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Learning Communities from Equilibria of Nonlinear Opinion Dynamics

Yu Xing, Anastasia Bizyaeva, and Karl H. Johansson

Abstract— This paper studies community detection for a
nonlinear opinion dynamics model from its equilibria. It is
assumed that the underlying network is generated from a
stochastic block model with two communities, where agents
are assigned with community labels and edges are added
independently based on these labels. Agents update their
opinions following a nonlinear rule that incorporates saturation
effects on interactions. It is shown that clustering based on
a single equilibrium can detect most community labels (i.e.,
achieving almost exact recovery), if the two communities differ
in size and link probabilities. When the two communities
are identical in size and link probabilities, and the inter-
community connections are denser than intra-community ones,
the algorithm can achieve almost exact recovery under negative
influence weights but fails under positive influence weights.
Utilizing fixed point equations and spectral methods, we also
propose a detection algorithm based on multiple equilibria,
which can detect communities with positive influence weights.
Numerical experiments demonstrate the performance of the
proposed algorithms.

I. INTRODUCTION

Learning networks from group dynamics has gained sig-
nificant interest in various disciplines [1], [2], due to its
wide applications in influence maximization [3] and rec-
ommender systems [4]. Community detection is one of the
central topics among network inference [5], as real networks
often comprise communities that are sparsely connected to
each other. Recently, an increasing amount of research has
focused on community detection based on observations from
dynamical systems (e.g., [6], [7], [8]). However, most studies
address the detection problem for linear dynamics, and there
is still a need to understand how nonlinearity affects detection
performance. Since nonlinear models can behave differently
from linear averaging dynamics [9], [10], it is important to
investigate how to adapt and apply traditional methods, such
as spectral clustering, to complex nonlinear dynamics.

A. Related Work

Community detection has been extensively investigated for
over two decades [5]. There are three major approaches to the
problem. The most common approach involves optimizing
quality functions. The Louvain method [11] is a widely-
used fast algorithm based on greedy optimization of the
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modularity, which measures the extent a given network
partition implying dense connections within subgroups. The
Infomap method [12] represents the approach based on
dynamics. The method aims to compress random walks over
networks, by looking for partitions that reduce information
required for describing the trajectories. The approach based
on statistical inference has become well-established in re-
cent years. The methods infer generative network models
that presuppose community structure. The stochastic block
model (SBM) is a crucial example, where edges exist with
probability depending on pre-assigned community labels.
This framework facilitates theoretical analysis of community
detectability [13], [14], [15].

When only data from dynamics over a network are avail-
able, rather than direct edge information, a standard method
is to construct a network based on state similarity and then
apply detection algorithms to that network. The paper [7]
introduces a Bayesian hierarchical model for time series,
and demonstrates that model-based approaches can outper-
form traditional methods. Maximum likelihood methods for
cascade dynamics are explored in [16], and nonparametric
Bayesian methods for epidemics and an Ising model are
proposed in [17]. A blind community detection approach is
developed in [6], [18], [19]. The method applies spectral
clustering to sample covariance matrices derived from a
single snapshot from multiple trajectories. The papers [8],
[20] propose algorithms leveraging transient and asymptotic
behaviors of gossip opinion dynamics.

Most of the above studies focus on community detection
for linear dynamics, and the problem for nonlinear dynamics
remains unexplored. In this paper, we study a nonlinear
opinion dynamics model [10]. In the model, individuals up-
date their opinions according to a saturation interaction rule,
which is also found in neural and biological systems [21],
[22]. This type of models can capture the transition from
opinion consensus to polarization without the presence of
external influence, unlike the DeGroot, Friedkin-Johnsen, or
Hegselmann-Krause models [23]. In particular, [24] uses the
nonlinear model to explain political polarization dynamics.
Additionally, [9] proposes a model combining the saturation
rule with homophily, and reproduces the echo chamber
phenomenon on social media. Therefore, investigating com-
munity detection from these nonlinear dynamics can help
understand the structure of real-world dynamics.

