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ABSTRACT

In this paper, we investigate the problem of certifying neural network robustness
against universal perturbations (UPs), which have been widely used in universal
adversarial attacks and backdoor attacks. Existing robustness certification meth-
ods aim to provide robustness guarantees for each sample with respect to the
worst-case perturbations given a neural network. However, those sample-wise
bounds will be loose when considering the UP threat model as they overlook the
important constraint that the perturbation should be shared across all samples. We
propose a method based on a combination of linear relaxation-based perturbation
analysis and Mixed Integer Linear Programming to establish the first robust certi-
fication method for UP. In addition, we develop a theoretical framework for com-
puting error bounds on the entire population using the certification results from
a randomly sampled batch. Aside from an extensive evaluation of the proposed
certification, we further show how the certification facilitates efficient comparison
of robustness among different models or efficacy among different universal adver-
sarial attack defenses and enables accurate detection of backdoor target classes.

1 INTRODUCTION

As deep neural networks become prevalent in modern performance-critical systems such as self-
driving cars and healthcare, it is critical to understand their failure modes and performance guaran-
tees. Universal perturbations (UPs) are an important class of vulnerabilities faced by deep neural
networks. Such perturbations can fool a classifier into misclassifying any input from a given distri-
bution with high probability at test time. Past literature has studied two lines of techniques to create
UPs: universal adversarial attacks (Moosavi-Dezfooli et al., 2017) and backdoor attacks (Gu et al.,
2019; Chen et al., 2017). The former crafts a UP based on a trained model and does not rely on
access to training data. The latter, by contrast, prespecifies a pattern as a UP and further alters the
training data so that adding the pattern (often known as the trigger in backdoor attack literature) will
change the output of the trained classifier into an attacker-desired target class.

Many defenses have been proposed for both universal adversarial attacks (Akhtar & Mian, 2018;
Moosavi-Dezfooli et al., 2017; Shafahi et al., 2020; Benz et al., 2021; Liu et al., 2021) and
backdoor attacks (Wang et al., 2019; Chen et al., 2019; Guo et al., 2019; Borgnia et al., 2020;
Qiu et al., 2021). But empirical evaluation with attacks does not provide a formal guaran-
tee on the robustness as it is infeasible for an attack algorithm to provably cover all con-
cerned perturbations. In contrast, robustness certification aims to verify the output bounds of
the model given a certain class of input perturbations and provably certify the robustness against
all the concerned perturbations. Although several recent works (Weber et al., 2020; Xie et al.,
2021) developed techniques to achieve certified robustness of a classifier against backdoor-attack-
induced UPs with certain norm bound. However, these techniques apply to specific learn-
ing algorithms and require the knowledge of the training data. It remains an open question:
How to certify the robustness of a trained model against a class of UPs in a way that is agnostic
to the underlying training algorithm and data, and is general for different UPs (including both
universal adversarial attacks and norm-bounded backdoor attacks)?
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In this paper, we propose a framework to certify the worst-case classification accuracy on a batch
of test samples against l∞-norm-bounded UPs. Our approach builds off of past works for certify-
ing robustness against sample-wise perturbations that are independently added to each sample. For
efficient verification, many recent works linearly relax nonlinear activation functions in neural net-
works into linear bounds and then conduct linear bound propagation to obtain the output bounds for
the whole model (Wong & Kolter, 2018; Wang et al., 2018b; Dvijotham et al., 2018; Zhang et al.,
2018; Singh et al., 2019b). This process is also referred to as linear perturbation analysis (Xu et al.,
2020a). Since the worst-case model accuracy against sample-wise perturbations is a lower bound
of the worst-case accuracy against UPs, these certification techniques could be applied to obtain a
certificate against UPs. However, a direct application would overlook the important constraint that
a UP is shared across different inputs, thereby producing overly conservative certification results.

Unlike sample-wise perturbations, UPs require theoretical reasoning to generalize certification re-
sults. This is because UPs are applied to any input from the data distribution, and our main interest
lies in the expected model accuracy over the entire data distribution against UPs. However, certifi-
cation procedures can only accept a batch of samples from the distribution and certify the accuracy
over the samples. Therefore, it’s crucial to understand the discrepancy between certified robustness
computed from samples and the actual population robustness.

We summarize our contributions as follows:

• We formulate the problem of robustness certification against UPs. We then generalize
linear relaxation based perturbation analysis (LiRPA) to UPs, and we further propose a
Mixed Integer Linear Programming (MILP) formulation over linear bounds from LiRPA,
to obtain tighter certification on the worst-case accuracy of a given model against UPs
within a ℓ∞-norm ball1.

• We establish a theoretical framework for analyzing the generalizability of the certification
results based on random sampled subsets to the entire population.

• We conduct extensive experiments to show that our certification method provides certified
lower bounds on the worst-case robust accuracy against both universal adversarial attacks
and l∞-bounded backdoor attacks, which are substantially tighter than results by directly
applying existing sample-wise certification.

• We also investigate the implications of robustness certification on UPs to facilitate easy
comparisons of robustness among different models or the efficacy of empirical defenses,
and to achieve reliable identification of backdoor target classes.

2 BACKGROUND AND RELATED WORK
Universal Adversarial Perturbation Neural networks are vulnerable to adversarial exam-
ples (Szegedy et al., 2014), which has led to the development of universal adversarial perturba-
tions (UAPs), a same noise can consistently deceive a target network on most images (Liu et al.,
2019; 2020). Existing defenses against UAPs include fine-tuning on pre-computed UAPs (Moosavi-
Dezfooli et al., 2017), post-hoc detection (Akhtar et al., 2018), universal adversarial training with
online UAP generation (Mummadi et al., 2019; Shafahi et al., 2020; Benz et al., 2021). However,
all existing defenses to UAPs are empirical works without efficacy guarantee to new attacks.

Backdoor Attacks In backdoor attacks, attackers plant a predefined UP (a.k.a. the trigger) in the
victim model by manipulating the training procedure (Li et al., 2020c). Attacked models can give
adversarially-desired outputs for any input patched with the trigger while still show good perfor-
mance on clean inputs. Existing defenses include: poison detection via outlier detection (Gao et al.,
2019; Chen et al., 2018; Tran et al., 2018; Zeng et al., 2021) which rely on the modeling of clean
samples’ distribution; poisoned model identification (Xu et al., 2019; Wang et al., 2020b); trojan
removal via trigger synthesising (Wang et al., 2019; Chen et al., 2019; Guo et al., 2019; Zeng et al.,
2022a), or preprocessing and fine-tuning; (Li et al., 2020b; Borgnia et al., 2020); robust training
via differential privacy (Du et al., 2019) or redesigning the training pipeline (Levine & Feizi, 2020;
Jia et al., 2020; Huang et al., 2022; Li et al., 2021). As all these defenses were empirical, existing
literature has revealed those empirical defenses’ limitations to zero-day attacks or adaptive attacks
(Zeng et al., 2022b).

