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Bridging the Gap: Sketch-Aware Interpolation Network
for High-Quality Animation Sketch Inbetweening

Anonymous Authors

ABSTRACT
Hand-drawn 2D animation workflow is typically initiated with
the creation of sketch keyframes. Subsequent manual inbetweens
are crafted for smoothness, which is a labor-intensive process and
the prospect of automatic animation sketch interpolation has be-
come highly appealing. Yet, common frame interpolation methods
are generally hindered by two key issues: 1) limited texture and
colour details in sketches, and 2) exaggerated alterations between
two sketch keyframes. To overcome these issues, we propose a
novel deep learning method - Sketch-Aware Interpolation Network
(SAIN). This approach incorporates multi-level guidance that for-
mulates region-level correspondence, stroke-level correspondence
and pixel-level dynamics. A multi-stream U-Transformer is then
devised to characterize sketch inbewteening patterns using these
multi-level guides through the integration of self / cross-attention
mechanisms. Additionally, to facilitate future research on animation
sketch inbetweening, we constructed a large-scale dataset - STD-
12K, comprising 30 sketch animation series in diverse artistic styles.
Comprehensive experiments on this dataset convincingly show
that our proposed SAIN surpasses the state-of-the-art interpolation
methods. Our code and dataset will be publicly available.

CCS CONCEPTS
• Computing methodologies→ Computer vision problems.

KEYWORDS
Sketch Interpolation, Hand-drawn Traditional Animation, Dataset
STD-12K, Multi-level Correspondence, Multi-stream Transformer

1 INTRODUCTION
Hand-drawn 2D animation is extensively used in the animation
industry for unique artistic expression, emotional depth and ver-
satility. Notably, Your Name (2016) and Big Fish & Begonia (2016)
achieved enormous success in recent years. The hand-drawn 2D
animation workflow typically involves three key stages: sketch-
ing keyframes, inbetweening keyframes to produce intermediate
sketch frames (i.e., inbetweens), and colorization to produce the
final, full-color animations. The meticulous creation of inbetweens
is crucial for achieving a smooth animation with lifelike motion
transitions, effectively conveying the intended story or message.
For a feature-length animation created through this process, the
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Figure 1: Illustration of sketch inbetweening: the limitations
of relevant methods in comparison to our SAIN, including
LDFI [17] for sketches, EISAI [3] for color animations, and
DQBC [40] for videos.

sheer volume of required inbetweens can be staggering [33], mak-
ing it a highly specialized and labor-intensive task and serving as a
limiting factor in overall animation productivity.

To streamline the process of 2D sketch animation production, var-
ious studies have focused on the automatic synthesis of inbetween-
ing sketch frames, which take two consecutive sketch keyframes as
input and produce interpolated intermediate sketch frames (i.e.,
inbetweens) as output. These methods can be categorised into
stroke-based and image-based. The stroke-based methods often
rely on a labor-intensive pre-processing step for sketch vectori-
sation [29, 35, 38], whilst subpar vectorisation quality can nega-
tively impact the final outcomes. Image-based methods treat sketch
frames as bitmap images, applying conventional image or video
interpolation algorithms. However, they commonly face two sig-
nificant challenges: 1) the absence of texture and color details in
sketch frames, hindering reliable image-based inbetweening corre-
spondence, and 2) exaggerated changes due to substantial object
movements between two consecutive sketch keyframes [17]. As a
result, when image-based methods, especially devised for videos

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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[40] and colour animations [3, 30], are applied to sketch interpola-
tion, they invariably introduce various artifacts into the produced
interpolated frames. These discrepancies can adversely affect the
continuity and quality of the animation produced. As shown in Fig-
ure 1, LDFI [17] proposed for sketch interpolation generates broken
strokes due to the missing sketch keypoint correspondence, while
EISAI [3] proposed for interpolating color animation frames and
DQBC [40] for video interpolation introduce blurriness (ornaments)
and artifacts (e.g., distortion in face regions).

