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Learning Communities from Equilibria of Nonlinear Opinion Dynamics

Yu Xing, Anastasia Bizyaeva, and Karl H. Johansson

Abstract— This paper studies community detection for a
nonlinear opinion dynamics model from its equilibria. It is
assumed that the underlying network is generated from a
stochastic block model with two communities, where agents
are assigned with community labels and edges are added
independently based on these labels. Agents update their
opinions following a nonlinear rule that incorporates saturation
effects on interactions. It is shown that clustering based on
a single equilibrium can detect most community labels (i.e.,
achieving almost exact recovery), if the two communities differ
in size and link probabilities. When the two communities
are identical in size and link probabilities, and the inter-
community connections are denser than intra-community ones,
the algorithm can achieve almost exact recovery under negative
influence weights but fails under positive influence weights.
Utilizing fixed point equations and spectral methods, we also
propose a detection algorithm based on multiple equilibria,
which can detect communities with positive influence weights.
Numerical experiments demonstrate the performance of the
proposed algorithms.

I. INTRODUCTION

Learning networks from group dynamics has gained sig-

nificant interest in various disciplines [1], [2], due to its

wide applications in influence maximization [3] and rec-

ommender systems [4]. Community detection is one of the

central topics among network inference [5], as real networks

often comprise communities that are sparsely connected to

each other. Recently, an increasing amount of research has

focused on community detection based on observations from

dynamical systems (e.g., [6], [7], [8]). However, most studies

address the detection problem for linear dynamics, and there

is still a need to understand how nonlinearity affects detection

performance. Since nonlinear models can behave differently

from linear averaging dynamics [9], [10], it is important to

investigate how to adapt and apply traditional methods, such

as spectral clustering, to complex nonlinear dynamics.

A. Related Work

Community detection has been extensively investigated for

over two decades [5]. There are three major approaches to the

problem. The most common approach involves optimizing

quality functions. The Louvain method [11] is a widely-

used fast algorithm based on greedy optimization of the
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modularity, which measures the extent a given network

partition implying dense connections within subgroups. The

Infomap method [12] represents the approach based on

dynamics. The method aims to compress random walks over

networks, by looking for partitions that reduce information

required for describing the trajectories. The approach based

on statistical inference has become well-established in re-

cent years. The methods infer generative network models

that presuppose community structure. The stochastic block

model (SBM) is a crucial example, where edges exist with

probability depending on pre-assigned community labels.

This framework facilitates theoretical analysis of community

detectability [13], [14], [15].

When only data from dynamics over a network are avail-

able, rather than direct edge information, a standard method

is to construct a network based on state similarity and then

apply detection algorithms to that network. The paper [7]

introduces a Bayesian hierarchical model for time series,

and demonstrates that model-based approaches can outper-

form traditional methods. Maximum likelihood methods for

cascade dynamics are explored in [16], and nonparametric

Bayesian methods for epidemics and an Ising model are

proposed in [17]. A blind community detection approach is

developed in [6], [18], [19]. The method applies spectral

clustering to sample covariance matrices derived from a

single snapshot from multiple trajectories. The papers [8],

[20] propose algorithms leveraging transient and asymptotic

behaviors of gossip opinion dynamics.

Most of the above studies focus on community detection

for linear dynamics, and the problem for nonlinear dynamics

remains unexplored. In this paper, we study a nonlinear

opinion dynamics model [10]. In the model, individuals up-

date their opinions according to a saturation interaction rule,

which is also found in neural and biological systems [21],

[22]. This type of models can capture the transition from

opinion consensus to polarization without the presence of

external influence, unlike the DeGroot, Friedkin-Johnsen, or

Hegselmann-Krause models [23]. In particular, [24] uses the

nonlinear model to explain political polarization dynamics.

Additionally, [9] proposes a model combining the saturation

rule with homophily, and reproduces the echo chamber

phenomenon on social media. Therefore, investigating com-

munity detection from these nonlinear dynamics can help

understand the structure of real-world dynamics.

B. Contributions

We study community detection based on equilibria of a

nonlinear opinion dynamics. It is assumed that the dynamics

evolve over networks generated from an SBM with two com-
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munities. For the case with a single equilibrium available, we

propose a community detection algorithm based on k-means

(Algorithm 1). The algorithm can detect most community

labels with high probability (i.e., achieving almost exact

recovery), if a non-consensus equilibrium is used, and the

two communities differ in size and link probabilities (The-

orem 1 (i.a)). When the communities are identical in size

and link probabilities, and inter-community connections are

denser than intra-community ones, the algorithm can achieve

almost exact recovery if interpersonal influence weights are

negative, but fails if the weights are positive (Theorem 1 (i.b)

and (ii)). For multiple equilibria with external inputs, another

detection algorithm (Algorithm 2) is developed by leveraging

fixed point equations and spectral clustering methods. Its

performance is validated by numerical experiments.

