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ABSTRACT

Machine Reading Comprehension (MRC) models easily learn spurious correla-
tions from complex contexts such as tabular data. Counterfactual training—using
the factual and counterfactual data by augmentation—has become a promising so-
lution. However, it is costly to construct faithful counterfactual examples because
it is tricky to maintain the consistency and dependency of the tabular data. In this
paper, we take a more efficient fashion to ask hypothetical questions like “in
which year would the net profit be larger if the revenue in 2019 were $38,298?”,
whose effects on the answers are equivalent to those expensive counterfactual ta-
bles. We propose a hypothetical training framework that uses paired examples
with different hypothetical questions to supervise the direction of model gradient
towards the counterfactual answer change. We construct a new stress test on MRC
datasets with factual and hypothetical examples to validate our effectiveness.

1 INTRODUCTION

Machine Reading Comprehension (Dua et al., 2019; Rajpurkar et al., 2016) trains deep models to
understand the natural language context by answering questions. However, these deep models easily
learn spurious correlations (a.k.a. shortcuts) (Ko et al., 2020; McCoy et al., 2019; Yu et al., 2020)
between the context and answer, e.g., entries at the first column have higher chance to be chosen as
answers in complex financial tables. Consequently, the context understanding is incomplete or even
biased, leading to significant performance drop on testing examples without such shortcut (e.g., F1-
score drops from 79.4 to 39.2 (cf. Table 1) Therefore, it is crucial to resolve the spurious correlation
issue in the MRC task with tabular context.

Counterfactual training (Abbasnejad et al., 2020; Teney et al., 2020; Feng et al., 2021; Zhu et al.,
2020) is effective for blocking the spurious correlations in various text understanding and reasoning
tasks such as Visual Question Answering (Chen et al., 2020a; Niu et al., 2021) and Natural Language
Inference (Kaushik et al., 2020). Counterfactual training augments the original factual training ex-
ample with a counterfactual example which minimally modifies the original example’s semantic
meaning that changes the label, and encourages the model to learn the subtle semantic difference
that make the label change—the true causation (Figure 1). The underlying rationale is that if the
model only captures the spurious correlation, it cannot comprehend the subtle change from factual
to counterfactual, and thus still predicts the original label. For MRC with tabular context, the anno-
tation of counterfactual example is extremely expensive since extra effort is required to maintain the
consistency and dependency across table entries when editing the context. As shown in Figure 6,
annotators need to edit 4 extra numbers for an assumption to change one number. Therefore, con-
ventional counterfactual generation methods (Yue et al., 2021) will suffer from the fidelity problems
(e.g., inconsistent summation) and hurt the model robustness (cf. Section 3.3).

In this work, we propose an economic alternative: asking hypothetical questions (HQs) (Li et al.,
2022a) by imposing the factual example with a counterfactual assumption, without the cost of main-
taining the table consistency and dependency. Therefore, the construction cost of a hypothetical
example is undoubtedly lower than the counterfactual example1. A hypothetical example consists of
a hypothetical question and a factual context, which has the equivalent effect on the answers to the
corresponding “ideal” counterfactual example. As a concrete case in Figure 1, the counterfactual

1Please refer to Appendix E in the supplementary materials for detailed comparisons.
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Context
Year 2019 2018

Revenue ($) 34,298 37,566

Cost ($) 4,550 6,240

Net Profit ($) 29,748 31,326

Question Answer Sample Type

In which year was the net profit larger? 2018 Factual example

In which year would the net profit be larger 
if the revenue in 2019 were $30,000 instead? 2018 Hypothetical 

example
In which year would the net profit be larger 
if the revenue in 2019 were $38,298 instead? 2019 Hypothetical 

example

Year 2019 2018
Revenue ($) 38,298 37,566

Cost ($) 4,550 6,240
Net Profit ($) 33,748 31,326

In which year was the net profit larger? 2019 Counterfactual 
example

Editing the tabular context is costly due to
the dependency across table entries .

Figure 1: Illustration of factual, hypothetical, and counterfactual examples.
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Figure 2: Illustration of counterfactual training and the proposed hypothetical training. c∗ denotes
the counterfactual context.

example is derived from the factual example according to the assumption “if the revenue in 2019
were $38,298”, which changes the answer to “in which year was the net profit larger” from 2018 to
2019. The answer of the corresponding hypothetical question—“in which year would the net profit
be larger if the revenue in 2019 were $38,298?”—is also 2019.