B. Contributions

We study community detection based on equilibria of a
nonlinear opinion dynamics. It is assumed that the dynamics
evolve over networks generated from an SBM with two com-


http://arxiv.org/abs/2409.08004v2

munities. For the case with a single equilibrium available, we
propose a community detection algorithm based on k-means
(Algorithm 1). The algorithm can detect most community
labels with high probability (i.e., achieving almost exact
recovery), if a non-consensus equilibrium is used, and the
two communities differ in size and link probabilities (The-
orem 1 (i.a)). When the communities are identical in size
and link probabilities, and inter-community connections are
denser than intra-community ones, the algorithm can achieve
almost exact recovery if interpersonal influence weights are
negative, but fails if the weights are positive (Theorem 1 (i.b)
and (ii)). For multiple equilibria with external inputs, another
detection algorithm (Algorithm 2) is developed by leveraging
fixed point equations and spectral clustering methods. Its
performance is validated by numerical experiments.

By studying a typical nonlinear model [25], the results
demonstrate how community detectability is affected by
nonlinearity. Stationary states under external excitation or
transient states are necessary for detection in linear dynamics
(e.g., [6], [18], [20]). In contrast, it is found that community
detection is possible by using only equilibria of nonlinear
dynamics without excitation. However, community structure
information may not be preserved in the equilibria when
agents are strongly influence by nonlinear interactions. These
findings provide key insight into the design of community
detection methods for real-world complex dynamics.

C. Outline

Section II introduces the nonlinear dynamics and the
SBM. Section III formulates the problem. Two detection
algorithms are proposed in Section IV, and numerical
experiments presented in Section V. Section VI concludes
the paper.

Notation. Denote the set of positive integers by N and
the set of positive real numbers by R,. Denote the n-
dimensional all-one vector by 1,,. I, is the identity matrix,
and 1, , (0,,,,) is the m x n all-one (all-zero) matrix. De-
note the Euclidean norm of a vector and the spectral norm of
a matrix by ||-||. A vector is denoted by a boldface letter, e.g.,
x, and its i-th entry by z;. For a matrix A € R"*", a;; or
[A];; denotes its (i, j)-th entry. For a symmetric A € R"*",
denote its smallest and largest eigenvalues by Ayin(A) and
Amax (A). For a vector-valued function f(x) : R” — R™, its
Jacobian matrix is an m X n matrix, denoted by Dyf, whose
(i,7)-th entry is [Dxf];; = 0fi/0x;. The Jacobian of f at
a point xg € R™ is written as Df(xg). For real numbers
a(n),b(n) > 0, n € N, denote a(n) = O(b(n)), if there
exist Cq,Cy > 0 such that C1b(n) < a(n) < Csb(n). The
function [propeny) i8 the indicator function, which is one if the
property in the bracket holds, and zero otherwise. A sequence
of events {A,,} happens with high probability (w.h.p.) if
lim,, oo P{A,} = 1. An undirected graph is denoted by
G = (V& A), where V is the agent set, £ is the edge set,
and A = [a;;] is the adjacency matrix such that a;; = 1

(aij = 0)if {i,j} € € ({i,j} € O).

II. PRELIMINARIES

In this section, we introduce the nonlinear opinion dynam-
ics and the SBM, and briefly discuss their properties.

A. Nonlinear Opinion Dynamics

The nonlinear opinion dynamics model takes place over
an undirected graph G = (V, &, A) with V = {1,...,n} and
no self-loops (a;; = 0). Each agent ¢ € V has a state x;(t),
t € R, and the model evolves in continuous time according
to the update rule

T = —da:l-—i-uS(a:z:i —I—”yZaikxk) + b, (1)
key

where d > 0 is the damping coefficient, u is the agent
attention parameter to the nonlinear network interaction,
and S is an odd saturating function satisfying S(0) = 0,
S’(0) = 1, and sgn(S”(z)) = —sgn(z). Here we assume
S = tanbh, i.e., the hyperbolic tangent. In the nonlinear term,
a > 0 is the self weight and v € R is the influence weight
of other agents. Lastly, b; € R is an additive input, which
can be seen as individual prejudice or external influence.
The compact form of (1) can be written as

X = —dx +uS(ax + vAx) + b, (2)

where S(x) := [S(z1),...,S5(x,)]T for x € R™.