By studying a typical nonlinear model [25], the results

demonstrate how community detectability is affected by

nonlinearity. Stationary states under external excitation or

transient states are necessary for detection in linear dynamics

(e.g., [6], [18], [20]). In contrast, it is found that community

detection is possible by using only equilibria of nonlinear

dynamics without excitation. However, community structure

information may not be preserved in the equilibria when

agents are strongly influence by nonlinear interactions. These

findings provide key insight into the design of community

detection methods for real-world complex dynamics.

C. Outline

Section II introduces the nonlinear dynamics and the

SBM. Section III formulates the problem. Two detection

algorithms are proposed in Section IV, and numerical

experiments presented in Section V. Section VI concludes

the paper.

Notation. Denote the set of positive integers by N+ and

the set of positive real numbers by R+. Denote the n-

dimensional all-one vector by 1n. In is the identity matrix,

and 1m,n (0m,n) is the m× n all-one (all-zero) matrix. De-

note the Euclidean norm of a vector and the spectral norm of

a matrix by ‖·‖. A vector is denoted by a boldface letter, e.g.,

x, and its i-th entry by xi. For a matrix A ∈ R
n×n, aij or

[A]ij denotes its (i, j)-th entry. For a symmetric A ∈ R
n×n,

denote its smallest and largest eigenvalues by λmin(A) and

λmax(A). For a vector-valued function f(x) : Rn → R
m, its

Jacobian matrix is an m×n matrix, denoted by Dxf , whose

(i, j)-th entry is [Dxf ]ij = ∂fi/∂xj . The Jacobian of f at

a point x0 ∈ R
n is written as Dxf(x0). For real numbers

a(n), b(n) > 0, n ∈ N, denote a(n) = Θ(b(n)), if there

exist C1, C2 > 0 such that C1b(n) ≤ a(n) ≤ C2b(n). The

function I[property] is the indicator function, which is one if the

property in the bracket holds, and zero otherwise. A sequence

of events {An} happens with high probability (w.h.p.) if

limn→∞ P{An} = 1. An undirected graph is denoted by

G = (V , E , A), where V is the agent set, E is the edge set,

and A = [aij ] is the adjacency matrix such that aij = 1
(aij = 0) if {i, j} ∈ E ({i, j} 6∈ E).

II. PRELIMINARIES

In this section, we introduce the nonlinear opinion dynam-

ics and the SBM, and briefly discuss their properties.

A. Nonlinear Opinion Dynamics

The nonlinear opinion dynamics model takes place over

an undirected graph G = (V , E , A) with V = {1, . . . , n} and

no self-loops (aii = 0). Each agent i ∈ V has a state xi(t),
t ∈ R+, and the model evolves in continuous time according

to the update rule

ẋi = −dxi + uS
(

αxi + γ
∑

k∈V

aikxk

)

+ bi, (1)

where d > 0 is the damping coefficient, u is the agent

attention parameter to the nonlinear network interaction,

and S is an odd saturating function satisfying S(0) = 0,

S′(0) = 1, and sgn(S′′(z)) = −sgn(z). Here we assume

S = tanh, i.e., the hyperbolic tangent. In the nonlinear term,

α ≥ 0 is the self weight and γ ∈ R is the influence weight

of other agents. Lastly, bi ∈ R is an additive input, which

can be seen as individual prejudice or external influence.

The compact form of (1) can be written as

ẋ = −dx+ uS(αx+ γAx) + b, (2)

where S(x) := [S(x1), . . . , S(xn)]
T for x ∈ R

n.

The model and its extensions have been thoroughly stud-

ied, focusing on their bifurcation and steady-state behav-

ior [10], [25], [26]. Here we consider the case where the

parameters are homogeneous (i.e., d, u, α, and γ are identical

for all agents) and each agent has a single opinion. The

following result [26, Theorem 1] demonstrates that two new

equilibria of the model (2) without inputs emerge, due to

bifurcation from the origin as the attention parameter u
increases beyond specific thresholds.

Proposition 1: Suppose that G is connected, u ≥ 0, and

b = 0.

(i) If γ > 0, the origin x = 0 is a locally exponentially

stable equilibrium for 0 < u < u1 and unstable for

u > u1, where u1 := d/(α + γλmax(A)). At u =
u1, branches of equilibria x̃ 6= 0 emerge in a steady-

state bifurcation off of x = 0 along the eigenspace

corresponding to λmax(A), where the entries of x̃ have

the same sign.

