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Abstract

When mistakes have serious consequences, reliable use of a model requires un-
derstanding when the predictions of the model are trustworthy. One approach is
selective prediction, in which a model is allowed to abstain if it is uncertain. Exist-
ing methods for selective prediction require access to model internals, retraining,
or large number of model evaluations, and cannot be used for black box models
available only through an API. This is a barrier to the use of powerful commercial
foundation models in risk-sensitive applications. Furthermore, existing work has
largely focused on unimodal foundation models. We propose a method to improve
selective prediction in a black box vision-language model by measuring consistency
over the neighbors of a visual question. Although direct sampling of the neighbor-
hood is not possible, we propose using a probing model as a proxy. We describe
experiments testing the proposed method on in-distribution, out-of-distribution and
adversarial questions. We find that the consistency of a vision-language model
across rephrasings of a visual question can be used to identify and reject high-risk
visual questions, even in out-of-distribution and adversarial settings, constituting a
step towards safe use of black-box vision-language models.

1 Introduction

Foundation models are sometimes only available as black boxes accessible through an API [1, 2]
for commercial reasons, risk of misuse, or privacy considerations. A black box model is difficult
to use safely for high-risk scenarios in which it is preferable that a model defers to an expert or
abstains from answering rather than deliver an incorrect answer [3]. Many approaches for selective
prediction [3, 4] or improving the predictive uncertainty of a model exist, such as ensembling [5],
gradient-guided sampling in feature space [6], retraining the model [7], or training a auxiliary module
using model predictions [8]. Selective prediction has typically been studied in unimodal settings
and/or for tasks with a closed-world assumption, such as image classification, and has only recently
been studied for multimodal, open-ended tasks such as visual question answering [9] (VQA). Despite
the progress in selective prediction, current methods are not appropriate for models available only in
a black-box setting, such as models-as-a-service, where access to the internal representations is not
available, retraining is infeasible, and each evaluation is expensive.

Black-box predictive uncertainty has been studied previously, but existing methods require a large num-
ber of evaluations to build an auxiliary model [2, 8], which can be prohibitively expensive when each
evaluation has a non-neglible financial cost, or are designed for tasks with a closed-world assumption
[10] with a small label space. Furthermore, while predictive uncertainty for unimodal large language
models has been the subject of significant study [11–13], the predictive uncertainty of vision-language
models (VLMs) has been studied only by Whitehead et al. [9], but their evaluation focuses on a white-
box setting and smaller VLMs without web-scale pretraining. Black-box tuning of large models for

R0-FoMo: Workshop on Robustness of Few-shot and Zero-shot Learning in Foundation Models at NeurIPS 2023.



increased performance [1] is possible, but little is known about improving or understanding predictive
uncertainty for large black-box models. In this paper, we consider selective prediction for large,
black-box VLMs, which implies training data is private, model features and gradients are unavailable,
and ensembling / retraining are not possible, all of which are typical features of models-as-a-service.
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Figure 1: Selective VQA performance of a VLM
(BLIP) on three datasets: adversarial (AdVQA),
out-of-distribution (OKVQA), and in-distribution
(VQAv2). On OOD and adversarial questions, the
model has a harder time identifying which ques-
tions it should abstain from.

We hypothesize that we can apply the princi-
ple of consistency over neighborhood samplings
[6] used in white-box settings for black box un-
certainty estimates for visual question answer-
ing, by using question generation to approxi-
mate sampling from the neighborhood of an in-
put question without access to the features. We
describe how rephrasings of a question can be
viewed as samples from the neighborhood of a
visual question pair. We propose using a visual
question generation model as a probing model to
produce rephrasings of questions given an initial
answer from the black-box VLM, allowing us to
approximately sample from the neighborhood
of a visual question pair. To quantify uncertainty
in the answer to a visual question pair, we feed
the rephrasings of the question to the black-box
VLM, and count the number of rephrasings for
which the answer of the VLM remains the same.
This is analogous to consistency over samples
taken from the neighborhood of an input sample
in feature space, but this method does not require access to the features of the vision-language model.
Furthermore, it does not require a held-out validation set, access to the original training data, or
retraining the vision-language model, making it appropriate for black-box uncertainty estimates of a
vision-language model. We conduct a series of experiments testing the effectiveness of consistency
over rephrasings for assessing predictive uncertainty using the task of selective visual question
answering in a number of settings, including adversarial visual questions, distribution shift, and out
of distribution detection.

Our contributions are:

• We study the problem of black-box selective prediction for a large vision-language model,
using the setting of selective visual question answering.

• We propose identifying high-risk inputs for visual question answering based on consistency
over samples in the neighborhood of a visual question.

• We conduct a series of experiments validating the proposed method on in-distribution,
out-of-distribution and adversarial visual questions, and show that our approach even works
in the likely setting that the black box model being probed is substantially larger than the
probing model.

We show that consistency over the rephrasings can select slices of a test dataset on which a model can
achieve lower risk, reject out of distribution samples, and works well to separate right from wrong
answers, even on adversarial and out of distribution inputs. Surprisingly, this technique works even
though many rephrasings are not literally valid rephrasings of a question. Our proposed method is a
step towards reliable usage of vision-language models as an API.