Therefore, in this study, we propose a novel deep learningmethod
for sketch interpolation, the Sketch-Aware Interpolation Network
(SAIN), to comprehend and model the intricate and sparse patterns
found in hand-drawn animation sketches. SAIN adopts a sketch-
aware approach that integrates multi-level sketch-related guidance
through three distinct aspects: 1) pixel-level dynamics at a fine level
with a bi-directional optical flow estimation module, 2) stroke-level
correspondence with a stroke matching and tracking mechanism for
obtaining stroke keypoint traces and 3) region-level correspondence
at a coarse level with a region matching and bi-directional optical
flow aggregation module. The usage of term "stroke" here align with
the stroke-based methods, referring to every single lines or outlines
in a sketch keyframe. Guided by these multi-level perspectives,
a multi-stream U-Transformer architecture is further devised to
produce the intermediate sketch frames. It consists of two attention-
based building blocks: convolution and self-attention block (CSB)
and the convolution and cross-attention block (CCB) to leverage the
diverse multi-level insights for producing precise inbetween sketch
patterns. To facilitate the research on hand-drawn animation sketch
inbetweening, we constructed a large-scale sketch triplet dataset:
STD-12K, from 30 sketch animation series over 25 hours with vari-
ous artistic styles. Comprehensive experiments demonstrate that
our SAIN clearly outperforms the state-of-the-arts for animation
sketch interpolation.

Overall, the key contributions of this study are as follows:
• A novel deep learning architecture, SAIN, for sketch inter-
polation by effectively formulating sparse sketch patterns
with sketch-aware multi-level guidance.

• Anovel self / cross-attention basedmulti-streamU-Transformer
design with the multi-level guidance.

• A large-scale sketch triplet dataset with various artistic styles
constructed for the research community.

2 RELATEDWORK
Frame interpolation aims to synthesise the intermediate frames
between a pair of given frames. It can be categorised into three
major approaches regarding frame contents: sketch interpolation
[11, 17, 32, 35, 37], video interpolation [2, 16, 18, 20, 21], and ani-
mation interpolation [25, 30].

2.1 Sketch Interpolation
Sketch interpolation is to produce raw animated sketch frames to
streamline the 3-stage process of 2D sketch animation. Generally,
existing studies can be categorised into stroke-based [11, 35, 37]
and image-based approaches [17, 32].

Stroke-based methods for hand-drawn frames generally start
with stroke vectorisation, and then perform stroke deformation [35]

or construct specific structure units with vertices [37]. Recently, the
transformer-based methods Sketchformer [22] and AnimeInbet [29]
were introduced, capitalizing on the success of this architectural
approach in various computer vision tasks. However, the prelim-
inary processing heavily relies on extra software or techniques,
and human animators often need to fine-tune the results of vec-
torization to ensure a smooth and accurate portrayal of intended
movements. This introduces additional complexity, and substandard
vectorization quality can adversely affect the inbetweening process,
which makes stroke-based methods challenging to apply into the
animation workflow. While interactive matching algorithms have
been investigated for this process in [37], scalability issues become
prominent when the number of strokes in frames increases with
subpar quality of hand-drawns.

Image-based methods were initially studied in [32], where an
as-rigid-as image registration and an interpolation scheme were
introduced to bypass the vectorization phase inherent in stroke-
based methods, demonstrating its potential in dealing with intricate
stroke patterns. Recently, optical flow of sketches has been adopted
to characterize the motions of characters and objects within an ani-
mation. In LDFI [17], a distance transform mechanism was adopted,
which engages the intensity gradients of the sketches with an en-
hances optical flow estimation. However, this mechanism can com-
promise sketch details, particularly in complex scenarios where
strokes undergo significant changes.

2.2 Animation Interpolation
Different from natural videos in the real-world, cartoon animations
mainly consist of expressive strokes and colour pieces. They often
contain various non-linear and exaggerated motions. SGCVI [13] al-
lowed users to generate inbetween frames guided by one user-input
sketch. AnimeInterp [30] introduced a segment-guided matching
module to estimate the optical flow for different colour pieces sep-
arately and a recurrent prediction module to address non-linear
motions. EISAI [3] was recently proposed with a forward-warping
interpolation architecture SoftsplatLite and a distance transform
module to improve the perceptual quality.

2.3 Video Interpolation
Early video interpolation studies were based on the optical flows
between two input frames to represent and formulate motion pat-
terns, exemplified by methods using a bidirectional optical flow
method, such as in [6]. With the success of deep learning techniques
in diverse computer vision tasks, kernel-based methods integrated
convolution neural networks (CNNs) [12, 19] for efficient motion
estimation and generation. Recently, due to the great success of
visual transformers [5, 14], transformer-based methods with self-
attentions have been studied for video interpolation, adaptively
addressing long-range pixel dependencies. Self-attentions were uti-
lized to formulate the representation of each input frame in [26].
Cross-attentions between the input frame pairs were further studied
in [9]. Optical flows were introduced to the transformer modelling
as well to assist the formulation of motion dynamics [16]. DQBC
[40] followed the flow-based paradigm and integrated correlation
modeling to enhance the flow estimation. Yet, it is challenging to
obtain reliable flow information between two animation sketches.
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Figure 2: Illustration of the proposed Sketch-Aware Interpolation Network (SAIN).