The model and its extensions have been thoroughly stud-
ied, focusing on their bifurcation and steady-state behav-
ior [10], [25], [26]. Here we consider the case where the
parameters are homogeneous (i.e., d, u, o, and y are identical
for all agents) and each agent has a single opinion. The
following result [26, Theorem 1] demonstrates that two new
equilibria of the model (2) without inputs emerge, due to
bifurcation from the origin as the attention parameter u
increases beyond specific thresholds.

Proposition 1: Suppose that G is connected, © > 0, and
b=0.

(i) If v > 0, the origin x = O is a locally exponentially

stable equilibrium for 0 < w < wu; and unstable for
u > uq, where u; = d/(a + YAmax(4)). At u =
u1, branches of equilibria X # 0 emerge in a steady-
state bifurcation off of x = 0 along the eigenspace
corresponding to A\pax(A), where the entries of & have
the same sign.

(i) If v < 0, the origin x = 0 is a locally exponentially

stable equilibrium for 0 < w < wug and unstable for
u > ug, where ug = d/(a + YAmin(4)). At u =
ug, branches of equilibria X # 0 emerge in a steady-
state bifurcation off of x = 0 along the eigenspace
corresponding to Apin (A), where the entries of X have
different signs. [ ]

The real-valued opinion x; represents the agent ¢’s level of
support for two options. The sign sgn(x;) indicates which of
the two options the agent supports, and x; = 0 represents a
neutral position. Proposition 1 shows that agreement steady
states with all agents having the same sign emerge from the
neutral state as u increases, if the influence weight is positive.



In contrast, if the influence is negative, disagreement steady
states emerge.

B. Stochastic Block Model

Assume that the agent set ) consists of two disjoint
communities V; and V. Let the community structure vector
be C € {1,2}", satisfying that C; = 1if i € V; and C; = 2 if
1 € Vs (i.e., agents in V; (in V) have the label 1 (label 2)).
The two-community SBM is defined as follows.

Definition 1 (SBM): Letn € N, be the network size, n =
[n1 o]t € N2 be the community size vector with nq +ny =
n, and

0— [411 412} e [0, 1]

lor Lo
be the link probability matrix with ¢15 = ¢51. In SBM(n, £),
agents 1,...,n; are assigned with community label 1 and

agents n; + 1,...,n with label 2. Then the SBM generates
an undirected graph G = (V, &, A) without self-loops, by
independently adding {4, j} with ¢ # j to £ with probability
éci,cj. If ny = ny = n/2 and ¢1; = /99, the SBM is
called symmetric SBM, denoted by SSBM(n, £). In this case,
denote fg := {11 = f99 and {4 := 19 = lo7. |

The following assumption on link probability ¢;; of an
SBM is given to ensure the random graph is connected w.h.p.
A technical assumption for the SSBM is also introduced.

Assumption 1: For the SBM(n, £), assume that {;; =
w(logn/n), Vi,j € {1,2}. If the SBM is SSBM(n, £) and
ls > {g4, further assume that {4 = w(/4slogn).

To measure the performance of an algorithm detecting
communities of the SBM from observations, we introduce
the accuracy of an estimate ¢ given by the algorithm,

R 1 n n
Ace(C,C) := — max { D Te—en D Tiems_c } 3)
i=1 i=1
Now we define almost exact recovery of an algorithm
detecting communities in SBMs as follows [13], [15].
Definition 2: For an SBM with n agents and a community
structure C, suppose that a detection algorithm outputs an
estimate C. The algorithm achieves almost exact recovery, if
P{Acc(C,C) =1—o0(1)} =1 —o(1). [
Almost exact recovery means that the algorithm can correctly
detect most community labels w.h.p.

III. PROBLEM FORMULATION

We investigate how to detect communities from equilibria
of the model (2). It is assumed that a graph G = (V, &, A)
is generated from an SBM and then fixed. The opinion
model (2) evolves over this graph and reaches steady state.
Since we will consider cases where the network size is large,
we set 7 = £1/A, where A := max; E{}_; a;;} is the
maximum expected degree of G. Hence, yAx is a weighted
average of the opinions x. The problem studied in this paper
is described as follows.