2 Method

2.1 Task Definition and Background

Given an image 𝑣 and question 𝑞, the task of selective visual question answering is to decide whether a
model 𝑓𝑉𝑄𝐴(𝑣, 𝑞) should predict an answer 𝑎, or abstain from making a prediction. A typical solution
to this problem is to train a selection function 𝑔(·) that produces an abstention score 𝑝rej ∈ [0, 1].
The simplest selection function would be to take the rejection probability 𝑝rej = 1 − 𝑝(𝑎 |𝑞, 𝑣) where
𝑝(𝑎 |𝑞, 𝑣) is the model confidence that 𝑎 is the answer, and then use a threshold 𝜏 so that the model
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abstains when 𝑝rej > 𝜏 and predicts otherwise. A more complex approach taken by Whitehead et al.
[9] is to train a parametric selection function 𝑔(z𝑣 , z𝑞; 𝜃) where z𝑣 and z𝑞 are the model’s dense
representations of the question and image respectively. The parameters 𝜃 are optimized on a held-out
validation set, effectively training a classifier to predict when 𝑓𝑉𝑄𝐴 will predict incorrectly on an
input visual question 𝑣, 𝑞.

In the black box setting, access to the dense representations z𝑣 , z𝑞 of the image 𝑣 and question 𝑞 is
typically forbidden. Furthermore, even if access to the representation is allowed, a large number of
evaluations of 𝑓𝑉𝑄𝐴 would be needed to obtain the training data for the selection function. Existing
methods for selective prediction typically assume and evaluate a fixed set of classes, but for
VQA, the label space can shift for each task (differing sets of acceptable answers for different
types of questions) or be open-set. Other constraints are:

1. No access to the black-box model’s internal representations of 𝑣, 𝑞.

2. Model agnostic, as the architecture of the black-box model is unknown.

2.2 Deep Structure and Surface Forms

Within linguistics, a popular view espoused by Chomsky [14] is that every natural language sentence
has a surface form and a deep structure. Multiple surface forms can be instances of the same deep
structure: different words arranged in different orders can mean the same thing. A rephrasing of a
question corresponds to an alternate surface form, but the same deep structure. Thus, the answer to a
rephrasing of a question should be the same as the original question. If the answer to a rephrasing
is inconsistent with the answer to an original question, the model is sensitive to variations in the
surface form of the original question. This indicates the model’s understanding of the question is
highly dependent on superficial characteristics, making it a good candidate for abstention — we
hypothesize inconsistency on the rephrasings can be used to better quantify predictive uncertainty
and reject questions a model has not understood.

2.3 Rephrasing Generation as Neighborhood Sampling

The idea behind many methods for representation learning is that a good representation should
map multiple surface forms close together in feature space. For example, in contrastive learning,
variations in surface form are generated by applying augmentations to an input, and the distance
between multiple surface forms is minimized. In general, a characteristic of deep representation
is that surface forms of an input should be mapped close together in feature space. Previous work,
such as Attribution-Based Confidence [6] and Implicit Semantic Data Augmentation [15], exploit
this by perturbing input samples in feature space to explore the neighborhood of an input. In a
black-box setting, we don’t have access to the features of the model, so there is no direct way to
explore the neighborhood of an input in feature space. An alternate surface form of the input should
be mapped close to the original input in feature space. Thus, a surface form variation of an input
should be a neighbor of the input in feature space. Generating a surface form variation of a natural
language sentence corresponds to a rephrasing of the natural language sentence. Since a rephrasing
of a question is a surface form variation of a question, and surface form variations of an input should
be mapped close to the original input in feature space, a rephrasing of a question is analogous to a
sample from the neighborhood of a question. We discuss this further in the appendix.

2.4 Cyclic Generation of Rephrasings

A straightforward way to generate a rephrasing of a question is to invert the visual question answering
problem, as is done in visual question generation. Let 𝑝(𝑉), 𝑝(𝑄), 𝑝(𝐴) be the distribution of images,
questions, and answers respectively. Visual question generation can be framed as approximating
𝑝(𝑄 |𝐴,𝑉), in contrast to visual question answering, which approximates 𝑝(𝐴|𝑄,𝑉). We want
to probe the predictive uncertainty of a black box visual question answering model 𝑓𝐵𝐵 (·) on an
input visual question pair 𝑣, 𝑞 where 𝑣 ∼ 𝑝(𝑉) is an image and 𝑞 ∼ 𝑝(𝑄) is a question.. The
VQA model 𝑓𝐵𝐵 approximates 𝑝(𝐴|𝑄,𝑉). Let the answer 𝑎 assigned the highest probability by
the VQA model 𝑓𝐵𝐵 (·) be taken as the prospective answer. A VQG model 𝑓𝑉𝑄𝐺 ≈ 𝑝(𝑄 |𝐴,𝑉)
can then be used to generate a rephrasing of an input question 𝑞. To see how, consider feeding
the highest probability answer 𝑎 from 𝑓𝐵𝐵 (·) ≈ 𝑝(𝐴|𝑄,𝑉) into 𝑓𝑉𝑄𝐺 (·) ≈ 𝑝(𝑄 |𝐴,𝑉) and then
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Where in the school would 
you find this?

what does the little girl have in her 
eating lunch? spaghetti 
where is the food at? restaurant
what restaurant is the child eating at? 
spaghetti 
where is this child? restaurant
where is she at? restaurant

GT: cafeteria VLM: school

What do these animals 
drink?