3 METHODOLOGY
As shown in Figure 2, SAIN takes two consecutive sketch keyframes
as input and outputs an interpolated intermediate frame. It involves
region, stroke, and pixel-level guidance to accurately capture and
recognize the sparse characteristics of sketch animations. Corre-
spondingly, a multi-stream U-Transformer is devised with self-
attention and cross-attention based building blocks to produce
intermediate sketches in a multi-scale manner. In this section, we
first explain the problem formulation, then the details of SAIN’s key
components. To clarify and avoid ambiguity, it should be noted that
the term 𝑠𝑡𝑟𝑜𝑘𝑒 refers to each individual pen or brush movement
that contributes to the creation of the complete sketch keyframes
during drawing.

3.1 Problem Formulation
Denote two consecutive animation sketch keyframes as I0, I1 ∈
R𝐻×𝑊 ×𝐶 , where 𝐻 ,𝑊 , and 𝐶 denote their height, width and the
number of channels, respectively. Animation sketch interpolation
takes the two sketch keyframes to estimate an interpolated sketch
frame Î𝑡 ∈ R𝐻×𝑊 ×𝐶 for the ground truth I𝑡 ∈ R𝐻×𝑊 ×𝐶 , (0 < 𝑡 <

1), where 𝑡 = 0.5 for an intermediate frame between the keyframes
by following the existing practices in the literature [16, 17].

3.2 Pixel-Level Motion Dynamics
To capture pixel-level motion dynamics, optical flows are estimated
between the keyframes I0 and I1. This allows us to output refined
sketch keyframes, denoted as ¤I0 and ¤I1, that incorporate these mo-
tion dynamics. Pixel-level dynamics are good at characterizing the
patterns of all pixels, and they can also maintain the patterns that
might be missed in the subsequent sketch- and region-level pattern
formulation. Specifically, given a target timestamp 𝑡 , an optical flow
estimator [16] predicts the bi-directional flows: O𝑡→0 and O𝑡→1.
Next, the refined keyframes with pixel-level motion dynamics can
be obtained as:

¤I0 = W(I0,O𝑡→0), ¤I1 = W(I1,O𝑡→1), (1)

whereW is an image warping function [7] to fuse the two inputs
with a pre-defined sampling strategy.

3.3 Stroke-Level Correspondence
To characterise sketch-based motion patterns for interpolation,
stroke-level correspondence is formulated between sketch keyframes.
Specifically, a stroke keypoint matching and tracking mechanism
is devised for this purpose, which assists in a cross-frame stroke
understanding.
Point-wise matching aims to produce a set of matched salient
points between the input strokes in 𝐼0 and 𝐼1, encompassing a salient
point identification step for individual keyframes and a salient point
matching step between the paired keyframes. First, given a sketch
frame, the stroke salient points can be identified with their feature
descriptors that characterise their local point-wise patterns, which
can be formulated by algorithms such as SuperPoint [4]. We denote
the identified salient points as p𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝑐𝑖 ) and their visual
descriptor as d𝑖 ∈ R𝐷𝑝 for the 𝑖th detected stroke point. In detail, 𝑥𝑖
and 𝑦𝑖 are the coordinates of the 𝑖th salient point, and 𝑐𝑖 indicates
the detection confidence. To this end, given the two keyframes, the
stroke salient point detection finds 𝑁 𝐼0𝑠 and 𝑁 𝐼1𝑠 points with their
local features as: p𝐼0

𝑖
and d𝐼0

𝑖
, 𝑖 = 1, ..., 𝑁 𝐼0𝑠 for I0, and p𝐼1

𝑗
and d𝐼1

𝑗
,

𝑗 = 1, ..., 𝑁 𝐼1𝑠 for I1, respectively.
Salient point matching further establishes the point correspon-

dence between paired keyframes in line with their feature descrip-
tors and obtains a set of point pairs with confidence scores. Mathe-
matically, we have their confidence as:

𝑐𝑖 𝑗 = U(p𝐼0
𝑖
, p𝐼1
𝑗
, d𝐼0
𝑖
, d𝐼1
𝑗
),∀𝑖, 𝑗, (2)

where U is a function to evaluate the confidence with the point
coordinates and descriptors. A SuperGlue [24] method is adopted
for this purpose. As shown in Figure 2, colorful line connections
indicate the matched point pairs with high confidence scores over
a threshold 𝜃 , where their colours indicate the magnitude of the
confidence scores: red for a higher score and blue for a lower score.
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Point-wise tracking. For a brief interval between I0 and I1, the
movements are assumed to follow a linear path with respect to a
temporal indicator 𝑡 , 𝑡 ∈ [0, 1]. Mathematically, consider a matched
pair of salient points, such as the 𝑖th keypoint in I0 and the 𝑗 th
keypoint in I1; we have:

