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ABSTRACT

We exploit the Bregman divergence to generate functions that are trained to mea-
sure the semantic similarity between images under corruptions and use these func-
tions as alternatives to the Lp norms to define robustness threat models. Then we
replace the projected gradient descent (PGD) by semantic attacks, which are in-
stantiations of the mirror descent, the optimization framework associated with the
Bregman divergence. Adversarial training under these settings yield classifica-
tion models that are more robust to common image corruptions. Particularly, for
the contrast corruption that was found problematic in prior work we achieve an
accuracy that exceeds the Lp- and the LPIPS-based adversarially trained neural
networks by a margin of 29% on the CIFAR-10-C corruption dataset.

1 INTRODUCTION

Neural networks for image classification are sensitive to input variations the way the human vi-
sion system is not. This means they can misclassify when images are subjected to either small
maliciously-crafted perturbations (so-called adversarial examples) (Biggio et al., 2013; Szegedy
et al., 2014; Papernot et al., 2016), or to the more realistic distribution shifts associated with com-
mon, realistic image corruptions like blur or contrast changes (Dodge & Karam, 2017; Hendrycks
& Dietterich, 2019). Thus both adversarial robustness and corruption robustness are active research
topics.

The common approach to achieve corruption robustness is the augmentation of the training set with
synthetically modified images, e.g., mixing images by blending, cutting and pasting parts, fusion
through spectral analysis, and others (Zhang et al., 2018a; Yun et al., 2019; Harris et al., 2021;
Walawalkar et al., 2020; Park et al., 2022; Yin et al., 2022; Liang et al., 2023).

The most successful method for achieving adversarial robustness is adversarial training (AT) (Madry
et al., 2018) and its many follow-up variants, e.g., (Uesato et al., 2019; Zhang et al., 2019; Carmon
et al., 2019; Wu et al., 2020; Chen et al., 2021; Rebuffi et al., 2021; Jiang et al., 2023). It consists
of first performing an attack to find adversarial examples images within an ϵ-ball w.r.t. an Lp norm,
and then including these in the training set. The basic machinery for most white-box attacks is
projected gradient descent (PGD) (Madry et al., 2018; Goodfellow et al., 2015; Wong et al., 2020;
Croce & Hein, 2020). Even though Lp norms carry no semantic meaning (they are oblivious to the
nature of images relevant to humans), AT was found to also improve corruption robustness when
done with carefully chosen hyperparameters (Hendrycks & Dietterich, 2019; Ford et al., 2019; Xie
et al., 2020; Kang et al., 2019; Kireev et al., 2022). Conversely, Ford et al. (2019) proved that
adversarial examples exist due to a nonzero test error under random noise, a particular distribution
shift. Thus, the hope is to further improve corruption robustness by using the AT machinery with
more meaningful similarity measures. A prominent example is the work by Kireev et al. (2022);
Laidlaw et al. (2021); Wang et al. (2021). It uses the so-called learned perceptual image patch
similarity (LPIPS) (Zhang et al., 2018b), which computes the L2 form over the features extracted
by a convolutional neural net, and ports PGD accordingly.

In this work, we take a different route by first learning a Bregman divergence (Bregman, 1967)
for image corruptions and then using the associated mirror descent optimization framework (Ne-
mirovskij & Yudin, 1983), which generalizes PGD, for AT.

Bregman divergence and mirror descent. Bregman divergence (Bregman, 1967) is a generaliza-
tion of the Kullback–Leibler divergence (Kullback & Leibler, 1951), and is widely used in statistics
and information theory to define distances in spaces where the Euclidean geometry is not appropriate
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such as probability distributions, covariance descriptors, random processes and others (Chowdhury
et al., 2023; Csiszar & Matus, 2008; Bauschke & Borwein, 1997; Stummer & Vajda, 2009; Frigyik
et al., 2008; Harandi et al., 2014). Once defined, the associated mirror descent (Nemirovskij &
Yudin, 1983), which generalizes PGD, allows solving constrained optimization problems including,
as we will show, the kind needed in adversarial attacks and training.

Contributions. In this paper we offer progress in the quest for corruption robustness through a
theoretically principled approach that uses a learned Bregman divergence with a suitably designed
AT. A Bregman divergence is defined by a so-called base function that is convex and has an invertible
gradient. As example, the KL divergence is defined by the Shannon entropy.