GT: water VLM: milk

what does this elephant sell? food
what substance are these elephants 
herding? water
what are these elephants giving? love 
what are the elephants being fed? 
nothing
what kind of elephants are these? asian

What is a female of this 
animal called?

GT: ewe,doe VLM: lamb

what kind of animal is this? sheep
is that an adult or baby sheep? adult
which of these animals is not a parent? 
sheep
what animal is this? sheep
what animal is on the left? sheep

What activity is taking 
place?

GT: sail, boat VLM: sail

what is this boat called? sail
what are these people trying to do? sail
what are they sailing? sail
what kind of sail does this boat use? sail
what are the sailboats in the picture 
trying to do? sail

What vegetables are on 
this plate?

GT: carrot, 
avocado, cabbage VLM: carrot

what vegetable is in the picture? carrot
what is the orange vegetable? carrot
what is the vegetable? carrot
what vegetable is orange? carrot
what is the orange food? carrot

What business has the 
yellow M?

GT: mcdonald's VLM: mcdonald's

what do the red and white signs say? 
mcdonald's
what fast food restaurant is this? mcdonald's
what fast food restaurant is in the picture? 
mcdonald's
what restaurant are these people eating at? 
mcdonald's
what restaurant is on the left? mcdonald's

High-confidence (90th-percentile) | Wrong Answers | Low Consistency Low-confidence (10th-percentile) | Right Answers | High Consistency

Figure 2: Examples showing the use of generated rephrasings to identify errors in model predictions with BLIP
as the black box model 𝑓𝐵𝐵. In the left panel, we show high-confidence answers that are wrong, and identified
by their low consistency across rephrasings. In the right panel, we show low-confidence answers that are actually
correct, identified by their high-confidence across rephrasings.

sampling a sentence 𝑞′ ∼ 𝑓𝑉𝑄𝐺 ≈ 𝑝(𝑄 |𝐴,𝑉) from the visual question generation model. In the case
of an ideal 𝑓𝑉𝑄𝐺 (·) and perfectly consistent 𝑓𝐵𝐵 (·), 𝑞′ should be a generated question for which
𝑝(𝑎 |𝑞′, 𝑣) ≥ 𝑝(𝑎𝑖 |𝑞′, 𝑣)∀𝑎𝑖 ∈ 𝐴, with equality occurring in the case that 𝑎𝑖 = 𝑎. So, 𝑞′ is a question
having the same answer as 𝑞, which is practically speaking, a rephrasing.

To summarize, we ask the black box model for an answer to a visual question, then give the predicted
answer to a visual question generation model to produce a question 𝑞′ conditioned on the image 𝑣 and
the answer 𝑎 by the black box model, which corresponds to a question the VQG model thinks should
lead to the predicted answer 𝑎. We assume the rephrasings generated by 𝑓𝑉𝑄𝐺 are good enough,
𝑓𝐵𝐵 should be consistent on the rephrasings, and inconsistency indicates a problem with 𝑓𝐵𝐵. In
practice, each 𝑞′ is not guaranteed to be a rephrasing (see Fig. 2) due to the probabilistic nature of
the sampling process and because the VQG model is not perfect. The VQG model can be trained
by following any procedure that results in a model approximating 𝑝(𝑎 |𝑞, 𝑣) that is an autoregressive
model capable of text generation conditional on multimodal image-text input. The training procedure
of the VQG model is an implementation detail we discuss in Sec. 2.5.

2.5 Implementation Details

We initialize the VQG model 𝑓𝑉𝑄𝐺 from a BLIP checkpoint pretrained on 129m image-text pairs,
and train it to maximize 𝑝(𝑎 |𝑞, 𝑣) using a standard language modeling loss. Specifically, we use

LVQG = −
𝑁∑︁
𝑛=1

log 𝑃𝜃 (𝑦𝑛 | 𝑦<𝑛, 𝑎, 𝑣) (1)

where 𝑦1, 𝑌2, . . . 𝑦𝑛 are the tokens of a question 𝑞 and 𝑎, 𝑣 are the ground-truth answer and image,
respectively, from a vqa triplet (𝑣, 𝑞, 𝑎). We train for 10 epochs, using an AdamW [16] optimizer
with a weight decay of 0.05 and decay the learning rate linearly to 0 from 2e-5. We use a batch size of
64 with an image size of 480 × 480, and train the model on the VQAv2 training set [17]. To sample
questions from the VQG model, we use nucleus sampling [18] with a top-𝑝 of 0.9.

3 Experiments

The primary task we use to probe predictive uncertainty is selective visual question answering, which
we give a detailed description of in Sec. 2.5. Futher qualitative examples and results can be found
in the appendix.