Robustness Certification of Neural Networks Early robustness certifications (Katz et al., 2017;
Ehlers, 2017; Tjeng et al., 2017) largely relied on satisfiability modulo theory (SMT) or integer

1https://github.com/ruoxi-jia-group/Universal_Pert_Cert
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linear programming (ILP) solvers are were limited to very small networks. For more efficient ver-
ification, bound propagation with convex relaxations has been proposed (Wong & Kolter, 2018;
Wang et al., 2018b; Zhang et al., 2018; Weng et al., 2018; Singh et al., 2019b; Salman et al., 2019),
which over-approximates nonlinear activations with convex relaxation and propagates the bounds
layer by layer to finally bound the entire model. Xu et al. (2020a) proposed a bound propagation
framework for general computational graphs and referred to the related methods as linear relaxation
based perturbation analysis (LiRPA), as activations are relaxed by linear bounds. Bound propagation
methods have also been further enhanced with techniques such as branch-and-bound (Bunel et al.,
2018; 2020; Wang et al., 2018a;b; Xu et al., 2020b; Wang et al., 2021), multi-neuron relaxation and
cutting planes (Singh et al., 2019a; Ferrari et al., 2021; Zhang et al., 2022a) for tighter results at
a cost of efficiency. However, these works are developed for sample-wise perturbations, and they
cannot directly produce tight certification against universal perturbations. Besides, there are several
randomized smoothing (Cohen et al., 2019) based methods for certified robustness against backdoor
attacks (Weber et al., 2020; Wang et al., 2020a; Xie et al., 2021; Zhang et al., 2022b). These are
stochastic methods and are usually considered orthogonal to deterministic certification. Moreover,
they require access to training data, only applicable to some specific learning algorithms (e.g., binary
models or federated learning) and not general for other UPs, such as UAPs.

3 METHODOLOGY

3.1 PROBLEM FORMULATION

On a set of n independent samples {z(1), . . . , z(n)} from the data distribution Ω, where z(i) =
(xi, yi) is the i-th example, xi (xi ∈ Rd) is the input and yi is the ground-truth label, we aim
to certify the robustness of a K-way neural network classifier f : Rd → RK against a potential
universal perturbation δ with ℓ∞ norm constrained as ∥δ∥∞ ≤ ϵ. In particular, we aim to certify
and lower bound the worst-case accuracy of the neural network on {z(1), . . . , z(n)} for any universal
perturbation δ (∥δ∥∞ ≤ ϵ) applied to all the examples:

min
∥δ∥p≤ϵ

1

n

n∑
i=1

1

(
min
j ̸=yi

{myi,j(xi + δ)} > 0

)
, (1)

where myi,j(xi + δ) = fyi
(xi + δ) − fj(xi + δ) is the margin between the ground-truth class yi

and an incorrect class j ̸= yi, and the indicator checks whether the margin is positive for any j ̸= yi
when a perturbation δ is added. It is NP-hard to exactly verify Eq. (1) even for n = 1 and a small
ReLU network (Katz et al., 2017). Thus recent neural network verifiers usually compute a lower
bound for the margin as myi,j(xi + δ) ≤ myi,j(xi + δ), and then we can replace m in Eq. (1) with
m to lower bound Eq. (1) and this bound also serves as a lower bound for the robustness.

3.2 LINEAR PERTURBATION ANALYSIS W.R.T. A UNIVERSAL PERTURBATION

We adopt linear relaxation based perturbation analysis (LiRPA) from previous works which focused
on sample-wise perturbations, “auto LiRPA” (Xu et al., 2020a) specifically, to obtain lower bounds
on myi,j(xi + δ) represented as linear functions w.r.t. the universal perturbation δ. but it is also
feasible to use other verification frameworks such as Singh et al. (2019b); Wang et al. (2018b).
auto LiRPA can bound the output of a computational graph when its input nodes are perturbed,
and it can produce linear functions w.r.t. the perturbed inputs nodes as linear bounds. Note that
margin functions can be appended to the original neural classifier as the output of the computational
graph, and thereby the margins can be bounded. When sample-wise perturbations are considered in
previous works, the linear bounds can usually be written as

∀i ∈ [n], ∀j ̸= yi, ∀∥δ∥∞ ≤ ϵ, myi,j(xi + δ) ≥ ã
(i)
j (xi + δ) + b̃

(i)

j , (2)

where ã
(i)
j and b̃

(i)

j are coefficients and biases in the linear bounds. This is achieved by relaxing
nonlinear functions such as activation functions in the network with linear bounds and propagating
linear coefficients through the computational graph. The right-hand-side (RHS) of Eq. (2) is a linear
function w.r.t. (xi+δ). To obtain a final bound represented as a concrete number without relying on
the δ variable, a concretization step can be applied on the RHS given the constraint on ∥δ∥∞, which

eliminates the δ variable and lower bounds the RHS as ã(i)j (xi+δ)+b̃
(i)

j ≥ −ϵ∥ã(i)j ∥1+ã
(i)
j xi+b̃

(i)

j .
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However, the aforementioned concretization step considers the worst-case δ for each sample in-
dependently but a universal perturbation δ should be shared across all the examples. Thereby it
will produce relatively loose and over-conservative results under the universal perturbation setting,
as the perturbations are much stronger when each example can take an independent perturbation
respectively compared to a single and universal perturbation for all the examples.

In contrast, we propose to obtain a tighter certification for universal perturbation. Unlike Eq. (2), we
use auto LiRPA to compute the linear lower bound with respect to δ instead of (xi + δ) by treating
δ as a perturbed input node and xi as a fixed input node in the computational graph:

∀i ∈ [n], ∀j ̸= yi, ∀∥δ∥∞ ≤ ϵ, myi,j(xi + δ) ≥ a
(i)
j δ + b

(i)
j , (3)

where a
(i)
j and b

(i)
j are new coefficients and biases in the linear bound, and xi does not appear on

the RHS as it is fixed. In the next section, we will lower bound the worst-case accuracy Eq. (1) by
solving an MILP problem based on Eq. (3).