(ii) If γ < 0, the origin x = 0 is a locally exponentially

stable equilibrium for 0 < u < u2 and unstable for

u > u2, where u2 := d/(α + γλmin(A)). At u =
u2, branches of equilibria x̃ 6= 0 emerge in a steady-

state bifurcation off of x = 0 along the eigenspace

corresponding to λmin(A), where the entries of x̃ have

different signs.

The real-valued opinion xi represents the agent i’s level of

support for two options. The sign sgn(xi) indicates which of

the two options the agent supports, and xi = 0 represents a

neutral position. Proposition 1 shows that agreement steady

states with all agents having the same sign emerge from the

neutral state as u increases, if the influence weight is positive.



In contrast, if the influence is negative, disagreement steady

states emerge.

B. Stochastic Block Model

Assume that the agent set V consists of two disjoint

communities V1 and V2. Let the community structure vector

be C ∈ {1, 2}n, satisfying that Ci = 1 if i ∈ V1 and Ci = 2 if

i ∈ V2 (i.e., agents in V1 (in V2) have the label 1 (label 2)).

The two-community SBM is defined as follows.

Definition 1 (SBM): Let n ∈ N+ be the network size, n =
[n1 n2]

T ∈ N
2
+ be the community size vector with n1+n2 =

n, and

ℓ =

[

ℓ11 ℓ12
ℓ21 ℓ22

]

∈ [0, 1]2×2

be the link probability matrix with ℓ12 = ℓ21. In SBM(n, ℓ),
agents 1, . . . , n1 are assigned with community label 1 and

agents n1 + 1, . . . , n with label 2. Then the SBM generates

an undirected graph G = (V , E , A) without self-loops, by

independently adding {i, j} with i 6= j to E with probability

ℓCi,Cj
. If n1 = n2 = n/2 and ℓ11 = ℓ22, the SBM is

called symmetric SBM, denoted by SSBM(n, ℓ). In this case,

denote ℓs := ℓ11 = ℓ22 and ℓd := ℓ12 = ℓ21.

The following assumption on link probability ℓij of an

SBM is given to ensure the random graph is connected w.h.p.

A technical assumption for the SSBM is also introduced.

Assumption 1: For the SBM(n, ℓ), assume that ℓij =
ω(logn/n), ∀i, j ∈ {1, 2}. If the SBM is SSBM(n, ℓ) and

ℓs > ℓd, further assume that ℓd = ω(
√
ℓs log n).

To measure the performance of an algorithm detecting

communities of the SBM from observations, we introduce

the accuracy of an estimate Ĉ given by the algorithm,

Acc(C, Ĉ) := 1

n
max

{ n
∑

i=1

I[Ci=Ĉi]
,

n
∑

i=1

I[Ci=3−Ĉi]

}

. (3)

Now we define almost exact recovery of an algorithm

detecting communities in SBMs as follows [13], [15].

Definition 2: For an SBM with n agents and a community

structure C, suppose that a detection algorithm outputs an

estimate Ĉ. The algorithm achieves almost exact recovery, if

P{Acc(C, Ĉ) = 1− o(1)} = 1− o(1).
Almost exact recovery means that the algorithm can correctly

detect most community labels w.h.p.

III. PROBLEM FORMULATION

We investigate how to detect communities from equilibria

of the model (2). It is assumed that a graph G = (V , E , A)
is generated from an SBM and then fixed. The opinion

model (2) evolves over this graph and reaches steady state.

Since we will consider cases where the network size is large,

we set γ = ±1/∆, where ∆ := maxi E{
∑

j aij} is the

maximum expected degree of G. Hence, γAx is a weighted

average of the opinions x. The problem studied in this paper

is described as follows.

Problem. Given a single equilibrium x∗ or multiple

input-equilibrium pairs {[b(1) x(1)], . . . , [b(m) x(m)]} of the

model (2) over an SBM, design algorithms to detect the

communities of the SBM and analyze their performance.

Algorithm 1 (Detection Based on Single Equilibrium)

Input: Community number k = 2.

Output: Community estimate Ĉ.

1: Obtain an equilibrium x∗ of the model (2).
2: Apply k-means to x∗ to get an estimate of the community

structure C.

IV. DETECTION ALGORITHMS AND MAIN RESULTS

In this section, we first address the community detection

problem based on a single equilibrium. The performance of

the proposed algorithm is analyzed theoretically for several

SBMs (Theorem 1). We then design a detection algorithm

based on multiple equilibria, by approximating the adjacency

matrix using fixed point equations of the system and applying

spectral clustering techniques to the estimated matrix.