Problem. Given a single equilibrium x* or multiple
input-equilibrium pairs {[b(") x(M] ... [b(™) x(™)1} of the
model (2) over an SBM, design algorithms to detect the
communities of the SBM and analyze their performance.

Algorithm 1 (Detection Based on Single Equilibrium)
Input: Community number k = 2.
Output: Community estimate C.

1: Obtain an equilibrium x* of the model (2).

2: Apply k-means to x* to get an estimate of the community
structure C.

IV. DETECTION ALGORITHMS AND MAIN RESULTS

In this section, we first address the community detection
problem based on a single equilibrium. The performance of
the proposed algorithm is analyzed theoretically for several
SBMs (Theorem 1). We then design a detection algorithm
based on multiple equilibria, by approximating the adjacency
matrix using fixed point equations of the system and applying
spectral clustering techniques to the estimated matrix.

A. Detection from Single Equilibrium

Given only one equilibrium, we employ the k-means
method to cluster the states, as shown in Algorithm 1. It
is assumed that the exact equilibrium is obtained. We will
study detection from noisy observations in the future.

The neutral steady state x = 0 provides no information
about the community structure, similar to the consensus of
linear dynamics such as the DeGroot model. However, the
equilibria emerging at the bifurcation from the origin as
stated in Proposition 1 can reveal information of the network,
as shown in the following theorem.

Theorem 1: Suppose that Assumption 1 holds, b = 0, and
the equilibrium x* emerges at the bifurcation from the origin
as stated in Proposition 1.

(i) Assume that v = 1/A > 0, and u — uq > 0 is small

enough, where @ = d/(a + YAmax(E{4})).

(1a) For SBM(I‘[,E), if ng = 0(711), éllnl = @(622712),
and {15 = ©(y/l11022), then Algorithm 1 achieves
almost exact recovery.

(i.b) For SSBM(n,£), it holds that [x* —
Oc(u)l,/y/n|| = o(c(u)) whp., for some
6 € {1,—1}. Here c(u) € R depends on u and
c(u) — 0 as u — @y. If iminfl4/¢; > 3, then
Algorithm 1 cannot achieve almost exact recovery.

(ii) Assume that v = —1/A < 0, and u — g > 0 is

small enough, where iy = d/(a + YAmin(E{A})).
For SSBM(n, £), if {5 < {4, then Algorithm 1 achieves
almost exact recovery. ]

Remark 1: The result (i.a) states that the communities of
the SBM can be detected, if the influence weights are positive
and the two communities differ in size and link probabilities.
The result (i.b) shows that the entries of the equilibrium
x* are close to each other in the SSBM. As a result, the
communities cannot be detected by clustering. However,
almost exact recovery in the disassortative SSBM (inter-
community connections are denser than intra-community)
can be achieved, if the influence weight is negative.

From Proposition 1, the equilibrium x* reflects the eigen-
vector centrality if the influence weight is positive. Note
that agents in the SSBM have similar centrality. Conditions



in (i.a) imply a leader-follower structure, where the com-
munity V> has much fewer agents but denser connections,
compared with the community V;. This structure ensures
different centrality in communities, making detection possi-
ble. In the case of negative influence, the equilibrium x* is
close to the eigenvector corresponding to Amin (A). For the
disassortative SSBM, the sign of entries of that eigenvector
corresponds to community labels, so almost exact recovery
can be achieved.

In the theorem, we assume that w is close to the bifurcation
threshold w1 or u9. To ensure detectability, v has to be neither
too small or too large. When w is below the bifurcation
threshold, only the neutrality equilibrium exists, providing no
information about the graph. As u increases, agents become
more attentive to nonlinear interactions, and equilibria move
away from the eigenvector centrality. See Section V for how
w and different sigmoid functions influence detection. [ ]

Proof Sketch: We briefly explain how the results are
obtained. The detailed proof is given in Appendix A. First,
leveraging the Lyapunov-Schmidt reduction, we can calculate
an explicit form of the equilibrium. The equilibrium is close
to (up to a sign flip) the eigenvector corresponding to the
largest or smallest eigenvalue of the adjacency matrix A.
Next, from matrix perturbation theory and concentration
inequalities, it follows that the aforementioned eigenvector is
close to the eigenvector of the expected graph. Analyzing the
properties of the expected graph and eigenvectors completes
the proof. |