For a given corruption type we show how to learn an eligible base function as a neural net using
a proposed self-supervised algorithm. The associated Bregman divergence is semantic in that it
assesses corrupted images as close and randomly perturbed ones as far from the clean image, even
if in Euclidean distance it is clearly the opposite.

We instantiate mirror descent, which generalizes PGD, to perform semantic adversarial attacks using
the learned divergence instead of using an Lp norm.

We adopt this attack for AT and show that it yields classification models with high corruption ro-
bustness on the CIFAR-10-C for the contrast and fog corruptions that are known to be problematic
(e.g., Ford et al. (2019) and Kireev et al. (2022)).

2 BACKGROUND

We first recall standard adversarial training (AT) with projected gradient descent (PGD). Then we
provide background on Bregman divergence (Bregman, 1967) and the associated mirror descent
framework, which generalizes PGD (Nemirovskij & Yudin, 1983). Our work will then port AT with
PGD using an Lp norm to one with mirror descent and a learned Bregman divergence as similarity
measure.

Adversarial training. Let l(x, y; θ) be a loss of a classifier parameterized by θ where the input
image x and the label y are sampled from the data distribution D. As formalized by Madry et al.
(2018), training an adversarially robust model amounts to solving the following min-max optimiza-
tion problem:

min
θ

E(x,y)∼D

[
max

x′∈S(x)
l(x′, y; θ)

]
(1)

where S(x) is the set of images that are considered similar to x. Under the common Lp threat
model, S(x) is defined as an Lp ball centered on x of chosen radius ϵ: S(x) = B(x, ϵ)1. In this
case, the inner maximization problem is solved by PGD, which consists of iterating over two steps:
a gradient-based update followed by a projection into B(x, ϵ).

Bregman divergence. For a strictly convex function h : X → R on a given space X (called the
primal space) with (thus strictly monotonous) gradient ∇h : X → Z (Z is called the dual space),
the Bregman divergence (Bregman, 1967) Dh : X × X → [0,∞) from x to x′ with respect to h is
defined as

Dh(x
′ ∥ x) = h(x′)− h(x)− ⟨∇h(x),x′ − x⟩ (2)

The Bregman divergence is similar to a metric or distance (nonnegative, zero iff x = x′), except
that in general it is not symmetric in its arguments and only satisfies a weaker version of the triangle
inequality (whose exact form is not relevant here). Dh is convex in its first argument but not neces-
sarily in the second (Edelsbrunner & Wagner, 2017). The projection of an x ∈ X on a closed and
convex set K ⊆ X w.r.t. to Dh exists and is unique:

ΠK(x) = min
x′∈K

Dh(x
′ ∥ x). (3)

The generic concepts are shown in the first column in Table 1; the other columns are examples. The
squared Euclidean distance is a Bregman divergence if h is chosen as the squared L2 norm. More in-

1All threat models add another condition to ensure that the adversarial example x′ does not exceed its
natural range of pixels.
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Table 1: Notation and context of our approach. The first column shows the generic concepts asso-
ciated with the Bregman divergence and mirror descent. The second and third columns are known
instantiations. The last column is our contribution and basis for a novel approach to robustness.

Generic Euclidean norm KL divergence Ours

Some space X Euclidean space Discrete distributions Images

Base function h : X → R
(strictly convex) h(x) = 1

2
||x||22

h(p) =
∑

i pi log(pi)
(Shannon entropy)

h = learned ϕ
(an ICNN)

Mirror map ∇h : X → Z
(strictly monotone) ∇h(x) = x ∇h(p)i = log(pi)

Ψ ≈ ∇h
(approximate gradient)

Inverse map (∇h)
−1

: Z → X (∇h)
−1

(z) = z (∇h)
−1

(z)i = ezi Fenchel conjugate Ψ

Bregman Divergence
Dh(x

′ ∥ x)
1
2
||x′ − x||22

∑
i qi log

qi
pi

Dϕ

(learned divergence)

Mirror descent PGD Hedge algorithm Ours

zt = ∇h(xt)
zt+1 = zt − η∇f(xt)
x∗ = (∇h)

−1
(
zt+1

)
xt+1 = ΠK(x

∗)

x∗ = xt − η∇f(xt)
xt+1 = ΠB(x

∗)
p∗
i = pt

ie
−ηli

pt+1 = Π∆(p∗)

zt = Ψ(xt)
zt+1 = zt + η∇l(xt)
x∗ = Ψ

(
zt+1

)
xt+1 = ΠS(x

∗)

terestingly, if h is the negative Shannon entropy, the associated Bregman divergence is the Kullback-
Leibler (KL) divergence. Other examples of Bregman divergence include the Itakura–Saito distance,
LeCam divergence, Brug divergence, Jeffreys Divergence, or Stein Divergence (Bauschke & Bor-
wein, 1997; Stummer & Vajda, 2009; Harandi et al., 2014). The Bregman divergence is used if no
suitable choice of a metric is available.

