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Abstract

Test-time scaling is a powerful strategy for boosting the performance of large
language models on complex reasoning tasks. While state-of-the-art approaches
often employ generative verifiers to select the best solution from a pool of candi-
dates, this method incurs prohibitive computational costs, limiting its practicality.
In this work, we shift the focus to a more budget-aware paradigm: discrimina-
tive verification. We conduct a thorough empirical analysis and demonstrate that
while discriminative verifiers may underperform in isolation, combining them
with self-consistency in a hybrid approach creates a powerful and efficient test-
time scaling mechanism. Notably, under a fixed compute budget, this hybrid
approach surpasses state-of-the-art generative verification by a significant margin:
achieving up to 15.3% higher accuracy on AIME2025. Our findings establish that
for practical, real-world applications, budget-aware scaling with discriminative
verifiers is not only a "free" upgrade over self-consistency, but also a more effec-
tive and efficient alternative to costly generative techniques. Code is available at
https://github.com/wang-research-lab/verification.

1 Introduction

Since the release of OpenAI’s o1 OpenAI (2024), there has been substantial progress in enhancing
the reasoning capabilities of large language models (LLMs) by scaling test-time compute (Snell et al.,
2024). Test-time scaling aims to improve model performance by allocating additional computational
resources during inference. A canonical example is self-consistency (SC) (Wang et al., 2023b), which
involves sampling multiple completions and selecting the final answer via a majority vote.

Alternatively, one can enhance answer selection by employing a generative "verifier" model to
score each solution. Generative verifiers are themselves sophisticated LLMs that produce a detailed
chain-of-thought (CoT) rationale, critically evaluating a candidate solution before rendering a final
verdict (Zhang et al., 2024; Mahan et al., 2024). The approach is intuitively appealing and opens up a
new axis for scaling: if one verification pass is good, multiple passes should be even better (Shi &
Jin, 2025; Zhao et al., 2025).

While generative verifiers generally offer strong performance, it comes at a staggering computational
cost. Indeed, Singhi et al. (2025) demonstrates that generative verifiers underperform SC under
low inference budgets and require up to 8× more compute just to match SC, and deliver marginal
gains (3.8%) even when granted 128× the compute budget. There are two reasons for this. First,
performance is bottlenecked by the quality of the candidate solutions. If all candidates are incorrect,
not even an oracle verifier can recover the correct answer. Second, the SC baseline is strong, nearing
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Figure 1: Hybrid discriminative verification techniques (e.g., weighted self-consistency
(WSC) (Welleck et al., 2024) and pessimistic verification (PV) (Shi & Jin, 2025)) outperform
generative pessimistic verification (GPV) under equalized compute budgets of less than 22.5 minutes
(shaded region). For example, at latency budgets of 13.8 minutes and 15.7 minutes, hybrid discrim-
inative verification can outperform generative verification by 15.3% and 2.8%, respectively. N is
doubled at each point along the x-axis. For GPV, each solution is verified twice (M = 2).

pass@N on many tasks. To surpass SC, a verifier must both (1) agree with the majority when it is
correct, and (2) successfully identify the correct minority solution when the majority is wrong. As a
result, allocating additional compute to generating candidate solutions typically yields better returns
than spending it on verification.

Given these limitations, it is preferable to minimize the cost of verification under constrained budgets.
In this regard, discriminative verifiers are promising due to their computational efficiency. Unlike
generative verifiers, which require both prefilling and sequential decoding stages, discriminative
verifiers only perform a single forward pass, avoiding the decoding bottleneck. However, despite their
speed advantage, discriminative verifiers exhibit limited capabilities on complex reasoning tasks (Tan
et al., 2025b), often underperforming SC as the pool of candidate solutions grows, which has limited
their practical use.