We conclude this subsection by discussing several exten-
sions of Theorem 1. The result in (i.a) holds as long as
agents in different communities have different eigenvector
centrality. The disassortative condition for ¢4 in (i.b) is
technical, and simulation given in Section V shows that
Algorithm 1 also fails to achieve almost exact recovery for
the assortative SBM. The theorem only considers all-positive
(y > 0) or all-negative (7 < 0) relationships. A natural
extension is that agents within the same community have
positive edges, whereas agents between the two communities
have negative edges. In this signed-graph case, equilibria
of different communities have opposite signs (see e.g., [27,
Theorem 1]), so communities are detectable.

B. Detection from Multiple Equilibria

In this subsection, we assume that the system has external
inputs, and the resulting equilibria from multiple trajectories
are available. Consider the dataset of input-equilibrium pairs
{® xM] bl x(M} with m € Ni. We will
design a community detection algorithm based on fixed point
equations of the model.

The multiple trajectory case is a commonly studied sce-
nario, in which different discussions are observed (e.g., [2],
[6], [18]). The inputs can be seen as individual prejudice
towards different topics or external information that is given
for each discussion.

Note that an input-equilibrium pair [b®) x(®)], 1 <k <
m, satisfies the following fixed point equation

0 = —dx® + uS(ax® 4+ yAx®) 4 b*),

Algorithm 2 (Detection Based on Multiple Equilibria)

Input:  Multiple  input-equilibrium  pairs  {[b®  x®)],
LB x™N with m € Ny, model parameters a, 7,
d, u, and community number ]f = 2.
Output: Community estimate C.
1: Calculate for 1 < k <m

y* = 1 <571 (l(dx(k) - b(k))) - ozx“”).
v u

2: Calculate the estimate A of the adjacency matrix A:

A=
A (A
where
=x® ... xM,
Y =iy ey
3: Find the eigenvector corresponding to the second largest eigen-

value of A, denoted by V. Apply k-means to ¥ and obtain an
estimate of community labels C.

which implies that
1 1
k) — 2 (g 1 Z(dx® — pFY) — ax®) ) = Ax(®)
y\ 7(S (u(dx b )) ax ) Ax\™

where S71(x) := [~ 1(:01),...,8 1( )] for x € R™.
Hence, Y := [y() .. m] = Alx( x(™)]. 1t is
expected that X := [x(l) - x(M] s 1nvert1b1e when m
is large and {b(®)} sufficiently excites the system. Then the
estimate of the adjacency matrix A can be given by YX 1.
When the number of samples is much less than the network
size, A = YXI gives an approximation of the matrix A,
where X is the pseudo-inverse of X.

Inspired by this observation, we propose Algorithm 2
which utilizes spectral clustering techniques to recover the
communities for the SSBM. Line 1 of the algorithm cal-
culates the data matrix Y. In Line 2, YX is calculated
and then projected to the set of symmetric matrices, since
A is symmetric. For the adjacency matrix of an SSBM,
its expectation has a block structure, and the eigenvector
corresponding to its second largest eigenvalue satisfies that
the entries in different communities have different signs.
Leveraging this property, Line 3 applies the spectral cluster-
ing method. Knowing the model and parameters is a strong
assumption, and future work will explore how to address this
limitation.

As shown in Theorem 1 (i.b), the SSBM may not be
recovered by using a single equilibrium without external
inputs. However, when multiple input-equilibrium pairs are
available, the recovery is possible, as shown in Section V.

V. NUMERICAL EXPERIMENTS

In this section, we conduct numerical experiments for
community detection in the model (2). For all experiments,
we set the damping coefficient d = 1, the agent self weight
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Fig. 1.

a = 1, the positive influence weight v = 1/A, and the neg-
ative weight v = —1/A, where A is the maximum expected
degree of the SBM. The equilibria are obtained using the
oded5 solver in MATLAB. The results are consistent with
other solvers such as ode78, ode89, and odel5s.