3.3 AN MILP FORMULATION TO LOWER BOUND THE WORST-CASE ACCURACY

In this section, we use linear bounds in Eq. (3) to compute a lower bound for the worst-case accuracy
in Eq. (1). Specifically, by replacing each myi,j in Eq. (1) with its lower bound from Eq. (3), we
lower bound Eq. (1) by solving the following problem:

minimize
1

n

n∑
i=1

1

(
min
j ̸=yi

{
a
(i)
j δ + b

(i)
j

}
> 0

)
s.t. ∥δ∥∞ ≤ ϵ. (4)

Now, we show that Eq. (4) can be rewritten into an MILP formulation:
Theorem 1. Problem Eq. (4) is equivalent to the following MILP problem:

minimize ϑ

s.t. ϑ =
1

n

n∑
i=1

q(i), (5)

∀i ∈ [n], q(i) ∈ {0, 1}, −τ(1− q(i)) ≤
∑
j ̸=yi

(a
(i)
j δ + b

(i)
j )s

(i)
j ≤ τq(i), (6)

∀i ∈ [n],∀j ̸= yi, s
(i)
j ∈ {0, 1},

∑
j ̸=yi

s
(i)
j = 1, (7)

∀i ∈ [n],∀j1 ̸= yi,∀j2 ̸= yi, (a
(i)
j1
δ + b

(i)
j1
)s

(i)
j1

− τ(1− s
(i)
j1
) ≤ (a

(i)
j2
δ + b

(i)
j2
), (8)

∥δ∥∞ ≤ ϵ,

where τ ≥ maxi∈[n]

∑
j ̸=yi

|a(i)j δ + b
(i)
j | is a sufficient large constant.

In Theorem 1, given a universal perturbation δ, for the i-th example, integer variable q(i) ∈ {0, 1}
denotes whether the the model is certifiably correct on this example based on linear bounds from
Eq. (3), and the certified accuracy on the whole batch can be computed as Eq. (5). The model is
certifiably correct on the i-th example when myi,j(xi + δ) ≥ a

(i)
j δ + b

(i)
j > 0 holds for all j ̸= yi.

We use an integer variable s
(i)
j ∈ {0, 1} to denote whether class j is the hardest among all j ̸= yi

under the ceritification, i.e., ∀j′ ̸= yi,a
(i)
j δ+b

(i)
j ≤ a

(i)
j′ δ+b

(i)
j′ holds, which is enforced by Eq. (8).

We require each example to have exactly one hardest class j with s
(i)
j = 1 (see Eq. (7)); in case that

there are multiple classes with an equal lower bound on the margin function, it is valid to treat any of
them as the hardest. Then we only need to check whether a(i)j δ+b

(i)
j > 0 holds for the hardest class

j with s
(i)
j = 1, equivalently

∑
j ̸=yi

(a
(i)
j δ+b

(i)
j )s

(i)
j > 0. In Eq. (6), as τ is sufficiently large, only∑

j ̸=yi
(a

(i)
j δ+b

(i)
j )s

(i)
j ≥ 0 is effectively required when q(i) = 1, and

∑
j ̸=yi

(a
(i)
j δ+b

(i)
j )s

(i)
j ≤ 0

is required when q(i) = 0. Note that if exactly
∑

j ̸=yi
(a

(i)
j δ + b

(i)
j )s

(i)
j = 0 happens, q(i) = 0 will

be taken by MILP due to the minimization objective, and thus it is still compatible with our goal

4



Published as a conference paper at ICLR 2023

for checking a
(i)
j δ + b

(i)
j > 0. Overall the MILP formulation minimizes the certified accuracy over

all possible universal perturbation δ (∥δ∥∞ ≤ ϵ), to finally produce a lower bound for Eq. (1). We
formally prove this theorem in Appendix A.1, and we use Gurobi (Bixby, 2007) to solve the MILP.

Although it is possible to solve the whole certification algorithm through MILP (Tjeng et al., 2017),
it will be computationally prohibitive. Even for very small networks with thousands of neurons,
the number of integer variables in their MILP formulation will be proportional to the number of
neurons. In contrast, by computing linear bounds first before solving MILP, the number of integer
variables in our formulation is only proportional to the number of samples in a batch and the number
of classes, and it does not depend on the size of the network, which makes it feasible in practice.

4 GENERALIZATION OF UNIVERSAL PERTURBATION

In the previous section, we proposed our robustness certification method against UPs. Note that the
certification results are only guaranteed for the given batch of samples till now. In this section, we
study how the certified accuracy computed on a batch approximates the certified accuracy computed
on the entire data distribution.

Let z(i) be a random sample drawn from probability space (Ω,F ,P), which is endowed with a σ-
algebra F and a probability measure P. A dataset Dn ≜ {z(1), . . . , z(n)} consists of n observations
drawn independently from Ω according to P; equivalently it can be considered as a random point in
(Ωn,Fn,Pn), which is the n-fold Cartesian product of Ω equipped with the product σ-algebra Fn

and the product Pn = P× · · · × P︸ ︷︷ ︸
n times

. Let ∆ denote the l∞ ball that contains all allowable perturbations

∆ = {δ : ∥δ∥∞ ≤ ϵ} with radius ϵ. And let B : Ω → R(d+1)K be a linear bound generation
procedure, and for each z = (x, y), it returns parameters {aj ,bj}j ̸=y of the linear lower bounds on
the margins, i.e., my,j(x+ δ) ≥ aj(x+ δ)+bj . In the proposed framework, B is instantiated to be
auto LiRPA (Xu et al., 2020a). Let An : R(d+1)Kn → ∆ denote the MILP in Eq. (4), which return
a perturbation δ given the linear bounds on the margins. The overall certification procedure is the
composition of An and B, denoted by G = An ◦ B ◦ · ◦ B︸ ︷︷ ︸

n times

≜ An ◦ B◦n.