A. Detection from Single Equilibrium

Given only one equilibrium, we employ the k-means

method to cluster the states, as shown in Algorithm 1. It

is assumed that the exact equilibrium is obtained. We will

study detection from noisy observations in the future.

The neutral steady state x = 0 provides no information

about the community structure, similar to the consensus of

linear dynamics such as the DeGroot model. However, the

equilibria emerging at the bifurcation from the origin as

stated in Proposition 1 can reveal information of the network,

as shown in the following theorem.

Theorem 1: Suppose that Assumption 1 holds, b = 0, and

the equilibrium x∗ emerges at the bifurcation from the origin

as stated in Proposition 1.

(i) Assume that γ = 1/∆ > 0, and u − ū1 > 0 is small

enough, where ū1 = d/(α+ γλmax(E{A})).
(i.a) For SBM(n, ℓ), if n2 = o(n1), ℓ11n1 = Θ(ℓ22n2),

and ℓ12 = Θ(
√
ℓ11ℓ22), then Algorithm 1 achieves

almost exact recovery.

(i.b) For SSBM(n, ℓ), it holds that ‖x∗ −
θc(u)1n/

√
n‖ = o(c(u)) w.h.p., for some

θ ∈ {1,−1}. Here c(u) ∈ R depends on u and

c(u) → 0 as u → ū1. If lim inf ℓd/ℓs > 3, then

Algorithm 1 cannot achieve almost exact recovery.

(ii) Assume that γ = −1/∆ < 0, and u − ū2 > 0 is

small enough, where ū2 = d/(α + γλmin(E{A})).
For SSBM(n, ℓ), if ℓs < ℓd, then Algorithm 1 achieves

almost exact recovery.

Remark 1: The result (i.a) states that the communities of

the SBM can be detected, if the influence weights are positive

and the two communities differ in size and link probabilities.

The result (i.b) shows that the entries of the equilibrium

x∗ are close to each other in the SSBM. As a result, the

communities cannot be detected by clustering. However,

almost exact recovery in the disassortative SSBM (inter-

community connections are denser than intra-community)

can be achieved, if the influence weight is negative.

From Proposition 1, the equilibrium x∗ reflects the eigen-

vector centrality if the influence weight is positive. Note

that agents in the SSBM have similar centrality. Conditions



in (i.a) imply a leader-follower structure, where the com-

munity V2 has much fewer agents but denser connections,

compared with the community V1. This structure ensures

different centrality in communities, making detection possi-

ble. In the case of negative influence, the equilibrium x∗ is

close to the eigenvector corresponding to λmin(A). For the

disassortative SSBM, the sign of entries of that eigenvector

corresponds to community labels, so almost exact recovery

can be achieved.

In the theorem, we assume that u is close to the bifurcation

threshold ū1 or ū2. To ensure detectability, u has to be neither

too small or too large. When u is below the bifurcation

threshold, only the neutrality equilibrium exists, providing no

information about the graph. As u increases, agents become

more attentive to nonlinear interactions, and equilibria move

away from the eigenvector centrality. See Section V for how

u and different sigmoid functions influence detection.

Proof Sketch: We briefly explain how the results are

obtained. The detailed proof is given in Appendix A. First,

leveraging the Lyapunov-Schmidt reduction, we can calculate

an explicit form of the equilibrium. The equilibrium is close

to (up to a sign flip) the eigenvector corresponding to the

largest or smallest eigenvalue of the adjacency matrix A.

Next, from matrix perturbation theory and concentration

inequalities, it follows that the aforementioned eigenvector is

close to the eigenvector of the expected graph. Analyzing the

properties of the expected graph and eigenvectors completes

the proof.

We conclude this subsection by discussing several exten-

sions of Theorem 1. The result in (i.a) holds as long as

agents in different communities have different eigenvector

centrality. The disassortative condition for ℓd in (i.b) is

technical, and simulation given in Section V shows that

Algorithm 1 also fails to achieve almost exact recovery for

the assortative SBM. The theorem only considers all-positive

(γ > 0) or all-negative (γ < 0) relationships. A natural

extension is that agents within the same community have

positive edges, whereas agents between the two communities

have negative edges. In this signed-graph case, equilibria

of different communities have opposite signs (see e.g., [27,

Theorem 1]), so communities are detectable.