We first study the SBM that has two communities different
in size and link probabilities, as in Theorem 1 (i.a). In
this experiment, we consider positive interpersonal influence
(v > 0), and calculate the averaged accuracy of the algorithm
based on 50 random graph samples for the network size n;
from 100 to 500 and ny = 0.05n;. The link probabilities are
set to be /11 = 0.05, {12 = 0.1, and {52 = 0.5. Additionally,
we set the attention parameter v = w1 +0.01, ..., w1 +0.04,
where u; is given in Theorem 1. Fig. 1(a) shows that
the averaged accuracy of Algorithm 1 increases with the
network size. Additionally, as u grows, the performance
becomes worse, indicating the impact of nonlinearity on the
structure of the equilibria. To study the influence of the
nonlinear interaction on detectability, we examine detection
performance for the model (2) with the saturating function
S(z) =x/(1+|z|), /v/1+ 22, tanh(z), and erf(y/72/2),
where erf is the Gauss error function. Fig. 1(b) illustrates
that the detection performance worsens as agents become
more easily saturated. Next, we compare Algorithm 1 with
classic methods which are applied directly to the adjacency
matrices. As shown in Fig. 1(c), the Girvan—Newman method
(where the partition with two communities is selected) and
the spectral clustering have high accuracy because the SBM
has two blocks. For the Louvain method, we set its resolution
parameter to produce a partition with two communities. It has
difficulty identifying the smaller community, and hence does
not perform well. Utilizing only state observations instead
of graphs, Algorithm 1 can achieve high accuracy when n
is large enough while u — u; is not too large.

For SSBM with positive weights, Algorithm 1 cannot
detect the communities w.h.p. This is shown in Fig. 2(a),
where the averaged accuracy of the algorithm is close to
0.5, similar to random guess. This validates Theorem 1 (i.b).
Here the attention parameter is chosen as above. The link
probability within a community is ¢, = 0.3 and that between
communities ¢4 = 0.05.

We then consider the disassortative SSBM with nega-
tive influence weights, to validate Theorem 1 (ii). In the
experiment, we set u = us + 0.01, ..., o + 0.04, and

(b) Accuracy of Algorithm 1 for the model (2)
with S(x) being different nonlinear functions,
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(c) Accuracy of Algorithm 1 with v = @1 +
0.01, the Louvain, the Girvan-Newman, and
spectral clustering methods.

Detection accuracy for an SBM with unequal-sized communities and v > 0.

link probabilities to be ¢, = 0.005 and ¢3 = 0.03. The
link probabilities here are much smaller than previous ones,
but the algorithm still has high detection accuracy and the
attention parameter has less impact (see Fig. 2(b)).

Finally, we study the performance of Algorithm 2
based on multiple input-equilibrium pairs {[b™®) x(1],
..., [b™ x(M1]1 We consider positive influence weights
and the same SSBM as the second experiment. The network
size n is set to be 20, 60, and 100, and u to be u; +0.01. For
each network, we generate 10 graph samples, and for each
graph sample we collect 10 sets of input-equilibrium pairs
where b(*) are independently generated from the standard
Gaussian distribution. To test the effect of sample size,
we set m = 0.1n, 0.2n, ..., n. Fig. 3(a) shows that the
performance of the algorithm increases with both sample and
network sizes. We then compare the proposed algorithm with
classic methods for community detection from dynamical
observations: the spectral clustering applied to the sample
covariance matrix = 37" (x®) — %)(x®) — )T (e.g., [6],
[18]), the Girvan-Newman and the Louvain algorithms ap-
plied to correlation matrices [28]. The accuracy of these
methods is below 0.6, as shown in Fig. 3(b). Algorithm 2
performs better because it exploits the nonlinear structure
and utilizes model parameter information.

VI. CONCLUSION

We studied community detection for a nonlinear opin-
ion dynamics model over a stochastic block model. Two
algorithms based on a single or multiple equilibria were in-
vestigated. Future work includes studying multi-dimensional
generalizations [29], labeled SBMs [13], and joint learning
of communities and model parameters.

APPENDIX
A. Proof of Theorem 1

1) Proof of (i.a): The proof is divided into three steps.
First, we use the Lyapunov-Schmidt reduction [30] to derive
an explicit expression of the equilibrium x*. Then we apply
concentration inequalities to approximate x* by using the
eigenvector corresponding to the largest eigenvalue of the
expected adjacency matrix E{A}. Finally we obtain the
conclusion by examining the properties of the eigenvector.

