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Abstract

Pre-trained vision-language models (VLMs) exhibit significant vulnerability to
imperceptible adversarial perturbations. Current advanced defense strategies typ-
ically employ adversarial prompt tuning to improve the adversarial robustness
of VLMs, which struggle to simultaneously maintain generalization across both
natural and adversarial examples under different benchmarks and downstream tasks.
We propose a collaborative adversarial prompt tuning (CoAPT) approach from
pre-trained VLMs to target robust VLMs. Inspired by the image mask modeling,
we adopt an improved real-time total variation algorithm to suppress and eliminate
high-frequency details from images while preserving edge structures, thereby dis-
rupting the adversarial perturbation space. Subsequently, guided by the high-level
image and text representations in the latent space of the pre-trained VLMs, the
corrupted natural features are restored while inheriting the superior generalization
capability. Experiments on four benchmarks demonstrate that CoAPT achieves
an excellent trade-off among natural generalization, adversarial robustness, and
task-specific adaptation compared to state-of-the-art methods.

1 Introduction

Vision-language models (VLMs) such as CLIP[1] and ALBEF[2] have shown significant potential
for application in multiple industry ecosystems in recent years. However, recent studies [3, 4]
have revealed that VLMs exhibit a range of concerning vulnerabilities in real-world deployment.
When confronted with distributional biases, adversarial samples, or semantic ambiguities, they often
display reasoning biases that deviate from human cognition. As an increasing number of downstream
applications built upon VLMs as foundational models emerge, the chain reactions triggered by the
vulnerability of VLMs pose serious threats to the security and reliability of multimodal downstream
tasks. In this paper, we holistically investigate the vulnerabilities of VLMs and their adversarial
robustness, with a particular focus on the typical base model CLIP.

Current adversarial robustness strategies for VLMs primarily include model fine-tuning and adver-
sarial prompt tuning. During adversarial training, model fine-tuning [5, 6] relearns the entire set of
model parameters to adapt to adversarial examples. This process disrupts the natural data distribution
captured by the pre-trained model, leading to a contradiction between robustness and generalization.
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Adversarial prompt tuning [7, 8, 9] improves the robust adaptability of VLMs by guiding the pre-
trained models to efficiently adapt to adversarial data distributions, without altering the pre-trained
model parameters. Textual adversarial prompt tuning [10, 11] employs learnable prompts in the
language branch to match and counteract adversarial attacks from the visual branch. In contrast,
visual adversarial prompt tuning C-AVP[12] directly recognize and refine the adversarial images
to allow the pre-trained models to make more accurate predictions. More promising multimodal
adversarial prompt methods [7, 13, 14, 8] simultaneously introduce deep learnable prompts into
the visual and language branches to achieve more comprehensive adversarial robustness. Although
adversarial prompt tuning preserves the generalized feature representations of pre-trained VLMs,
excessive reliance on in-distribution adversarial samples causes degradation of their natural general-
ization distribution during the adaptation process. Out-of-distribution (OOD) or unseen tasks further
challenge the natural generalization and robustness of prompt-tuned VLMs[10].

Pre-trained VLMs retain generalizable knowledge for unseen tasks, while adversarial prompts can
guide the shift of natural distribution toward adversarial-robust distributions or downstream task-
specific distributions [15]. Therefore, we propose to leverage adversarial prompt tuning to identify
a shared latent distribution that effectively balances natural generalization, adversarial robustness,
and task-specific adaptation. Due to the inherent discrepancies among different distributions, directly
training models with a mixture of natural and adversarial samples to fit the latent distribution leads to
suboptimal solutions. Recent findings [16, 17] indicate that masked image modeling (MIM) enables
models to learn more generalizable and robust representations, which significantly enhances their
capacity to adapt to input distribution variations and improve fine-tuning performance in downstream
vision tasks. The success of MIM is due to masked image input and image-level reconstruction
objectives. However, this paradigm directs the model to pay more attention to high-frequency (HF)
components where adversarial perturbations are concentrated, thus failing to effectively improve
adversarial robustness [9]. We propose a collaborative adversarial prompt tuning (CoAPT) in
which pre-trained CLIP collaborates with a target robust CLIP to address this issue. We convert
the patch-level image masking from MIM to pixel-level image corruption for model inputs. An
improved real-time total variation (TV) regularization method is employed to suppress the adversarial
perturbation space by drastically smoothing the high-frequency details of the input images while
preserving the image edge structures. To mitigate the cost of sacrificing natural high-frequency
features, we shift the reconstruction objective from the pixel space of the target robust CLIP to the
latent representation space of the natural CLIP. The corrupted natural detail features are restored
under the guidance of high-level features of natural CLIP images and texts, thereby inheriting their
excellent generalization ability. Overall, the fine-tuned adversarial prompts work in synergy with the
frozen weights of the original pre-trained CLIP to support the target robust CLIP. They achieve a good
balance between (a) improving adversarial robustness while maintaining natural performance on in-
distribution tasks, and (b) maintaining natural generalization while enhancing the robust adaptability
of the original VLMs on OOD or unseen tasks. Our contributions are threefold:

• We propose a novel paradigm for adversarial prompt tuning that learns robust CLIP from
the latent space of natural CLIP. CoAPT weakens high-frequency details of input images to
suppress the adversarial perturbation space. Guided by natural CLIP, corrupted generaliza-
tion features are restored in the latent space. We introduce Rényi divergence to minimize
the discrepancy between the similarity distributions of adversarial and natural examples.

• We design a real-time adaptive TV regularization method to efficiently suppress the pertur-
bation space. It addresses the slow convergence and residual adversarial perturbations of
traditional TV regularization by combining a spatially adaptive regularization strategy based
on edge strength response and an accelerated gradient method with adaptive restart.

• An optimal trade-off among natural generalizability, adversarial robustness, and task-specific
adaptation is achieved. Without benchmark-specific or dataset-specific hyperparameter
tuning, we improve natural and adversarial robustness performance on 15 datasets across
four benchmarks by an average of 9.83% and 24.16%, respectively.

2 Related Work

Adversarial attacks on VLMs. Adversarial attacks induce incorrect decisions in VLMs by applying
elaborate and imperceptible perturbations to the input texts or images[18, 19, 20, 21, 22]. Text-
based attacks [23, 24, 25, 26] mislead models into generating incorrect outputs through synonym
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substitution, rewriting, or character-level perturbations. FGSM [27], PGD [28], AutoAttack [29],
and C&W [30] are classical image-based white-box attacks that construct adversarial images by
accessing model parameters and gradient information. In terms of multimodal attacks, Co-Attack [31]
is a white-box attack method designed for VLMs, while more works focus on building transferable
adversarial black-box attack frameworks [32, 33, 34, 35, 36, 37].

General adversarial robustness. Researchers have proposed multiple robustness strategies to
enhance the reliability of models in adversarial settings [38, 39]. Detector-based approaches [40, 41]
defend against adversarial attacks by detecting and filtering anomalous patterns within input samples.
Purification methods [42, 43, 44] utilize techniques such as image transformations [45, 46] and
denoising filters [47] to disrupt or remove potential adversarial perturbations from the input, yet
they run the risk of weakening normal sample characteristics. Certified robustness approaches
[48, 49, 50] provide theoretical and verifiable guarantees for model robustness, though they are
typically applicable only to simple threat models with small certified radii. Adversarial training
[51, 52, 53, 54] addresses model vulnerabilities by mining potential adversarial examples in the
dataset and adapting the model to withstand adversarial attacks during the training process.

Adversarial robustness of VLMs. Numerous studies have explored the robustness of VLMs under
adversarial attacks, mainly including defense strategies based on model fine-tuning and adversarial
prompt tuning. TeCoA [5] and LAAT [6] enhance zero-shot adversarial robustness by leveraging
the semantic consistency of the text encoder to guide fine-tuning of the image encoder. PMG-AFT
[55] and FARE [56] leverage the generalization features of the original pre-trained model to improve
the adversarial robustness of the CLIP visual encoder on downstream tasks while preserving natural
generalizability. Prompt tuning serves as a lightweight adaptation approach that facilitates the efficient
transfer of pretrained models toward the target task distribution [57, 15, 58, 59]. Recent studies
[7, 8, 9] have shown that adversarial prompt tuning can efficiently enhance the robust adaptability of
VLMs. APT [10] and AdvPT [11] approaches improve model robustness by introducing learnable
textual prompts into the language branch of CLIP to align with adversarial image embeddings.
Correspondingly, C-AVP [12] and TeCoA [5] incorporate learnable visual prompts to defend against
adversarial attacks. Recent multimodal adversarial prompt methods [7, 13, 14, 8] enhance the
consistency between visual and language features of adversarial examples under the guidance of
pre-trained CLIP, thereby balancing natural generalization and robust adaptation.

3 Proposed Method

Although prompt learning preserves the general representations of pre-trained VLMs, the adapted
prompts lead to overfitting on specific supervised tasks. We propose architectural refinements to
enhance VLMs for achieving robustness in both in-distribution and OOD scenarios. Figure 1 provides
an overview of our proposed approach, with further details presented in the following sections.