For every data sample z = (x, y) ∈ Ω, we define the set

∆B
z :=

{
δ ∈ ∆ : 1

(
min
j ̸=y

{
ajδ + bj

}
> 0

)}
as the set of perturbations such that the margin between the ground-truth class and any other class is
certifiably positive according to the linear bounds provided by B, i.e., the model is certifiably robust
to any perturbation in this set, but it is still possible for the model to be robust to a perturbation
δ /∈ ∆z . Note that the dependence of the set on B has been made explicit because aj ,bj depend on
B. Similarly, we define the set

∆̃z :=

{
δ ∈ ∆ : 1

(
min
j ̸=y

{
my,j(x+ δ)

}
> 0

)}
(9)

as the set of all perturbations that are incapable of fooling the given model f , i.e., the data z is
actually robust to any perturbation in this set. Note that ∆̃z is a superset of ∆B

z , and unlike ∆B
z , it

does not depend on the linear bound generation procedure. We make the following definitions:
Definition 1. The certified robust probability (CRP) of a given perturbation δ ∈ ∆ based on a
linear bound generation procedure B is defined as

V B(δ) ≜ P(z ∈ Ω : δ ∈ ∆B
z ). (10)

The actual robust probability (ARP) of a given perturbation δ ∈ ∆ is defined as

U(δ) ≜ P(z ∈ Ω : δ ∈ ∆̃z). (11)

The certified robust rate (CRR) of a perturbation δ ∈ ∆ on an evaluation dataset Dn based on a
linear bound generation procedure B is

V̂ B(δ;Dn) ≜
1

n

∑
z∈Dn

1(δ ∈ ∆B
z ). (12)
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Equivalently, we can write the objective of Eq. (4) as minδ∈∆ V̂ B(δ;Dn). ∆B
z can be equivalently

defined by the existence of a binary variable as in the MILP formulation in Theorem 1 and is thus
nonconvex in general. In the following, we use V̂ B(δ) for V̂ B(δ;Dn) if the evaluation dataset is
Dn for notational simplicity. Note that V B(δ) ≤ U(δ) for any δ ∈ ∆ and the equality is attained
when the equality in (3) is attained, i.e., the lower bound generated by B exactly matches the actual
margin at any δ. Now we present the following theorem that estimates the value of ARP based on
the CRR computed from a batch of random samples.

Theorem 2 ((1− ξ)-probable certification for ARP). Given G = An ◦ B◦n and 0 < ξ < 1, for any
δ, it holds that

Pn

(
U(δ) ≥ min

δ∈∆
V̂ B(δ;Dn) + U(δ∗)− V B(δ∗)− t∗(ξ, n)

)
≥ 1− ξ, (13)

where t∗(ξ, n) is the root of the equation (1 + 4t) ln(1 + 4t) − 4t = 4
n ln(1/ξ) and t∗(ξ, n) is a

monotonically decreasing function in n and ξ. δ∗ = argminδ U(δ). Moreover, we have that

Pn

(
U(δ) ≥ min

δ∈∆
V̂ B(∆;Dn)− t∗(ξ, n)

)
≥ 1− ξ, (14)

Figure 1: t∗(ξ, n) vs. n.

The proof can be found in Appendix A.2. Both bounds are
interesting to interpret. The bound Eq. (13) shows that the
discrepancy between the ARP of any perturbation and the
CRR (i.e., the certified accuracy on a random batch) de-
pends on U(δ∗) − V B(δ∗) and t∗(ξ, n). Given the trained
model and the underlying data distribution, δ∗ is fixed;
hence, the term U(δ∗) − V B(δ∗) depends on the tightness
of linear bounds produced by B. The tighter bounds B can
provide, the smaller difference there will be between U(δ∗)
and V B(δ∗). This bound suggests that plugging tighter linear bound generation techniques into our
certification framework can potentially give rise to better approximation error. It is also interesting
to note that the approximation error of the proposed certification framework G = An ◦ B◦n exclu-
sively depends on B, not An. This is because An always returns the optimal solution to the MILP,
thereby not introducing any additional error. The second term t∗(ξ, n) depends on the number of
samples for certification and it vanishes as the n grows (illustrated in Figure 1). The second bound
(Eq. (14)) utilizes the fact that U(δ∗) − V B(δ∗) ≥ 0, and is more relaxed but more convenient
than the first bound (Eq. (13)) because the lower bound of the ARP can be calculated given the
certification results on a batch, the number of samples in the batch, and the confidence level 1 − ξ.
In the Section 5.2, we will showcase the estimation of the ARP using this bound.

5 EXPERIMENT

5.1 EXPERIMENTAL SETUP

For evaluating the certification, we consider two benchmark datasets, MNIST (LeCun et al., 1998)
and CIFAR-10 (Krizhevsky et al., 2009), widely adopted in existing works. We adopt 5 model
structures from existing works (Singh et al., 2019a; Tjandraatmadja et al., 2020; Wang et al., 2021;
Müller et al., 2022; Zhang et al., 2022a): Conv-small, Conv-4-layer, Conv-big on MNIST, and
ResNet-2B, ResNet-4B on CIFAR-10, with details in Appendix B. We use the CRR and attack-
ACC (accuracy under an attack) as the metrics. All the results are averaged over three runs with
different random seeds on 100 random samples for each dataset. Further experimental details can
be found in Appendix B.

5.2 EVALUATION

Comparing to existing robustness certification We first focus on evaluating our certification re-
sults compared to existing robustness certification for sample-wise perturbation. There are several
competitive frameworks such as Singh et al. (2019b); Bunel et al. (2020); Henriksen & Lomus-
cio (2021), and we compare with auto LiRPA (Xu et al., 2020a) specifically for its state-of-the-art
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Table 1: Certification results on naturally trained MNIST models (CRR %).

Conv-small Conv-4-layer Conv-big
Sample-Wise Ours Sample-Wise Ours Sample-Wise Ours

ϵ = 4/255 94.00±3.74 95.00±2.94 93.33±2.87 95.33±1.25 41.67±8.34 45.33±6.60
ϵ = 6/255 80.67±6.18 86.33±4.50 69.00±5.89 78.67±3.68 6.67±2.49 8.67±3.09
ϵ = 8/255 52.33±6.24 63.33±5.25 40.67±6.13 52.0±6.68 0.00±0.00 0.00±0.00

Table 2: Certification results on PGD-32 adversarially trained MNIST models (CRR %).

Conv-small Conv-4-layer Conv-big
Sample-Wise Ours Sample-Wise Ours Sample-Wise Ours

ϵ = 16/255 94.67±1.25 95.33±1.70 96.67±0.47 97.00±0.00 69.67±1.70 70.67±1.70
ϵ = 32/255 34.67±5.31 44.33±9.39 54.33±0.47 67.0±2.16 0±0 0±0

Table 3: Certification results on PGD-8 adversarially trained CIFAR-10 models (CRR %).