B. Detection from Multiple Equilibria

In this subsection, we assume that the system has external

inputs, and the resulting equilibria from multiple trajectories

are available. Consider the dataset of input-equilibrium pairs

{[b(1) x(1)], . . . , [b(m) x(m)]} with m ∈ N+. We will

design a community detection algorithm based on fixed point

equations of the model.

The multiple trajectory case is a commonly studied sce-

nario, in which different discussions are observed (e.g., [2],

[6], [18]). The inputs can be seen as individual prejudice

towards different topics or external information that is given

for each discussion.

Note that an input-equilibrium pair [b(k) x(k)], 1 ≤ k ≤
m, satisfies the following fixed point equation

0 = −dx(k) + uS(αx(k) + γAx(k)) + b(k),

Algorithm 2 (Detection Based on Multiple Equilibria)

Input: Multiple input-equilibrium pairs {[b(1) x(1)],
. . . , [b(m) x(m)]} with m ∈ N+, model parameters α, γ,
d, u, and community number k = 2.

Output: Community estimate Ĉ.

1: Calculate for 1 ≤ k ≤ m

y
(k) =

1

γ

(

S
−1

( 1

u
(dx(k) − b

(k))
)

− αx(k)
)

.

2: Calculate the estimate Â of the adjacency matrix A:

Ã = YX
†,

Â = (Ã+ ÃT)/2,

where

X = [x(1) · · · x
(m)],

Y = [y(1) · · · y
(m)].

3: Find the eigenvector corresponding to the second largest eigen-

value of Â, denoted by v̂. Apply k-means to v̂ and obtain an

estimate of community labels Ĉ.

which implies that

y(k) :=
1

γ

(

S−1
( 1

u
(dx(k) − b(k))

)

− αx(k)
)

= Ax(k),

where S−1(x) := [S−1(x1), . . . , S
−1(xn)]

T for x ∈ R
n.

Hence, Y := [y(1) · · · y(m)] = A[x(1) · · · x(m)]. It is

expected that X := [x(1) · · · x(m)] is invertible when m
is large and {b(k)} sufficiently excites the system. Then the

estimate of the adjacency matrix A can be given by YX−1.

When the number of samples is much less than the network

size, Â = YX† gives an approximation of the matrix A,

where X† is the pseudo-inverse of X.

Inspired by this observation, we propose Algorithm 2

which utilizes spectral clustering techniques to recover the

communities for the SSBM. Line 1 of the algorithm cal-

culates the data matrix Y. In Line 2, YX† is calculated

and then projected to the set of symmetric matrices, since

A is symmetric. For the adjacency matrix of an SSBM,

its expectation has a block structure, and the eigenvector

corresponding to its second largest eigenvalue satisfies that

the entries in different communities have different signs.

Leveraging this property, Line 3 applies the spectral cluster-

ing method. Knowing the model and parameters is a strong

assumption, and future work will explore how to address this

limitation.

As shown in Theorem 1 (i.b), the SSBM may not be

recovered by using a single equilibrium without external

inputs. However, when multiple input-equilibrium pairs are

available, the recovery is possible, as shown in Section V.

V. NUMERICAL EXPERIMENTS

In this section, we conduct numerical experiments for

community detection in the model (2). For all experiments,

we set the damping coefficient d = 1, the agent self weight
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(a) Accuracy of Algorithm 1 increases with n
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(b) Accuracy of Algorithm 1 for the model (2)
with S(x) being different nonlinear functions,
where u = ū1 + 0.04.
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(c) Accuracy of Algorithm 1 with u = ū1 +
0.01, the Louvain, the Girvan-Newman, and
spectral clustering methods.

Fig. 1. Detection accuracy for an SBM with unequal-sized communities and γ > 0.

α = 1, the positive influence weight γ = 1/∆, and the neg-

ative weight γ = −1/∆, where ∆ is the maximum expected

degree of the SBM. The equilibria are obtained using the

ode45 solver in MATLAB. The results are consistent with

other solvers such as ode78, ode89, and ode15s.