Step 1. This step is devoted to derive the following result.
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Lemma 1: Suppose that the graph G = (V,& A) is
connected, b = 0, and x* is an equilibrium emerging at
the bifurcation from the origin as stated in Proposition 1. If
~v > 0,and u—wuy > 0 is small enough, then x* = c(u)w™?*,
where w™®* ig the unit eigenvector of A corresponding to
Amax(A4), and ¢(u) depends on u and c¢(u) — 0 as u — u;.

Proof: For an equilibrium x of the model (2) with
b =0, it is a solution of the equation

P (x,u) = —dx + uS(ax + yAx) = 0. 4)
The Jacobian of ® with respect to x at the origin is
Dy ®(0,u) = (uax — d)I 4+ uyA,

and J := Dx®(0,u;) has a single zero eigenvalue, so
rank(Dy®(0,u1)) = n — 1. The idea of the Lyapunov-
Schmidt reduction is to separately solve (4) near (0,u;) for
the corresponding nondegenerate n — 1 variables of x, and
turn (4) into a reduced equation for the remaining unknown.
For symmetric A, there is orthogonal [W w™?*] such that
W™ ] i ey _ [WTAW 0
|:(Wmax)T:| A[W w ] - |: 0 )\max(A)

Let B := [ — wma(wmaX)T be the projection of R™ onto
range J, and ker £ = span w™®*. Let I — E' be the comple-

mentary projection. Then the aforementioned decomposition
can be written as follows

E®(x,u) =0, 5)
(I — E)®(x,u) =0. (6)
For x € R"”, it can be written as x = w™®*g,,, + W}E, where

% € R™1. Further, since [W w™>TE = [W 0], (5) is
equivalent to

0 =WT®(x,u) =: F(x,,%,u). @)
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influence. The accuracy increases with n.

Detection accuracy for the SSBM.
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(b) The accuracy of Algorithm 2 with n = 20, the Louvain, the
Girvan—Newman, and spectral clustering methods.

Detection accuracy from multiple input-equilibrium pairs.

Applying the implicit function theorem near (0,0, u1) to (7)
yields the dependence X = X(x;,,, u1). Specifically, since

Dme(Ov Ovu) = WT[_dI + U(O‘I + VA)]WmaX =0,
D;F(0,0,u) = (ue — d) I,y + uyWTAW =: J,
D,F(0,0,u) = WTS(0) =0,

and F is odd in x, x = J'O((u — u1)?). Note that
177 = (YO (Amax(A) — An_1(A)))~" with A,_1(A) the
second largest eigenvalue, and is of order ©(1) under the
assumptions of the theorem. So x = O((u — uy)?). As a
result, (6) can be reduced to

0 = w2 (w2 )T [—dx + uS(ax + yAx)]
= W [—dzy, + u(W)TS((al + yA) W™z,
+O0((u—u)?) + O((u — ur)?)).

From the Taylor expansion, x,, = O((u—u1)?), which yields
the conclusion by noticing x = w™*x,,, + Wx. [ |

Step 2. Now we use the eigenvector of E{A} to approx-
imate w™®* of A generated from an SBM. The following
lemma quantifies the deviation of A generated from a ran-
dom graph model and its eigenvalues from the expectation
(Theorem 1 of [31]).

Lemma 2: Let G = (V,E, A) be a graph generated from
a random graph model with independent edges and |V| =
n, and A be the maximum expected degree of G. If A =
w(logn), then it holds w.h.p. for all 1 < i < n that

INi(A) = N\(A)] < ||A— Al < c/Alogn,

where ¢ > 0 is a constant and A := E{A}. [ |
Furthermore, the difference of the eigenspaces of A from
their expected counterparts can be bounded by using the



Davis-Kahan theorem. Applying (4.19) of [32] to A and A,
we know that, if minj<,, [A\;j(A) — Amax(A)] =: § > 0, then
252|A- A

LERTI
for some ¢ € {1, —1}, where w™** is the unit eigenvector
of A corresponding to its eigenvalue Apax(A4).