Lp balls generalize to the Bregman divergence: the Bregman ball centered on x with radius ϵ is
given by

Bh(x, ϵ) =
{
x′ ∈ X | Dh(x

′ ∥ x) ≤ ϵ
}
. (4)

Bh is bounded and compact if X is closed but not necessarily convex (Edelsbrunner & Wagner,
2017).

Mirror descent. Mirror descent (Nemirovskij & Yudin, 1983) is a framework for optimizing func-
tions f : X → R possibly constrained to a feasible convex set K, minx∈K f(x) given a suitable base
function h that defines a Bregman divergence. Mirror descent requires the gradient ∇h (called the
mirror map) and the existence of (∇h)−1 (called the the inverse map). The algorithm is iterative as
shown in the first column in Table 1. After initializing x0 at any point in K, each iteration t consists
of four steps: (i) mapping the current point xt to a point in the dual space zt = ∇h(xt) through the
mirror map, (ii) taking a gradient step of size η: zt+1 = zt − η∇f(xt), (iii) mapping zt+1 back
to the primal space using the inverse map: x∗ = (∇h)−1

(
zt+1

)
, (iv) projecting x∗ into the feasible

set K w.r.t. Dh: xt+1 = ΠK(x
∗) with (3).

As shown in Table 1, for the Euclidean divergence, mirror descent is exactly PGD. For the KL
divergence it becomes the so-called hedge algorithm (Freund & Schapire, 1997). In this paper,
as sketched in the fourth column, we will learn base functions h that we call ϕ and associated
divergences for common image corruptions and use them for AT as explained next.

3 GENERATING A BREGMAN DIVERGENCE FOR IMAGES

Motivated by the KL divergence in information theory we exploit the theory of Bregman divergence
to derive new tools for robustness that match the geometry of image corruptions. Our high-level
approach is outlined in the fourth column of Table 1. For a given type of corruption, we learn a base
function h = ϕ that satisfies the properties to make Dϕ a divergence. Mathematically, this ϕ will
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play the same role as the Shannon entropy for KL divergence. We then instantiate mirror descent to
solve the inner maximization problem in (1) and thus enable AT with Dϕ. Formally, the challenge
is to learn a ϕ with the following properties:

(i) ϕ is convex and differentiable, and thus Dϕ a divergence;

(ii) ∇ϕ(x) and (∇ϕ)−1(x) have to be (approximately) computable to execute mirror descent.

Hand-engineering an eligible and performant ϕ (e.g., by stacking feature extractors) is likely to be
a daunting task. We propose to model ϕ as a deep neural network with a particular architecture:
the input convex neural network (ICNN) (Amos et al., 2017) for which we design a self-supervised
learning algorithm. The details are explained next.

3.1 CONVEX ARCHITECTURE

Based on the work by Amos et al. (2017), we define ϕ as an ICNN. The architecture is an L-layered
deep neural network with activations zl given by:

z1 = g0(W 0x+ b0),

zl = gl−1(W l−1x+ V l−1zl−1 + bl−1) for l = 2, . . . , L.
(5)

The output is ϕ(x) = zL. All the weights W l and V l and the biases bl are learnable parameters.
The function ϕ is convex provided that all V l are non-negative and all the activation functions gl are
convex and non-decreasing (Amos et al., 2017, Proposition 1). We set all the activation functions gl
to be the continuously differentiable exponential linear unit (CELU) (Barron, 2017) and the linear
layers as convolutions. Once we have ϕ, we numerically approximate the evaluation of the mirror
map Ψ(x) ≈ ∇ϕ(x) using automatic differentiation (Paszke et al., 2017).