In this work, we show that hybrid approaches combining discriminative verification with self-
consistency can offer the best trade-off between effectiveness and efficiency under practical compute
budgets. For instance, under inference budgets of 13.8 minutes and 15.7 minutes, hybrid discrimina-
tive verification methods (Welleck et al., 2024; Shi & Jin, 2025) outperform state-of-the-art generative
verification by 15.3% and 2.8%, respectively. Moreover, although discriminative verifiers underper-
form SC in isolation, we show that by leveraging these hybrid methods, the resulting test-time scaling
pipeline can obtain consistent improvements over SC on AIME2025 by up to 5.1%, while having
only 2% compute overhead. These results highlight hybrid discriminative verification as a practical
and scalable alternative, delivering strong accuracy gains with negligible overhead and outperforming
more expensive generative approaches under realistic budget constraints.

Our contributions are as follows:

• We conduct a thorough empirical analysis of discriminative verification techniques, exploring
how different selection strategies perform across scaling regimes. To our knowledge, this
is the first study to systematically examine the test-time scaling properties of discriminative
verification.
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• Building on this analysis, we present a compute-centric comparison of discriminative and
generative verification, showing that discriminative methods offer a more practical and efficient
alternative under realistic inference budgets.

2 Effective Discriminative Verification

Hybrid Discriminative Verification Discriminative verification often underperforms SC when
the pool of candidate solutions is large. Hybrid discriminative verification methods address this by
combining the consensus signal from SC with the verifier’s signal. We study two hybrid approaches:

• Weighted self-consistency (WSC) (Welleck et al., 2024) groups solutions by their final answers
and selects the answer with the largest total verifier score, i.e., a∗ = argmaxa

∑
i:ai=a r(si).

The approach prioritizes answers that are not only common but also favored by the verifier.
Pseudocode for this method is provided in Algorithm 3.

• Pessimistic verification (PV) (Shi & Jin, 2025) groups solutions by their final answer and
penalizes small answer clusters to reduce the chance of selecting low-support answers. Formally,
a∗ = argmaxa

(
1
na

∑
i:ai=a r(si) − α lnN

na+1

)
, where α controls the strength of the penalty.

When α = 0, selection is based exclusively on the mean verifier score. As α→∞, the penalty
dominates and the selection collapses to SC. Empirically, we find that α = 0.5 provides a good
tradeoff (see Appendix G.1). Pseudocode for this method is provided in Algorithm 4.

Dataset curation. We sample 32k math problems from NuminaMath (LI et al., 2024) and generate
responses to each from ten LLMs: DeepSeek-R1 and its six distilled variants (DeepSeek-AI et al.,
2025), DeepScaleR-1.5B-Preview (Luo et al., 2025b), and both the preview and production releases
of QWQ-32B (Team, 2024, 2025). We grade each response against its reference solution, and throw
out problems for which all ten solutions are either correct or incorrect, leaving just 11,420 response
groups for training.

Verifier training. Following prior work (Qwen et al., 2025; Yang et al., 2024), we replace the
language modeling head of the LLM (specifically DeepSeek-R1-Distill-Qwen-1.5B) with a two-layer
scaler value head. We train our verifier using a Bradley-Terry ranking loss combined with an L2

regularization term (Ouyang et al., 2022; Kirchner et al., 2024). Concretely, our loss is

L = − 1

|P | |N |
∑
i∈P

∑
j∈N

log σ
(
ri − rj

)
+

λ

2
E
(
r2
)
,

where r = (r1, . . . , rm) are the logits assigned by the verifier to a batch of m responses, σ(x) is the
logistic function, and P and N are the sets of correct and incorrect responses, respectively. The first
term maximizes the probability σ(ri − rj) that every correct response i ∈ P outranks every incorrect
response j ∈ N (Bradley & Terry, 1952), and the second term keeps score head well-behaved
and centered around zero. Additional training details, including hyperparameters, are provided in
Appendix F.

3 Results

We analyze the performance of our trained discriminative verifier under various discriminative
verification techniques on several challenging benchmarks: AIME2024, AIME2025, LiveBench
Math (White et al., 2025), and GPQA (Rein et al., 2023). For each AIME problem, we sample 128
candidate responses no longer than 16k tokens from DeepSeek-R1-Distill-Qwen-32B. On LiveBench
Math and GPQA, we sample only 64 candidate responses. Similar to the construction of our training
dataset, we exclude the reasoning content (i.e., the tokens between the <think> and </think> tags)
during inference (see Appendix G.2). To ensure our metric estimates (e.g., Pass@N or PV@N )
are precise, we report the mean over 1000 resampled draws of size N per problem and report 95%
confidence intervals. Our results are provided in Table 1.