Recall that the key to blocking the spurious correlation lies in encouraging the model to focus on
the effect of semantic intervention on the answer change. As shown in Figure 2, in conventional
counterfactual training, given a factual “context, question, answer” example (c, q,a), we utilize
a counterfactual example to regularize the learning of the mapping from c, q to a to avoid fitting
spurious correlations Teney et al. (2020). In the absence of counterfactual examples, we do the
regularization in training by considering the alternative target a∗. We intend to investigate and teach
the model’s understanding on the semantic intervention required for the factual example to change
the answer a → a∗. To obtain the information of such semantic intervention, we use a pair of
hypothetical examples with different assumptions and answers (c, q∗,a∗) and (c, q̄,a), where the
difference in HQ assumptions indicates the semantic intervention to change a to a∗ (cf. Figure 1).
Therefore, our goal becomes how to effectively convey the information of semantic intervention
from the hypothetical example pair to the factual example through training.

To incorporate the information of semantic intervention from the hypothetical example pair to model
training, we calculate the model gradient w.r.t. the input representation of the factual example to-
wards the changed answer a∗ 2. The gradient reflects the model’s understanding on the translation
direction of the input representation towards the changed answer, i.e., the cause of answer change
from a to a∗. Therefore, we can guide the model’s understanding with the semantic intervention
from the hypothetical example pair. We utilize the representation difference between the two hy-
pothetical examples as the reference of semantic intervention, and supervise the model to align the
gradient with the representation difference (cf. Figure 2). To this end, we propose a Hypothetical
Training Framework (HTF) that incorporates gradient regulation terms according to hypothetical
examples to learn robust MRC models. We apply the HTF framework on a representative tabular
MRC model TAGOP (Zhu et al., 2021) and conduct experiments on tabular MRC datasets TAT-QA
(Zhu et al., 2021) and TAT-HQA (Li et al., 2022a) with factual examples and hypothetical examples,
respectively. Experimental results validate the superior performance of the proposed HTF on a stress
test. Further studies show that HTF also has better understanding to various semantic interventions.
Code and data will be public upon acceptance.

Our contributions are summarized as follows:
2The gradient can be seen as representation changes. It is different from the gradient w.r.t. model parameters

calculated for updating the model.

2



Under review as a conference paper at ICLR 2023

• We reveal the spurious correlation issue in MRC of tabular context and propose to use hypothetical
examples to economically block spurious correlations and learn robust MRC models.

• We propose the hypothetical training framework, which uses hypothetical example pairs to teach
the MRC model the effect of semantic intervention on the answer.

• We apply HTF to the MRC model and conduct experiments on factual and hypothetical MRC
datasets, validating the rationality and effectiveness of HTF in blocking spurious correlations.

2 METHOD

2.1 MACHINE READING COMPREHENSION

Generally, the MRC task aims to answer a question based on the context, where the context might
be hybrid in complex scenarios, including paragraphs and tables. Formally, given a question q,
the DNN models are required to reason over the context c and learn a function g(c, q) to predict
the labeled answer a. Technically speaking, the function g(·) is optimized by fitting the correlations
from c and q to a. However, there widely exist spurious correlations (a.k.a. shortcuts (Geirhos et al.,
2020)) in the complex context. Learning from such spurious correlations will ignore the features in
c and q that causally decide the answers, leading to poor generalization ability.

Counterfactual training. A representative approach to remove spurious correlations is counter-
factual training (Abbasnejad et al., 2020), which utilizes counterfactual examples to identify the
features that causally affect the answers. As illustrated in Figure 1, counterfactual examples change
the answers of factual examples by minimally perturbing the context features, where the perturba-
tion relies on an assumption with semantic intervention, for example, “if the revenue in 2019 were
$38,298?” The semantic intervention over factual examples indicates the essential features lead-
ing to answer changes. By training over the factual and counterfactual examples, the DNN models
are able to learn the effect of the semantic intervention on the answers and exclude the spurious
correlations (Teney et al., 2020).