p𝐼𝑡
𝑖 𝑗

= 𝑡 × p𝐼0
𝑖
+ (1 − 𝑡) × p𝐼1

𝑗
, (3)

where p𝐼𝑡
𝑖 𝑗
is an estimation of the intermediate trace of the stroke

salient point at time 𝑡 .
To this end, the traces of these salient points at time 𝑡 can be con-

ceptualized as a 2D frame, characterized by their coordinates. We
represent the stroke-level correspondence using this trace, denoted
as P𝑡 ∈ R𝐻×𝑊 ×𝐶 , 𝑡 ∈ [0, 1]. This trace shares the same dimension
as I0 and I1.

3.4 Region-Level Correspondence
Sketch frames generally contain clear outline strokes and enclosed
areas. To leverage this regional nature for interpolation, region-
correspondence is constructed between two sketch keyframes. Specif-
ically, regions can be identified as segmentation maps using meth-
ods such as the trapped-ball algorithm. For I0 and I1, 𝑁 I0

𝑟 and 𝑁 I1
𝑟

regions are identified, respectively. Pre-trained CNN features for
these maps can be formulated, allowing the pixel-based features
within a region to be pooled as a 𝐷𝑟 -dimensional vector, thereby
characterizing each region. Given the coordinates and features
of these regions, a match can be established between the regions
across keyframes akin to stroke correspondence.

For a region pair (𝑖, 𝑗), where 𝑖 indicates the 𝑖th region in I0 and
𝑗 indicates the 𝑗 th region in I1, bi-directional optical flows can be es-
timated based on their features as f𝑡→1 (𝑖, 𝑗) and f𝑡→0 ( 𝑗, 𝑖). By sum-
ming up all regional optical flows, we have F𝑡→1 =

∑
(𝑖, 𝑗 ) f𝑡→1 (𝑖, 𝑗)

and F𝑡→0 =
∑

( 𝑗,𝑖 ) f𝑡→0 ( 𝑗, 𝑖). To this end, the keyframes are refined
with region-level correspondence information as follows:

¥I0 = W(I0, F𝑡→1), ¥I1 = W(I1, F𝑡→0), (4)

where theW is an image warping function.

3.5 Multi-Stream U-Transformers
A multi-stream U-Transformer is devised to characterise the inbe-
tweening patterns by jointly considering region, stroke and pixel-
level dynamics. These streams are based on two building blocks:
convolution and self-attention block (CSB) and convolution and
cross-attention block (CCB).
CSB U-Transformer stream. This stream fully adopts the multi-
level dynamics for the motion patterns between I0 and I1. Specif-
ically, a concatenation is conducted on patterns regarding pixel-
level (¤I0, ¤I1), stroke-level (P𝑡 ) and region-level (¥I0,¥I1), followed by a
number of convolution layers to obtain a coarse-level intermediate
sketch representation Xcoarse. To further formulate the inbetween-
ing patterns from a fine-level perspective, CSB with self-attentions
[34] is introduced to construct a U-Net [23] like a stream with an
encoder-decoder architecture.

The encoder consists of a series of CSBs. Specifically, a CSB
consists of a convolution layer for modelling local sketch patterns
and a multi-head self-attention for a global modelling purpose.
In pursuit of an overall encoder pyramid structure of 𝑆 scales, a

downsampling operator is introduced with CSB to formulate a
feature map at its corresponding scale. For the 𝑠th CSB, which is for
the 𝑠th scale, 𝑠 = 0, ..., 𝑆 − 1, its output feature map is obtained as:

XCSB
𝑠+1 = CSB𝑠 (XCSB

𝑠 ), (5)

where XCSB
𝑠+1 ∈ R𝐻CSB

𝑠+1 ×𝑊 CSB
𝑠+1 ×𝐶CSB

𝑠+1 . Particularly, the first CSB takes
XCSB

0 = Xcoarse as its input.
In detail, XCSB

𝑠 is first with a convolution layer for local mod-
elling. Note that for notation simplicity we keep using XCSB

𝑠 as
the convolution-filtered results for the following discussion. Next,
XCSB
𝑠 is divided into 𝐾CSB

𝑠 = 𝐻CSB
𝑠 𝑊 CSB

𝑠 /𝑀2
𝑠 sub-patches of size

𝑀𝑠 ×𝑀𝑠 following the general practice of a visual transformer [15].
By treating the pixel-wise values within the 𝑘th patch as a repre-
sentation vector xCSB