3.1 Preliminaries

CLIP recap. Let Vθv (·) and Tθt(·) denote the image encoder and text encoder of CLIP, respectively,
where θv and θt represent the corresponding pre-trained weights. Given a natural image v, the input
sequence for the visual branch is constructed as ṽ = {vcls, v1:M}, where v1:M are the patch-level
linearly projections of the image, and vcls is a learnable vector aggregating global features. Given a
manually designed fixed text template t, the input sequence for the language branch is constructed
as t̃ = {tsos, t1:N , tc, teos}, where t1:N and tc represent the word embeddings of the template text
and the class label, respectively. tsos and teos are non-parametric start and end tokens. The input
sequences from the visual and language branches are encoded by CLIP in the latent space into
image embeddings Vθv (ṽ) and text embeddings Tθt(t̃), respectively. During zero-shot inference,
the similarity between Vθv (ṽ) and the text embeddings of all candidate categories {Tθt(t̃c)}Cc=1 is

computed as
exp(sim(Vθv (ṽ),Tθt (t̃))/ϑ)∑C

c=1 exp(sim(Vθv (ṽ),Tθt (t̃c))/ϑ)
, where sim(·, ·) denotes the cosine similarity function,

ϑ is the temperature parameter, and C is the total number of classes.

Adversarial attacks against CLIP. Given a natural image v with ground-truth label y, adversaries
construct a perceptually imperceptible adversarial example vadv = v+δ by optimizing the perturbation
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Figure 1: An overview of CoAPT. Natural CLIP processes natural images and extended descriptive
text inputs. Robust CLIP takes as input the images subjected to HF suppression via the real-time
Adaptive-FGP algorithm and restores the corrupted natural generalization features under the guidance
of Natural CLIP in the latent space. The outputs of Robust CLIP are collaboratively regulated by
the frozen CLIP weights θ, the trainable deep multimodal adversarial prompts ϕ, and the low-rank
residual modules φ. The Rényi branch explicitly regulates the discrepancy between natural and
adversarial distributions by calculating the divergence between their similarity scores.

δ within a q-norm ball of radius ϵ. A successful attack must satisfy the following criteria:

arg max
c∈{1,...,C}

sim(Vθv (ṽadv), Tθt(t̃c)) ̸= y, s.t. ∥vadv − v∥q ≤ ϵ. (1)

Adversarial prompt tuning. APT enhances the adversarial adaptability of pre-trained VLMs for
specific or novel downstream tasks by optimizing visual or textual prompts through adversarial
training. Given the prompts ϕ = {ϕ1:V

v , ϕ1:T
t } to be optimized during adversarial training, where V

and T represent the number of trainable tokens within the visual and textual prompts, respectively.
Adversarial visual-only and text-only prompting [10, 11, 12] typically employs shallow prompting,
where prompts are inserted solely into the input sequences. Specifically, the visual and textual input
sequences are updated as ṽ = {vcls, ϕ1:V

v , v1:M} and t̃ = {tsos, ϕ1:T
t , tc, teos}. Building upon shal-

low prompting, both independent and joint vision-language adversarial prompting [7, 8] incorporate
deep prompts into multiple layers within the visual and language transformer architectures.

We aim to develop joint vision-language adversarial prompts that learn adversarial transformation-
invariant features during training, strengthening the adversarial robustness of the CLIP visual branch.
We still denote the adversarial deep prompts as ϕ. Given a downstream dataset D, ϕ is optimized
jointly with the frozen parameters θ on adversarial examples. Focusing on the ℓ∞ threat model, the
adversarial optimization process for obtaining the optimal parameters of robust prompts ϕ∗ can be
formalized as:

ϕ∗ = argmin
ϕ

E(v,y)∼D

[
max

∥vadv−v∥∞≤ϵ
L(Vθv,ϕv

(ṽadv), Tθt,ϕt
(t̃c))

]
. (2)

3.2 Real-Time Total Variation Regularization for High-Frequency Suppression

Background on total variation. Total variation regularization is implemented in the continuous
and discrete settings by solving an unconstrained convex optimization problem in its penalized form:

min
u∈U

1

2λ
∥u− v(adv)∥2 + ∥u∥TV, (3)

where u ∈ U = Rm×n denotes the image to be restored, v(adv) ∈ U represents either a natural
or adversarial image. For simplicity, v is used uniformly in this section. ∥·∥TV represents the
discrete total variation of the image gradient, and λ > 0 balances the fidelity and regularization terms.
Chambolle[60] transforms Eq. (3) into a nonlinear projection problem on a constrained space via dual
formulation. However, this method lacks real-time capability and is prone to over-smoothing image
details and residual adversarial perturbations. We design adaptive-FGP, a fast gradient projection
(FGP) method with an adaptive restart mechanism and a spatially adaptive regularization strategy.
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Accelerated gradient method with adaptive restart mechanism. We obtain the optimal solution
from a norm-constrained dual vector field, thereby recovering v in the form:

min
w∈W

{
f(wk) :=

∥∥v − γ(v) · div(wk)
∥∥2} , (4)

where k denotes the current time step, andW ⊆ R(m−1)×n × Rm×(n−1) is the unit-ball constraint
set for the gradient dual components wk

i,j = (pk,xi,j , pk,yi,j )
⊤. If the gradient vector is defined in

both horizontal and vertical directions, it satisfies ∥wk
i,j∥ ≤ 1. Otherwise, only the single-direction

constraint remains, satisfying ∥pk,xi,n ∥∞ ≤ 1 and ∥pk,ym,j∥∞ ≤ 1. div(·) denotes the discrete divergence
operator, which maps the dual variables w from the vector fieldW to the image domain U . The
gradient of f(wk) can be computed as∇wkf(wk) = −2 · γ(v) · div∗

(
v − γ(v) · div(wk)

)
. Using

a step size of 1/L, where L denotes the Lipschitz constant of f(wk) with its upper bound derived as
16γ2(v) in the Appendix B. The dual variable update rule can be expressed as:

wk = ΠW

(
w̄k − ∇(v − γ(v) · div(w̄k))

8 · γ(v)

)
, (5)

where ΠW represents the projection operator. The update of w̄ is performed as follows:

w̄k+1 =

{
wk + (τk − 1) ·

(
wk −wk−1

)
/τk+1, if θk < θth,

wk, otherwise,
(6)

when θk meets the predefined threshold θth, the Nesterov [61] time-scale variable is updated with
τk+1 =

(
1 +

√
1 + 4τ2k

)
/2; otherwise, it is reset to 1.0. The solution to the objective function

is denoted as uk = v − γ(v) · div(w̄k−1). The solution increments at two consecutive time steps
are defined as σk = uk − uk−1 and σk−1 = uk−1 − uk−2. Whether the current momentum
accumulation benefits the variable update is determined utilizing a cosine similarity-based adaptive
restart criterion:

cos(θk) =
⟨σk, σk−1⟩

∥σk∥ · ∥σk−1∥+ ζ
, (7)

where ζ is a numerical stabilization term. When the angle between directions exceeds 90◦, it signals
a sharp deviation or reversal between momentum and update, indicating trajectory discontinuity. We
then reset the temporal scaling and disable momentum to avoid overshooting.

Spatially adaptive regularization strategy. The regularization map γ(v) ∈ Rm×n
+ is given by:

γ(v) = µbase · (1 + µgain · Φ(v)) , (8)

where µbase, µgain ∈ R+ represent the base regularization strength and the sensitivity of the adjustment
factor, respectively. The edge magnitude response function Φ(v) ∈ Rm×n

+ is estimated using Sobel
convolution kernels as

√
(v ∗Kx)2 + (v ∗Ky)2, where Kx and Ky denote the horizontal and

vertical Sobel operators respectively. This adaptive regularization strategy automatically reduces the
regularization strength in edge regions while enhancing it in flat regions, thereby preserving structural
image details and effectively suppressing adversarial perturbations.

Convergence criterion. The relative change in update is measured through the Frobenius norm:

max
i∈{k, k−1, ..., k−s}

∥σi∥F
∥ui∥F + ζ

< ξ. (9)

If the convergence tolerance threshold ξ > 0 is satisfied for s consecutive iterations, the projection
optimization problem is considered to have converged. Based on the optimal solution wk⋆(v), the
optimal image estimate for the original problem can be recovered as ρ(v) = v − γ(v) · div(wk⋆(v)).

3.3 Natural-Latent-Guided Adversarial Prompt Learning

Reconstruction of natural generalization representations. CoAPT employs deep contextual
multimodal prompts and refines visual prompts through linear projection onto language prompts
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to foster synergy between visual-language prompts. As illustrated in Figure 1, we efficiently learn
generalizable knowledge from the natural CLIP by aligning its clean vision-language embeddings
with adversarial embeddings from the robust CLIP in the latent space. Notably, Vanilla CLIP
employs fixed text templates, which limit its ability to capture the semantic diversity required for
generalization effectively during fine-tuning. A Gaussian radial basis function (RBF) is used to
measure the embedding similarity between the natural CLIP and the robust CLIP in the latent space.
Compared to cosine similarity, which primarily captures angular differences of vectors, Gaussian
RBF highlights feature shifts caused by small-scale perturbations, allowing more sensitive detection
of subtle distributional changes. In particular, we align both the visual and language branches:

Lrecon = 2− exp
(
−β

(
∥Vθv,ϕv,φv

(ρ(ṽadv))− Vθv (ṽ)∥22 + ∥Tθt,ϕt,φt
(t̃)− Tθt(t̃)∥22

))
, (10)

where the parameter β = (2σ2)−1 controls the sensitivity of distance variation to similarity. φv and
φt are the low-rank residual modules introduced next. The learnable prompts in both the language
and visual branches can adapt the data distribution of Vanilla CLIP to that of specific downstream
adversarial tasks, while preserving and enhancing generalization and robustness to OOD tasks.