3.2 INVERSE MAP

Since Ψ is a gradient of a neural network, its inverse Ψ−1 is not readily available. Our solution
leverages the Fenchel conjugate (Fenchel, 1949) ϕ : Z → R of ϕ, which exists for convex ϕ, is
again convex, and defined as:

ϕ(z) = max
x
⟨x, z⟩ − ϕ(x). (6)

If ϕ is of so-called Legendre type (i.e., proper closed, essentially smooth and essentially strictly con-
vex (Rockafellar, 1970)), then Fenchel (1949) states that (∇ϕ)−1 = ∇ϕ. Inspired by this equation,
we define the conjugate ϕ again as an ICNN with the exact same architecture as ϕ in (5). Given Ψ,
it is trained by minimizing:2

min
ϕ,Ψ

Ex∼D
[
||Ψ(Ψ(x))− x||2

]
. (7)

Now Ψ(x) ≈ ∇ϕ(x) is again computed using automatic differentiation and approximates
(∇ϕ)−1(x) as desired.

3.3 TRAINING ALGORITHM

A real-world corruption τ(x) (like blurred or with changed contrast) typically lies at a large L2

distance ϵ (say 10) of the clean image x and thus an L2-based attack with this ϵ would not find it but
instead an extremely noisy one x̃ at similar distance which would likely not be recognizable by a
human (Fig. 1, left). Also, AT does not converge for large ϵ and typically very small ϵ around 0.1 are
used (Hendrycks & Dietterich, 2019; Ford et al., 2019; Xie et al., 2020; Kang et al., 2019; Kireev
et al., 2022).

Our basic idea is to train ϕ such that, with respect to the induced Bregman divergence, a suitable
Bregman ball Bϕ includes τ(x) while excluding noisy images at much closer L2 distance (Fig. 1,
right). To do so, we first need a way to sample random images at a given mean distance from a clean
image:

2In this expression, Ψ is not an explicit neural network but rather a gradient of a neural network (ϕ) com-
puted w.r.t. the input.
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Figure 1: A two-dimensional cartoon visualizing our approach. Left: a clean image x corrupted to
τ(x) whose inclusion in an L2 ball B requires a large radius. An attack with this distance would
yield an extremely noisy x̃. Right: our learned Bregman distance yields balls that can include τ(x)
while excluding noisy images x̃ (here 64 many) at much closer L2 distance.

Lemma 1 When sampling the isotropic Gaussian random variable

x̃ = x+ d
Γ
(
n
2

)
√
2 Γ

(
n+1
2

) ||τ(x)− x||2 δ , δ ∼ N (0, In), (8)

where x is a fixed clean image, d ∈ (0, 1) is a hyperparameter and Γ is the gamma function, we
have

E [||x̃− x||2] = d||τ(x)− x||2. (9)

The proof is given in Appendix A.1.

Fig. 1 (right) shows m = 64 such samples {x̃i}mi=1 using d = 1. Next, we force each of their diver-
gences Dϕ(x̃

i ∥ x) to be larger than Dϕ(τ(x) ∥ x) or equivalently −Dϕ(τ(x) ∥ x) > −Dϕ(x̃
i ∥

x). We propose the following Bregman loss lB(x;ϕ,Ψ) to enforce all these m inequalities at once:

lB(x;ϕ,Ψ) = − log
e−Dϕ(τ(x)∥x)

e−Dϕ(τ(x)∥x) +
∑

i e
−Dϕ(x̃i∥x) . (10)

lB(x;ϕ,Ψ) can be interpreted as a cross entropy where the logits vector is the negative of Bregman
divergences

[
−Dϕ(τ(x) ∥ x),−Dϕ(x̃

1 ∥ x), ...,−Dϕ(x̃
m ∥ x)

]
and the ground truth class always cor-

responds the first entry. Then, we learn ϕ by minimizing:

min
ϕ,Ψ

Ex∼D [lB(x;ϕ,Ψ)] . (11)

After a successful training where Dϕ(τ(x) ∥ x) < Dϕ(x̃
i ∥ x) for all i = 1, ...,m, the Bregman

ball Bϕ(x, Dϕ(τ(x) ∥ x)) contains the transformed image τ(x) by definition but does not contain
any of the noisy images {x̃i}mi=1 (Fig. 1, right).

