherits from `langchain.llms.base.LLM `.1440
6. Implement the `_llm_type ` property in1441
the custom class to return a string1442

that identifies the type of LLM.1443
7. Implement the `_call ` method in the1444
custom class to accept the structured1445
inputs from the tool function and apply1446
custom validation logic.1447
8. Implement the `_identifying_params `1448
property in the custom class to return a1449
dictionary with the required input keys1450
and their corresponding validation1451

criteria.1452
9. Instantiate the custom LLM class ,1453
providing any necessary parameters such1454
as validation rules.1455
10. Initialize your agent with `1456
langchain.agents.initialize_agent `,1457
providing a list containing the custom1458
LLM , the language model , and the agent1459
type `langchain.agents.AgentType.1460
STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION1461
`.1462
[END STEPS]1463

1464
Please update the list of steps to1465
accomplish 'set up a custom input schema1466
for a tool with strict requirements and1467

custom validation logic ' using the 1468
knowledge above. Create and use these 1469
resources in your response: an LLM. 1470
Please output only the updated steps. 1471
Your response should start with '1.'. 1472
The final response should not contain 1473
direct references to the knowledge above 1474
. 14751476

Once that update is received, it is validated by 1477

the following prompt: 1478

Listing 11: validation prompt
1479

[INSTRUCTION] 1480
You are a human critic whose job is to 1481
validate the provided procedure , propose 1482
the changes to be made and evaluate if 1483

the steps lead to the mentioned user 1484
goal or not. You should also assess if 1485
the quality of the steps can be improved 1486
by modifying the flow of the steps or 1487

adding more details to make it more 1488
clear and doable. 1489

1490
Furthermore , it is very important for 1491
the procedure to use all the mentioned 1492
input resources. Carefully judge if the 1493
procedure uses all the resources and 1494
point out in your response if it misses 1495
something. 1496

1497
You should always suggest only your 1498
edits in a bulleted list. If there are 1499
no edits to be made , please only respond 1500
'NO UPDATE REQUIRED '. You are required 1501

to strictly follow the mentioned output 1502
format. 1503

1504
--- 1505

1506
[USER GOAL] 1507
set up a custom input schema for a tool 1508
with strict requirements and custom 1509
validation logic 1510

1511
[INPUT RESOURCES] 1512
an LLM 1513

1514
[BEGIN PROCEDURE] 1515
1. Define a function for your tool that 1516
takes the desired multiple inputs and 1517
includes custom validation logic to 1518
enforce strict requirements. 1519
2. Create a `StructuredTool ` using ` 1520
langchain.tools.StructuredTool. 1521
from_function `, providing the function 1522
you defined. 1523
3. Define a custom LLM class that 1524
inherits from `langchain.llms.base.LLM `. 1525
4. Implement the `_llm_type ` property in 1526
the custom class to return a string 1527

that identifies the type of LLM. 1528
5. Implement the `_call ` method in the 1529
custom class to accept the structured 1530
inputs from the tool function and apply 1531
custom validation logic. 1532
6. Implement the `_identifying_params ` 1533
property in the custom class to return a 1534
dictionary with the required input keys 1535
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and their corresponding validation1536
criteria.1537
7. Instantiate the custom LLM class ,1538
providing any necessary parameters such1539
as validation rules.1540
8. Initialize your agent with `langchain1541
.agents.initialize_agent `, providing a1542
list containing the custom LLM , the1543
language model , and the agent type `1544
langchain.agents.AgentType.1545
STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION1546
`.1547
[END PROCEDURE]15481549

The validator’s response was:1550

Listing 12: validation response
1551

**Edits :**1552
- The procedure should include more1553
specific details and examples to clarify1554
the steps for setting up a custom input1555
schema.1556

- Provide examples or templates for1557
defining the function with custom1558
validation logic and implementing the1559
custom LLM class.1560
- Add a step to test the setup to ensure1561
the custom input schema is working as1562

expected.1563
- It would be beneficial to include a1564
brief explanation of each step to1565
enhance understanding.1566

1567
Here is the revised procedure:1568

1569
[BEGIN PROCEDURE]1570
1. Define a function for your tool that1571
takes the desired multiple inputs and1572
includes custom validation logic to1573
enforce strict requirements. For example1574
:1575
```python1576
def custom_input_function(input1 ,1577
input2):1578

# Custom validation logic1579
implementation1580
if input1 > 0 and isinstance(input21581
, str):1582

return True1583
else:1584

return False1585
```1586

2. Create a `StructuredTool ` using `1587
langchain.tools.StructuredTool.1588
from_function `, providing the function1589
you defined in step 1.1590
3. Define a custom LLM class that1591
inherits from `langchain.llms.base.LLM `.1592
For example:1593
```python1594
class CustomLLM(langchain.llms.base.LLM1595
):1596

def __init__(self , model_path):1597
super().__init__(model_path)1598

```1599
4. Implement the `_llm_type ` property in1600
the custom class to return a string1601

that identifies the type of LLM.1602
5. Implement the `_call ` method in the1603

custom class to accept the structured 1604
inputs from the tool function and apply 1605
custom validation logic. 1606
6. Implement the `_identifying_params ` 1607
property in the custom class to return a 1608
dictionary with the required input keys 1609
and their corresponding validation 1610

criteria. 1611
7. Instantiate the custom LLM class , 1612
providing any necessary parameters such 1613
as validation rules. 1614
8. Initialize your agent with `langchain 1615
.agents.initialize_agent `, providing a 1616
list containing the custom LLM , the 1617
language model , and the agent type ` 1618
langchain.agents.AgentType. 1619
STRUCTURED_CHAT_ZERO_SHOT_REACT_DESCRIPTION 1620
`. 1621
9. Test the setup by running sample 1622
inputs through the tool to ensure that 1623
the custom input schema and validation 1624
logic are working as expected. 1625
[END PROCEDURE] 16261627

This cycle continues until all generated sum- 1628

maries are used. 1629
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