Nevertheless, counterfactual examples are costly to annotate, especially in complex scenarios with
hybrid contexts (e.g., tables and paragraphs). As shown in Figure 1, revising the table needs to ensure
the consistency and dependency across table entries. The counterfactual table is created based on
the assumption “if the revenue in 2019 were $38,298 instead”. Without consistency checking, i.e.,
modifying the net profit of 2019 by “net profit = revenue - cost” , the unfaithful counterfactual
table is likely to confuse some questions such as the comparison of net profit. The requirement for
consistency checking cannot be easily satisfied by automatic approaches. First, the tables cannot
always be processed by relational databases since recent MRC datasets often utilize web-crawled
semi-structured tables without clearly defined constraints (Zhu et al., 2021; Zhao et al., 2022; Chen
et al., 2021). Second, some conventional counterfactual generation methods such as Yue et al.
(2021); Pasupat & Liang (2016) also cannot guarantee the fidelity of counterfactual examples.

Hypothetical example. To alleviate the burden of consistency checking, we propose hypothetical
examples as the alternative of counterfactual examples. Hypothetical example appends an assump-
tion to the question of factual example, where the assumption describes the semantic intervention
over the factual context, causing the same answer change as the counterfactual example. For in-
stance, in Figure 1, the assumption “if the revenue in 2019 were $38,298 instead?” summarizes the
changes in the table of the counterfactual example. Compared to editing the complex table with
dependency requirements, it is cost-friendly to construct hypothetical examples by extending the
questions in natural language (refer to Appendix E for more comparison).

2.2 HYPOTHETICAL TRAINING

To remove the spurious correlations, the key lies in capturing the semantic intervention leading to
answer changes. To this end, HTF calculates the semantic differences between a pair of hypothetical
examples with distinct answers, and then pushes the MRC models to learn the effect of such semantic
differences. Specifically, given a pair of hypothetical examples (c, q̄,a) and (c, q∗,a∗), we first
calculate their representation differences, and then utilize the differences to regulate the gradients
of factual example towards the changed answer. Intuitively, the representation differences reflect
the semantic intervention, and the gradients indicates how the representations change can lead to
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changed answers. The alignment between representation differences and gradients reflects whether
the MRC models capture semantic intervention well.

As illustrated in Figure 2, given a pair of hypothetical examples (c, q̄,a) and (c, q∗,a∗), the MRC
model first encodes the context-question pairs (c, q̄) and (c, q∗) into the representations X̄h and X∗

h
via feature extractors (e.g., Pre-trained Language Model (PrLM) (Liu et al., 2019)), respectively. We
then calculate X∗

h − X̄h as the semantic differences, which cause answer changing from a to a∗.

For the normal training of a factual example (c, q,a), the MRC model encodes the context-question
pair (c, q) into the representation Xf , and then leverages a function f(Xf ) to predict the answers
a. To inspect whether the MRC model captures the semantic differences, we calculate the gradients
w.r.t. the representation Xf towards the changed answer a∗, i.e., ∇T fa∗(Xf ). Such gradients
represents the translation direction of the representation Xf that can change the answer from a
to a∗. As such, we can teach the model to learn the semantic differences by encouraging these
gradients to align with X∗

h − X̄h. Formally, we propose a regularization term to minimize their
cosine distance as follows:

Lf = 1− cos
(
∇T fa∗(Xf ),X

∗
h − X̄h

)
. (1)

Similarly, we have the representation X∗
h of the hypothetical example (c, q∗,a∗). We also regulate

the gradients of the hypothetical example towards the changed answer a3, i.e., ∇T fa(X
∗
h), which

describes how X∗
h changes can vary the answer from a∗ to a. As compared to the gradients of the

factual example, the gradients of this hypothetical example conversely change the answer from a∗

to a. Therefore, ∇T fa(X
∗
h) should be regulated in the opposite direction with ∇T fa∗(Xf ):

Lh = 1− cos
(
∇T fa(X

∗
h), X̄h −X∗

h

)
. (2)

2.3 INSTANTIATION

We adopt TAGOP (Zhu et al., 2021) as our backbone MRC model in HTF, which is designed to
reason on the tabular and textual context. Powered by PrLM (Liu et al., 2019), TAGOP first flattens
the tables in c by row, and then transforms the concatenated c and q into the representation, denoted
as X ∈ RL×D, where L is the number of the tokens in c and q, and D is the representation
dimension. Thereafter, TAGOP utilizes sequence tagging to select the answer span(s) from the
context, which transforms X through a 2-layer Feed-Forward Network (FFN) followed by softmax
to predict the positive or negative label for each token in the context. Formally,{

pi = softmax (FFN(Xi)) , i = 1, . . . , N

ti = argmax(pi),
(3)

where N is the context length since the answer is from the the context region of the input. pi ∈ R2

represents the positive and negative probabilities of the i-th token in the context, and ti ∈ {0, 1}
denotes the final predicted label.