3.4 BREGMAN-BASED SEMANTIC ATTACK

Given a learned Bregman divergence, we define the neighborhood of a clean image x as the inter-
section of a Bregman ball and fixed L2 ball:

S(x) = Bϕ(x, ϵ) ∩ B(x, ϵmax). (12)

Here, as expected, ϵ is a parameter used in the adversarial attacks; ϵmax is an empirical large value,
typically chosen a hundred times bigger than the usual box radii used for the L2-based ATs. We
empirically found this L2 bound to be necessary. The reason is that most random samples used for
training with (11) are near x w.r.t L2 and thus Dϕ might assign also small values in ”under-explored”
regions that are far from x. As a result, a Bregman ball of radius Dϕ(τs(x) ∥ x) may include these
regions. Experimentally, we found that imposing a large L2-bound on Bϕ eliminates this problem.

5



Under review as a conference paper at ICLR 2024

Algorithm 1 Bregman-based semantic attack

1: x′ ← x ▷ Initialization
2: for t = 1, ..., T do
3: η ← ϵ10−4t/T

4: x′ ← Ψ
(
Ψ(x′) + η∇xl(x

′, y; θ
))

▷ The mirror descent update explained in Sec. 2
5: x′ ← x− ϵmax(x− x′)/||x′ − x||2 ▷ Projecting x′ into B(x, ϵmax)
6: a, b← 0, 1
7: while Dϕ(x

′ ∥ x) > ϵ do ▷ Projecting x′ into Bϕ(x, ϵ)
8: m← (a+ b)/2
9: x′ ← x+m(x′ − x)

10: a← m if Dϕ(x
′ ∥ x) > ϵ else b← m

11: x′ ← clip(x′, 0, 1) ▷ Projecting x′ into [0, 1]n

12: return x′ ▷ x′ is potentially misclassified

Our Bregman-based semantic attack follows the mirror descent as outlined in the fourth column
of Table 1 and detailed in Algorithm 1. The projection of x′ into S is done as a projection into
B(x, ϵmax) followed by a projection into Bϕ(x, ϵ). Since the latter has no closed-from expression,
we approximate it by a binary search over the segment having x and x′ as endpoints (lines 7–11 in
Algorithm 1).

4 RELATED WORK

Corruption robustness via data augmentation. Much of the prior literature on corruption robust-
ness aims to improve out-of-distribution generalization by using simulated and augmented images
for training. Many such data augmentation techniques are based on creating synthetic training ex-
amples through mixing pairs of training images and their labels. This is achieved for example by
linear weighted blending of images (Zhang et al., 2018a) or by cutting and pasting parts of an image
onto another (Yun et al., 2019). Researchers also fused images based on masks computed through
frequency spectrum analysis (Harris et al., 2021), based on adaptive masks (Liu et al., 2022) or
based on model-generated features (Walawalkar et al., 2020). Other works considered a hybrid ver-
sion of these mixing methods (Park et al., 2022), a stochastic version of them (Park et al., 2022), an
ensemble of them (Yin et al., 2022) or a concurrent combination of them (Liang et al., 2023).

Adversarial attacks without Lp norms. Another line of related work focuses on adversarial im-
age perturbations that are not constrained by Lp norms. Hsiung et al. (2023) introduces semantic
adversarial attacks that target image transformation parameters instead of image pixels. Similarly,
Engstrom et al. (2019) targets spatial transformations. Hosseini & Poovendran (2018) manipulates
the hue and saturation components in the hue saturation value (HSV) color space to create adver-
sarial examples. In addition to colorization, Bhattad et al. (2019) also tweaked texture of objects
within images. (Shamsabadi et al., 2020) modified colors within the invisible range. Some works
altered the semantic features of images through conditional generative models (Joshi et al., 2019) or
conditional image editing(Qiu et al., 2020).

Robustness via learned similarity metric. The closest related work adopts the so-called learned
perceptual image patch similarity (LPIPS) to study robustness. LPIPS is a weighted sum of the L2

of the feature maps taken from the activation layers of a trained convolutional network:

LPIPS(x,x′) =
∑
l

wl||ωl(x)− ωl(x
′)||2 (13)

where ωl is the feature map up to the l-layer and wl weighs the contribution of the layer l. Wang
et al. (2021) and Luo et al. (2022) propose an attack similar to (Carlini & Wagner, 2017) by adding
the LPIPS along with the Lp norm. Differently, Kireev et al. (2022) and Laidlaw et al. (2021)
used LPIPS as a function to define the set of similar images (refer to Sec. 2 for notation context):
S(x) = {x′ ∈ Rn| LPIPS(x,x′) ≤ ϵ}. Since the projection into this LPIPS-based set does not
admit a closed-from expression, solving the inner maximization problem of (1) (i.e., performing the
adversarial attack) requires approximation (Laidlaw et al., 2021) or relaxation (Kireev et al., 2022).
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Figure 2: Distribution of Bregman divergence’s base functions over 10,000 CIFAR-10 test set im-
ages. Two trained base functions ϕ, (b) for contrast and (c) for fog, are compared against (a) their
counterpart in the PGD setting, the half of norm L2 squared (see Table 1).