Across the board in Table 1, hybrid verification methods like WSC and PV consistently outperform
competing selection methods. For example, on AIME2025, PV@32 improves over Pass@1 by 17.2%,
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Method AIME2024 AIME2025 LiveBench Math GPQA

Pass@1 67.0± 0.5 51.9± 0.6 62.1± 0.2 56.9± 0.2
SC@32 83.4± 0.4 66.6± 0.5 67.0± 0.2 63.5± 0.2
BoN@32 79.1± 0.5 60.8± 0.6 64.1± 0.2 63.9± 0.2
WSC@32 85.6± 0.4 68.8± 0.5 67.5± 0.2 65.0± 0.2
PV@32 85.5± 0.4 69.1± 0.5 67.8± 0.2 65.6± 0.2

Table 1: Accuracy rates of DeepSeek-R1-Distill-Qwen-32B (N = 32) with various discriminative
verification techniques (highlighted in yellow). Pass@1 and SC@32 are included for comparison.

and beats SC@32 and BoN@32 by 2.5% and 8.3%, respectively. Amazingly, even on an out-of-
distribution task like GPQA, which includes questions on biology, physics, and chemistry, PV@32
can outperform SC@32 by 2.1%. Appendix E provides additional scaling analysis of discriminative
verification techniques.

Comparison of discriminative and generative verification. We compare discriminative and
generative verification under equalized compute budgets. Following prior work (Singhi et al., 2025),
we measure the total inference compute, i.e., the compute required to generate and verify candidate
solutions. Specifically, we focus on latency, which we measure on a single H100 GPU using
vLLM (Kwon et al., 2023) and its many optimizations to reflect real-world usage. We compare
against Heimdall (Shi & Jin, 2025), a state-of-the-art generative verifier trained from DeepSeek-R1-
Distill-Qwen-32B, which leverages pessimistic verification to incorporate the consensus signal from
SC. We refer to this approach as GPV (see Algorithm 5). Appendix D conducts a similar analysis
with FLOPs.

N = 1 N = 2 N = 4 N = 8 N = 16 N = 32 N = 64 N = 128

Repeated Sampling 273.1 276.6 288.4 448.4 782.9 1434.0 2815.5 5514.1

Discriminative 0.05 0.10 0.21 0.42 0.83 1.66 3.32 6.65
Generative (M = 2) 552.0 558.8 656.6 992.8 1825.7 3423.7 6668.8 13160.7

Table 2: The average wall-clock time (s) for repeatedly sampling N candidate solutions, as well as
the average time to verify each candidate solution using discriminative and generative verification.

Table 2 shows the average time to sample and verify N candidate solutions using discriminative
and generative verification methods. For instance, verifying 32 solutions sampled from DeepSeek-
R1-Distill-Qwen-32B with our 1.5B discriminative verifier takes only 1.66 seconds, just 0.1% of
the generation time. On the other hand, verifying 32 candidate solutions with Heimdall at M = 2
takes 3423.7 seconds, over twice the time needed for solution generation, and more than 2000× the
cost of discriminative verification. Indeed, as shown in Figure 1, hybrid discriminative verification
methods dominate generative verification for all inference budgets shorter than 22.5 minutes (1350s)
on AIME2025 with M = 2. This threshold is dependent on a range of factors, including the number
of verifications per solution (M), the specific solver, the size of the verifier, and the dataset, but
it highlights a broader trend: under realistic latency constraints, discriminative verification almost
always gives better performance than generative verification.

4 Conclusion

We studied hybrid discriminative verification as a practical alternative to costly generative approaches.
Discriminative methods achieve comparable or superior accuracy in practical compute regimes,
where the high cost of CoT generation limits generative approaches. Our results highlight hybrid
discriminative verification as the more efficient choice for realistic test-time scaling.
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A Preliminaries

Repeated sampling is a test-time scaling technique that involves generating a batch of N independent
candidate solutions {si}Ni=1 for a given problem Q. Each solution si is a chain of reasoning that
terminates in a final answer ai = Ans(si). As N increases, the probability that at least one answer is
correct also rises (i.e., Pass@N improves; see Figure 1) (Cobbe et al., 2021). However, this leaves
open the central challenge of selecting a single answer a∗ from among the candidates in the absence
of ground truth.