ResNet-2B ResNet-4B
Sample-Wise Ours Sample-Wise Ours

ϵ = 1/255 43.33±2.62 46.33±0.94 51.00±3.27 54.67±4.03
ϵ = 3/255 28.67±2.05 33.00±1.41 0.00±0.00 0.00±0.00

performance (Bak et al., 2021). We consider models from both natural training and adversarial
training. For MNIST, we evaluate the two certification methods on models naturally trained, and
PGD-32 (PGD with ℓ∞-norm 32

255 ) adversarially trained models (Madry et al., 2018). Table 1 details
the results on naturally trained MNIST models. Our method provides much tighter bounds than
sample-wise certification results across all the settings. Table 2 illustrates results on PGD-32 trained
MNIST models. With adversarial training, we observe the certified robustness of the models against
UPs also largely increased compared naturally trained models in Table 1. Our certification results
are still much tighter than sample-wise results especially under settings with larger perturbations.
On CIFAR-10, we only evaluate the results on adversarially trained models (PGD-8 for ResNet-2B
and ResNet-4B) as the naturally trained model is severely susceptible to perturbations on CIFAR-10
(see Figure 5) even with ϵ = 1

255 . To sum up, our method can provide tighter robustness certification
than existing sample-wise methods.

Figure 2: Different numbers of
samples vs. the lower bound of
ARP, i.e., ARP, (Conv-4-layer,
MNIST, at ϵ = 6

255
, ξ = 0.1).

Estimation of the lower bound of ARP Figure 2 illustrate the
application of Theorem 2 with CRR. We use the naturally trained
Conv-4-layer on MNIST as an example and we set ϵ = 6

255 . We
demonstrate the estimation of 0.9-probable certification for the
lower bound of ARP, or ARP, by setting ξ = 0.1. From Figure 2,
we can learn that the empirical results, CRR, can be tighter when
more samples are considered in certification. Incorporating more
samples also makes the estimated ARP much closer to the CRR
(as t∗(ξ, n) is smaller). Such an observation shows that when
incorporating more samples in certification, the empirical results
would better reflect the actual robustness of the whole population.
In particular, when using 1000 samples, the result can be interpreted as the ARP is larger than
84.73% with at least a 90% probability.

Conv-big 
(PGD-32)

Conv-small 
(PGD-32)

Conv-4-layer 
(PGD-32)

Figure 3: CRRs vs. UAP-attacked ACCs (MNIST,
PGD-32 trained models).

Validating with UAP attacks We then val-
idate the robustness certification results with
UAP attacks as CRR should lower bound the
attack-ACCs. We consider three SOTA UAP
attacks: Adv-UAP (Li et al., 2022), Cos-
UAP (Zhang et al., 2021a), and DF-UAP
(Zhang et al., 2020), detailed in in Appendix
B. Figure 3 compares CRR and attack-ACCs
on PGD-32 trained MNIST models. As
shown in Figure 3, CRRs are indeed lower
than all the attack-ACCs as expected.

Validating with backdoor attacks We also validate whether CRR still lower bounds the attack-
ACCs in backdoor attacks. We consider two backdoor triggers namely a blended trigger (Chen et al.,
2017) with a small ℓ∞-norm (∥δ∥∞ = 5

255 , referred as the stealthy trigger), and the BadNets (Gu
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Figure 4: Visual examples of the backdoor poisoned samples, the triggers, and certified UP-ACCs (Conv-small,
MNIST). We magnified the stealthy trigger by 51 × for visualization.

et al., 2019) (∥δ∥∞ = 255
255 ). All the attacks utilize the same poison ratio, 20% following existing

works (Zeng et al., 2021). The visual example of the poisoned sample, the triggers, and the certifi-
cation results are listed in Figure 4. Under the setting of the stealthy blended backdoor, we find that
the CRR drops dramatically before reaching the trigger’s norm (∥δ∥∞ = 5

255 ) compared to the same
model trained on clean MNIST. This observation verifies the correctness of CRR and its potential
to reveal stealthy l∞-bounded backdoor attacks in the current trend of backdoor development with
smaller l∞-norm constraints, e.g., Zeng et al. (2022b); Zhao et al. (2020). However, assuming an ℓp
norm bound of the backdoor triggers is not widely accepted in traditional backdoor settings. Thus,
we also present the results of BadNets (with ∥δ∥∞ = 255

255 ) in Figure 4. We consider the backdoor
model trained from scratch or fine-tuned from the clean model. The CRR is still lower-bounding the
attack’s deployed ℓ∞ bound of the trigger. However, as the trigger has a large ℓ∞ norm, the CRRs
of poisoned models are of no difference to the clean model and thus not that useful. Nevertheless,
in Section 5.3, we show a simple twist of the certification framework to help reveal backdoors’
existence.

5.3 IMPLICATIONS OF ROBUSTNESS CERTIFICATION AGAINST UPS

Now we explore the potential implications of our robustness certification against UPs. We focus on
3 case studies on model structure comparison, UAP defenses comparison, and backdoor detection.

Figure 5: CRR comparison with different training set-
tings and structures on (a) MNIST and (b) CIFAR-10.
PGD-8, PGD-16, and PGD-32 stand for PGD training
with ℓ∞ norm 8

255
, 16
255

, 32
255

respectively.

Comparing model structures One impli-
cation of robustness certification regarding
UPs is to compare different model structures
and training strategies regarding the certified
robustness against UPs. Figure 5 depicts
the certification results of all the considered
model structures with different training set-
tings on MNIST and CIFAR-10. We con-
sider both naturally trained and PGD trained
models with different l∞ perturbation norm.
In Figure 5 (a) on MNIST, we find that the
largest model, Conv-big, shows the worst
certified robustness against UPs. But the
smallest Conv-small’s CRR is higher than
that of Conv-4-layer under naturally trained
setting, PGD-8, and PGD-16, but not PGD-
32. The only difference between Conv-
small and Conv-4-layer is that Conv-4-layer
uses a larger padding step which resulting a slightly larger hidden layer (see Appendix B). Based on
the observation, there is an interesting trade-off between model size and certified robustness against
UPs: A slightly larger structure can help the model obtain better certified robustness when adopting
adversarial training, potentially due to increased model capacity. Such an observation can be further
illustrated in Figure 5 (b). Specifically, ResNet-2B’s CRR would drop to random guessing when
using PGD-16, while ResNet-4B can still maintain a certain scale of CRR. But even larger models
Figure 5 (a) have worse certified robustness, potentially due to looser certified bounds.

Implication to UAP defenses Another implication of the CRR is to compare existing UAP defenses
regarding their efficacy. We consider three types of defenses and five different defenses in total:
FGSM and PGD sample-wise adversarial training (Goodfellow et al., 2014; Madry et al., 2017;

8
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Table 4: UAP defenses at |δ|∞ = 16
255

(ResNet-4B, CIFAR-10).