Black-box Models The experimental setup requires a black-box VQA model 𝑓𝐵𝐵 and a
rephrasing generator 𝑓𝑉𝑄𝐺 . We describe the training of the rephrasing generator 𝑓𝑉𝑄𝐺 in
Sec. 2.5. We choose ALBEF [19], BLIP [20], and BLIP-2[21] as our black-box models.
ALBEF and BLIP have ≈ 200m parameters, while the version of BLIP-2 we use is based
on the 11B parameter FLAN-T5 [22] model. ALBEF has been pretrained on 14m image-
text pairs, while BLIP has been pretrained on over 100m image-text pairs, and BLIP-2 is
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Figure 3: The distribution of confidence scores of 𝑓𝐵𝐵 at each level of consistency. While higher levels
of consistency have a larger proportion of high confidence answers, they also retain a large number of low
confidence answers, showing that consistency defines a different ordering over questions than confidence scores
alone. BLIP is used as the black-box model 𝑓𝐵𝐵.

𝑓𝐵𝐵 BLIP ALBEF

Risk 10.0 15.0 20.0 30.0 40.0 10.0 15.0 20.0 30.0 40.0
Consistency

n ≥ 0 0.11 0.18 0.25 0.4 0.61 0.08 0.14 0.21 0.41 0.68
n ≥ 1 0.13 0.22 0.3 0.47 0.74 0.1 0.18 0.29 0.52 0.83
n ≥ 2 0.14 0.23 0.33 0.51 0.78 0.1 0.21 0.32 0.59 0.89
n ≥ 3 0.16 0.26 0.37 0.56 0.84 0.12 0.23 0.37 0.66 0.97
n ≥ 4 0.18 0.28 0.38 0.59 0.88 0.13 0.26 0.42 0.71 1.0
n ≥ 5 0.19 0.31 0.44 0.65 0.95 0.11 0.33 0.47 0.8 1.0

𝑓𝐵𝐵 BLIP ALBEF

Risk 20.0 30.0 40.0 50.0 56.0 20.0 30.0 40.0 50.0 60.0
Consistency

n ≥ 0 0.01 0.09 0.51 0.83 0.98 0.0 0.07 0.24 0.75 1.0
n ≥ 1 0.01 0.11 0.58 0.9 1.0 0.01 0.09 0.29 0.86 1.0
n ≥ 2 0.01 0.1 0.61 0.93 1.0 0.01 0.09 0.3 0.89 1.0
n ≥ 3 0.01 0.1 0.58 0.93 1.0 0.02 0.11 0.3 0.89 1.0
n ≥ 4 0.01 0.08 0.55 0.92 1.0 0.02 0.11 0.3 0.87 1.0
n ≥ 5 0.01 0.04 0.53 0.87 1.0 0.04 0.12 0.27 0.84 1.0

Table 1: OKVQA (left, OOD) AdVQA (right, adversarial) coverage at a specified risk levels, stratified by
consistency levels. 𝑛 ≥ 𝑘 means that the prediction of the model was consistent over at least 𝑘 rephrasings of the
question. The bolded numbers indicate which consistency level maximizes coverage at a specified risk level. In
all cases, choosing consistency levels strictly greater than 0 is the optimal strategy to maximize coverage @ risk.

aligned on 4M images. We use the official checkpoints provided by the authors, finetuned
on Visual Genome [23] and VQAv2 [17] with 1.4m and 440k training triplets respectively.
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Figure 4: The accuracy of the answers of a VQA model
(BLIP) plotted as a function of how consistent each an-
swer was over up to 5 rephrasings of an original question.
Consistency is correlated with accuracy.

Datasets We evaluate in three settings: in-
distribution, out-of-distribution, and adversarial.
For the in-distribution setting, we pairs from the
VQAv2 validation set following the selection of
[24]. For the out-of-distribution setting, we use
OK-VQA [25], a dataset for question answering
on natural images that requires outside knowl-
edge. OK-VQA is an natural choice for a out-
of-distribution selective prediction task, because
many of the questions require external knowl-
edge that a VLM may not have acquired, even
through large scale pretraining. On such ques-
tions, a model that knows what it doesn’t know
should abstain due to lack of requisite knowl-
edge. Finally, we consider adversarial visual
questions in AdVQA [26]. We use the official
validation splits provided by the authors. The
OK-VQA, AdVQA, and VQAv2 validation sets
contain 5k, 10k, and 40k questions respectively.

3.1 Selective VQA with Neighborhood Consistency

In Fig. 4 we plot the accuracy of the answers when 𝑓𝐵𝐵 is BLIP by how consistent each answer
was over up to 5 rephrasings of an original question. We find that consistency over rephrasings is
correlated with accuracy across all three datasets. Next, we examine how the distribution of model
confidence varies across consistency levels in Fig. 3. Across all datasets, slices of a dataset at higher
consistency levels also have a greater proportion of high-confidence answers, but retain a substantial
proportion of low confidence answers. This clearly shows that consistency and confidence are not
equivalent, and define different orderings on a set of questions and answers.
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Figure 5: Risk-coverage curves when 𝑓𝑉𝑄𝐺 (200m parameters) is substantially smaller than 𝑓𝐵𝐵 (11B). Even
in this scenario, 𝑓𝑉𝑄𝐺 can reliably identify high-risk questions based on consistency. A curve labeled 𝑛 ≥ 𝑘

shows the risk-coverage tradeoff for a slice of the target dataset where the answers of the model are consistent
over at least 𝑘 rephrasings of an original question. The 𝑛 ≥ 0 curve is the baseline. Higher consistency levels
identify questions on which a model can achieve lower risk across all datasets.