TAGOP adopts an answer-type predictor to decide selecting one or multiple entries and words from
the context, or counting the number of positive entries and words (Zhu et al., 2021). The loss
function Lt of TAGOP is the sum of 1) the negative log-likelihood loss for tagging and 2) the
cross-entropy loss of the answer-type predictor. In this work, we additionally consider the two
regularization terms for hypothetical training, and the overall loss function is as follows:

Lt + αLf + βLh, (4)
where α and β control the influence of the two regularization terms on the optimization.

2.4 THEORETICAL JUSTIFICATION

In this section, we explain the rationality of regularizing the model gradients by the representation
differences between a pair of hypothetical examples (c, q̄,a) and (c, q∗,a∗). Given their repre-
sentations X̄h and X∗

h, the MRC model adopts the function f(·) : RL×D → RN to output their

3We ignore the regularization over (c, q̄,a) and only regulate (c, q∗,a∗) because the former has the same
context-question semantic and answer with the factual example (c, q,a).
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N -dimension logits over N context tokens. We then consider the Taylor Expansion of f(X∗
h) re-

garding X̄h: 
f(X∗

h) = f(X̄h) + J · (X∗
h − X̄h) + o(X∗

h − X̄h),

J =

∇T f1(X̄h)
...

∇T fN (X̄h)

 ,
(5)

where o(·) denotes the Taylor Remainder and J ∈ RN×M is the Jacobian Matrix. M = L ×D is
the dimension of the representation X̄h. The i-th row in J represents the gradients from the positive
logits of the i-th token fi(X̄h) to the input representation X̄h. Besides, since the assumptions
minimally do intervention to the factual example, we assume that the representations of X̄h and X∗

h

are close to each other. Therefore, the representation differences between X∗
h and X̄h are small,

and (X∗
h − X̄h)

K will be close to zero when K > 1 Teney et al. (2020). In this light, we ignore
higher order terms in o(X∗

h − X̄h) and mainly focus on the first order term J(X∗
h − X̄h).

To remove spurious correlations, f(·) is expected to learn the effect of the slight representation
differences on the answer changes. Given different input representations X∗

h and X̄h, f(·) should
be able to maximize the answer prediction difference, i.e., , the logit difference f(X∗

h) − f(X̄h)
over the ground-truth tokens in the answer a∗. From Equation (5), we have

fa∗(X∗
h)− fa∗(X̄h) ≈ ∇T fa∗(X̄h) · (X∗

h − X̄h), (6)

where fa∗(X∗
h) and fa∗(X̄h) are the predicted logits for the tokens in the answer a∗, and

∇T fa∗(X̄h) in J refers to the gradients for a∗. From Equation 6, we can maximize the logit
difference by increasing the dot product ∇T fa∗(X̄h) · (X∗

h − X̄h). However, optimizing via dot
product is norm-sensitive so that the function f(·) is easy to increase the norm of gradients but ig-
nore the directions. As such, we choose to minimize the cosine distance in the implementation. The
empirical results in Section 3.3 also validate the superiority of using cosine distance.

From the above analysis, we can minimize the cosine distance between the gradients ∇T fa∗(X̄h)
of the hypothetical example (c, q̄,a) and the representation difference X∗

h − X̄h. Because the
factual example (c, q,a) and the hypothetical example (c, q̄,a) have the same answer under the
same context and answering logic, we can again adopt X∗

h − X̄h to regulate the gradients of this
factual example ∇T fa∗(Xf ) (Equation 1). Meanwhile, based on the similar Taylor Expansion for
f(X̄h), it is reasonable to constrain the gradients of another hypothetical example (c, q∗,a∗), i.e.,
∇T fa(X

∗
h) by X̄h −X∗

h (Equation 2).