Normal FGSM PGD UAT-FGSM UAT-PGD IBP
Ori-ACC 99.03 98.97 98.88 98.99 98.99 98.64
CRR 0.33±0.47 27.33±5.91 30.67±6.34 24.00±0.82 28.99±2.49 95.66±2.05
DF-UAP 98.94±0.04 98.91±0.01 98.84±0.02 98.82±0.08 98.94±0.04 98.65±0.02
Cos-UAP 98.62±0.15 98.87±0.06 98.82±0.02 98.88±0.08 98.89±0.02 98.59±0.03
Adv-UAP 98.96±0.04 98.94±0.03 98.86±0.02 98.89±0.02 98.96±0.00 98.68±0.02
Worst -0.41±0.15 -0.10±0.06 -0.06±0.02 -0.17±0.08 -0.10±0.02 -0.05±0.03

Wong et al., 2019); universal adversarial training (UAT) with FGSM or PGD synthesizing UPs
(Shafahi et al., 2020); sample-wise certified defense with Interval Bound Propagation (IBP) training
(Gowal et al., 2018; Mirman et al., 2018). The defended models are further evaluated with UAP
attacks and certification. The results with a small perturbation radius |δ|∞ = 16

255 are shown in Table
4. Additional results with a larger perturbation radius (|δ|∞ = 80

255 ) are in Table 7, Appendix C. We
use the row titled “Worst” to record the maximum accuracy drop using UAP attacks compared to
clean accuracy. Surprisingly, in Table 4, we find the CRR of models trained with UAT is worse than
their sample-wise adversarial training counterparts (i.e., UAT-PGD results are worse than PGD).
However, in the case of larger perturbation radius (Table 7, Appendix C), the UAT-trained models
can achieve higher CRR than the sample-wise counterparts. Such an observation indicates an under-
explored trade-off between perturbation radius and UAP defense method on CRR. The CRR result
from the IBP-trained model is much tighter than others, as IBP directly optimizes over an objective
for certified robustness and tightens the certified bounds for all the neurons. Moreover, CRR is
also aligned with the worst attacked accuracy drop and can be an indicator for comparing different
settings of UAP defenses.

Figure 6: CRRs on adversarial-trained models over
CIFAR-10 datasets that contains a different ratio of poi-
sons (BadNets, target label is 0). Different class in-
dexes are depicted with different colors listed a the top.

Implication to backdoor defenses We
evaluated the effectiveness of the CRR in
revealing potential backdoors in the above
section, but the effectiveness is yet only
limited to triggers with small perturbations.
This section presents a simple twist on the
certification framework by teaming up with
adversarial training (PGD-16). We depict
the average class-wise certification results
on 10 ResNet-4B models trained with dif-
ferent random seeds over different BadNets
poison ratios in Figure 4. Based on the re-
sults, we find the certification can reliably reveal the targeted label and justify how mighty the
backdoor attack is (i.e., the CRR is aligned with the poison ratio used). Additional results on the
Smooth attack (Zeng et al., 2021) and ℓ2 invisible attack (Li et al., 2020a) are listed in Appendix
C, which share similar observations. The reason of the successful identification is that, naturally,
the adversarial training would force the model to learn more from the reliable features and thus
make standard backdoors stand out from benign features of the data (i.e., easier to be learned by
the model), as also discussed in Weng et al. (2020). Thus after training a model with adversarial
training with large perturbation radius, the model would likely engrave the trigger and thus have a
high CRR only on the target label. CRR by our proposed method provides an intriguing point of
view to determine the attack’s strength (i.e., poison ratio).

6 CONCLUSION

In this work, we present the first focused study on certifying neural networks’ robustness against
UPs. In contrast to previous robustness certification works that focused on sample-wise perturba-
tions, we formulate the certification problem against UPs by emphasizing sharing a universal per-
turbation between different samples. We propose a combination of linear relaxation-based bounds
and MILP to solve the problem. We also present a theoretical analysis framework to estimate the
certification result for the entire population based on results from a batch of random samples. Ex-
tensive experiments reveal that our certification imposes tighter results than directly applying exist-
ing sample-wise robustness certifications. In addition, we discuss and demonstrate how robustness
certification against UPs could facilitate comparing certified robustness between different model
structures and defense methods and provide reliable backdoor detection.
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Table 5: Table of Notations.

Notation Definition Notation Definition
d dimensionality of the input vector Ω space of all possible data, z ∈ Ω.
K number of output classes δ ∈ ∆ universal perturbation, ∆ is the space satisfies the norm-constrains
f : Rd → RK neural network classifier ∥δ∥p ℓp norm of the universal perturbation, p ≥ 1
z(i) = (xi, yi) clean data sample with index i ϵ Norm-constraint on the universal perturbation, i.e., ∥δ∥p ≤ ϵ

xi ∈ Rd sample z(i)’s input feature a
(i)
j ∈ Rd coefficients of the linear lower bound of the margin from yi to j

yi ∈ R sample z(i)’s label, yi ∈ {1, . . . ,K} b
(i)
j ∈ R bias term of the linear lower bound of margin from yi to j

A(·) : Ω → ∆ certification procedure, returns a worst-case δ ∆̃z set of perturbations incapable of fooling the classifier at sample z

A PROOFS

A.1 PROOF OF THEOREM 1

Let ϑ̂ be the solution of the MILP problem in the theorem, and let ϑ̃ be the solution to Eq. (4).
Theorem 1 states that ϑ̂ = ϑ̃. We formally prove the equivalence below.

Proof. We first show that ϑ̂ ≤ ϑ̃. In Eq. (4), there exists some δ̃ such that

δ̃ = argmin
∥δ∥∞≤ϵ

1

n

n∑
i=1

1

(
min
j ̸=yi

{
a
(i)
j δ + b

(i)
j

}
> 0

)
.

Then, for every i ∈ [n], take the following values for variables in the MILP formulation:

q(i) = 1

(
min
j ̸=yi

{
a
(i)
j δ̃ + b

(i)
j

}
> 0

)
,

ϑ = ϑ̃ =
1

n

n∑
i=1

q(i),

∀j ̸= yi, s
(i)
j = 1(j = j′), where j′ = argmin

j ̸=yi

a
(i)
j δ̃ + b

(i)
j ,

and it is easy to see that the values for these variables satisfy all the constraints in the MILP problem.
Thus the result of the minimization in the MILP should be no smaller than ϑ̃, i.e., ϑ̂ ≤ ϑ̃.