The resulting attacks and their associated AT have been proven effective to train robust models
against common image corruptions. We compare against LPIPS in our experiments.

5 EVALUATION

We perform experiments on CIFAR-10 (Krizhevsky et al., 2009) and the common corruption dataset
CIFAR-10-C (Hendrycks & Dietterich, 2019). For the classification model, we use the PreAct
ResNet-18 architecture (He et al., 2016) the same used by Kireev et al. (2022). The image cor-
ruptions are from (Hendrycks & Dietterich, 2019) and come with severities from 1 to 5. Our focus
is on the corruptions of contrast and fog which have been found the most challenging in (Ford et al.,
2019; Kireev et al., 2022).

Training the Bregman divergence. Both ϕ and ϕ have the same architecture, an ICNN with 12
convolutional layers followed by 4 fully connected layers. The mirror map and the inverse mirror
are numerically approximated using autograd.grad from PyTorch’s automatic differentiation
engine (Paszke et al., 2017). As an initialization phase, we first train ϕ and ϕ such that Ψ and Ψ
approximate the identity function (so initially Ψ = Ψ−1 holds) on uniformly drawn samples from
the usual range of pixels [0, 1]n:

min
ϕ,Ψ

Ex∼U([0,1]n) [||Ψ(x)− x||2] , min
ϕ,Ψ

Ex∼U([0,1]n)

[
||Ψ(x)− x||2

]
. (14)

This training is performed for 10,000 steps using the Adam optimizer (Kingma & Ba, 2014) with a
learning rate of 0.001 and a weight decay of 10−10.

Next, for a given corruption τ , we train ϕ with (11) while randomly sampling its severity for each
image at each epoch. The hyperparameter d for sampling noisy images defined in (8) is uniformly
sampled in [10−7, 10−1]. Since the fraction of Γ functions in (8) is difficult to compute, we replace
it empirically by 1/

√
n. Doing so yields

√
E [||x̃− x||22] = d||τs(x) − x||2 instead of Lemma 1

(Appendix A.1). We use m = 31 samples per clean image while a batch consists of 16 clean images.

The training is performed for 20 epochs using the AdamW optimizer (Loshchilov & Hutter, 2017)
with a learning rate of 0.0001 and a weight decay of 10−11. After each update of ϕ (according
to Equ. 11), we also update ϕ (according to Equ. 7). Finally, we freeze the parameters of ϕ and
continue training ϕ for additional 20 epochs.

Results of the Bregman divergence. We first inspect the learned base functions ϕ, i.e., our trained
”entropy” for an image corruption. The distribution of its outputs on the test set is shown in Fig. 2.
We notice that the trained based functions have modalities with different shapes and heights com-
pared to the L2 norm, the base function in the L2-based threat models (see Table 1).

Next we show in Fig. 3 that the learned divergence Dϕ agrees with Fig. 1. To do so we consider,
for the entire test set of 10,000 clean images, noisy images (blue, one per clean image) and the set
of contrast-corrupted images (red). We compute the distribution of their L2 distances to the clean
image in Fig. 3a. It is small for the noisy images (by construction) and large for the corrupted
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Figure 3: Distribution of (a) the Euclidean distance and (b) our trained Bregman divergence for noisy
images x̃ (blue) and contrast-corrupted images τ(x) (red) over 10,000 CIFAR-10 test set images.

ones. Fig. 3b shows the distribution of their learned divergences to the clean image.3 Here, the
corrupted images are considered close but the noisy ones far, which shows that the learned Bregman
divergence is semantically meaningful and works as expected.

Adversarial training. After training a Bregman divergence to be semantically meaningful for a
corruption τ and using it in the definition of the threat model, we can run an AT using our Bregman-
based semantic attack. We call this procedure the Bregman-based adversarial training (BAT). For a
corruption type τ we write BAT(τ ).

Figure 4: Samples from training images (first
row), adversarial examples for contrast cor-
ruption found by our Bregman-based attack
(second row) and the pixel-wise difference.