𝑠,𝑘
∈ R𝑀2

𝑠 ×𝐶CSB
𝑠 , XCSB

𝑠 can be viewed in a matrix

form, where XCSB
𝑠 = [xCSB

𝑠,1
⊤
, ..., xCSB

𝑠,𝐾CSB
𝑠

⊤]. Then, the matrices of
Key, Query, and Value in a self-attention can be computed to obtain
a frame-level sketch understanding:

QCSB
𝑠 = XCSB

𝑠 WCSB
𝑄𝑠

,

KCSB
𝑠 = XCSB

𝑠 WCSB
𝐾𝑠

,

VCSB
𝑠 = XCSB

𝑠 WCSB
𝑉𝑠

, (6)

where W indicates a matrix with learnable parameters for a linear
projection. Next, the attention can be computed as:

XCSB
𝑠+1 = softmax(Q

CSB
𝑠 KCSB

𝑠
⊤√︃

𝑑CSB𝑠

)VCSB
𝑠 , (7)

where 𝑑CSB𝑠 is the dimension of queries, keys and values. Specif-
ically, we denote Xfine = XCSB

𝑆
as a fine-level feature map. Note

that this encoder structure, along with its CSB blocks, can work
seamlessly with multi-head self-attentions, which enables the ex-
tension of frame-level sketch patterns from multiple perspectives.
Furthermore, the structure is compatible with the Swin-based win-
dow strategies used during patch construction, keeping efficiency
in consideration. Finally, the decoder with a number of deconvolu-
tion layers upsamples Xfine as a synthetic CSB frame feature map
ÎCSB
𝑡

.
CCB U-Transformer stream. In the CSB stream, multi-level pat-
terns contribute equally to the formulation of the feature map.
Leveraging the stroke and region-based characteristics of sketch
animes, CCBU-Transformer streamswith an encoder-decoder struc-
ture are devised to provide diversified modelling perspectives for
sketch interpolation.

For its encoder, similar to the CSB stream, a series of CCBs are
adopted for different pyramid scales 𝑠 = 0, ..., 𝑆 − 1. For the 𝑠th CCB,
a feature map is formulated as:

XCCB
𝑠+1 = CCB𝑠 (XCCB

𝑠 ,YCCB𝑠 ), (8)

where XCCB
𝑠 ,YCCB𝑠 ∈ R𝐻CCB

𝑠 ×𝑊 CCB
𝑠 ×𝐶CCB

𝑠 . Specifically, stroke-level
patterns P𝑡 are concatenated and downsampled with learnable
convolutions as YCCB𝑠 for key and value computations in the cross-
attention. In terms of query, pixel-level dynamics and region-level
correspondence are utilized. Since they are bi-directional, dual
CCB U-Transformer streams are introduced for concatenated query
features ¤I0 and I0, or ¤I1 and I1. In particular, the first CCB takes
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Figure 3: Illustration of the key steps in the pipeline con-
structing STD-12K from an animation in color.

FCCB0 = 𝐶𝑜𝑛𝑣 (¤I0, I0) or 𝐶𝑜𝑛𝑣 (¤I1, I1) as its inputs, where 𝐶𝑜𝑛𝑣 is a
function for concatenation and downsampling, (I0, I0) and (¤I1, I1)
can be viewed as the forward and backward streams.

Finally, decoders produce synthetic intermediate feature maps:
ÎCCB
𝑡,0 or ÎCCB

𝑡,1 are obtained from the two streams regarding the inputs
XCCB

0 = ¤I0 and XCCB
0 = ¤I1, respectively.

Multi-stream fusion. Upon obtaining the intermediate feature
maps ÎCSB

𝑡
, ÎCCB
𝑡,0 and ÎCCB

𝑡,1 from the CSB and CCB streams, a fusion
mechanism then yields the final estimation Î𝑡 of the interpolated
frame I𝑡 , by which all feature maps are concatenated and go through
a series of convolutions.

3.6 Training Loss
We denote the computations of the proposed method as a function 𝑓
with learnable weights Θ. To obtain Θ, ℓ1 reconstruction based loss
is adopted to optimise pixel-wise difference between the ground
truth sketch frame I𝑡 and the interpolated frame Î𝑡 . Mathematically,
we have:

L1 = | |Î𝑡 − I𝑡 | |1, Î𝑡 = 𝑓 (I0, I1 |Θ). (9)

To further improve the synthesized details, we apply a perceptual
LPIPS loss [39], denoted as Llpips. Jointly, the proposed model is
optimized as:

argminΘL = 𝜆1L1 + 𝜆lpipsLlpips . (10)