Low-rank residual module. Directly imposing consistency constraints in the latent space is
equivalent to introducing a strong supervisory signal, which lacks the flexibility to adapt to task-
specific requirements and interpretable deviations. Inspired by LoRA [62], we introduce two low-rank
matrices as an intermediate learnable bottleneck structure. This design allows the model to preserve
the backbone features while selectively capturing fine-grained task-specific shifts within a compact
subspace. Specifically, we incorporate an additional update term through low-rank reparameterization:

Vθ,ϕ,φ = (I + η ·BA)Vθ,ϕ, (11)

where η is the scaling factor, B ∈ Rd×r, A ∈ Rr×d, and r ≪ d. The initial parameter perturbation is
controlled by initializing the matrices as A ∼ N (0, 1/r) and B ∼ δ(0).

Rényi regularization. Let P and Q denote the predicted probability distributions of natural and
adversarial samples in the vision-language space of robust CLIP, respectively. Since adversarial sam-
ples are derived from minor perturbations of natural samples, P is considered absolutely continuous
with respect to Q. We introduce a regularization loss based on the α-order Rényi divergence [63] to
reduce the discrepancy between the natural and adversarial predictive distributions in robust CLIP:

Lrényi =
1

α− 1
logEP

[(
dP

dQ

)α−1
]
, α ∈ [0,∞), (12)

where dP
dQ is the Radon–Nikodym derivative of P with respect to Q. α explicitly controls the sensitiv-

ity to distributional differences. Higher orders (α > 1) enhance the ability of the model to suppress
spurious correlations. This mechanism corrects potential discriminative boundary ambiguities and
reduces overfitting risks by preserving task-beneficial generalized features. Correspondingly, the
supervised loss for downstream classification tasks can be expressed with the Rényi cross-entropy
[64]:

Lrce =
α

1− α
log

∑
i

P (i) ·Q(i)
α−1
α , α ∈ [0,∞). (13)

Note that the Rényi cross entropy degenerates into Shannon cross entropy when the dataset labels are
represented in one-hot coding. The overall training objective of CoAPT can be expressed as follows:

Lcoapt = κ1Lrecon + κ2Lrényi + κ3Lrce, (14)

κ1, κ2, κ3 are hyperparameters weighting contributions of individual losses to the overall objective.

Overview of proposed method. Algorithm 1 illustrates the adversarial prompt optimization pro-
cedure adopted by CoAPT. In each training iteration, a batch of image-label pairs (v, y) is sampled
from the downstream dataset D. Subsequently, the visual and textual sequences are constructed and
accompanied by trainable deep prompts. Perceptually invisible adversarial examples vadv are crafted
under ℓ∞ norm constraints to induce erroneous model predictions (Lines 2∼4). These sequences are
then fed into the natural CLIP and the robust CLIP equipped with low-rank residual modules φv and
φt to obtain the corresponding visual and language representations (Lines 5∼9). CoAPT integrates
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Algorithm 1 Natural-Latent-Guided Adversarial Prompt Learning

Input: Dataset D, frozen CLIP encoders Vθv , Tθt , prompt parameters ϕ = {ϕv, ϕt}, low-rank
modules φ = {φv, φt}, loss weights κ1, κ2, κ3, adversarial budget ϵ

Output: Optimized robust prompts ϕ⋆

1: for each minibatch (v, y) ∼ D do
2: Set the real-time total variation regularization parameters
3: Construct input sequences ṽ, t̃ and deep prompts ϕ
4: Generate adversarial example vadv under ℓ∞ constraint: ∥vadv − v∥∞ ≤ ϵ
5: Generate visual and textual representations for natural CLIP and robust CLIP:
6: Vnat ← Vθv (ṽ)
7: Tnat ← Tθt(t̃)
8: Vadv ← Vθv,ϕv,φv

(ρ(ṽadv))
9: Tadv ← Tθt,ϕt,φt

(t̃)
10: Compute reconstruction loss Lrecon ← 2− exp

(
−β(∥Vadv − Vnat∥22 + ∥Tadv − Tnat∥22)

)
11: Compute visual-textual representation similarity P = scale · Vnat · T ⊤

nat , Q = scale · Vadv · T ⊤
adv

12: Compute Rényi divergence loss Lrényi ← 1
α−1 logEP [(

dP
dQ )α−1]

13: Compute Rényi cross-entropy loss: Lrce ← α
1−α log

∑
i P (i) ·Q(i)

α−1
α

14: Take gradient step on ∇ϕ,φ(κ1Lrecon + κ2Lrényi + κ3Lrce)
15: ϕ, φ← Backward(∇ϕ,φ)
16: end for

three losses, including a reconstruction loss for recovering generalization, a Rényi divergence loss to
quantify prediction discrepancies between natural and adversarial samples, and a cross-entropy loss
for classification (Lines 10∼13). Finally, only the prompt parameters ϕ and the low-rank module
parameters φ are updated via gradient descent. Adversarial prompt learning significantly improves
the robust generalization of the model under image perturbations and distributional shifts, and exhibits
strong cross-task transferability (Lines 14∼15).

4 Experiments

4.1 Evaluation Settings

Datasets and benchmark settings. We conduct a comprehensive evaluation of the proposed CoAPT
method across four benchmark settings on 15 datasets spanning diverse vision tasks. For the evaluation
of few-shot learning, base-to-novel class generalization, and zero-shot benchmarks, we adopt 11
image classification datasets, including EuroSAT [65] for satellite imagery, UCF101 [66] for action
recognition, DTD [67] for texture classification, SUN397 [68] for scene recognition, Caltech101
[69] and ImageNet [70] for general object recognition, and FGVC Aircraft [71], Flowers102 [72],
OxfordPets [73], Food101 [74], and StanfordCars [75] for fine-grained classification tasks. For
the OOD benchmark, we select four variants of ImageNet, ImageNet-A [76], ImageNet-R [77],
ImageNet-Sketch [78], and ImageNetV2 [79], as the domain generalization test sets. Notably, both
zero-shot and OOD utilize the training set of ImageNet as the source dataset.

Adversarial training and evaluation. The attack settings of baseline methods TeCoA [5] and
FAP [7] are adopted to ensure fair comparison. During adversarial training, we adopt a two-step
PGD attack with a maximum perturbation magnitude ℓ∞ = 1/255 and step size α = 1/255. For
robustness evaluation, we employ a 100-step PGD attack under the same constraints to thoroughly
assess the defense capability of the model under strong attacks.

Implementation details. Our method is built upon the ViT-B/32 architecture of Vanilla CLIP. Each
experiment is conducted three times with different random seeds, and the average results are reported.
The convergence tolerance threshold in Adaptive-FGP is set to ξ = 1e−3, s = 3, and the maximum
number of iterations is 30. The parameters of the regularization factor map γ(v) are set to µbase = 0.1
and µgain = 1.2. We employed 2.5-order Rényi divergence regularization, with Lcoapt coefficients set
to κ1 = 8, κ2 = 1, κ3 = 1. Adversarial prompts with a length of 4 and a depth of 9 are applied to
both the visual and textual branches. The RAdam optimizer with an initial learning rate of 0.00735

7



Vanilla CLIP Nat.
Vanilla CLIP Rob.

AdvVLP Nat.
AdvVLP Rob.

AdvMaPLe Nat.
AdvMaPLe Rob.

FAP Nat.
FAP Rob.

CoAPT Nat.
CoAPT Rob.

0 1 2 4 8 16

20

40

60
A

cc
ur

ac
y 

/ R
ob

us
tn

es
s (

%
)

Average

0 1 2 4 8 16
0

20

40

60

ImageNet

0 1 2 4 8 16

40

60

80

Caltech101

0 1 2 4 8 16
0

20

40

60

DTD

0 1 2 4 8 16
0

20

40

60

80

A
cc

ur
ac

y 
/ R

ob
us

tn
es

s (
%

)

EuroSAT

0 1 2 4 8 16
0

10

20

30

40
FGVCAircraft

0 1 2 4 8 16
0

20

40

60

80
Food101

0 1 2 4 8 16
0

20

40

60

80

Flowers102

0 1 2 4 8 16
Shots per class

0

20

40

60

80

A
cc

ur
ac

y 
/ R

ob
us

tn
es

s (
%

)

OxfordPets

0 1 2 4 8 16
Shots per class

0

20

40

60

StanfordCars

0 1 2 4 8 16
Shots per class

0

20

40

60

SUN397

0 1 2 4 8 16
Shots per class

0

20

40

60

80
UCF101

Figure 2: The few-shot performance across 11 benchmark datasets under varying numbers of shots.

is adopted, and the batch size is set to 64. In contrast to the existing research work, we do not set
proprietary hyperparameters for any of the benchmarks and datasets, in order to prove the generality
of the proposed CoAPT. Under few-shot settings we compare with FAP and baselines from its paper.