3 EXPERIMENTS

In this section, we conduct experiments to answer the following research questions: RQ1: How does
the proposed HTF perform on removing spurious correlations? RQ2: How do the regularization
terms of HTF influence its effectiveness? RQ3: How does HTF improve the MRC model regarding
different spurious correlations?

3.1 EXPERIMENTAL SETUP

Datasets. We conduct experiments on TAT-QA (Zhu et al., 2021), a MRC dataset in the financial
domain with a hybrid of text and tabular context, and TAT-HQA (Li et al., 2022a), which constructs
hypothetical questions for TAT-QA. To avoid the complexity of discrete numerical calculation, we
filter out the arithmetic questions and only keep the questions that extract text spans. Note that
TAT-HQA only contains one hypothetical example with a different answer from the corresponding
factual example in TAT-QA. We thus expand the TAT-HQA dataset by adding hypothetical examples
with the same answer as the factual example 4. For the evaluation, on one hand, we adopt the test
set of TAT-QA with factual examples. On the other hand, we create a stress test by manually editing
the factual examples to break the spurious correlations5 to evaluate the effectiveness of blocking
spurious correlations. We adopt the two common evaluation metrics for MRC tasks (Dua et al.,
2019), exact-match (EM) and F1, both in the range of [0, 100].

4Please refer to more details in Appendix B
5Please refer to Appendix A for the detailed construction.
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Stress Test TAT-QA Average

EM F1 EM F1 EM F1

m-OQ 31.4 39.2 65.2 79.4 48.3 59.3
m-OQ&HQ 34.2 43.7 64.6 78.4 49.4 61.1
m-OQ&2HQ 37.0 44.0 64.4 78.4 50.7 61.2
CF-VQA 25.6 33.3 60.1 74.6 42.9 54.0
xERM 25.6 36.0 60.8 75.0 43.2 55.5
CLO 34.8 43.3 64.5 78.9 49.7 61.1
GS 33.6 42.5 62.3 77.2 48.0 59.9
HTF (Ours) 38.5 45.8 64.3 78.0 51.4 61.9

Table 1: Performance comparison on the stress test and original test of TAT-QA w.r.t. EM and F1

scores. Bold font denotes the best performance in each column.

Compared methods. We compare HTF with the following methods. 1) Vanilla baselines: m-OQ
trains the MRC model with the factual examples in TAT-QA, i.e., the model learns to answer the
original question (OQ); m-OQ&HQ trains the model with a mixture of OQs in TAT-QA and HQs
in TAT-HQA, which is a simple data augmentation without consideration of the relation between
question pairs; and similarly m-OQ&2HQ trains the model with a mixture of OQs and two kinds
of HQs. 2) Debiasing methods to mitigate the bias from the context branch: CF-VQA (Niu et al.,
2021) utilizes a counterfactual inference framework to mitigate the bias; xERM (Zhu et al., 2022)
improves CF-VQA by adjusting the factual and counterfactual models with the weights of their
empirical risks. 3) Counterfactual training methods: CLO (Liang et al., 2020) adopts a contrastive
learning objective to supervise the relationship between the factual and hypothetical examples; GS
(Teney et al., 2020) applies gradient supervision between factual and hypothetical example pairs to
shape the decision boundary. More implementation details can be found in Appendix D.

Implementation detail. For all compared methods, we adopt TAGOP (Zhu et al., 2021) as the
backend model, which is a representative MRC model on tabular context; and we select hyperpa-
rameters according to the F1 score on the validation set. We apply a two-staged training for HTF by
first training on TAT-QA and TAT-HQA with TAGOP loss Lt, and then fine-tuning on the triplets
of a factual and two hypothetical examples with HTF regularization terms Lf and Lh. The rea-
son for two-staged training is that the gradients at the initial training stage cannot stably reflect the
model’s perception of how the representations change causing the answer change, thus we apply the
gradient regularization terms in the fine-tuning stage. We set α as 0.07 and β as 1.3. The detailed
hyperparameter setting can be found in the Appendix C.