We compare against the relaxed LPIPS AT (RLAT)
(Kireev et al., 2022) without any further fine-tuning
of the training parameters. For a fair comparison,
we set the number of iteration of our attack to T = 1
to match the one-step attack used in RLAT. Fig. 4
shows a sample of the resulting images for con-
trast corruptions. The training is performed using
the SGD optimizer for 150 epochs with a learning
rate of 0.1 that decays by a factor of 10 each 50
epochs, a batch size of 128, and a weight decay of
0.0005. These are the same hyperparameters for
which RLAT performs the best. The RLAT radius
is taken to be 0.08. We also compare against the
L2 PGD AT with the radius of 0.1, which Kireev
et al. (2022) found the most effective for corruption
robustness. We emphasize that there is no meaning
in the relation of the magnitudes between L2 radius
values and Bregman ball radius values.

We run BAT for different values of Bregman ball radius ϵ from 0.025 to 20 while fixing ϵmax = 10
in (12). We notice that the accuracy of the resulting classifier is not very sensitive to the choice of ϵ
unlike in Lp- and LPIPS-based threat models (Kireev et al., 2022).

For contrast corruptions, the best accuracy is achieved with ϵ = 0.2 which we use in the comparison
in Table 2. The standard accuracy is on the clean data set. The columns show the corruption accuracy
for different severities and the last is their average. BAT preserves the standard accuracy (a slight
drop of 0.2%) while maintains high accuracies even under high corruption severities where the other
methods start to fail.

Additionally, we trained for fog and zoom blur corruptions and report the average results in Table 3
together with the prior contrast corruption. Fog is again best by a margin, whereas for zoom blur we
perform about 5% worse. Surprisingly our training for contrast also performs best on fog and well

3The mean, std, min and max of the distributions are reported in Appendix B.
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Table 2: Comparison of corruption robustness of models trained under different regimes.

Standard
accuracy

Contrast
Average

s = 1 s = 2 s = 3 s = 4 s = 5

Standard training 94.82 94.25 90.57 86.35 76.42 34.72 76.46
L2-based AT 93.52 91.68 82.96 72.31 51.43 21.26 63.92
RLAT 93.27 91.47 82.32 70.65 48.35 21.58 62.87
BAT(contrast) 94.62 94.38 93.74 93.07 91.58 84.04 91.36

Table 3: Corruption robustness of the standard-trained model against adversarially trained models
under L2, RLAT, and BAT for different corruptions.

Standard Contrast Fog Zoom Blur

Standard training 94.82 76.46 87.04 77.22
L2-based AT 93.52 63.92 77.47 85.87
RLAT 93.27 62.87 77.00 85.88
BAT(contrast) 94.62 91.36 91.47 80.11
BAT(fog) 94.66 79.53 89.20 80.42
BAT(zoom blur) 93.86 89.60 90.13 80.62

for zoom blur. One hint is that the three corruptions are similar in nature but this behavior requires
further investigation.

Limitation and discussion. The current main limitation of our approach is that it is specific to the
corruption type, and, as shown by zoom blur, does not always perform best. Further, there is an
overhead in first training for a valid divergence before starting the AT. On the other hand we could
significantly improve robustness on contrast and fog where the other methods fail to improve over
standard training. Also, our method produces adversarial examples unlike the work by Kireev et al.
(2022) that perturbs the feature space with no mechanism to produce an associated image. Finally,
we see value in the theoretical underpinning, which yields desirable properties (e.g., the Bregman
ball is compact unlike the LPIPS-based sets) and the well-established mirror descent. In fact, the
learned base function and divergence may be interesting for other applications. We hope that scaling
to larger convex architectures (the ones presented in this work are tiny; contain only 2M parameters)
would yield base functions ϕ that generalize to large sets of corruption types.

6 CONCLUSION

We presented a novel approach and tool set to improve corruption robustness of neural networks for
image classification. The key idea was to first learn a similarity measure that semantically captures
a considered corruption and that is also theoretically sound by instantiating a Bregman divergence.
Doing so gave access to executing mirror descent and thus adversarial attacks and training. The
main, and significant, challenge in our work was to ensure that the learned base functions underlying
the divergence satisfy the properties required by the theory.

Our results are prototypical and can only be considered a first step but we consider them in strong
support of our novel contribution. Specifically, we demonstrated that the learned divergence mea-
sures similarity as intended and we could demonstrate a significantly improved corruption robust-
ness for two corruptions on which prior work failed. Thus we see great potential when using large
network models and training sets. Finally, due to the underlying theory, our work is not specific to
images and learned divergences may find applications outside the scope of this paper.