4.2 Adversarial Few-Shot Learning

The robust generalization capability of each model to specific tasks is evaluated under the condition of
only a few identically distributed samples. As shown in Figure 2, CoAPT demonstrates consistently
superior performance compared to all baseline methods. CoAPT exhibits robust learning ability with
near-linear steady improvement in natural and adversarial accuracy as the number of shots increases.
In contrast, the baseline methods show significant performance fluctuations across different shot
counts. Furthermore, our approach achieves superior control over the trade-off between natural
accuracy and adversarial robustness. In most of the datasets, CoAPT is able to match the natural
accuracy of Vanilla CLIP with only 1-shot learning. On six datasets, including Caltech101, our robust
accuracy is even higher than the natural accuracy of the baseline method. The robust accuracy of
CoAPT on five datasets, including DTD, can be improved to higher than the natural accuracy of
Vanilla CLIP by few-shot learning.

4.3 Adversarial Base-to-New Generalization

We assess the ability of the models to balance robust adaptation to specific class distributions and
robust generalization to unseen class distributions. Specifically, the models are trained on base
classes with a 16-shot setting and jointly evaluated on the base classes and the novel unseen classes.
As shown in Table 1, our method outperforms state-of-the-art approaches on all datasets. While
improving the average harmonic mean (HM) of robustness by 32.39%, the natural generalization
performance of the model also achieves an average gain of 13.09%. Notably, the harmonic mean
of robustness for novel classes reaches a maximum of 51.57% on the OxfordPets dataset. These
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Table 1: Comparison with state-of-the-art methods on base-to-novel generalization. Gain denotes the
absolute performance improvement.

(a) Average (b) ImageNet (c) Caltech101 (d) DTD
Acc. FAP CoAPT Gain↑
Base 70.52 78.47 7.95

N
at

.

Novel 49.58 65.35 15.77
HM 58.22 71.31 13.09
Base 38.05 67.70 29.65

R
ob

.

Novel 21.86 54.13 32.27
HM 27.77 60.16 32.39

Acc. FAP CoAPT Gain↑
Base 58.10 66.15 8.05

N
at

.

Novel 47.83 55.41 7.58
HM 52.47 60.30 7.84
Base 25.83 52.65 26.82

R
ob

.

Novel 21.57 45.07 23.50
HM 23.51 48.57 25.06

Acc. FAP CoAPT Gain↑
Base 94.07 97.25 3.18

N
at

.

Novel 76.53 92.72 16.19
HM 84.40 94.93 10.53
Base 74.20 94.38 20.18

R
ob

.

Novel 50.00 88.03 38.03
HM 59.74 91.09 31.35

Acc. FAP CoAPT Gain↑
Base 69.17 76.08 6.91

N
at

.

Novel 35.17 54.03 18.86
HM 46.63 63.17 16.54
Base 41.63 67.98 26.35

R
ob

.

Novel 19.77 43.88 24.11
HM 26.81 53.31 26.50

(e) EuroSAT (f) FGVCAircraft (g) Food101 (h) Flowers102
Acc. FAP CoAPT Gain↑
Base 87.70 91.61 3.91

N
at

.

Novel 32.80 56.11 23.31
HM 47.74 69.33 21.59
Base 51.80 84.67 32.87

R
ob

.

Novel 13.40 47.40 34.00
HM 21.29 60.55 39.25

Acc. FAP CoAPT Gain↑
Base 24.83 35.37 10.54

N
at

.
Novel 15.83 25.41 9.58
HM 19.33 29.58 10.24
Base 8.00 25.37 17.37

R
ob

.

Novel 4.23 16.68 12.45
HM 5.53 20.12 14.59

Acc. FAP CoAPT Gain↑
Base 72.37 78.20 5.83

N
at

.

Novel 68.20 79.47 11.27
HM 70.22 78.83 8.60
Base 27.57 62.03 34.46

R
ob

.

Novel 24.20 62.86 38.66
HM 25.78 62.44 36.66

Acc. FAP CoAPT Gain↑
Base 89.30 94.94 5.64

N
at

.

Novel 45.67 63.07 17.40
HM 60.43 75.79 15.36
Base 65.50 88.57 23.07

R
ob

.

Novel 18.10 51.89 33.79
HM 28.36 65.42 37.06

(i) OxfordPets (j) StanfordCars (k) SUN397 (l) UCF101
Acc. FAP CoAPT Gain↑
Base 87.37 90.55 3.18

N
at

.

Novel 72.13 94.50 22.37
HM 79.02 92.48 13.46
Base 34.13 78.72 44.59

R
ob

.

Novel 26.07 83.71 57.64
HM 29.56 81.13 51.57

Acc. FAP CoAPT Gain↑
Base 53.97 73.34 19.37

N
at

.

Novel 42.67 59.20 16.53
HM 47.66 65.51 17.85
Base 18.60 54.20 35.60

R
ob

.

Novel 14.10 40.95 26.85
HM 16.04 46.65 30.61

Acc. FAP CoAPT Gain↑
Base 68.47 76.69 8.22

N
at

.

Novel 61.47 70.46 8.99
HM 64.78 73.44 8.66
Base 34.63 64.50 29.87

R
ob

.

Novel 30.77 58.50 27.73
HM 32.59 61.35 28.76

Acc. FAP CoAPT Gain↑
Base 70.37 82.95 12.58

N
at

.

Novel 47.10 68.45 21.35
HM 56.43 75.00 18.57
Base 36.63 71.65 35.02

R
ob

.

Novel 18.30 56.50 38.20
HM 24.41 63.18 38.77

results demonstrate that the robust prompts learned by CoAPT not only adapt to category-specific
distributional shifts and distributional discrepancies between natural and adversarial examples but
also effectively preserve the natural generalization capability of the original pretrained model.

4.4 Zero-Shot Performance

Table 2: CoAPT performance on source dataset
and average results across 10 target datasets.

Method ImageNet Average

Nat. Rob. Nat. Rob.

CLIP 62.10 1.57 61.89 4.53
FAP 50.80 21.60 45.72 23.89

CoAPT 63.421.32↑ 51.1829.58↑ 54.067.83↓ 43.9020.01↑

The generalization ability of the models across
datasets is explored. CoAPT is trained on Ima-
geNet as the source dataset and then evaluated on
ten different types of downstream target datasets.
The evaluation for each dataset and the corre-
sponding statistical results are presented in Fig-
ure 3 and Table 2, respectively. Compared to the
FAP method, our approach achieves significant
improvements across all metrics on all datasets, particularly in adversarial robustness. We attain a
better trade-off between natural and adversarial generalization. Relative to Vanilla CLIP, we sacrifice
only 7.83% in natural generalization accuracy while achieving absolute gains of 49.61% and 39.37%
in robustness on the source and target datasets.
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Figure 3: Zero-shot robust and natural accuracies on the source and 10 target datasets.
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4.5 Out-of-Distribution Performance

We test the natural generalization and adversarial robustness of the model under domain distribution
shift. While maintaining ImageNet as the source dataset, we conduct direct evaluations on four
representative variant datasets that share the same set of categories. As shown in Table 3, our method
achieves superior natural generalization and robust adaptation across all target datasets compared to
the comparison methods.

Table 3: Comparison of OOD generalization performance.

Method ImageNet-A ImageNet-R ImageNet-Sketch ImageNet-V2 Average

Nat. Rob. Nat. Rob. Nat. Rob. Nat. Rob. Nat. Rob.

FAP 9.40 1.20 51.60 28.20 28.40 16.30 42.80 16.60 33.05 15.575
CoAPT 16.997.59↑ 9.728.52↑ 60.358.75↑ 50.7122.51↑ 35.767.36↑ 29.1312.83↑ 54.3511.55↑ 42.2325.63↑ 41.868.81↑ 32.9517.37↑

4.6 Ablation Analysis

As shown in Table 4, we progressively ablate CoAPT components to evaluate their generalizability and
importance across the four benchmarks. CoAPT with all components achieves the best performance
on all benchmarks. We first remove the adaptive restart mechanism. Most metrics exhibited varying
degrees of degradation, with 16-shot and OOD robust accuracy declining by 1.85% and 1.69%,
respectively. This mechanism restores optimal convergence without prior knowledge of function
parameters and enhances stability near the optimum. We replace the spatially adaptive regularization
strategy with a fixed global regularization factor. The ablated model ignores the diversity of image
spatial structures, leading to structural blurring and loss of details, with an average drop of 6.00%
in clean accuracy across the four benchmarks. We subsequently remove the entire adaptive-FGP
method, thereby eliminating the adversarial space compression. During high-level feature recovery
in the natural CLIP latent space, the model places greater emphasis on high-frequency components
where adversarial perturbations are concentrated, resulting in a degradation in adversarial robustness.
However, even with full natural images, the ablated model yields lower natural accuracy than full
CoAPT across all benchmarks. Removing the low-rank residual module leads to drops in few-shot-16
robustness and base-to-novel accuracy. As it is sensitive to dataset-specific hyperparameters and
was not fine-tuned, its effectiveness is limited. However, due to its potential on certain datasets, the
module is retained. When we remove Rényi regularization, the overall performance of the model
decreases. Rényi regularization facilitates early detection and correction of boundary ambiguities,
and mitigates overfitting by preserving task-relevant generalizable features. CoAPT reduces to a
TeCoA-like approach when the final reconstruction loss is removed. The performance drop on unseen
tasks is due to the reconstruction loss guiding prompts toward task-irrelevant generalization.