3.2 PERFORMANCE COMPARISON (RQ1)

Table 1 shows the performance of all compared methods on both the stress test and TAT-QA. We
can observe that: 1) In all cases, the performance on TAT-QA is much higher than that on the
stress test, showing the reliance on spurious correlations of compared methods. 2) The proposed
HTF outperforms all compared methods on the stress test, indicating its least reliance on spurious
correlations. Moreover, HTF achieves the best average performance on the stress test and TAT-QA,
implying its strong generalization ability across different distributions. 3) The superior performance
of HTF than m-OQ&2HQ validates the rationality of considering the relationships between factual
and hypothetical examples via hypothetical training. 4) The methods utilizing hypothetical examples
(m-OQ&HQ, m-OQ&2HQ, CLO, GS, and HTF) generally show better performance on the stress
test than the models trained with only factual examples (m-OQ, CF-VQA, xERM). This verifies
the rationality of using hypothetical examples to mitigate spurious correlations. Especially, the
debiasing methods (CF-VQA and xERM) are not effective in our task. We postulate that blindly
mitigating the context bias without the guidance of hypothetical examples is insufficient to remove
spurious correlations in the complex reasoning tasks with tables. 5) All methods using hypothetical
examples have inferior performance than m-OQ on TAT-QA, which is possibly attributed to that
extra hypothetical examples have different distributions with TAT-QA. It is also a promising future
direction to further balance the trade-off and achieve “both-good” performance on two test sets.

3.3 ABLATION STUDIES (RQ2)

Ablation study of HTF regularization. We reveal the contribution of each gradient regulariza-
tion terms Lf and Lh by the ablation experiments w/o Lf and w/o Lh. As shown in Table 2, we
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w/o Lf # w/o Lh# Ldot GS Lgs var HTF

EM 38.1 37.3 1.5 33.6 36.7 38.5
F1 44.9 45.0 14.8 42.5 44.6 45.8

Table 2: Results of the HTF variants on the stress test. # denotes significantly different from the
non-ablated HTF (p < 0.05).
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(b)
Figure 3: Left: an example of the unfaithful counterfactual table. Right: performance comparison
on the stress test by adding unfaithful counterfactual tables.

observe that the performance significantly drops if we set either Lf or Lh to be 0. This validates
that both gradient regularization terms are critical to remove spurious correlations and enhance the
generalization performance on the stress test.

Rationality of using cosine regularization. As illustrated in Section 2.4, we compare the regu-
larization terms implemented by dot product or cosine distance. From the results in Table 2, we
find that the dot product Ldot largely underperforms HTF with cosine regularization. We attribute
the significant difference to that dot product is norm-sensitive, for which the gradient norm is easily
increased while the direction is undermined.

Difference with GS. In our justification in Section 2.4, we reach a different conclusion from GS
(Teney et al., 2020) that the gradient loss should be calculated towards the changed label instead
of the factual label. We run a variant of GS by calculating the gradient towards the changed label
instead of the factual label to examine our justification, denoted as Lgs var. In Table 2, we can find
that Lgs var clearly outperforms GS, thus validating the rationality of our justification.

Effect of unfaithful counterfactual tables. To validate our claim that counterfactual tables with-
out consistency checking potentially hinder the answer prediction, we conduct the experiments with
unfaithful counterfactual tables. We create unfaithful counterfactual tables by revising the factual
tables while ignoring the dependency between table entries. For example, in Figure 3a, the coun-
terfactual table is edited from the factual table under the assumption “if the cost for 2018 increased
to $16,240 instead”. Due to “revenue=cost+net profit”, only editing cost will cause inconsistency
between the table entries, leading to unfaithful counterfactual tables. If such unfaithful examples
in Figure 3a are used for training with factual examples, the MRC model will wrongly attribute the
answer changes to the changed cost feature, fitting the spurious correlations. To validate that, we
hand-annotate 220 unfaithful counterfactual examples, then train a variant of m-OQ by adding the
unfaithful counterfactual tables into training data, and finally test it on the stress test. From the re-
sults in Figure 3b, we discover that for both the summation comparison questions (about 10%) and
the other questions, the performance has a clear drop, showing that the noisy unfaithful counterfac-
tual tables may confuse the model and it is necessary to guarantee the table consistency.