4 EXPERIMENTS & DISCUSSIONS
4.1 Dataset
Due to the lack of publicly available datasets for animation sketch
interpolation, by following the protocols of existing video inter-
polation datasets such as Vimoe-90K [36] and UCF101 [31], we
constructed an animation sketch dataset based on ATD-12K [30],
namely Sketch Triplet Dataset-12K (STD-12K), for evaluation and fa-
cilitating the research on this topic. STD-12K is a large-scale sketch
triplet dataset extracted from 30 animation movies with extensive
artistic styles. To convert an animation frame to a sketch frame,
Sketch Keras was first used to detect and extract the contours in
a frame and rough strokes can be obtained. Next, a sketch simpli-
fication procedure [27, 28] was introduced to remove blurry and
trivial strokes, which also refined the basic and necessary sketch
lines. Figure 3 depicts the key steps to construct this dataset.

4.2 Implementation Details
Network architecture. For P𝑡 in stroke matching and tracking,
we specified a stroke correspondence sequence with 𝑡 = 0.5. An

appropriate setting to use these temporal information would have
impact on the interpolation accuracy as indicated in the experi-
ments. For the optical flow computations, we first predicted the
coarse flows using convolutional flow prediction network and then
refined the coarse flows in a coarse-to-fine manner following an
existing practice as in VFIformer [16]. For the CSB component, a
swin-based strategy was adopted with a window size of 8 × 8. The
number of channels in its convolution layer was set to 24. The
CCB component was with the same setting as CSB. Each U-Net like
transformer stream contained 3 CSBs or CCBs.
Training details. The proposed method was trained using an
AdamMax optimizer [10] with 𝛽1 = 0.9 and 𝛽2 = 0.999. The weights
of loss terms were set to 𝜆1 = 70 and 𝜆lpips = 30. The training
batch size was set to 4. The SAIN was trained for 50 epochs with a
learning rate that initially was set as 2𝑒−4 and a weight decaying
factor was set to 1𝑒−4. The sketch frames were resized and cropped
into a resolution of 384 × 192, and they were also augmented with
a random flipping operator. It took approximately 72 hours on an
NVIDIA A6000 GPU for the training procedure.

4.3 Overall Performance
Evaluation metrics. For quantitative evaluation, we adopt com-
monly used visual quality assessment metrics: Peak Signal-to-Noise
Ratio (PSNR), Structural Similarity Index Measure (SSIM) scores,
Interpolation Error (IE) [1] which measures pixel-wise difference
between the interpolated and ground-truth sketches, and Chamfer
Distance (CD) which measures the dissimilarity between two sets
of points. For readability, IE is scaled by 1𝑒2 and CD by 1𝑒4.
Methods for comparisons. SAIN is compared with the recent
state-of-the-art methods, encompassing stroke-based sketch frame
interpolationmethodAnimeInbet [29], Sketchformer [22] and image-
based LDFI [17], animation-based methods SGCVI [13] and EISAI
[3], and video-based methods: Super SloMo [8], AdaCof [12], Soft-
Splat [18], RIFE [7], VFIT [26], VFIformer [16] and DQBC [40]. All
the SOTA models were retrained on our proposed dataset, STD-
12K, with the exception of AnimeInbet, for which we utilized the
authors’ pre-trained model. The decision to use the pre-trained
AnimeInbet model stemmed from the challenges we encountered
in applying the authors’ recommended method for vectorizing our
sparse images. This process spans over a month for preprocessing
our training dataset and it creates unsatisfactory quality sketches
that are not suitable for further training.
Quantitative evaluation. As shown in Table 1, our SAIN con-
sistently outperforms the other methods with PSNR 20.32, SSIM
0.8727, IE 10.09 and CD 1.54. SAIN successfully addresses the spar-
sity nature of sketch animations, as evidenced by the lowest CD
score which indicates a high degree of similarity between the inter-
polated sketch and the ground truth, given the sketch as a set of
points. Video-based methods generally underperform when com-
pared to the animation-based approach - EISAI. The only exception
is VFIformer, which slightly surpasses EISAI in terms of the IE
metric. This underscores the challenges that video-based methods
face when dealing with the sparse patterns intrinsic to animations.
When comparing our proposed SAIN to EISAI, it becomes evident
that proper sketch-based mechanisms are essential, especially given
that sketch-based animations often lack color and detailed texture
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Figure 4: Qualitative comparison between the proposed SAIN (Ours) and the state-of-the-art interpolation methods.