Table 4: Ablation study of CoAPT components on 15 datasets across four benchmarks.
Few-shot-16 Base-to-novel Zero-shot OOD

Ablation term Nat. Rob. Nat. Rob. HM Nat. Rob. HM Nat. Rob. Nat. Rob.

No ablation 74.96 62.98 78.47 67.70 72.69 65.35 54.13 59.21 54.91 44.57 41.86 32.95
Adp. rst. 74.82 61.13 78.31 66.73 72.06 65.56 53.40 58.86 54.38 43.06 40.91 31.26
Adp. reg. 68.86 63.34 73.33 68.03 70.58 57.74 52.87 55.20 49.16 44.15 34.86 31.70
Adp. FGP 74.34 31.64 78.15 35.92 49.21 64.36 24.41 35.40 53.00 18.65 38.52 13.21
Res. mod. 74.64 31.41 78.33 35.99 49.32 64.18 26.00 37.01 55.07 19.74 41.04 14.31

Rényi 73.09 30.73 78.18 33.66 47.06 63.57 24.97 35.86 55.30 19.84 41.05 14.55
Recon. loss 71.82 31.47 76.66 34.52 47.60 58.71 22.25 32.27 51.85 19.85 38.66 13.91

5 Conclusion

We focus on the adversarial robustness of VLMs and propose a novel adversarial prompt tuning
paradigm in which pre-trained VLMs collaborate with target robust VLMs. CoAPT begins with a
proposed real-time adaptive TV regularization algorithm to attenuate high-frequency details of the
input images to compress the perturbation space of the adversarial samples. Subsequently, under the
guidance of natural CLIP, CoAPT restores the natural generalization features disrupted by adversarial
perturbations in the latent representation space. CoAPT achieves an effective trade-off among natural
generalization, adversarial robustness, and task-specific adaptation. The overall performance of
CoAPT significantly surpasses that of current state-of-the-art methods on 15 datasets across the
benchmarks of few-shot, base-to-novel, zero-shot, and out-of-distribution generalization.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly explain the scope and importance of the
work, and the main contributions are summarized at the end of the introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: The limitations of this paper are discussed in the appendix.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: Only a small portion of this work requires theoretical justification, which has
been rigorously proven. The remaining contributions focus on improving adversarial prompt
learning from an empirical perspective.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide detailed implementation information in Section 4.1 and the ap-
pendix to support the reproduction of our experimental results. The corresponding code will
also be included in the supplemental material.
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Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: For datasets, we only use open-source datasets that are publicly available. For
codes, we list the original paper of baseline methods in the appendix with access to their
respective code repositories.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: In the experimental section, we give all details concerning the experiment
settings, parameter values, optimizer, etc.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the average performance and standard deviations across multiple
runs in the experimental results section and the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Details on compute resources are provided in the appendix.

Guidelines:
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have carefully read the NeurIPS Code of Ethics and checked the anonymity
of our submission.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the boarder impact of our paper in Appendix.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
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Answer: [NA]

Justification: Our paper does not include generative models and typically uses open-source
datasets for training and evaluation.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The creator of assets used in our paper states the license in their repository
(MIT License).

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: Although we will submit the code in the supplementary materials, we will
continue to improve the codebase and make it publicly available after the paper is officially
accepted. Currently, we have not released any new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.
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• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: There are no crowdsourcing experiments and research with human subjects
under adversarial prompt learning settings.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: There are no crowdsourcing experiments and research with human subjects
under adversarial prompt learning settings.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This paper does not involve LLM.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A Pipelines of Adaptive-FGP Algorithm

Algorithm 2 presents the proposed adaptive fast gradient projection (adaptive-FGP) method for
real-time total variation regularization. It is designed to disrupt the perturbation space of adversarial
examples while maximally preserving the structural integrity of image content.

Algorithm 2 Real-Time Total Variation Regularization Based on Proposed Adaptive-FGP Algorithm

Input: Image v(adv), base coefficient µbase, gain µgain, convergence tolerance ξ
Output: Recovered image u⋆

1: Compute γ(v) = µbase · (1 + µgain · Φ(v)) on image v using Sobel operator
2: Initialize w0 = 0, w̄0 = 0, τ0 = 1
3: for k = 1 to Maximum iterations do
4: Compute uk = v − γ(v) · div(w̄k−1)
5: Compute gradient∇f(w̄k) = −2 · γ(v) · div∗(uk)
6: Update wk = ΠW

(
w̄k −∇(uk)/8 · γ(v)

)
7: Compute σk = uk − uk−1, σk−1 = uk−1 − uk−2

8: Compute cos(θk) = ⟨σk, σk−1⟩/(∥σk∥ · ∥σk−1∥+ ζ)
9: if cos(θk) > cos(θth) then

10: τk+1 = (1 +
√

1 + 4τ2k )/2

11: wk + (τk − 1) ·
(
wk −wk−1

)
/τk+1

12: else
13: τk+1 = 1, w̄k+1 = wk

14: end if
15: if maxi∈{k,...,k−s} ∥σi∥F /(∥ui∥F + ζ) < ξ then
16: break
17: end if
18: end for
19: return u⋆ = uk

Initialization phase. The algorithm first constructs a spatially adaptive regularization map γ(v)
based on the input image v. This regularization term is governed by a baseline intensity coefficient
µbase and an edge sensitivity coefficient µgain, with the edge response Φ(v) is estimated via the Sobel
convolution operator. This strategy automatically reduces the regularization strength in edge regions
to preserve structural details, while enhancing regularization intensity in the flat areas to effectively
suppress adversarial perturbations. Subsequently, the dual variable w0 and its accelerated counterpart
w̄0, along with the temporal scaling factor τ0 are initialized (Lines 1∼2).

Gradient projection update in the dual space. First, the dual variable field from the previous
iteration is transformed into a scalar field via the divergence operator, which is utilized to construct
the current estimate of the primal variable image uk. Subsequently, the dual variable w̄k at the
current iteration is updated and projected onto the dual constraint setW to ensure that the gradient
field satisfies the unit ball constraint (Lines 4∼6).

Momentum acceleration with adaptive restart mechanism. We measure whether the direction of
the angle between two consecutive step increments σk and σk−1 is reversed to determine whether a
restart has occurred. If no deviation in direction is detected, the Nesterov momentum acceleration
mechanism is applied to enhance convergence speed. Otherwise, if the angle between directions
exceeds a predefined threshold, the momentum accumulation is reset to prevent overshooting caused
by trajectory discontinuity, thereby improving the stability of the algorithm. The adaptive restart
mechanism originates from an analysis of oscillatory behavior inherent in Nesterov-type momentum
schemes, which is particularly important in the context of spatially weighted total variation with
non-uniform regularization terms (Lines 7∼14).

Convergence criterion. The algorithm is deemed to have converged when the relative change in
updates, measured by the Frobenius norm, remains below the threshold ξ for s consecutive iterations.
This condition ensures the stability of the solution across multiple time steps in the output image while
effectively avoiding redundant iterations. Upon completion of the iterations, the optimal solution
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u⋆ of the output image is obtained. The adaptive-FGP method exhibits strong parallelizability
and efficient acceleration mechanisms, significantly enhancing model robustness while keeping the
computational overhead below 10% (Lines 15∼17).

B Upper Bound Analysis of the Lipschitz Constant

Since the gradient ∇f(w) of the objective function f(w) is Lipschitz continuous, there exists a
constant L > 0 such that for any w1,w2, the following inequality holds:

∥∇f(w1)−∇f(w2)∥ ≤ L∥w1 −w2∥. (15)

The gradient difference can be computed as:

∇f(w1)−∇f(w2) = −2γ(v) · ∇ div∗ [(v − γ(v) · div(w1))− (v − γ(v) · div(w2))]

= 2γ(v)2 · ∇ div∗ [div(w1)− div(w2)] (16)

= 2γ(v)2 · ∇ div∗ ·div(w1 −w2).

Thus, the norm is bounded by:

∥∇f(w1)−∇f(w2)∥ ≤ 2γ(v)2 · ∥∇ divT ·div ∥ · ∥w1 −w2∥
≤ 2γ(v)2 · ∥ div ∥2 · ∥w1 −w2∥. (17)

Analogous to the spectral norm bound of the discrete gradient operator in the TV regularization term,
if the operator norm of the discrete divergence operator satisfies |div | ≤

√
8, we obtain:

∥∇f(w1)−∇f(w2)∥ ≤ 16γ(v)2 · ∥w1 −w2∥. (18)

Therefore, the upper bound of the Lipschitz constant L(f) for the objective function f(w) is given
by:

L(f) ≤ 16γ(v)2. (19)

C Additional Experimental Results

C.1 Sensitivity Analysis of PGD Attack Hyperparameters

Table 5 systematically evaluates the impact of different configurations on natural and robust accuracy
across five datasets (Caltech101 [69], DTD [67], EuroSAT [65], FGVC-Aircraft [71], OxfordPets
[73]) under the 16-shot setting and varying perturbation budgets ϵ = {1/255, 2/255, 4/255}. Specif-
ically, it assesses the sensitivity to different numbers of attack iterations ι = {2, 4, 8} and step sizes
ς = {ϵ/ι, 2ϵ/ι, 4ϵ/ι}. During the robustness evaluation phase, a 100-step PGD attack with the
same perturbation budget and step size as in the training phase is employed to fully examine the
defense capability of the model under strong attacks. We aim to determine the optimal combination
of hyperparameters to more efficiently perform the next adversarial robustness tests under stronger
attacks.