If the random graph is SBM(n, £), it can be shown that
E{A} + diag(¢111,,, l221,,) has two nonzero eigenvalues:

meax _ ev—vmaxH <

- 1
Amax = 3 {(511711 + laams)
+ \/(flml — lyang)? + 4711”2@%2}7

- 1
A= 3 {(511711 + laams)

— \/(lenl — 822n2)2 + 4n1n2€%2} .

When the SBM is symmetric, Apax = (£ + £a)n/2
and \_ = (ZS — fd)n/2 Note that max{ﬂll,ﬂgg} =
o(min{Amax, A_)}), so the eigenvalues of E{A} is close
to those of E{A} + diag(¢111n,,¢22]n,) When n is large
enough. We summarize the findings in the following lemma.

Lemma 3: Suppose that Assumption 1 holds. Then

(bs + Ly)nlogn )
(Lq + min{ls, L4})n/’

30 € {1,-1}, holds for SSBM(n,£). For SBM(n, £), the
bound is ©(v/ATogn/(Amax — max{A_,0})). [

Step 3. Under Assumption 1, G is connected w.h.p., and
up ~ d/(a + Amax(A)/A) = @;. Under the assumption
of (i.a), it can be shown that A\y.x = O(A) = w(logn).
So the condition of Lemma 3 holds. It suffices to study
the structure of w™®*. Note that w™®* has the structure

(w11l woll ]T. From AW™ = A\, W™, we have that

meax _ owmaxH — @(

Lriniwy + L1anews = AmaxWi,

lorniwy + laanows = ApaxWa.

Dividing the first equation by the second, it follows that

w1 62—2 = @(’LUQ)
V {11

From ||w™®|| = 1, wy = O(1/\/n1) = ©(1/y/n) and
wy = O(1/\/nz) = w(l/y/n). Note that the entry-wise
concentration error is of order O(1/v/nAc) with ¢o € (0, 1)
from Lemma 3. So x* consists of two clusters w.h.p. and
Algorithm 1 can achieve almost exact recovery.

2) Proof of (i.b): For SSBM(n, £), the expected adjacency
matrix has a block structure

1 l41
EfAY ~ |* n/2,n/2 din/2,n/2
{ } édln/Q,n/Q ésln/Q,n/Q
so w™?* ~ 1, /4/n. Combining Lemmas 1 and 3 yields that

x* = c(u)w™r*

— C(u)ev—vmax + C(u)(wmax _ owmax)

= c(w)0w™™ + o(c(u)),

which proves the first statement of (i.b).

Now suppose that Algorithm 1 can achieve almost exact
recovery. Then there must exists xj and x5 such that
X5xs = 0(1/vn), |xf — xi| < e for i € Vi, and
x5 —x35| < e for j € Vs, for some £ > 0 with 3¢ < |[x]—x5/,
except for o(n) agents. Assuming without loss of generality
that x7 > x5 > 0 and letting 6 = 1, we have that

x*

o ax — 1 .

w ot o(1)
Let @ := Aw™?* and we have
n
2
~ n * * * .
Wj 2 Sllaxi +bsxa — (b + La) +00xg) (b + La)], J € Ve,

Wy < =[lsxt + Laxs + (s + £a) + o(x5) (s + £4)],3 € Vs,

except for o(n) agents. Then for i € V; and j € Vs

wj; — ’LZ)Z
n * * *

> (s = )06 = x3) — 226 + o) + 000 (6 + £o)]
n 1 * * *

> 5|31 = x2)(la = 36) + o(xi) (b + La) | > 0,

which contradicts that w; < w; from the definition of
eigenvectors. Hence the assertion is false and Algorithm 1
cannot achieve almost exact recovery.

3) Proof of (ii): It suffices to show that x* form two
clusters similar to (i.a). When v < 0, us ~ d/(o +
YAmin(E{A})) = 4o. For SSBM(n,£) with {5 < /{4,
the smallest eigenvalue of A is \_ = (5 — £4)n/2 and
the corresponding eigenvector is w™ = [1T s2/ Vn,

1, /5/v/n]". Again note that the concentration error is of

order O(1/v/nAc), so Algorithm 1 can achieve almost exact
recovery in this case.
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