structures. However, while AdaCoF performs well in terms of CD,
its PSNR is poor, suggesting that it prioritizes rough sparse struc-
tures and ignores detailed patterns. Other video-based methods
perform even worse in terms of CD metrics. EISAI, an animation-
based method, achieves comparable PSNR and SSIM scores, but still
struggles with sparsity, particularly without texture and color infor-
mation. Finally, when compared to the sketch-based LDFI method,
its intensity gradient mechanism results in inaccurate results, espe-
cially for complex scenarios with dramatic changes of strokes.
Qualitative evaluation. Figure 4 illustrates interpolation examples
from simple to complex scenarios for the qualitative comparisons
among different methods. The frames with a black border are full
sketch frames, and we zoom in a specified region within a red win-
dow to observe the detailed interpolated patterns. Overall, it can

be observed that SAIN is capable to generate high-quality inbe-
tweens, and the results produced by other methods generally have
different type of artifacts such as blurriness and distortions. The
first example is with the simplest strokes. The results produced
by LDFI and DQBC missed many strokes due to the limitation in
exploring sketch correspondence for alignments. While EISAI and
VFIformer achieve improved performance, the issue of blurriness
persists due to the lack of texture and color reference. With the in-
creasing sketch complexity, these artifacts become more significant
and the contents tend to be unrecognizable (e.g., the 3th example
with DQBC) and distortion (e.g., suspecting angry face with EI-
SAI for the 3th example). Note that in the zoom in region, AdaCof
and LDFI failed to output contiguous strokes since insufficient cor-
respondence information was extracted which result in missing
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Method (Year) PSNR ↑ SSIM ↑ IE ↓ CD ↓
AnimeInbet (2023) 12.30 0.5796 25.00 62.20
Sketchformer (2020) 17.23 0.7847 14.14 10.34
LDFI (2019) 18.18 0.8048 12.71 4.05
SGCVI (2021) 17.56 0.7850 13.56 3.68
EISAI (2022) 19.07 0.8422 11.62 1.76
Super SloMo (2018) 18.05 0.7995 12.86 3.82
AdaCoF (2020) 18.08 0.8027 12.82 4.39
SoftSplat (2020) 17.08 0.7328 14.17 5.61
VFIT (2022) 8.45 0.5622 39.03 13.59
RIFE (2022) 15.11 0.6258 18.37 641.58
VFIformer (2022) 19.05 0.8387 11.59 6.54
DQBC (2023) 18.60 0.8015 12.12 2.39
SAIN (Ours) 20.32 0.8727 10.09 1.54

Table 1: Quantitative comparison between SAIN and the state-
of-the-art interpolation methods.

Method PSNR ↑ SSIM ↑ IE ↓ CD ↓
SAIN 20.32 0.8727 10.09 1.54
w/o region corr. 20.25 0.8679 10.19 1.52
w/o sketch corr. 20.16 0.8586 10.29 2.07
w/o CSB stream 20.09 0.8620 10.36 1.85
w/o CCB stream 19.95 0.8628 10.46 1.67
w/o pixel dynamics 19.14 0.8424 11.43 1.80

Table 2: Ablation studies on SAIN.

sketch keypoints. EISAI and VFIformer generated either blurri-
ness or phantom strokes due to the lack of feature correspondence
between the sketch keyframes.

4.4 Ablation Study
Ablation studies were conducted to demonstrate the effectiveness
of individual mechanisms in SAIN: from five aspects: stroke-level
correspondence module, pixel-wise dynamic formulation, region-
level correspondence module, convolution & cross-attention block
based, and convolution & self-attention block based multi-stream
transformer. To evaluate the contribution of each aspect, we re-
move one of such mechanisms in each experiment, and trained and
evaluated the corresponding model on the STD-12K dataset.
Pixel-wise dynamics. By removing the pixel-wise dynamics, the
CCB and CSB transformer streams take region-level correspon-
dence ¥I0 and ¥I1, and stroke-level correspondence P′𝑡 as inputs. As
shown in Table 3, the absence of pixel-level motion information re-
sulted in a deteriorated performance. Moreover, as shown in Figure
5, the interpolation examples exhibits blurring results, potentially
due to the uncertain direction of pixel-level motion.
Stroke-level correspondence. The stroke-level correspondence
P𝑡 was removed from SAIN by excluding the CCB based transformer
streams and P𝑡 in the CSB based transformer stream. Only the
four refined sketch frames ¤I0, ¤I1, ¥I0 and ¥I1 were adopted and fused

Tracking strategy PSNR ↑ SSIM ↑ IE ↓ CD ↓
1/4, 1/2, 3/4 19.92 0.8643 10.52 1.50
1/3, 2/3 20.01 0.8596 10.46 1.67
1/2, 3/4 20.33 0.8686 10.07 1.55
1/4, 1/2 20.31 0.8694 10.08 1.54
1/2 20.32 0.8727 10.09 1.54