Self-consistency. A common approach for this selection problem is self-consistency (SC) (Wang
et al., 2023b). Since correct answers tend to reoccur across independent solutions, SC groups
responses by their final answer and selects the most frequent one. Formally, each distinct answer a
has support size na = |{i : ai = a}|, and SC chooses a∗ = argmaxa na. While this approach is
robust when the correct answer is common, it can fail when the majority converges on an incorrect
answer. Pseudocode for this method is provided in Algorithm 1.

Best-of-N . Another strategy is best-of-N (BoN) selection (Charniak & Johnson, 2005; Cobbe
et al., 2021), which uses a discriminative verifier to assign each solution a scalar score (e.g., in [0, 1]),
and selects the final answer from the highest-scoring solution. Formally, each solution si receives a
scalar score r(si), then BoN chooses a∗ = Ans(s∗) where s∗ = argmaxsi r(si). A strong verifier
can identify correct but rare responses that SC might miss. However, as N increases, it can also
be misled by confident yet incorrect responses, highlighting a long-tail vulnerability (see Figure 1).
Pseudocode for this method is provided in Algorithm 2.

B Related Work

LLM-based verifiers can be broadly categorized into generative and discriminative approaches.
Generative verifiers use large language models as judges that assess the correctness or quality of
outputs by generating natural language rationales. A growing body of work explores this direction,
employing LLMs as judges for modeling human preferences (Dubois et al., 2024; Zheng et al., 2024;
Li et al., 2024; Wang et al., 2023c; Kim et al., 2023, 2024; Li et al., 2023; Zhu et al., 2023b; Mahan
et al., 2024), or as verifiers for evaluating solution correctness in reasoning tasks (Zhang et al., 2024;
Singhi et al., 2025; Shi & Jin, 2025; Saha et al., 2025).

In contrast, discriminative verifiers, such as reward models, assign scalar scores to candidate responses
based on human preference data (Christiano et al., 2017; Ziegler et al., 2019; Zhu et al., 2023a; Liu
& Zeng, 2024; Wang et al., 2024; Park et al., 2024; Han et al., 2024). These models are central
to reinforcement learning from human feedback and are also used to rank or select responses in
BoN inference settings (Lightman et al., 2023; Wang et al., 2023a; Luo et al., 2024; Saunders et al.,
2022; Uesato et al., 2022; Yu et al., 2024). Together, generative and discriminative verifiers provide
complementary paradigms for evaluating, selecting, and aligning LLM outputs at inference time.

A substantial body of work has investigated improving the mathematical reasoning capabilities of
LLMs through prompting (Wei et al., 2022; Kojima et al., 2022; Crispino et al., 2024), training (Cobbe
et al., 2021; Guan et al., 2025; Hosseini et al., 2024; Lightman et al., 2023; Pang et al., 2024; Ye
et al., 2025; Luo et al., 2025a,b; Tan et al., 2025a), and test-time scaling (Snell et al., 2024; Brown
et al., 2024; Setlur et al., 2024). Following the release of o1 (OpenAI, 2024), there has been a surge
of interest in test-time scaling methods for LLM reasoning (Snell et al., 2024; Brown et al., 2024;
Singhi et al., 2025; Zhao et al., 2025), which improve performance by sampling multiple solutions
and aggregating them via majority voting or LLM-based verification. Our work builds on this line
of research, demonstrating that discriminative LLM verifiers can serve as an effective and efficient
verification approach for test-time scaling in complex math reasoning tasks.
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C Algorithms

Algorithm 1 Self-Consistency (SC@N )