We turn to the question of whether consistency over rephrasings is useful in the setting of selective
visual question answering. To analyze how useful consistency is for separating low-risk from high-risk
inputs, we use the task of selective visual question answering. In Fig. 5 we plot risk-coverage curves
for out-of-distribution, and adversarial visual questions. Each curve shows the risk-coverage tradeoff
for questions at a level of consistency. For example, a curve labeled as 𝑛 ≥ 3 shows the risk-coverage
tradeoff for questions on which 3 or more neighbors (rephrasings) were consistent with the original
answer. Hence, the 𝑛 ≥ 0 curve is a baseline representing the risk-coverage curve for any question,
regardless of consistency. If greater consistency over rephrasings is indicative over lower risk (and a
higher probability the model knows the answer), we expect to see that the model should be able to
achieve lower risk on slices of a dataset that the model is more consistent on. On in-distribution visual
questions (VQAv2), the model achieves lower risk at equivalent coverage for slices of the dataset that
have higher consistency levels. A similar situation holds for the out-of-distribution dataset, OKVQA,
and the adversarial dataset AdVQA. In general, the model is able to achieve lower risk on slices of a
dataset on which the consistency of the model over rephrasings is higher, even when there is large
size difference between the black-box model and the question generator.

4 Related Work
Selective Prediction Deep models with a reject option have been studied in the context of unimodal
classification and regression [3, 4, 27] for some time, and more recently for the open-ended task
of question answering [13]. Deep models with a reject option in the context of visual question
answering were first explored by Whitehead et al. [9]. They take the approach of training a selection
function using featueres from the model and a held-out validation set to make the decision of whether
to predict or abstain. The problem of eliciting truthful information from a language model [28] is
closely related to selective prediction for VQA. In both settings, the model must avoid providing false
information in response to a question.

Self-Consistency Jha et al. [6] introduced the idea of using consistency over the predictions of a
model to quantify the predictive uncertainty of the model. Their Attribution Based Confidence (ABC)
metric is based on using guidance from feature attributions, specifically Integrated Gradients [29]
to perturb samples in feature space, then using consistency over the perturbed samples to quantify
predictive uncertainty. Shah et al. [24] show that VQA models are not robust to linguistic variations
in a sentence by demonstrating inconsistency of the answers of multiple VQA models over human-
generated rephrasings of a sentence. Similarly, Selvaraju et al. [30] show that the answers of VQA
models to more complex reasoning questions are inconsistent with the answers to simpler perceptual
questions whose answers should entail the answer to the reasoning question. We connect these ideas
to hypothesize that inconsistency on linguistic variations of a visual question is indicative of more
superifical understanding of the content of the question, and therefore a higher chance of being wrong
when answering the question.

5 Conclusion
We explore a way to judge the reliability of the answer of a black-box visual question answering
model by assessing the consistency of the model’s answer over rephrasings of the original question,
which we generate dynamically using a VQG model. We show that this is analogous to the technique
of consistency over neighborhood samples, which has been used in white-box settings for self-training
as well as predictive uncertainty. We conduct experiments on in-distribution, out-of-distribution, and
adversarial settings, and show that consistency over rephrasings is correlated with model accuracy,
and predictions of a model that are highly consistent over rephrasings are more likely to be correct.
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𝑓𝐵𝐵 BLIP ALBEF
Risk 0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 0.0 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0
Consistency

n ≥ 0 0.0 0.0 0.11 0.18 0.25 0.32 0.4 0.49 0.61 0.77 0.02 0.03 0.08 0.14 0.21 0.3 0.41 0.53 0.68 0.85
n ≥ 1 0.0 0.0 0.13 0.22 0.3 0.38 0.47 0.59 0.74 0.89 0.02 0.04 0.1 0.18 0.29 0.4 0.52 0.66 0.83 0.97
n ≥ 2 0.0 0.0 0.14 0.23 0.33 0.42 0.51 0.63 0.78 0.94 0.03 0.04 0.1 0.21 0.32 0.45 0.59 0.73 0.89 1.0
n ≥ 3 0.0 0.0 0.16 0.26 0.37 0.45 0.56 0.68 0.84 1.0 0.03 0.05 0.12 0.23 0.37 0.51 0.66 0.83 0.97 1.0
n ≥ 4 0.0 0.0 0.18 0.28 0.38 0.48 0.59 0.74 0.88 1.0 0.04 0.06 0.13 0.26 0.42 0.55 0.71 0.88 1.0 1.0
n ≥ 5 0.0 0.0 0.19 0.31 0.44 0.54 0.65 0.8 0.95 1.0 0.04 0.06 0.11 0.33 0.47 0.63 0.8 0.93 1.0 1.0

Table 2: More granular risk-coverage data for OK-VQA.