Table 3: SAIN with different tracking strategies.

in a single CSB transformer stream. The absence of stroke-level
correspondence resulted in lower performance compared to full
SAIN, which indicates the necessity of exploiting stroke patterns.
By zooming out details shown in Figure 5 (row with blue outlines),
SAIN without stroke correspondence has lower contrast and the
black lines are less noticeable, which indicates SAIN without stroke
correspondence have less confidence on outputs.
Convolution cross-attention block. Without CCB for a sketch
focused modelling, it can be observed that the quantitative results
shown in Table 5 are worse than those of the full SAIN. Specifi-
cally, for the second example in Figure 5, the intricate details of the
clown’s face is difficult to discern when CCB is not utilised. More-
over, CCB facilitates a robust learning with stroke correspondence,
whilst an improper stroke guidance usage may result in inferior
interpolation results for some scenarios.
Convolution self-attention block. When the CSB block is omit-
ted, the quantitative results, as depicted in Table 5, demonstrate
inferior performance compared to the full SAIN. In particular, in the
first example (inside the princess’s hair) illustrated in Figure 5, blur-
riness occured in the princess’s hair when interpolation without
CSB.
Region-level correspondence. Similar to the removal of pixel-
wise dynamics, by removing the region-level correspondence, we
instead take the refined outputs from pixel-wise dynamics module
¤I0 and ¤I1 to explore another situation not fully utilizing the corre-
spondence. SAIN without region correspondence produces some
blurriness within the closed boundaries as shown in Figure 5 (row
with red outlines), which demonstrates that region correspondence
helps refine closed areas. Overall, the absence of region-level corre-
spondence also leads to a decreased performance compared with
the full SAIN.

4.5 Sampling for Stroke Correspondence
The stroke correspondence P𝑡 is continuous in terms of 𝑡 . An ideal
temporal modelling strategy needs to incorporate sufficient infor-
mation without causing issues due to redundant input patterns. We
investigated a number of settings as shown in Table 3. It can be ob-
served P𝑡 with 𝑡 ∈ { 1

2 } achieves the best performance. Conversely,
providing more information may lead to an over-fitting issue, es-
pecially for the case with 𝑡 ∈ { 1

4 ,
1
2 ,

3
4 }. As expected, only with the

guidance of the middle temporal point 𝑡 ∈ { 1
2 } works the worst

among all settings. However, with three sampling slices, where
𝑡 ∈ { 1

4 ,
1
2 ,

3
4 }, the performance is worse than all two-slice based
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Figure 5: Qualitative samples of ablation studies with different components in SAIN.

Figure 6: An example with extremely exaggerated motions.

Figure 7: Interpolation outcomes of different approaches for
the scenario with significant motions.

strategies, which suggest an over-fitting issue. For two-slice strate-
gies, the most effective strategy is with the early motion patterns
in 𝑡 = 1

4 , highlighting the importance of the initial states.

4.6 Limitations & Future Work
Our proposed SAIN relies on the result of stroke and regional corre-
spondence, which leads to limitations with the current correspon-
dence mechanism. First, a linear stroke-level correspondence and a
pre-defined temporal sampling strategy may result in less accurate
interpolations. The future work should address this stroke-level
correspondence scheme with a learnable manner based on the in-
put sketches. Second, improvement in the scenarios of exaggerated
motions is expected. In Figure 6, it can be observed that the strokes
change extremely between the frames. As a result, the stroke key-
points are often with less confidence or incorrect for the point-wise
matching and downstream modelling.

We present interpolation results for two frames featuring sig-
nificant motions, as illustrated in Figure 7, alongside comparisons
with existing Sketch (LDFI), Animation (EISAI) and Video (Adacof)
interpolation state-of-the-art methods. Notably, Adacof and LDFI
were unable to accurately capture the images within such a dy-
namic scene, resulting in blank outputs. EISAI, on the other hand,
compromised the detail of the foot, leading to distortion, while our
method successfully preserved the overall structure of the input.

5 CONCLUSION
In this paper, a novel deep learning method, namely, SAIN, is pre-
sented for animation sketch interpolation. Particularly, region-,
stroke-, and pixel-level patterns are explored to take the sparse
nature of sketch frames into account for interpolation. A multi-
stream U-Transformer architecture is further devised to utilise the
multi-level guidance with CSB and CCB. In order to evaluate our
proposed method, a large-scale sketch dataset extracted from wild
animation STD-12K was constructed for the first time. Compre-
hensive experiments clearly demonstrate the effectiveness of SAIN
against the-state-of-the-art.
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