Require: problem Q, solver LM, slate size N
1: Candidates← {si}Ni=1 ∼ LM(Q) ▷ Stage 1: Generate Candidates
2: Extract final answers {ai}Ni=1 and partition into clusters {Ca} by a Stage 2: Group Answers
3: for each cluster Ca do
4: na ← |Ca|
5: a∗ ← argmaxa na ▷ Stage 3: Plurality Vote
6: return a∗

Algorithm 2 Best-of-N (BoN@N )

Require: problem Q, solver LM, slate size N , verifier V
1: Candidates← {si}Ni=1 ∼ LM(Q) ▷ Stage 1: Generate Candidates
2: Verifications← { ri = V (si) }Ni=1 ▷ Stage 2: Verify Candidates
3: i∗ ← argmaxi∈{1,...,N} ri ▷ Stage 3: Select Highest-Scoring Solution
4: a∗ ← Ans(si∗) ▷ Stage 4: Extract Final Answer
5: return a∗

Algorithm 3 Weighted Self-Consistency (WSC@N )

Require: problem Q, solver LM, slate size N , verifier V
1: Candidates← {si}Ni=1 ∼ LM(Q) Stage 1: Generate Candidates
2: Verifications← { ri = V (si) }Ni=1 ▷ Stage 2: Verify Candidates
3: Extract final answers {ai}Ni=1 and partition into clusters {Ca} by a Stage 3: Group Answers
4: for each cluster Ca do
5: Wa ←

∑
i∈Ca

ri

6: a∗ ← argmaxa Wa Stage 4: Select Highest-Weight Answer
7: return a∗

Algorithm 4 Pessimistic Verification (PV@N )

Require: problem Q, solver LM, slate size N , verifier V , penalty weight α
1: Candidates← {si}Ni=1 ∼ LM(Q) ▷ Stage 1: Generate Candidates
2: Verifications← { ri = V (si)}Ni=1 ▷ Stage 2: Verify Candidates
3: Extract final answers {ai}Ni=1 and partition into clusters {Ca} by a Stage 3: Group Answers
4: for each cluster Ca do
5: na ← |Ca|
6: r̄(a)← 1

na

∑
i∈Ca

ri

7: ψa ← lnN
na+1

8: a∗ ← argmaxa [ r̄(a)− αψa ] ▷ Stage 4: Select Best Answer
9: return a∗
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Algorithm 5 Generative Pessimistic Verification (GPV@N,M )

Require: problem Q, solver LM, slate size N , generative verifier V , # of verifications M , penalty
weight α

1: Candidates← {si}Ni=1 ∼ LM(Q) ▷ Stage 1: Generate Candidates
2: for i = 1 to N do ▷ Stage 2: Generative Verifications (repeat M times)
3: for m = 1 to M do
4: (CoTi,m, ri,m)← V (si)

5: r̃i ← 1
M

∑M
m=1 ri,m

6: Extract final answers {ai}Ni=1 and partition into clusters {Ca} by a Stage 3: Group Answers
7: for each cluster Ca do
8: na ← |Ca|
9: r̄(a)← 1

na

∑
i∈Ca

r̃i

10: ψa ← ln(NM)
naM+1

11: a∗ ← argmaxa [ r̄(a)− αψa ] ▷ Stage 4: Select Best Answer
12: return a∗

D FLOPs Analysis of Discriminative and Generative Methods

FLOPs provide a theoretical measure of the intrinsic compute required, independent of hardware and
other implementation details, allowing us to study how compute requirements scale for discriminative
and verification techniques. For a decoder-only transformer model with hidden size d, intermediate
size m, L layers, and vocabulary size V , the FLOPs roughly decompose into three components:

1. Layer projections. Each token per layer requires 8d2 + 4dm FLOPs for Q,K, V,O projections
and the MLP.

2. Attention. With KV caching, prefill compute is quadratic in Tin: each of the Tin tokens attends to
all previous tokens, giving 4d · Tin(Tin+1)

2 FLOPs per layer. During decoding, cached keys/values
avoid recomputation, so each of the Tout generated tokens only attends to the fixed prefix and prior
outputs, costing 4d · (TinTout +

Tout(Tout−1)
2 ) FLOPs per layer.

3. LM Head. Finally, output projection adds 2dV Tout FLOPs, where V is the vocabulary size. For
discriminative verification, we set V = 1 and Tout = 1, corresponding to a single scalar output.