3.4 IN-DEPTH ANALYSIS (RQ3)

Sensitivity to semantic intervention. We investigate the sensitivity of the MRC model to semantic
intervention by counting the identical predictions on factual examples and hypothetical examples in
the stress test. Since the hypothetical examples in the stress test are created by minimally modifying
the factual examples to change its semantic and labels (an example in Figure 5), fitting spurious
correlations will cause the model to ignore the semantic difference and give the same prediction for
a pair of hypothetical and factual examples. The experimental statistics in Figure 4a shows that:
1) among all compared methods, HTF achieves the smallest percentage of identical predictions,
verifying its effectiveness in identifying semantic difference and avoiding spurious correlations. 2)
Using hypothetical examples (all methods except m-OQ) can reduce the percentage of identical
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Figure 4: (a) Proportion of identical predictions for factual examples in TAT-QA and the corre-
sponding stress test examples. Lower percentage is better, indicating more sensitive to semantic
intervention. (b) Performance on the stress test with changed number scale. w/o, small and large
refers to no scaling, slight scaling and large scaling, respectively. (c) Study on the spurious correla-
tion of “which year” questions and the top year answers. “w/o” denotes no operation on the table.

Factual Table

Year 2018 2017

Net Sale in 
America ($)

259,105
224,05
6

(a) In which years did the net sales 
from America exceed $200,000?

Stress Test Table

Year 2018 2017

Net Sale in 
America ($)

259,105 150,000

Gold Answer: 2018, 2017
Predicted Answer: 2018, 2017
Prediction Score: 
2018: 99.94, 2017: 99.90

Gold Answer: 2018
Predicted Answer: 2018
Prediction Score: 
2018: 99.93, 2017: 3.81

(b) In which year was the Deferred tax asset larger?

Gold Answer: 2019
Predicted Answer: 2019
Prediction Score : 
2019: 99.90

Gold Answer: 2018
Predicted Answer: 2019
Prediction Score: 
2019: 99.92, 2018: 0.00

Factual Table

Year 2019 2018

Deferred 
tax asset

1.2 0.8

Stress Test Table

Year 2019 2018

Deferred 
tax asset

0.2 0.8

Figure 5: Case study of HTF’s predictions. The tables are shortened to save space.
predictions, showing the effect of hypothetical examples in reducing shortcuts. 3) For all methods,
there are still more than 60% of identical predictions, showing that all methods are still relying on
spurious correlations to some extent. This coheres with the large performance gap between stress
test and factual examples (TAT-QA) (cf. Table 1), which can be further improved in future work.

Generalizing to new semantic intervention. Apart from the stress test, we study the ability of HTF
to generalize to new semantic intervention on the tables. Firstly, we look into how HTF generalizes
to new tables with the numbers of unusual scale. We identify a type of questions asking about
numerical conditions, e.g., which values is larger/smaller than a threshold A?, and generate new
test cases by scaling the target numbers to be larger/smaller than A in the table. We increase the
target number by {2,3,4} times if it is larger than A and otherwise decrease it by {1.2,1.3,1.5} times
(named slightly-scaled test data). Besides, we construct the largely-scaled test data by increasing
the range of scaling by {10,11,12} times or decreasing {5,6,7} times.6 We test HTF, CLO, and
the vanilla baselines m-OQ and m-OQ&HQ on the slightly-scaled and largely-scaled test data. As
shown in Figure 4b, we find that all methods are affected by the scaling operation because they
do not fully understand actual reasoning logic and rely on some spurious correlations. Among the
methods, HTF achieves the smallest performance drop between the factual examples and the scaled
examples for both settings, showing that HTF achieves the best understanding on the reasoning logic
of numerical condition questions by hypothetical training.

Next, we study the potential spurious correlations regarding the frequent answers in the dataset.
We conjecture that the MRC model might be inclined to predict 2019, 2018 and 2017 for questions
asking about “which year” because they are the most frequently appeared answers. We identify such
questions and create new testing examples by replacing 2019, 2018, and 2017 with 1994, 1993,
and 1992, respectively (denoted as subtraction) to break down the word correlations between the
questions and the answers. We also try reversing the order of the years by replacing 2019, 2018,
and 2017 with 1992, 1993, and 1994, respectively (denoted as sub&reverse) to examine the bias
toward predicting the earliest or the latest year. As shown in Figure 4c, we can observe that the
subtraction decreases the performance for all compared methods, revealing the existence of spurious
word correlations, while HTF achieves the smallest decrease thus the least affected by such spurious
correlation. Applying the reversion can further decrease the performance of HTF, but it is still
the least affected among the compared methods. For m-HQ and m-OQ&HQ, the further reversion
cannot cause larger decrease, thus they mainly rely on the word correlation. Generally, HTF is the
most robust to such semantic change with less than 3% decrease of F1.