9



Under review as a conference paper at ICLR 2024

REFERENCES

Brandon Amos, Lei Xu, and J. Zico Kolter. Input convex neural networks. In Doina Precup and
Yee Whye Teh (eds.), Proceedings of the 34th International Conference on Machine Learning,
volume 70 of Proceedings of Machine Learning Research, pp. 146–155. PMLR, 06–11 Aug 2017.
URL https://proceedings.mlr.press/v70/amos17b.html.

Jonathan T. Barron. Continuously differentiable exponential linear units. CoRR, abs/1704.07483,
2017. URL http://arxiv.org/abs/1704.07483.

Heinz H. Bauschke and Jonathan Michael Borwein. Legendre functions and the method of random
bregman projections. 1997. URL https://api.semanticscholar.org/CorpusID:
43970672.

Anand Bhattad, Min Jin Chong, Kaizhao Liang, B. Li, and David Alexander Forsyth. Unre-
stricted adversarial examples via semantic manipulation. In International Conference on Learn-
ing Representations, 2019. URL https://api.semanticscholar.org/CorpusID:
213304602.

Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim Šrndić, Pavel Laskov, Gior-
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A PROOFS

A.1 LEMMA 1

Let x ∈ Rn a fixed image and x̃ a random variable defined as follows with µ > 0:

x̃ = x+ µδ , δ ∼ N (0, In), (15)

The random variable x̃ is a gaussian because it is a linear combination of gaussians (x is fixed).

||x̃− x||2 =

√∑
i

(x̃i − xi)2

= µ

√∑
i

δ2i

= µ
√

z

(16)

z is a chi square distribution of degree n with density:

pz(z) =
zn/2−1e−z/2

2n/2Γ(n2 )
(17)

We defined the variable u = f(z) =
√

z, u ≥ 0. The density of u can be computed by the change or
variable formula:

pu(u) = pz(f
−1
(u))

∣∣∣∣dzdu
∣∣∣∣

=
un−1e−u2/2

2n/2−1Γ(n2 )

(18)

Next, we compute the expectation of u:

E(u) =
∫ ∞

0

upu(u)du

=
1

2n/2−1Γ(n2 )

∫ ∞

0

une−u2/2du

=

√
2

Γ(n2 )

∫ ∞

0

t(n−1)/2e−tdt (by substituting u =
√
2t)

=

√
2

Γ(n2 )
Γ(

n+ 1

2
) (by definition of Γ)

(19)

So we have:

E(||x̃− x||2) = E(µu) = µ

√
2Γ(n+1

2 )

Γ(n2 )
(20)

In Equ. 15, we set:

µ = d
Γ
(
n
2

)
√
2 Γ

(
n+1
2

) ||τ(x)− x||2 (21)

to obtain the same expression as in Lemma 1
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A.2 AN ALTERNATIVE TO LEMMA 1

For large values of n, the constants Γ
(
n
2

)
and Γ

(
n+1
2

)
are intractable. Here we propose an alterna-

tive. With the same notation as above :

E(||x̃− x||22) = µ2E(z) = µ2n. (22)

In Equ. 15, we set:

µ = d
1√
n
||τ(x)− x||2 (23)

and obtain:

√
E(||x̃− x||22) = d||τ(x)− x||2. (24)

B DETAILS ABOUT THE DIVERGENCE EVALUATION

In Sec. 5, we have shown that our trained Bregman divergence is semantically meaningful as it
considers noisy image far off clean images and the corrupted images closer even when the L2 says
otherwise. The distribution of these Bregman and L2 values that are shown in Fig. 3 are further
described in Tab. 4.

Table 4: Description of the distributions from Fig. 3.

||τ(x)− x||2 ||x̃− x||2 Dϕ(τ(x) ∥ x) Dϕ(x̃ ∥ x)

mean 11.36 0.70 2.79 218.69
std 2.16 0.39 3.31 153.34

min 8.60 0.06 10−6 1.11
max 14.49 1.04 8.11 423.90

C THE EVOLUTION OF THE TRAINING/VALIDATION LOSS

Figure 5 illustrates the convergence of the Bragman training under the settings of Sec. 5.
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Figure 5: The evolution of the Bregman loss lB(x;ϕ,Ψ) for the training and the validation set across
optimization steps.
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