𝑓𝐵𝐵 BLIP ALBEF
Risk 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0 56.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0 60.0
Consistency

n ≥ 0 0.01 0.04 0.09 0.23 0.51 0.69 0.83 0.95 0.98 0.0 0.04 0.07 0.12 0.24 0.46 0.75 0.92 1.0
n ≥ 1 0.01 0.04 0.11 0.27 0.58 0.76 0.9 1.0 1.0 0.01 0.05 0.09 0.15 0.29 0.55 0.86 1.0 1.0
n ≥ 2 0.01 0.04 0.1 0.25 0.61 0.79 0.93 1.0 1.0 0.01 0.05 0.09 0.15 0.3 0.59 0.89 1.0 1.0
n ≥ 3 0.01 0.04 0.1 0.25 0.58 0.8 0.93 1.0 1.0 0.02 0.06 0.11 0.17 0.3 0.6 0.89 1.0 1.0
n ≥ 4 0.01 0.02 0.08 0.24 0.55 0.77 0.92 1.0 1.0 0.02 0.06 0.11 0.16 0.3 0.6 0.87 1.0 1.0
n ≥ 5 0.01 0.01 0.04 0.27 0.53 0.72 0.87 1.0 1.0 0.04 0.07 0.12 0.18 0.27 0.53 0.84 1.0 1.0

Table 3: More granular risk-coverage data for AdVQA.

A Detailed Risk-Coverage Data

In Tabs. 2 to 5, we show more granular risk-coverage curves across all three evaluated datasets and
both black-box models.

B Inference Details

For both BLIP and ALBEF, we follow the original inference procedures. Both models have an
encoder-decoder architecture and VQA is treated as a text-to-text task. We use the rank-classification
approach [31] to allow the autoregressive decoder of the VLM to predict an answer for a visual
question. Concretely, let A = {𝑎1, 𝑎2, 𝑎3, . . . 𝑎𝑘} be a list of length 𝑘 for a dataset consisting of
the most frequent ground-truth answers. These answer lists are standardized and distributed by the
authors of the datasets themselves. We use the standard answer lists for each dataset. Next, let 𝑣, 𝑞 be
a visual question pair and let 𝑓𝐵𝐵 be a VQA model. Recall that 𝑓𝐵𝐵 is a language model defining
a distribution 𝑝(𝑎 |𝑞, 𝑣), and is thus able to assign a score to each 𝑎𝑖 ∈ A. We take the highest
probability 𝑎𝑘

max
𝑎𝑘 ∈A

𝑓𝐵𝐵 (𝑣, 𝑞, 𝑎𝑘) = max
𝑎𝑘 ∈A

𝑝(𝑎𝑘 |𝑣, 𝑞) (2)

as the predicted answer for a question. This is effectively asking the model to rank each of the possible
answer candidates, turning the open-ended VQA task into a very large multiple choice problem.
Note that the highest probability 𝑎𝑘 ∈ A is not necessarily the answer that would be produced by
𝑓𝐵𝐵 ∼ 𝑝(𝑎 |𝑣, 𝑞) in an unconstrained setting such as stochastic decoding. However, for consistency
with previous work, we use the rank classification approach.

Visual question answering is thus treated differently when using large autoregressive vision-language
models compared to non-autoregressive odels. In traditional approaches, VQA is treated as a
classification task, and a standard approach used in older, non-autoregressive vision-language models
such as ViLBERT [32] is to train a MLP with a cross-entropy loss with each of the possible answers
as a class.

𝑓𝐵𝐵 BLIP
risk 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0
Consistency

n ≥ 0 0.01 0.55 0.63 0.69 0.74 0.77 0.8 0.82 0.85 0.88 0.9 0.91 0.93 0.95 0.97
n ≥ 1 0.01 0.6 0.69 0.76 0.8 0.83 0.86 0.9 0.92 0.94 0.96 0.98 0.99 1.0 1.0
n ≥ 2 0.01 0.63 0.72 0.78 0.83 0.86 0.89 0.92 0.94 0.96 0.98 1.0 1.0 1.0 1.0
n ≥ 3 0.01 0.66 0.75 0.81 0.85 0.88 0.92 0.94 0.96 0.98 1.0 1.0 1.0 1.0 1.0
n ≥ 4 0.01 0.68 0.77 0.83 0.87 0.91 0.93 0.96 0.98 0.99 1.0 1.0 1.0 1.0 1.0
n ≥ 5 0.01 0.7 0.79 0.84 0.88 0.92 0.94 0.96 0.99 1.0 1.0 1.0 1.0 1.0 1.0

Table 4: Granular risk-coverage data for VQAv2 with BLIP as 𝑓𝐵𝐵.
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𝑓𝐵𝐵 ALBEF
risk 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0
Consistency

n ≥ 0 0.01 0.55 0.63 0.69 0.74 0.77 0.8 0.82 0.85 0.88 0.9 0.91 0.93 0.95 0.97
n ≥ 1 0.01 0.6 0.69 0.76 0.8 0.83 0.86 0.9 0.92 0.94 0.96 0.98 0.99 1.0 1.0
n ≥ 2 0.01 0.63 0.72 0.78 0.83 0.86 0.89 0.92 0.94 0.96 0.98 1.0 1.0 1.0 1.0
n ≥ 3 0.01 0.66 0.75 0.81 0.85 0.88 0.92 0.94 0.96 0.98 1.0 1.0 1.0 1.0 1.0
n ≥ 4 0.01 0.68 0.77 0.83 0.87 0.91 0.93 0.96 0.98 0.99 1.0 1.0 1.0 1.0 1.0
n ≥ 5 0.01 0.7 0.79 0.84 0.88 0.92 0.94 0.96 0.99 1.0 1.0 1.0 1.0 1.0 1.0

Table 5: Granular risk-coverage data for VQAv2 with ALBEF as 𝑓𝐵𝐵.