We now show that ϑ̃ ≤ ϑ̂. We use δ̂, q̂, ŝ to denote the values of δ, q, s variable in the solution of
MILP. For every i ∈ [n], Eq. (7) ensures that there exists exactly one ĵ (ĵ ̸= yi) with ŝ

(i)

ĵ
= 1, and

Eq. (8) ensures that for all j ̸= yi, a
(i)

ĵ
δ̂ + b

(i)

ĵ
≤ a

(i)
j δ̂ + b

(i)
j holds. Thus∑

j ̸=yi

(a
(i)
j δ + b

(i)
j )ŝ

(i)
j = min

j ̸=yi

{a(i)j δ̂ + b
(i)
j }.

According to Eq. (6), if q̂(i) = 1,
∑

j ̸=yi
(a

(i)
j δ + b

(i)
j )ŝ

(i)
j ≥ 0 holds. In case that

∑
j ̸=yi

(a
(i)
j δ +

b
(i)
j )ŝ

(i)
j = 0, Eq. (6) also holds with q̂(i) = 0, and due to the minimization objective of MILP,

q̂(i) = 0 instead of q̂(i) = 1 will be taken. Thus
∑

j ̸=yi
(a

(i)
j δ + b

(i)
j )ŝ

(i)
j > 0 strictly holds when

q̂(i) = 1. And if q̂(i) = 0,
∑

j ̸=yi
(a

(i)
j δ + b

(i)
j )ŝ

(i)
j ≤ 0 holds. Thus

q̂(i) = 1

( ∑
j ̸=yi

(a
(i)
j δ + b

(i)
j )ŝ

(i)
j > 0

)
= 1

(
min
j ̸=yi

{a(i)j δ̂ + b
(i)
j } > 0

)
.

Thereby

ϑ̂ =
1

n

n∑
i=1

q̂(i) =
1

n

n∑
i=1

1

(
min
j ̸=yi

{
a
(i)
j δ̂ + b

(i)
j

}
> 0

)
,

and then the result of Eq. (4) is no smaller than ϑ̂, i.e., ϑ̃ ≤ ϑ̂.

Hence ϑ̂ = ϑ̃ is proved.
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A.2 PROOF OF THEOREM 2

Let δ∗ = argminδ∈∆ U(δ) be the optimal universal perturbation that minimizes the ARP, let δn be
the value returned by G(Dn), and let δ̃ = argminδ∈∆ V B(δ) that minimizes the CRP. We introduce
the following lemma:
Lemma 1. Given An, it holds that

Pn(V̂ B(δ∗)− V B(δ∗) > t∗(ξ, n)) ≤ ξ (15)

where t∗(ξ, n) is the root of the equation (1 + 4t) ln(1 + 4t)− 4t = 4
n ln(1/ξ).

Proof. Let q(i) = 1(δ∗ ∈ ∆B
z(i)) which can also be interpreted as 1

(
minj ̸=yi

{
a
(i)
j δ∗ + b

(i)
j

}
>

0

)
. Then, V̂ B(δ∗) = 1

n

∑n
i=1 q

(i) and V B(δ∗) = E[ 1n
∑n

i=1 q
(i))] = E[q(i)]. Let σ2 denote the

variance of q(i). Since q(i) is a binary random variable, we have that σ2 ≤ 1/4. Let h(u) =
(1 + u) ln(1 + u)− u. For any t > 0, we have that

Pn(
1

n

n∑
i=1

q(i) − E[q(i)] > t) ≤ exp

(
− nσ2h(

t

σ2
)

)
(16)

≤ exp

(
− n

4
h(4t)

)
, (17)

where the first inequality is a direct application of the Bennett’s inequality (Bennett, 1962), and the
second inequality is due to the fact that nσ2h( t

σ2 ) is a monotonically decreasing function of σ2. Let
t(ϵ, n) denote the root of exp

(
− n

4h(4t)
)
= ξ. Then, it follows that Pn( 1n

∑n
i=1 q

(i) − E[q(i)] >
t(ϵ, n)) ≤ ξ.

Then we prove Theorem 2 to certify the robustness of a classifier against the worst-case attack δ∗.

Proof. We use the following relations: for any δ ∈ ∆,

U(δ) ≥ min
δ∈∆

U(δ)

= U(δ∗)

= U(δ∗)− V B(δ∗)︸ ︷︷ ︸
(i)

+V B(δ∗)− V̂ B(δ∗)︸ ︷︷ ︸
(ii)

+ V̂ B(δ∗)− V̂ B(δn)︸ ︷︷ ︸
(iii)

+V̂ B(δn)

≥ (i) + (ii) + V̂ B(δn),

(18)

where (ii) can be bounded by applying the concentration inequality in Lemma 1; (iii) ≥ 0 due to
the optimality of δn = argminδ∈∆ V̂ B(δ). Combining these bounds yields Theorem 2.

B FURTHER DETAILS ON EXPERIMENTAL SETTINGS

We use one server equipped with a total of 8 RTX A6000 GPUs as the hardware platform. PyTorch
(Paszke et al., 2019) is adopted as the implementation framework. We detail the model structures
used in our experiment in Table 6. All of the model structures used in this work were also considered
in other existing robustness certification works as the standard set-ups: Conv-small, Conv-4-layer,
Conv-big on the MNIST (Singh et al., 2019a; Tjandraatmadja et al., 2020; Wang et al., 2021; Müller
et al., 2022), and ResNet-2B, ResNet-4B on the CIFAR-10 (Zhang et al., 2022a). We use Adadelta
(Zeiler, 2012) as the optimizer with a learning rate set to 0.1 for all the model training process
(including the adversarial training for the model updating step as well). For MNIST models, we
train each model with 60 epochs. For CIFAR-10 models, we train each model with 500 epochs to
ensure full convergence. For adversarial training adopted in the main text, the number of steps in
PGD attacks is 7; step-size for PGD is set as ϵ

4 . For IBP training, we use the implementation in Shi
et al. (2021).
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Table 6: Model structures in our experiments. Conv(1, 16, 4) stands for a conventional layer with one input
channel, 16 output channels, and a kernel size of 4 × 4. Linear(1568, 100) stands for a fully connected layer
with 1568 input features and 100 output features. ResBlock(16, 32) stands for a residual block with 16 input
channels and 32 output channels. ReLU activation function is adopted between any two consecutive layers.