We first study the SBM that has two communities different

in size and link probabilities, as in Theorem 1 (i.a). In

this experiment, we consider positive interpersonal influence

(γ > 0), and calculate the averaged accuracy of the algorithm

based on 50 random graph samples for the network size n1

from 100 to 500 and n2 = 0.05n1. The link probabilities are

set to be ℓ11 = 0.05, ℓ12 = 0.1, and ℓ22 = 0.5. Additionally,

we set the attention parameter u = ū1+0.01, . . . , ū1+0.04,

where ū1 is given in Theorem 1. Fig. 1(a) shows that

the averaged accuracy of Algorithm 1 increases with the

network size. Additionally, as u grows, the performance

becomes worse, indicating the impact of nonlinearity on the

structure of the equilibria. To study the influence of the

nonlinear interaction on detectability, we examine detection

performance for the model (2) with the saturating function

S(x) = x/(1+ |x|), x/
√
1 + x2, tanh(x), and erf(

√
πx/2),

where erf is the Gauss error function. Fig. 1(b) illustrates

that the detection performance worsens as agents become

more easily saturated. Next, we compare Algorithm 1 with

classic methods which are applied directly to the adjacency

matrices. As shown in Fig. 1(c), the Girvan–Newman method

(where the partition with two communities is selected) and

the spectral clustering have high accuracy because the SBM

has two blocks. For the Louvain method, we set its resolution

parameter to produce a partition with two communities. It has

difficulty identifying the smaller community, and hence does

not perform well. Utilizing only state observations instead

of graphs, Algorithm 1 can achieve high accuracy when n
is large enough while u− ū1 is not too large.

For SSBM with positive weights, Algorithm 1 cannot

detect the communities w.h.p. This is shown in Fig. 2(a),

where the averaged accuracy of the algorithm is close to

0.5, similar to random guess. This validates Theorem 1 (i.b).

Here the attention parameter is chosen as above. The link

probability within a community is ℓs = 0.3 and that between

communities ℓd = 0.05.

We then consider the disassortative SSBM with nega-

tive influence weights, to validate Theorem 1 (ii). In the

experiment, we set u = ū2 + 0.01, . . . , ū2 + 0.04, and

link probabilities to be ℓs = 0.005 and ℓd = 0.03. The

link probabilities here are much smaller than previous ones,

but the algorithm still has high detection accuracy and the

attention parameter has less impact (see Fig. 2(b)).

Finally, we study the performance of Algorithm 2

based on multiple input-equilibrium pairs {[b(1) x(1)],
. . . , [b(m) x(m)]}. We consider positive influence weights

and the same SSBM as the second experiment. The network

size n is set to be 20, 60, and 100, and u to be ū1+0.01. For

each network, we generate 10 graph samples, and for each

graph sample we collect 10 sets of input-equilibrium pairs

where b(k) are independently generated from the standard

Gaussian distribution. To test the effect of sample size,

we set m = 0.1n, 0.2n, . . . , n. Fig. 3(a) shows that the

performance of the algorithm increases with both sample and

network sizes. We then compare the proposed algorithm with

classic methods for community detection from dynamical

observations: the spectral clustering applied to the sample

covariance matrix 1
m

∑m
k=1(x

(k) − x̄)(x(k) − x̄)T (e.g., [6],

[18]), the Girvan-Newman and the Louvain algorithms ap-

plied to correlation matrices [28]. The accuracy of these

methods is below 0.6, as shown in Fig. 3(b). Algorithm 2

performs better because it exploits the nonlinear structure

and utilizes model parameter information.

VI. CONCLUSION

We studied community detection for a nonlinear opin-

ion dynamics model over a stochastic block model. Two

algorithms based on a single or multiple equilibria were in-

vestigated. Future work includes studying multi-dimensional

generalizations [29], labeled SBMs [13], and joint learning

of communities and model parameters.

APPENDIX

A. Proof of Theorem 1

1) Proof of (i.a): The proof is divided into three steps.

First, we use the Lyapunov-Schmidt reduction [30] to derive

an explicit expression of the equilibrium x∗. Then we apply

concentration inequalities to approximate x∗ by using the

eigenvector corresponding to the largest eigenvalue of the

expected adjacency matrix E{A}. Finally we obtain the

conclusion by examining the properties of the eigenvector.

Step 1. This step is devoted to derive the following result.
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(a) Positive interpersonal influence. The accuracy is sim-
ilar to random guess (close to 0.5).
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(b) The dissassortative SSBM with negative interpersonal
influence. The accuracy increases with n.

Fig. 2. Detection accuracy for the SSBM.
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(a) The accuracy of Algorithm 2 increases with the sample size
m and the network size n.

0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

A
cc

ur
ac

y

(b) The accuracy of Algorithm 2 with n = 20, the Louvain, the
Girvan–Newman, and spectral clustering methods.

Fig. 3. Detection accuracy from multiple input-equilibrium pairs.

Lemma 1: Suppose that the graph G = (V , E , A) is

connected, b = 0, and x∗ is an equilibrium emerging at

the bifurcation from the origin as stated in Proposition 1. If

γ > 0, and u−u1 > 0 is small enough, then x∗ = c(u)wmax,

where wmax is the unit eigenvector of A corresponding to

λmax(A), and c(u) depends on u and c(u) → 0 as u → u1.