As evidenced in Table 5, employing larger attack step counts and step sizes during training (ι = 8, ς =
4ϵ/ι) does not enhance adversarial robustness during evaluation. Adversarial examples generated
by PGD-8 tend to deviate significantly from the true data distribution, potentially causing the model
to overfit the distribution of adversarial samples encountered during training rather than learning
generalizable robust features. The model achieves higher natural accuracy when trained with a
larger number of attack steps and a smaller step size (ι = 8, ς = ϵ/ι), as the resulting adversarial
examples remain in close proximity to the original data manifold. The model demonstrates the
capability to learn robust features while preserving discriminative power for natural samples. Across
all perturbation budget settings, the combination of two attack iterations with a step size of 4ϵ/ι
consistently achieves optimal robust accuracy and high clean accuracy. Therefore, we adopt this
hyperparameter configuration for subsequent experiments involving varying perturbation budgets and
different adversarial attack methods.
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Table 5: Impact of perturbation budgets, attack iteration steps, and attack step sizes on natural and
robust accuracy across 5 datasets under the 16-shot benchmark. Bold values highlight the best average
results per perturbation budget.

Pert.
budg. ϵ

Iter.
steps ι

Step
size ς

Caltech101 DTD EuroSAT FGVCAircraft OxfordPets Average

Nat. Rob. Nat. Rob. Nat. Rob. Nat. Rob. Nat. Rob. Nat. Rob.

1/255

2
ϵ/ι 94.16 89.57 65.37 54.20 86.42 71.67 38.94 25.47 87.05 70.84 74.39 62.35
2ϵ/ι 94.04 89.78 65.84 56.03 84.77 70.60 39.39 27.51 86.29 71.85 74.07 63.15
4ϵ/ι 94.20 90.55 65.19 57.03 86.35 73.52 39.39 28.74 87.33 74.35 74.49 64.84

4
ϵ/ι 94.36 89.86 65.43 55.38 86.16 71.20 39.18 26.52 87.44 70.43 74.51 62.68
2ϵ/ι 94.08 89.78 65.13 55.38 85.62 73.37 39.24 27.24 86.37 71.74 74.09 63.50
4ϵ/ι 94.04 90.14 65.66 56.21 86.47 74.75 39.72 27.30 86.86 72.47 74.55 64.18

8
ϵ/ι 94.20 89.74 66.31 54.85 86.52 69.32 39.30 25.59 87.11 69.80 74.69 61.86
2ϵ/ι 94.04 89.98 65.72 55.56 86.49 73.10 38.94 28.05 86.07 71.41 74.25 63.62
4ϵ/ι 94.24 89.90 65.19 55.50 86.65 74.09 38.88 27.18 86.59 71.95 74.31 63.72

2/255

2
ϵ/ι 93.96 87.10 64.24 49.23 83.86 67.12 38.58 21.90 84.93 58.63 73.11 56.80
2ϵ/ι 93.67 86.82 63.12 50.00 81.70 64.26 37.11 21.90 83.21 59.23 71.76 56.44
4ϵ/ι 93.91 88.32 64.30 52.36 84.07 66.90 36.09 23.52 84.36 63.07 72.55 58.83

4
ϵ/ι 94.00 86.09 65.07 49.11 83.98 68.99 37.95 22.11 84.71 58.74 73.14 57.01
2ϵ/ι 93.71 86.77 63.48 49.88 83.90 70.63 36.72 22.95 83.05 58.63 72.17 57.77
4ϵ/ι 93.71 86.73 63.42 49.70 83.77 68.53 36.72 24.36 83.89 59.42 72.30 57.75

8
ϵ/ι 93.91 86.21 64.30 48.58 84.10 67.96 37.68 22.02 84.87 57.10 72.97 56.37
2ϵ/ι 93.67 86.73 62.83 48.88 80.64 67.58 37.11 23.76 82.75 57.78 71.40 56.95
4ϵ/ι 93.71 86.94 63.00 49.59 83.74 67.54 37.44 23.64 83.05 58.54 72.19 57.25

4/255

2
ϵ/ι 92.41 82.15 60.87 41.08 79.53 67.17 33.39 17.28 79.26 40.88 69.09 49.71
2ϵ/ι 92.01 80.41 58.92 38.36 79.54 57.63 32.67 18.24 74.79 39.60 67.59 46.85
4ϵ/ι 92.58 83.20 59.63 45.27 79.49 58.51 33.33 19.80 79.45 49.03 68.90 51.16

4
ϵ/ι 92.74 81.30 61.82 40.07 80.12 64.15 33.57 17.76 79.50 41.40 69.55 48.94
2ϵ/ι 92.01 80.20 59.69 40.31 78.70 63.54 31.53 17.85 75.61 39.55 67.51 48.29
4ϵ/ι 92.33 80.45 59.04 38.42 79.57 59.01 33.03 18.54 76.04 39.11 68.00 47.11

8
ϵ/ι 93.10 81.99 61.76 40.07 82.06 60.85 35.07 18.15 78.30 40.47 70.06 48.31
2ϵ/ι 91.60 79.63 59.46 40.19 78.99 61.49 32.37 18.60 75.28 38.35 67.54 47.65
4ϵ/ι 91.85 80.81 58.92 40.60 78.51 63.32 32.82 19.50 76.02 40.94 67.62 49.03

C.2 Impact of Perturbation Budget on Model Performance

We document the performance of CoAPT under four benchmark settings with three perturbation
budgets ϵ = {1/255, 2/255, 4/255}. The case of ϵ = 1/255 corresponds to the results presented in
the main text of the paper. As shown in Table 6 under the base-to-novel benchmark, the robust HM
metrics decrease by 5.72% and 9.73% as the perturbation budgets increase, remaining within accept-
able thresholds overall. The natural HM metrics decrease by only 2.27% and 4.59%, respectively,
demonstrating the effectiveness of CoAPT in preserving natural generalization.

Table 6: Performance of CoAPT under varying perturbation budgets on the base-to-novel benchmark
across 11 datasets.
ϵ Metric Caltech101 DTD EuroSAT FGVCAircraft Food101 ImageNet Flowers101 OxfordPets StanfordCars SUN397 UCF101 Average

Base 97.25 76.08 91.61 35.37 78.20 66.15 94.94 90.55 73.34 76.69 82.95 78.47
Novel 92.72 54.03 56.11 25.41 79.47 55.41 63.07 94.50 59.20 70.46 68.45 65.35

N
at

.

HM 94.93 63.18 69.60 29.58 78.83 60.30 75.79 92.49 65.51 73.44 75.01 71.31
Base 94.38 67.98 84.67 25.37 62.03 52.65 88.57 78.72 54.20 64.50 71.65 67.70
Novel 88.03 43.88 47.40 16.68 62.86 45.07 51.89 83.71 40.95 58.50 56.50 54.13

1/
25

5

R
ob

.

HM 91.09 53.33 60.78 20.12 62.44 48.57 65.44 81.13 46.65 61.35 63.18 60.16
Base 96.90 75.46 89.00 34.45 71.77 63.68 94.87 88.89 69.34 74.99 81.08 76.40
Novel 90.39 52.29 62.72 25.19 73.29 53.45 57.23 91.16 55.06 67.65 64.31 62.98

N
at

.

HM 93.53 61.78 73.58 29.11 72.52 58.12 71.40 90.01 61.38 71.13 71.72 69.04
Base 93.35 63.77 79.00 20.11 50.12 48.76 85.94 69.59 44.70 60.50 67.79 62.15
Novel 84.83 40.34 53.36 14.04 50.20 40.93 42.48 73.21 32.83 52.94 47.54 48.43

2/
25

5

R
ob

.

HM 88.88 49.42 63.70 16.53 50.16 44.50 56.86 71.35 37.86 56.47 55.89 54.44
Base 95.22 71.99 89.24 29.65 64.67 58.48 91.17 84.26 62.12 71.27 77.40 72.32
Novel 86.24 48.31 65.10 22.14 64.41 48.42 49.08 85.51 47.78 63.70 58.73 58.13

N
at

.

HM 90.51 57.82 75.28 25.35 64.54 52.98 63.81 84.88 54.02 67.27 66.79 64.45
Base 88.32 54.75 74.52 15.97 34.56 39.71 78.63 54.12 32.03 51.19 57.08 52.81
Novel 75.11 32.97 50.56 10.62 31.62 33.04 30.92 57.10 23.32 43.99 37.21 38.77

4/
25

5

R
ob

.

HM 81.18 41.16 60.25 12.75 33.02 36.07 44.39 55.57 26.99 47.32 45.05 44.71

Table 7 reports the natural and robust accuracy of CoAPT under the 16-shot setting across different
perturbation budgets. Compared to the base-to-novel setup, the few-shot scenario provides more
training samples, enabling the model to exhibit greater stability when confronted with increased
perturbations. Specifically, as the perturbation budgets increase, the robust accuracy declines by
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5.42% and 8.73%, while the natural accuracy drops by only 2.26% and 4.42%, indicating a more
moderate performance degradation trend.