Note that this formulation omits smaller terms such as normalization layers, activation functions, or
positional encodings.

We compare discriminative and generative verification methods on AIME2025. For each, we vary
the number of candidate solutions N ∈ 2, 4, 8, 16, 32, 64, 128 and, for generative verification, the
number of verifications per response M ∈ 1, 2, 4, 8, 16, 32. Results are presented in Figure 2.

Repeated sampling provides a natural compute baseline: generating N candidate solutions requires
O(N) long CoT traces. For example, generating 32 candidate solutions to a problem from AIME2025
with DeepSeek-R1-Distill-Qwen-32B costs 2.0 × 1016 FLOPs on average. SC selects the most
common answer from the candidate solutions and uses no additional compute beyond that of repeated
sampling. By contrast, verification-based techniques incur additional compute cost. For example,
verifying 32 solutions with our discriminative verifier trained in Section 2 costs just 4.1×1014 FLOPs
on average, just 2.0% of the compute used for repeated sampling. All discriminative verification
techniques (BoN, WSC, PV) use the same amount of verification compute. While BoN tends to
underperform SC whenN is large, hybrid discriminative verification methods consistently outperform
the SC baseline by up to 5.1% for a negligible amount of additional compute.

Conversely, generative verification techniques are significantly less efficient. For example, verifying
the same 32 solutions with Heimdall (Shi & Jin, 2025) just once (M = 1) requires 3.1× 1016 FLOPs,
over 50% more FLOPs than solution generation and nearly 76× more FLOPs than discriminative
verification. While generative verification can be made more effective by scaling the number of
verifications per candidate solution (i.e., increasing M ), the compute requirements scale linearly.

Critically, under practical FLOP budgets, hybrid discriminative verification techniques outperform
generative verification. This is because discriminative methods allocate nearly all of the compute
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(f) M = 32

Figure 2: Accuracy vs. FLOPs on AIME2025 under equalized compute budgets. Each subplot
varies the number of verifications per candidate solution (M). Along each curve, successive points
correspond to doubling the number of candidate solutions (N). The shaded region highlights the
FLOPs budgets where hybrid discriminative verification techniques strictly outperform generative
verification under equalized compute budgets.

budget towards sampling candidate solutions, while generative verification splits its compute budget
between sampling and verifying candidates. Under realistic compute budgets, scaling the number of
candidate solutions produces greater returns than scaling verifications; even an oracle-level verifier
will fail to produce the correct answer if no correct solutions were sampled. With a large enough
budget, however, the gain from sampling additional candidates begins to saturate, and generative
verification techniques begin to dominate. The critical threshold at which generative verification
becomes superior depends on M (Figure 2). For example, when M = 1, hybrid discriminative
verification techniques outperform generative verification for any N ≤ 128. The optimal generative
configuration occurs when M = 2, but even still, hybrid discriminative verification methods remain
optimal for compute budgets less than 2.2× 1016 FLOPs.

E Scaling Analysis of Discriminative Verification

E.1 Scaling Model Size For Discriminative Verification

Here, we analyze how discriminative verification techniques scale with respect to the size of the
solver model, which generates the candidate solutions. To do so, we generate 128 candidate solutions
per question in AIME2024 and AIME2025 using DeepSeek-R1-Distill-Qwen models with 1.5B,
7B, 14B, and 32B parameters, and verify each using our trained discriminative verifier. We plot the
aggregate results in Figure 3 for several values of N .

We observe that increasing the solver’s size produces consistent but diminishing performance increases
on AIME. Specifically, hybrid methods like WSC and PV scale similarly to SC as the size of the
solver is increased, with WSC and PV maintaining a consistent edge over SC regardless of the
solver’s size, across various Ns. BoN, on the other hand, exhibits poor scaling behavior: when N
is small, BoN only slightly underperforms SC, but when N is large, BoN trails far behind. These
results suggest that hybrid approaches can effectively mitigate BoN’s long-tail vulnerability.
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Figure 3: Accuracy rates on AIME 2024/2025 for various discriminative verification methods across
four solver sizes for several values of N . Pass@N and SC@N are included as baselines.