Proof: For an equilibrium x of the model (2) with

b = 0, it is a solution of the equation

Φ(x, u) := −dx+ uS(αx+ γAx) = 0. (4)

The Jacobian of Φ with respect to x at the origin is

DxΦ(0, u) = (uα− d)I + uγA,

and J := DxΦ(0, u1) has a single zero eigenvalue, so

rank(DxΦ(0, u1)) = n − 1. The idea of the Lyapunov-

Schmidt reduction is to separately solve (4) near (0, u1) for

the corresponding nondegenerate n − 1 variables of x, and

turn (4) into a reduced equation for the remaining unknown.

For symmetric A, there is orthogonal [W̃ wmax] such that
[

W̃ T

(wmax)T

]

A[W̃ wmax] =

[

W̃ TAW̃ 0

0 λmax(A)

]

Let E := I − wmax(wmax)T be the projection of R
n onto

rangeJ , and kerE = spanwmax. Let I−E be the comple-

mentary projection. Then the aforementioned decomposition

can be written as follows

EΦ(x, u) = 0, (5)

(I − E)Φ(x, u) = 0. (6)

For x ∈ R
n, it can be written as x = wmaxxm+W̃ x̃, where

x̃ ∈ R
n−1. Further, since [W̃ wmax]TE = [W̃ 0]T, (5) is

equivalent to

0 = W̃ TΦ(x, u) =: F(xm, x̃, u). (7)

Applying the implicit function theorem near (0,0, u1) to (7)

yields the dependence x̃ = x̃(xm, u1). Specifically, since

Dxm
F(0,0, u) = W̃ T[−dI + u(αI + γA)]wmax = 0,

Dx̃F(0,0, u) = (uα− d)In−1 + uγW̃ TAW̃ =: J̃ ,

DuF(0,0, u) = W̃ TS(0) = 0,

and F is odd in x, x̃ = J̃−1O((u − u1)
3). Note that

‖J̃−1‖ = (γΘ(λmax(A) − λn−1(A)))
−1 with λn−1(A) the

second largest eigenvalue, and is of order Θ(1) under the

assumptions of the theorem. So x̃ = O((u − u1)
3). As a

result, (6) can be reduced to

0 = wmax(wmax)T[−dx+ uS(αx+ γAx)]

= wmax[−dxm + u(wmax)TS
(

(αI + γA)wmaxxm

+O((u − u1)
3)
)

+O((u − u1)
3)].

From the Taylor expansion, xm = O((u−u1)
2), which yields

the conclusion by noticing x = wmaxxm + W̃ x̃.

Step 2. Now we use the eigenvector of E{A} to approx-

imate wmax of A generated from an SBM. The following

lemma quantifies the deviation of A generated from a ran-

dom graph model and its eigenvalues from the expectation

(Theorem 1 of [31]).

Lemma 2: Let G = (V , E , A) be a graph generated from

a random graph model with independent edges and |V| =
n, and ∆ be the maximum expected degree of G. If ∆ =
ω(logn), then it holds w.h.p. for all 1 ≤ i ≤ n that

|λi(A) − λi(Ā)| ≤ ‖A− Ā‖ ≤ c
√

∆ logn,

where c > 0 is a constant and Ā := E{A}.

Furthermore, the difference of the eigenspaces of A from

their expected counterparts can be bounded by using the



Davis-Kahan theorem. Applying (4.19) of [32] to A and Ā,

we know that, if minj<n |λj(Ā)− λmax(Ā)| =: δ > 0, then

‖wmax − θw̄max‖ ≤ 23/2‖A− Ā‖
δ

, (8)

for some θ ∈ {1,−1}, where w̄max is the unit eigenvector

of Ā corresponding to its eigenvalue λmax(Ā).
If the random graph is SBM(n, ℓ), it can be shown that

E{A}+ diag(ℓ11In1
, ℓ22In2

) has two nonzero eigenvalues:

λ̄max :=
1

2

[

(ℓ11n1 + ℓ22n2)

+
√

(ℓ11n1 − ℓ22n2)2 + 4n1n2ℓ212

]

,

λ̄− :=
1

2

[

(ℓ11n1 + ℓ22n2)

−
√

(ℓ11n1 − ℓ22n2)2 + 4n1n2ℓ212

]

.