Answer: water
-------------

Generated Questions
-------------

what is white on the ground?
where is the surfboard?
what is the background?
what is the water called?

what is the man surfing on?

Answer: 1
-------------

Generated Questions
-------------

how many people are in the picture?
how many people are in the water?

how many surfers are on their surfboards?
how many people in the water?
how many people are shown?

Answer: waves
-------------

Generated Questions
-------------

why is the water white?
what is crashing in the background?

what is white in the water?
what are the white caps forming?

what is motion in this photo?

Answer: stop sign
-------------

Generated Questions
-------------

what is in the background?
what is the sign in the distance?

what is the sign next to the skiers?
what does the red sign indicate?

what sign is in the back?

Answer: turtle
-------------

Generated Questions
-------------

what is on the right hand side of the surfboard?
what is the man watching on his surfboard?

what is the surfer looking at?
what animal is the man holding in his hand?
what kind of animal is the man holding in his 

hand?

Answer: unicorns
-------------

Generated Questions
-------------

what type of creatures are in the water with the 
surfboards?

what animals are painted on the surfboard?
what animals are represented on the wall in the 

background?
what animals are painted on the surfboard?

what animals are in the water?

Figure 6: The rephrasing generator 𝑓𝑉𝑄𝐺 can hallucinate questions that imagine not present in the
context of the image.

C Hallucinations

We describe a peculiar mode of the rephrasing generator 𝑓𝑉𝑄𝐺 in this section. When an answer is
out-of-context for a given image, the rephrasing generator 𝑓𝑉𝑄𝐺 will generate questions premised
on the out-of-context answer. For example, in Fig. 6, we show that if an out-of-context answer such
as “unicorn” for the surfing image in Fig. 6 is provided to 𝑓𝑉𝑄𝐺 for cycle-consistent rephrasing
generation, 𝑓𝑉𝑄𝐺 will generate questions such as “what animals are in the water”, assuming that
there are unicorns in the water, though this is implausible. A more correct question would have been
something such as “what animals are not present?” A likely reason 𝑓𝑉𝑄𝐺 cannot handle these cases
well is because 𝑓𝑉𝑄𝐺 is trained on a VQA dataset to approximate 𝑝(𝑞 |𝑣, 𝑎), and traditional VQA
datasets have very few counterfactual questions such as these.

This is not specific to the 𝑓𝑉𝑄𝐺 used in our framework, and should apply to any question generator
trained in this manner. It does reveal that even large VLMs pretrained on a massive amount of
image-text pairs have a superficial understanding of counterfactuals, and possibly other properties of
language.

D Are the rephrasings really rephrasings?

As visible in Fig. 2, some of the rephrasings are not literally rephrasings of the original question.
It may be more correct to call the rephrasings pseudo-rephrasings, in the same way that generated
labels are referred to as pseudolabels in the semi-supervised learning literature [33]. However, the
pseudo-rephrasings seem to be good enough that inconsistency over the pseudo-rephrasings indicates
potentially unreliable predictions from 𝑓𝐵𝐵.
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Figure 7: See Appendix D for an explanation of the figure.
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Figure 8: For out of distribution (OKVQA) and adversarial visual (AdVQA) questions, confidence
scores alone do not work well to separate right from wrong answers — many correct answers are low
confidence for OOD data, and many wrong answers are high confidence for adversarial data.

Why does this work? Decompose 𝑓𝐵𝐵 as 𝑓𝐵𝐵 = 𝑓𝐷 ( 𝑓𝐸 (𝑣, 𝑞)), where 𝑓𝐸 (𝑣, 𝑧) = z is the encoder that
maps a visual question pair 𝑣, 𝑞 to a dense representation z, and 𝑓𝐷 (z) = 𝑎 is the decoder that maps
the dense representation z to an answer. For two rephrasings 𝑞𝛼, 𝑞𝛽 of a question 𝑞, the model will
be consistent over the rephrasings if all the rephrasings are embedded onto a subset of the embedding
space that 𝑓𝐷 assigns the same answer 𝑎. This is the situation we depict on the left side of Fig. 7.

On the other hand, if 𝑞𝛼 and 𝑞𝛽 are embedded into parts of the embedding space that 𝑓𝐷 assigns them
different answers, the answers will not be consistent (right side of Fig. 7). Thus, whether a 𝑞𝛼, 𝑞𝛽
are linguistically valid rephrasings does not matter so much as if 𝑞𝛼, 𝑞𝛽 should technically have the
same answer as the original question 𝑞. Of course, it is true that the answer to a linguistically valid
rephrasing should be the same as the same as the answer to the question being rephrased. However,
for any question, there are many other questions that have the same answer but are not rephrasings of
the original question.