Table 7: Performance of CoAPT under varying perturbation budgets on the few-shot benchmark
across 11 datasets.
ϵ Metric Caltech101 DTD EuroSAT FGVCAircraft Food101 ImageNet Flowers101 OxfordPets StanfordCars SUN397 UCF101 Average

1/
25

5 Nat. 94.51 65.50 85.42 38.60 73.00 62.96 93.86 86.82 73.94 70.84 79.09 74.96
Rob. 90.03 56.09 71.43 27.39 56.72 51.32 85.36 72.28 55.91 58.33 67.91 62.98

2/
25

5 Nat. 93.91 64.30 84.07 36.09 68.08 61.38 91.64 84.36 70.25 69.42 76.24 72.70
Rob. 88.48 52.36 66.90 23.28 46.99 47.79 81.20 63.07 47.05 54.52 61.56 57.56

4/
25

5 Nat. 92.58 59.63 79.49 33.33 60.69 56.98 87.74 79.45 63.50 65.70 72.03 68.28
Rob. 83.20 45.27 58.51 20.10 32.19 40.14 72.55 49.03 35.43 47.11 53.56 48.83

As shown in the evaluation results under the zero-shot settings in Table 8, our model consistently
demonstrates strong natural generalization, adversarial robustness, and stability across different
perturbation budgets. Specifically, under the zero-shot scenario, the average robust accuracy decreases
by 3.93% and 7.35% with increasing perturbation budgets, while the average natural accuracy declines
by only 1.63% and 4.21%. The results indicate that the model maintains strong perturbation resistance
even under extreme generalization conditions. The evaluation results under the out-of-distribution
settings in Table 9 exhibit a similar trend.

Table 8: Performance of CoAPT under varying perturbation budgets on the zero-shot benchmark
across 11 datasets.
ϵ Metric ImageNet Caltech101 DTD EuroSAT FGVCAircraft Food101 Flowers101 OxfordPets StanfordCars SUN397 UCF101 Average

1/
25

5 Nat. 63.42 89.10 36.66 28.37 13.84 69.85 56.30 82.98 47.99 58.10 57.34 54.91
Rob. 51.18 83.29 30.59 20.13 9.43 55.99 45.34 70.03 30.24 46.64 47.36 44.57

2/
25

5 Nat. 61.33 88.84 36.52 26.94 11.64 66.13 55.42 82.07 46.14 56.52 54.51 53.28
Rob. 46.98 80.24 29.31 19.06 7.17 50.28 41.29 64.54 23.96 42.11 42.11 40.64

4/
25

5 Nat. 56.77 87.42 33.75 22.72 12.39 57.69 48.40 77.13 41.01 52.60 49.85 49.07
Rob. 38.62 75.66 25.24 14.17 6.51 36.61 33.82 52.03 15.00 34.87 33.65 33.29

Table 9: Performance of CoAPT under varying perturbation budgets on the out-of-distribution
benchmark across 11 datasets.

ϵ
ImageNet-A ImageNet-R ImageNet-Sketch ImageNet-V2 Average

Nat. Rob. Nat. Rob. Nat. Rob. Nat. Rob. Nat. Rob.

1/255 16.99 9.72 60.35 50.71 35.76 29.13 54.35 42.23 41.86 32.95
2/255 14.27 7.49 57.81 45.92 34.26 25.81 52.54 38.50 39.72 29.43
4/255 10.35 4.23 54.28 38.80 32.17 21.10 47.63 30.67 36.11 23.70

C.3 Robustness Evaluation under Varying Attacks

We evaluate our method using attack types based on different perturbation mechanisms. The CW
attack is an optimization-based method designed to generate adversarial perturbations that are
minimal in magnitude yet highly effective in misleading the model. It has demonstrated strong
attack performance across various tasks. The TPGD attack is a targeted variant of the PGD attack
that misdirects samples toward specific target classes. AutoAttack is an ensemble-based, parameter-
free robustness evaluation framework that integrates multiple strong attack algorithms to provide
reliable adversarial assessment results. Specifically, we evaluate CW, TPGD, and AutoAttack attacks
under the zero-shot benchmark, while only CW and TPGD are evaluated under the base-to-novel
benchmark. We adopt PGD attack with the hyperparameter configuration ϵ = 4/255, ι = 2, ς = 4ϵ/ι
for adversarial training. During the robustness evaluation phase, both CW and TPGD attacks are
applied with the same perturbation budget and step size, while the number of attack steps is uniformly
set to 100. For AutoAttack, we use the same perturbation budget (ϵ = 4/255), and its attack process
does not rely on hyperparameters such as step size or the number of steps. Overall, the robustness
advantage of our method is not a result of overfitting to any specific attack.

Table 10: Performance of CoAPT against various attack methods under the base-to-novel benchmark.
Type Metric Caltech101 DTD EuroSAT FGVCAircraft Food101 ImageNet Flowers101 OxfordPets StanfordCars SUN397 UCF101 Average

Base 95.22 71.99 89.24 29.65 64.67 58.48 91.17 84.26 62.12 71.27 77.40 72.32
Novel 86.24 48.31 65.10 22.14 64.41 48.42 49.08 85.51 47.78 63.70 58.73 58.13Nat.
HM 90.51 57.82 75.28 25.35 64.54 52.98 63.81 84.88 54.02 67.27 66.79 64.45
Base 86.38 59.38 81.64 21.67 58.12 51.32 86.32 67.68 44.50 60.27 67.68 62.27
Novel 75.00 38.41 51.64 17.34 56.55 40.39 42.48 69.35 35.31 52.56 46.73 47.80

C
W

Rob.
HM 80.29 46.64 63.27 19.26 57.33 45.20 56.94 68.50 39.37 56.15 55.29 54.08
Base 95.16 71.99 89.21 29.83 64.68 58.46 91.17 84.26 62.12 71.21 77.40 72.32
Novel 86.24 48.31 65.05 22.08 64.39 48.44 49.01 85.51 47.81 63.66 58.73 58.11Nat.
HM 90.48 57.82 75.24 25.37 64.53 52.98 63.75 84.88 54.03 67.22 66.79 64.44
Base 93.74 68.29 90.62 29.59 62.93 55.85 90.50 79.59 58.12 68.74 75.85 70.35
Novel 84.39 42.39 62.41 21.60 62.67 46.47 48.01 80.48 43.85 61.42 58.36 55.64T

PG
D

Rob.
HM 88.82 52.31 73.91 24.97 62.80 50.73 62.74 80.03 49.99 64.88 65.96 62.14
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As can be seen from the experimental results under the base-to-novel benchmark in Table 10, our
approach exhibits strong robust generalization capabilities when confronted with different types
of adversarial attacks. Overall, the CW attack is more destructive. Although it induces significant
accuracy degradation on novel classes, the performance remains within acceptable range. In contrast,
under the TPGD attack, the model maintains relatively high natural and robust accuracy, further
validating the stable performance of CoAPT across different types of adversarial attacks.

Figure 4 presents the robust accuracy of the model under CW, AutoAttack, and TPGD attacks across 11
datasets in the zero-shot benchmark. In terms of overall trends, the model demonstrates the strongest
robustness under TPGD attacks, achieving the highest robust accuracy across nearly all datasets.
In contrast, CW attacks are more destructive, particularly showing stronger attack effectiveness on
complex datasets such as ImageNet and StanfordCars. AutoAttack, as an ensemble-based evaluation
framework, displays intermediate attack strength between CW and TPGD. Moreover, significant
robustness variations exist across different datasets. The model maintains relatively high robust
accuracy on Caltech101, Flowers102, and OxfordPets, while showing noticeably lower performance
on FGVCAircraft and EuroSAT.
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Figure 4: Comparison of robust accuracy under different attack methods on zero-shot benchmarks.
To evaluate the impact of ℓ2-norm adversarial attacks on robust VLMs, we designed and conducted
an experiment based on ℓ2-norm perturbations. The training weights were derived from the ℓ∞-based
PGD attack, and the evaluation settings remained consistent. Table 11 presents the experimental
results of our approach across five datasets under varying perturbation budgets. It can be observed
that as the perturbation budget increases, the model’s classification accuracy experiences a moderate
decline. Nevertheless, our approach significantly improves the model’s robustness against ℓ2-norm
attacks, even under the ℓ∞-norm threat model.

Table 11: Robust accuracy under ℓ2-norm PGD attacks on the base-to-novel benchmark.

ϵ
Caltech101 DTD EuroSAT FGVCAircraft OxfordPets

Base Novel Base Novel Base Novel Base Novel Base Novel

1/255 94.25 87.99 68.29 44.44 85.45 55.23 25.87 16.86 80.75 83.95
2/255 92.32 84.06 62.38 37.80 79.64 54.49 20.05 12.96 73.52 75.17
4/255 90.70 81.00 61.00 36.96 81.00 54.38 18.91 13.92 70.28 70.86

C.4 Sensitivity Analysis of Prompt Length and Depth in Multimodal Prompting

Prompt depth and prompt length. We conduct ablation studies on prompt depth and prompt
length under the base-to-novel setting across 10 datasets, excluding ImageNet and its variants. Figure
5 summarizes the average results over these datasets. As shown in the left panel of Figure 5, model
performance steadily improves with increasing adversarial prompt depth. However, performance
gains plateau when the depth exceeds nine layers, showing diminishing returns. To avoid introducing
excessive trainable parameters, we ultimately set the prompt depth to 9.