Model name Model structure
Conv-small (MNIST) Conv(1, 16, 4)− Conv(16, 32, 4)− Linear(800, 100)− Linear(100, 10)

Conv-4-layer (MNIST) Conv(1, 16, 4)− Conv(16, 32, 4)− Linear(1568, 100)− Linear(100, 10)
Conv-big (MNIST) Conv(1, 32, 3)− Conv(32, 32, 4)− Conv(32, 64, 3)− Conv(64, 64, 4)− Linear(3136, 512)−

Linear(512, 512)− Linear(512, 10)
ResNet-2B (CIFAR-10) Conv(3, 8, 3)− ResBlock(8, 16)− ResBlock(16, 16))− Linear(1024, 100)− Linear(100, 10)
ResNet-4B (CIFAR-10) Conv(3, 16, 3)− ResBlock(16, 32)− ResBlock(32, 32))− Linear(512, 100)− Linear(100, 10)

Now, we details the UAP attacks considered in the experiment for validating the certification results,
namely the Adv-UAP (Li et al., 2022), Cos-UAP (Zhang et al., 2021a), and DF-UAP (Zhang et al.,
2020). The design of each UAP attack’s synthesis procedure distinguishes these attacks. Specifi-
cally, Adv-UAP synthesizes and generates adversarial examples for each input before synthesizing
the UAP, which has shown to be more effective in finding stronger UAPs. Cos-UAP produces UAP
by reducing the Cosine similarity between the original output logits and the disturbed logits; DF-
UAP employs a similar loss as listed in the C&W attack (Carlini & Wagner, 2017), which aims to
reduce the distance between the ground-truth label’s logits and the maximum logits of the rest.

Now we provide the detailed settings of the backdoor target-class identification in Section 5.3. For
the threat model, we consider the scenario where the defender aims to determine if a backdoor
attack resides in a given dataset, identify the target class, and justify how potent the attack is if
there is an identified attack. We assumes the defender has access to the training set to be inspected,
with no additional clean validation data required. To conduct the instantiated case shown in Section
5.3, the defender adversarially trains (with PGD-16) 10 different models on the inspecting training
dataset and obtaining the averaging CRR results in a class-wise manner. Especially as we assume
no additional clean validation data is required, we pass through 100 random noise into the certifying
models to obtain the results in Figure 6, 7, 8.

C ADDITIONAL RESULTS

C.1 ADDITIONAL RESULTS ON UAP DEFENSES COMPARISON

Table 7 details the results of UAP defenses comparison under the large-norm setting (ϵ = 80
255 ). Not-

ing all the defenses adopted are also incorporated with the same expense. For large-norm settings,
we find that only the certified-robustness training ends up with a CRR larger than 0. Apart from its
actual effectiveness, as mentioned in the main text, the IBP-trained model also ends up with much
tighter intermediate linear bounds (i.e., a and b are tighter). Even though our work can only return
a positive CRR on the IBP-trained model, the certification results are still aligned with the actual
attack results, as the IBP-trained model would have stronger robustness than the other models in
terms of the least change in the ACC drop.
Table 7: UAP defenses at |δ|∞ = 80

255
(ResNet-4B, CIFAR-10).

Normal FGSM PGD UAT-FGSM UAT-PGD IBP
Ori-ACC 99.03 98.94 98.75 99.20 99.02 96.04
CRR 0 0 0 0 0 40.67±4.11
DF-UAP 26.46±9.27 98.10±0.02 97.40±0.05 98.56±0.07 98.45±0.02 94.89±0.05
Cos-UAP 41.80±16.27 79.22±1.41 95.13±0.37 96.68±0.12 97.50±0.11 95.18±0.07
Adv-UAP 37.69±7.51 97.93±0.10 97.36±0.03 98.40±0.05 98.54±0.02 94.83±0.05
Worst -72.57±9.27 -19.72±1.41 -3.62±0.37 -2.52±0.12 -1.52±0.11 -1.21±0.05

C.2 ADDITIONAL RESULTS ON BACKDOOR TARGET-CLASS IDENTIFICATION

We now provide additional results on implementing the certification framework to identify the ex-
istence of backdoor attacks. In this section, the results provided are evaluated against the Smooth
attack (Zeng et al., 2021) and the l2-invisible attack (Li et al., 2020a). Figure 7,8 illustrate the results
on the Smooth attack and l2-invisble attack respecively. Based on the results, we find the certifica-
tion can also reliably reveal the targeted label and justify how powerful the backdoor attack is for
Smooth attack and the l2-invisible attack.
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Figure 7: Certified UP-ACCs on adversarial-trained models over CIFAR-10 datasets that contains a different
ratio of poisons (Smooth attack with the target label being set to 0).Different class indexes are depicted with
different colors listed a the top.

Figure 8: Certified UP-ACCs on adversarial-trained models over CIFAR-10 datasets that contains a different
ratio of poisons (l2-inv attack with the target label being set to 0).Different class indexes are depicted with
different colors listed a the top.

D BROADEN IMPACT AND LIMITATIONS

D.1 UAP AND BACKDOOR ATTACKS

UAP attacks aim to synthesize a UP by accessing and analyzing the output of a trained neural net-
work. Backdoor attacks aim to insert a predefined trigger into the neural network and ensure an
effective attack without accessing and analyzing the output after the model is trained over the poi-
soned samples. Many existing works have found these two paralleled lines of work have interesting
intersections. In particular, the formulation of UAP synthesizing has also inspired or has its interest-
ing counterparts in backdoor attacks or defense designs. For example, Li et al. (2020a); Zhang et al.
(2021b) designed their backdoor trigger via a similar process of synthesizing UAP using a trained
model. Kolouri et al. (2020); Zeng et al. (2022a) adopted this interesting intersection between UAP
and backdoor attacks to provide identification of backdoors or conduct online removal of backdoors.
Suppose we view these two attack paradigms at the inference time (with a trained model). In that
case, mitigation defenses and robustness synthesizing tools for both attacks can be developed for
general robustness to UP.

D.2 LIMITATIONS

Unconstrained or Large ℓ∞-norm Attacks: Some of the UAP attacks are generated without spec-
ifying a constraint (Brown et al., 2017), and in most backdoor attacks, the trigger inserted does not
have a constrained ℓ∞ norm. If the attack can have an unconstrained ℓ∞ or a very large ℓ∞ norm,
only trivial certification results can be obtained from our certification. This limitation also com-
monly exists in state-of-the-art sample-wise certification methods (Wang et al., 2021; Ferrari et al.,
2021). In fact, any certification procedure requires some constraints on potential perturbations and
does not apply to unbounded perturbations. This open problem calls for answers and the attention
for future research.

Computational Cost: Supporting large models and large datasets can be computationally costly for
our certification. Existing works for certifying pre-trained models (Wang et al., 2021; Ferrari et al.,
2021) are also commonly limited to moderate-sized networks, and the cost of our method is lower
bounded by existing linear bound propagation frameworks that we use to obtain the linear bounds
before solving the MILP problem. It remains a challenging open-problem for scaling to larger-scale
networks, such as models for ImageNet (Deng et al., 2009).
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