E Calibration

The confidence scores in Figs. 3 and 8 are the raw scores from the logits of the VQA model, in this
case BLIP. Recall that the models under consideration are autoregressive models that approximate a
probability distribution 𝑝(𝑎 |𝑣, 𝑞), where 𝑎 can take on an infinite number of values — the model must
be able to assign a score to any natural language sentence. The raw distribution of confidence scores
is clearly truncated in the sense that all scores appear to lie in the interval [0, 0.07]. We apply temper-
ature scaling [34] to assess how well the confidence scores are calibrated. In temperature scaling,
the logits of a model are multiplied by a parameter 𝜏. This is rank-preserving, and yields confidence
scores that are more directly interpretable. In our case, we can use it to rescale the model logits into
the interval [0, 1] and analyze the Adaptive Calibration Error [35] of the model’s predictions. We
grid search the 𝜏 that minimizes the Adaptive ECE directly on the model predictions, and show the
results in Tabs. 6 to 8. The Adaptive Calibration Error is lowest on the in-distribution dataset, highest
on the adversarial dataset, and second highest on the out-of-distribution dataset. Notably, the model
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Raw Confidence Accuracy Scaled Confidence Error
percentile

0 0.020 0.477 0.390 0.087
10 0.022 0.507 0.430 0.077
20 0.024 0.540 0.473 0.067
30 0.026 0.573 0.522 0.051
40 0.029 0.604 0.577 0.026
50 0.032 0.647 0.643 0.004
60 0.036 0.699 0.723 0.024
70 0.041 0.766 0.819 0.053
80 0.047 0.831 0.934 0.104
90 0.054 0.909 1.000 0.091

Table 6: Calibration of BLIP on OK-VQA. For scaling, a temperature of 19.9 is used.

Raw Confidence Accuracy Scaled Confidence Error
percentile

0 0.042 0.837 0.841 0.004
10 0.047 0.898 0.926 0.028
20 0.051 0.938 1.000 0.062
30 0.055 0.968 1.000 0.032
40 0.058 0.984 1.000 0.016
50 0.060 0.994 1.000 0.006
60 0.062 0.998 1.000 0.002
70 0.064 0.999 1.000 0.001
80 0.065 1.000 1.000 0.000
90 0.065 0.999 1.000 0.001

Table 7: Calibration of BLIP on VQAv2. For scaling, a temperature of 19.3 is used.

is systematically overconfident on adversarial samples, but not on out-of-distribution samples. This
suggests that calibration is not the only problem in selective prediction.

F More Rephrasings Examples

We show more examples of generated rephrasings by Fig. 9.

Raw Confidence Accuracy Scaled Confidence Error
percentile

0 0.032 0.430 0.637 0.206
10 0.035 0.472 0.703 0.231
20 0.039 0.510 0.769 0.259
30 0.042 0.547 0.834 0.287
40 0.045 0.580 0.897 0.317
50 0.048 0.601 0.956 0.355
60 0.051 0.618 1.000 0.382
70 0.055 0.636 1.000 0.364
80 0.058 0.655 1.000 0.345
90 0.062 0.693 1.000 0.307

Table 8: Calibration of BLIP on AdVQA. For scaling, a temperature of 12.5 is used.
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Answer: bicycle
Original Question: What are the boys pushing up the ramp?

-------------
Rephrasings
-------------

what is the boy riding on?
what is the boy riding on?

what is the little boy riding on?
what is the child riding?
what is the boy riding?

Answer: 5
Original Question: How many roses does the vase have?

-------------
Rephrasings
-------------

how many roses are there?
how many flowers are in the vase?
how many roses are in the vase?

how many roses?
how many roses are in the vase?

Answer: lot
Original Question: How many stripes does the 

zebra in the middle have?
-------------

Rephrasings
-------------

how many stripes does the front zebra have?
how many stripes are there?

how many lines are on the zebras?
how many stripes does the animal in the 

background have?
how many stripes does the front zebra have?

Answer: no entry or 1 way
Original Question: What is the meaning of the red 

sign with the white strip?
-------------

Rephrasings
-------------

what does the street sign in the middle of the picture 
mean?

what do the signs mean?
what does the street sign mean?
what does the street sign say?
what does the street sign say?

Answer: frisbee
Original Question: What are those two reaching for?

-------------
Rephrasings
-------------

what is the guy catching?
what game is the man playing?

what is the woman in the red shirt trying to catch?
what are the men playing?

what is the man in the red shorts trying to catch?

Answer: spinach
Original Question: What is the green leaf that is on top 

of the pizza?
-------------

Rephrasings
-------------

what kind of leaves are on the pizza?
what vegetable is on this pizza?

what is the green stuff on the pizza?
what are the green objects on the pizza?
what type of vegetables are on the pizza?

Answer: big sandwich
Original Question: What type of food are the people 

eating?
-------------

Rephrasings
-------------

why is she holding the sandwich in her hands?
what is the woman eating?

what is the little girl holding?
what is she making?

why are the people hungry?

Answer: scissors
Original Question: What is this object, please?

-------------
Rephrasings
-------------

what is the object on the table?
what tool is being used?

what tool is this?
what are the scissors being used for?

what is this object?

Answer: bmw
Original Question: What make is the bike?

-------------
Rephrasings
-------------

what make is the motorcycle?
what brand of motorcycle?

what make is this bike?
what brand of bike is this?

what brand is the bike?

Figure 9: More examples of generated rephrasings.
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