E.2 Inference-time Scaling of Discriminative Verification
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Figure 4: Left: Unlike BoN, hybrid techniques show consistent but diminishing improvements
on AIME2024 from increasing the number of candidate results N sampled from DeepSeek-R1-
Distill-Qwen-32B. Right: The performance of DeepSeek-R1-Distill-Qwen-32B on AIME2024 scales
logarithmically with the reasoning budget regardless of verification method. Here, N = 32.

We study how each discriminative verification method benefits from increased inference-time com-
pute along two axes: the number of candidate solutions sampled from the solver and the reasoning
budget allocated to the solver. First, we observe that scaling N produces consistent but diminishing
improvements in performance on AIME (i.e., Pass@N increases). BoN struggles to benefit from scal-
ing N , with performance quickly saturating and even falling. On the other hand, hybrid approaches
like WSC and PV show consistent improvements as more solutions are sampled, maintaining a 2.2%
to 5.6% edge over SC as N is scaled from 2 to 128. On AIME2024, WSC and PV boost the accuracy
of DeepSeek-R1-Distill-Qwen-32B from 66.8% to 79.7% with only 4 candidate solutions, matching
the performance of o3-mini (medium) or DeepSeek-R1, and outperforming SC by 3.7%.

To control the reasoning budget, we use budget forcing (Muennighoff et al., 2025) and truncate the
candidate solutions T ∈ {0, 512, 1024, 2048, 4096, 8192, 16384} tokens after the opening think tag,
manually append the closing think tag, then allow the model to continue generating its final answer.
In doing so, we collect solutions under constrained reasoning budgets. We observe that even as the
reasoning budget is scaled from 0 to 16k tokens, WSC and PV maintain an edge over SC, even while
BoN falls off, showcasing the reliability of hybrid verification methods under various constraints.
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Figure 5: Blue: The loss decreases over one epoch of training. Red: The score margin—the
difference in score assigned to correct solutions and incorrect solutions on average across a global
batch—increases during training. Together, these indicate that the discriminative verifier learns to
discriminate between correct and incorrect solutions.

F Additional Technical Details

Our training data is based on a subset of Numina-Math (LI et al., 2024), which was released under an
Apache license 2.0. DeepSeek-R1 responses were collected from Mattern et al. (2025) (also Apache
2.0). Meanwhile, the majority of the responses from six DeepSeek-R1-Distill models, DeepScaleR-
1.5B-Preview, and the two QwQ models were generated on a local cluster of NVIDIA A100 GPUs,
with a minority coming from 3rd party API providers.

Our evaluation datasets are AIME2024 (MIT), AIME2025 (MIT), LiveBench-Math (White et al.,
2024) (Apache 2.0), and GPQA (Rein et al., 2023) (CC-by-4.0). Combined, they include 596
questions. We decontaminate the training dataset by excluding any problem whose fuzzy-match
similarity to an entry in our evaluation sets exceeds 80. For each AIME problem, we sample 128
candidate solutions, while on LiveBench Math and GPQA, we sample only 64 candidate solutions.

When rolling out solutions during training and evaluation, we follow the model’s usage recommen-
dations, namely prefilling the opening think token, sampling with a temperature of 0.6 and a top-p
value of 0.95, and instructing the model to output its final answer within \boxed{}.

Our 1.5B discriminative verifiers was trained on 4xA100s using the hyperparameters listed in Table 3.
Figure 5 shows the training dynamics (i.e., loss and score margin) for our discriminitive verifier.

Hyper-parameter Value

Global batch size 32
LR 5×10−5

LR scheduler Linear with 20 warmup steps
Optimizer (AdamW) β1 = 0.9, β2 = 0.999
λ 0.01
Max gradient norm 1.0

Table 3: Hyper-parameters for training discriminative verifiers.