When the SBM is symmetric, λ̄max = (ℓs + ℓd)n/2
and λ̄− = (ℓs − ℓd)n/2. Note that max{ℓ11, ℓ22} =
o(min{λ̄max, λ̄−)}), so the eigenvalues of E{A} is close

to those of E{A} + diag(ℓ11In1
, ℓ22In2

) when n is large

enough. We summarize the findings in the following lemma.

Lemma 3: Suppose that Assumption 1 holds. Then

‖wmax − θw̄max‖ = Θ
(

√

(ℓs + ℓd)n log n

(ℓd +min{ℓs, ℓd})n
)

,

∃θ ∈ {1,−1}, holds for SSBM(n, ℓ). For SBM(n, ℓ), the

bound is Θ(
√
∆ logn/(λ̄max −max{λ̄−, 0})).

Step 3. Under Assumption 1, G is connected w.h.p., and

u1 ∼ d/(α + λmax(Ā)/∆) = ū1. Under the assumption

of (i.a), it can be shown that λ̄max = Θ(∆) = ω(logn).
So the condition of Lemma 3 holds. It suffices to study

the structure of w̄max. Note that w̄max has the structure

[w11
T
n1

w21
T
n2
]T. From Āw̄max = λ̄maxw̄

max, we have that

ℓ11n1w1 + ℓ12n2w2 = λ̄maxw1,

ℓ21n1w1 + ℓ22n2w2 = λ̄maxw2.

Dividing the first equation by the second, it follows that

w1

√

ℓ22
ℓ11

= Θ(w2).

From ‖w̄max‖ = 1, w1 = Θ(1/
√
n1) = Θ(1/

√
n) and

w2 = Θ(1/
√
n2) = ω(1/

√
n). Note that the entry-wise

concentration error is of order O(1/
√
n∆c0) with c0 ∈ (0, 1)

from Lemma 3. So x∗ consists of two clusters w.h.p. and

Algorithm 1 can achieve almost exact recovery.

2) Proof of (i.b): For SSBM(n, ℓ), the expected adjacency

matrix has a block structure

E{A} ∼
[

ℓs1n/2,n/2 ℓd1n/2,n/2

ℓd1n/2,n/2 ℓs1n/2,n/2

]

,

so w̄max ∼ 1n/
√
n. Combining Lemmas 1 and 3 yields that

x∗ = c(u)wmax

= c(u)θw̄max + c(u)(wmax − θw̄max)

= c(u)θw̄max + o(c(u)),

which proves the first statement of (i.b).

Now suppose that Algorithm 1 can achieve almost exact

recovery. Then there must exists χ∗
1 and χ∗

2 such that

χ∗
1, χ

∗
2 = Θ(1/

√
n), |x∗

i − χ∗
1| < ε for i ∈ V1, and

|x∗
j−χ∗

2| < ε for j ∈ V2 for some ε > 0 with 3ε < |χ∗
1−χ∗

2|,
except for o(n) agents. Assuming without loss of generality

that χ∗
1 > χ∗

2 > 0 and letting θ = 1, we have that

w̄max =
x∗

c(u)
+ o(1).

Let w̃ := Āw̄max, and we have

w̃i ≤
n

2
[ℓsχ

∗
1 + ℓdχ

∗
2 + ε(ℓs + ℓd) + o(χ∗

k)(ℓs + ℓd)], i ∈ V1,

w̃j ≥
n

2
[ℓdχ

∗
1 + ℓsχ

∗
2 − ε(ℓs + ℓd) + o(χ∗

k)(ℓs + ℓd)], j ∈ V2,

except for o(n) agents. Then for i ∈ V1 and j ∈ V2

w̃j − w̃i

≥ n

2
[(ℓd − ℓs)(χ

∗
1 − χ∗

2)− 2ε(ℓs + ℓd) + o(χ∗
k)(ℓs + ℓd)]

≥ n

2

[1

3
(χ∗

1 − χ∗
2)(ℓd − 3ℓs) + o(χ∗

k)(ℓs + ℓd)
]

> 0,

which contradicts that w̃j < w̃i from the definition of

eigenvectors. Hence the assertion is false and Algorithm 1

cannot achieve almost exact recovery.

3) Proof of (ii): It suffices to show that x∗ form two

clusters similar to (i.a). When γ < 0, u2 ∼ d/(α +
γλmin(E{A})) = ū2. For SSBM(n, ℓ) with ℓs < ℓd,

the smallest eigenvalue of Ā is λ̄− = (ℓs − ℓd)n/2 and

the corresponding eigenvector is wmin = [1T
n/2/

√
n, −

1T
n/2/

√
n]T. Again note that the concentration error is of

order O(1/
√
n∆c0), so Algorithm 1 can achieve almost exact

recovery in this case.
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