The right panel of Figure 5 illustrates the impact of prompt length on model performance. As the
number of prompt tokens increases, the natural and robust performance on base classes remains
relatively stable, whereas the natural and robust performance of the novel classes exhibits a declining
trend. This indicates that excessive trainable prompt tokens are prone to overfit task-specific features,
thereby undermining the task-agnostic generalization capability of VLMs. Similar performance
trends have also been reported in the literature [57]. The model achieves optimal performance when
the prompt length is set to 4.
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Figure 5: Analyze the impact of prompt depth (left) and prompt length (right) on the performance.

C.5 Performance Across Different CLIP Architectures

We additionally evaluate CoAPT on the CLIP ViT-B/16 architecture under the base-to-novel bench-
mark to verify its scalability to higher-resolution architectures in terms of both natural accuracy and
adversarial robustness. Compared to ViT-B/32, the ViT-B/16 architecture adopts finer image patching
granularity, resulting in a greater number of input tokens and consequently exhibiting superior spatial
resolution representation capacity. This structural advantage typically leads to enhanced performance
in fine-grained visual tasks.

Table 12: Results of base-to-novel benchmarks on the ViT-B/16 architecture of CLIP under 11
datasets.

Metric Caltech101 DTD EuroSAT FGVCAircraft Food101 ImageNet Flowers101 OxfordPets StanfordCars SUN397 UCF101 Average
Base 97.93 78.13 93.64 41.54 83.26 71.76 97.63 94.10 77.49 79.21 83.82 81.68
Novel 94.00 56.40 54.36 32.87 83.50 60.02 67.09 94.69 63.33 72.96 72.36 68.33

N
at

.

HM 95.92 65.51 68.79 36.70 83.38 65.36 79.53 94.39 69.70 75.95 77.67 74.41
Base 96.45 71.76 90.05 34.21 72.14 61.72 92.31 87.08 62.24 70.66 75.28 73.99
Novel 90.72 51.45 47.64 25.07 72.43 52.47 58.09 88.59 48.30 64.33 63.17 60.21

C
L

IP
V

iT
-B

/1
6

R
ob

.

HM 93.50 59.93 62.31 28.94 72.28 56.72 71.30 87.83 54.40 67.35 68.70 66.39

Compared to the CLIP ViT-B/32 results reported in Table 1 of the main text, Table 12 demonstrates
that the CLIP ViT-B/16 architecture achieves improvements of 3.1% and 6.23% in the HM of natural
accuracy and robust accuracy, respectively. The high-resolution visual representations of the ViT-B/16
architecture provide CoAPT with a finer-grained and more stable latent space, enabling more effective
reconstruction of natural generalization features disrupted by adversarial perturbations. Compared to
the ViT-B/32 architecture, this enhanced representational capacity mitigates alignment errors and
distributional shifts between language and vision embeddings, thereby significantly improving the
natural generalization and adversarial robustness of robust CLIP. In contrast, the FAP method fails to
achieve robustness gains under the ViT-B/16 architecture, further demonstrating the superiority of
CoAPT in terms of scalability and stability.

C.6 Impact of Reconstruction Loss Functions on Model Performance

CoAPT employs a Gaussian radial basis function (RBF) to measure the similarity between the
language and vision branch embeddings of natural and robust CLIP representations in the latent
space, effectively capturing the impact of input perturbations on the feature distributions. In Table
13, we systematically compare the performance of CoAPT on the base-to-novel benchmark under
different configurations of Gaussian RBF and standard MSE loss functions. The Gaussian RBF
demonstrates absolute superiority over MSE by 5.15% and 4.81% in natural HM and robust HM
metrics, respectively. This is attributed to the fact that Gaussian RBF can effectively amplify the
feature shifts caused by small-scale perturbations to acutely capture the subtle distributional changes,
which not only promotes robustness training but also inhibits overfitting to a certain extent.

C.7 Independent and Joint Vision-Language Adversarial Prompting

CoAPT employs deep contextualized joint vision-language adversarial prompting (JVLAP), which
refines visual prompts based on linguistic prompts to facilitate cross-modal co-optimization via a

27



Table 13: Results of base-to-novel benchmarks using Gaussian RBF and MSE loss functions under
11 datasets.

Metric Caltech101 DTD EuroSAT FGVCAircraft Food101 ImageNet Flowers101 OxfordPets StanfordCars SUN397 UCF101 Average
Base 97.25 76.08 91.61 35.37 78.20 66.15 94.94 90.55 73.34 76.69 82.95 78.47
Novel 92.72 54.03 56.11 25.41 79.47 55.41 63.07 94.50 59.20 70.46 68.45 65.35

N
at

.
HM 94.93 63.18 69.60 29.58 78.83 60.30 75.79 92.49 65.51 73.44 75.01 71.31
Base 94.38 67.98 84.67 25.37 62.03 52.65 88.57 78.72 54.20 64.50 71.65 67.70
Novel 88.03 43.88 47.40 16.68 62.86 45.07 51.89 83.71 40.95 58.50 56.50 54.13G

au
ss

R
B

F
R

ob
.

HM 91.09 53.33 60.78 20.12 62.44 48.57 65.44 81.13 46.65 61.35 63.18 60.16
Base 96.26 73.50 94.29 33.97 72.59 62.11 94.97 89.10 71.34 73.24 79.63 76.45
Novel 89.30 46.62 41.03 21.30 74.55 46.00 53.97 91.50 49.94 64.65 62.52 58.31

N
at

.

HM 92.65 57.05 57.17 26.18 73.56 52.85 68.83 90.28 58.75 68.67 70.04 66.16
Base 93.35 64.35 86.24 24.19 56.18 48.90 89.36 76.50 53.30 61.17 70.94 65.86
Novel 85.15 38.04 34.46 14.04 57.21 36.04 41.91 80.76 34.07 52.12 51.22 47.73

M
SE

R
ob

.

HM 89.06 47.82 49.24 17.77 56.69 41.50 57.06 78.57 41.57 56.28 59.49 55.35

vision-language coupling network. In Table 14, we additionally report the performance of CoAPT us-
ing independent vision-language adversarial prompting (IVLAP) under the base-to-novel benchmark.
Compared to the JVLAP results in Table 1, IVLAP exhibits reductions of 0.29% and 0.37% in the
HM of natural and robust accuracy, respectively. Although IVLAP shows slightly better performance
on the Flowers101 and StanfordCars datasets, its performance on most other datasets is comparable
to or slightly inferior to that of JVLAP.

Table 14: Performance of CoAPT using the IVLAP scheme on 11 datasets under the base-to-novel
benchmark.

Metric Caltech101 DTD EuroSAT FGVCAircraft Food101 ImageNet Flowers101 OxfordPets StanfordCars SUN397 UCF101 Average
Base 96.71 76.74 92.88 33.91 78.32 66.30 95.73 90.86 72.24 76.98 81.13 78.34
Novel 92.25 53.02 52.41 26.75 80.29 55.20 64.18 94.13 58.83 70.31 67.01 64.94

N
at

.

HM 94.43 62.71 67.01 29.91 79.29 60.24 76.84 92.46 64.85 73.50 73.40 71.02
Base 94.58 67.71 84.88 24.67 61.22 52.57 89.55 79.11 53.87 64.63 69.39 67.47
Novel 88.10 43.12 43.87 16.74 63.57 44.94 52.06 83.84 41.67 58.73 53.92 53.69

IV
L

A
P

R
ob

.

HM 91.22 52.68 57.85 19.94 62.37 48.46 65.84 81.40 46.99 61.54 60.69 59.79

JVLAP shows more significant advantages in modeling cross-modal robustness. By jointly optimizing
adversarial features of both vision and language branches within a unified framework, it more
effectively captures the synergistic variations between the two modalities in the latent space, thereby
enhancing the consistency and stability of modality alignment. This joint optimization not only
mitigates performance bias caused by asymmetrical perturbation sensitivity between modalities
but also preserves semantic consistency during adversarial training. Consequently, it significantly
enhances the generalization capability of the model on novel categories, zero-shot recognition, and
out-of-distribution scenarios.

D Impact Statement

This work aims to support progress in robust machine learning by improving the resilience of vision-
language models against adversarial threats. Although we do not anticipate any immediate negative
consequences, it is important to remain aware of potential misuse in security-critical domains. One
key outcome of our approach is the ability to preserve robustness with low-cost model adjustments,
which offers practical value for time-sensitive applications on mobile and resource-limited devices.
The techniques introduced here may contribute to safer and more dependable deployment of AI
systems in real-world environments, particularly in areas like intelligent sensing and mobile security.

E Reproducibility

To support reproducibility, we have included the anonymized source code in the supplementary
materials for the review process. If the paper is accepted, we will release the complete codebase to
the public.

F Limitations

This work primarily investigates adversarial robustness against image-level perturbations, while
multi-modal adversarial attacks that simultaneously affect both vision and language inputs remain
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underexplored. The current framework assumes that adversarial noise originates solely from the
visual modality, which limits its applicability in scenarios involving adversarial manipulations in
textual inputs. Although the proposed latent space reconstruction method shows strong generalization
in experiments, its specific impact on generalization behavior and the theoretical analysis for its
superiority over other techniques remain unexplained. The influence of latent space structure and
distribution on model robustness and generalization requires further theoretical exploration. We leave
these limitations as essential directions for future investigation.
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