G Additional Ablation Experiments

In addition to our main experiments, we include two further ablations conducted on a held-out
validation set. To construct this set, we removed 250 problems from the training dataset and generated
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32 responses per problem with 1.5B, 7B, 14B, and 32B variants of deepseek-ai/DeepSeek-R1-Distill-
Qwen. We discarded items where all sampled responses were correct or all incorrect, leaving 691
problems for validation. This setup ensures that both correct and incorrect responses are available,
making it suitable for evaluating the performance of a verifier.

G.1 Effect of the Pessimism Weight α
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Figure 6: Left: Validation accuracy of PV as a function of the pessimism weight α for various
numbers of independent candidate solutions (N). Right: Validation accuracy of PV as a function of
the pessimism weight α for various-sized solver models.

We first ablate the effect of the pessimism weight α in pessimistic verification (PV). As shown
in Figure 6 (left), which only includes 147 response groups generated by deepseek-ai/DeepSeek-
R1-Distill-Qwen-32B, performance peaks around α ≈ 0.5 for N ∈ 4, 8, 16, 32 and slowly decays.
Figure 6 (right) demonstrates that α = 0.5 is a reasonable choice for 4 solver models of various sizes.
Based on this result, we set α = 0.5 for all main experiments. Notably, in Shi & Jin (2025), the
authors use an α = 0.1 for experiments with Heimdall. This makes sense: with a stronger verifier
and sufficiently large M , you can reduce α and put more weight on the verifier.

G.2 Effect of Reasoning Content on the Verifier

We next ablate whether to pass the reasoning content (the tokens between <think> and </think>)
to the verifier during training and inference. Our main experiments exclude reasoning, i.e., the verifier
observes only the final solution string. For comparison, we trained and evaluated a second verifier
that retains the reasoning content. As shown in Figure 7, including reasoning consistently degrades
performance across all selection methods: BoN, WSC, and PV all achieve lower accuracy when
reasoning traces are present. This suggests that the additional reasoning text introduces noise rather
than a useful signal, reinforcing our choice to exclude it during both training and evaluation.

H Limitations and Broader Impacts

Limitations Verification techniques can improve answer selection only when at least one correct
candidate is present, so its ceiling is still bounded by the solver’s Pass@N. Additionally, like SC,
hybrid methods assumes that responses can be clustered into equivalence classes and thus would likely
not be suitable for domains lacking a reliable mechanism for determining answer equivalence (e.g.,
open-ended natural-language tasks). Also, under extreme compute budgets, generative verification
techniques outperform our hybrid verification techniques. Lastly, our latency analysis between
discriminative and generative verification is grounded in current software and hardware; with rapidly
advancing progress on both fronts, generative verification is sure to grow more efficient.

Broader Impacts Discriminative verification techniques enable highly efficient yet effective test-
time scaling. This may lower the hardware barrier for academic labs or other groups that need strong
reasoning but cannot afford massive inference clusters. On the flip side, better low-cost reasoning may
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Figure 7: Validation accuracy on the held-out set when including vs. excluding reasoning content in
verifier inputs for both training and inference.

accelerate misuse scenarios, which can be mitigated by techniques such as rate-limiting, watermarking,
or alignment training.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims made in the abstract and introduction and grounded in the experi-
mental results in Figure 1 and Section 3.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are discussed Appendix H.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: This work is empirical.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Section 2 and Appendix F detail the data curation, training methodology,
hyperparameters used. Section 3 specifies the evaluation settings necessary to replicate our
work.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: Code and data is available at https://github.com/wang-research-lab
/verification.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/pu
blic/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Section 2 and Appendix F detail the data curation, training methodology,
hyperparameters used. Section 3 specifies the evaluation settings necessary to replicate our
work. Full details are provided code at https://github.com/wang-research-lab/v
erification.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The main results in Table 1 include 95% confidence intervals, and Section 3
details the methodology used to derive these confidence intervals.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Some analysis of the compute resources used are provided in Section 3, and
additionally in Appendix F.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The authors made every effort to conform with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Broader impacts are discussed in Appendix H.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The work releases only a small discriminative verifier; risk of direct misuse is
minimal.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The creators of the assets used in the work are properly cited and their
respective licenses were respected and mentioned in Appendix F.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: New assets are released and documented at https://github.com/wang-r
esearch-lab/verification.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This work does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This work does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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