Case study. We present two examples to demonstrate the effect of HTF on model prediction in Fig-
ure 5. In example (a), HTF gives correct predictions to both the factual and the stress test examples.

6Note that the edited example maintains the answer of the original example.
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This indicates that HTF recognizes the semantic change, i.e., the lowered net sale value in 2017, and
in turn largely reduces the model prediction score w.r.t. 2017. It maintains high prediction scores for
the remaining answer and precisely reduces the score for the changed answer, showing the capability
of HTF in linking the semantic intervention to the answer change. We also present a failure case in
example (b), where HTF gives correct prediction to the factual example, but fails on the stress test
example due to failure to link the feature change i.e., the decreased value in 2019, with the answer
change. Since the stress test example only has a very tiny change of one digit (1.2 → 0.2), it poses
a larger challenge to HTF in its sensitivity of semantic change.

4 RELATED WORK

Counterfactual training. Stemming from the causal theory (Pearl et al., 2000), counterfactual
training has become a popular approach recently to avoid learning spurious correlation by doing in-
tervention on the observed data. Counterfactual examples have been applied to a wide range of task
such as Natural Language Inference (Kaushik et al., 2020), Named Entity Recognition (Zeng et al.,
2020), Visual Question Answering (Chen et al., 2020a; Gokhale et al., 2020; Teney et al., 2020;
Liang et al., 2020), Story Generation (Qin et al., 2019), Machine Reading Comprehension (Gardner
et al., 2020), text classification Choi et al. (2022), language representation Feder et al. (2021) and
information extraction Nan et al. (2021). Researchers also apply the idea of counterfactual into de-
signing training or inference frameworks (Niu et al., 2021; Niu & Zhang, 2021; Chen et al., 2020a;
Wang et al., 2021b; Feng et al., 2021; Abbasnejad et al., 2020; Paranjape et al., 2022). Apart from
obtaining counterfactual examples via human-annotation, researcher also study automatically gen-
erating counterfactual examples (Paranjape et al., 2022; Geva et al., 2022; Ye et al., 2021; Longpre
et al., 2021; Wu et al., 2021; Sauer & Geiger, 2021). In this paper, we focus on tabular MRC with
complex reasoning process. Automatically creating counterfactual examples is infeasible and hu-
man knowledge is still essential. We are inspired by the hypothetical questions proposed in (Li et al.,
2022a) which we think can be an economic alternative for counterfactual tables, and we are the first
to study removing spurious correlations with hypothetical examples.

Spurious correlation. The problem of spurious correlation has been studied by a wide range of
machine learning tasks, such as the unimodal bias in VQA (Cadene et al., 2019), the position bias
of MRC (Ko et al., 2020), the hypothesis-only of NLI (Poliak et al., 2018), the word alignment of
passage and options in QA (Yu et al., 2020), which hinders the generalization ability of DNN models
to out-of-distribution test sets (Agrawal et al., 2018; Kaushik et al., 2020). Solutions have been
propose to solve the spurious correlation problems apart from the counterfactual training approaches
mentioned above, such as capturing the bias via fitting the bias (He et al., 2019; Cadene et al., 2019),
training multiple models (Teney et al., 2022; Clark et al., 2019), invariant learning (Arjovsky et al.,
2019; Li et al., 2022b), and using causal inference techniques (Wang et al., 2021c;a).

Tabular MRC. In recent years, new challenge in MRC has arisen to enable machines to understand
and reason over more complex context such as tables due to the overwhelming tabular data in the
real world. Many tabular QA dataset are proposed, such as FinQA (Chen et al., 2021), TAT-QA (Zhu
et al., 2021), HybridQA (Chen et al., 2020b), MultiHierrt (Zhao et al., 2022), and WikiTableQues-
tions (Pasupat & Liang, 2015), where most of these datasets requires numerical reasoning ability,
thus solutions to these data often requires designing numerical calculation steps (Chen et al., 2021;
Zhu et al., 2021) and table understanding techniques (Herzig et al., 2020). In our work, we adopt
the standard method of TAGOP on TAT-QA dataset.

5 CONCLUSION

In this work, we investigated the spurious correlations in MRC with tabular context. We proposed
to use hypothetical examples for hypothetical training, which teaches the MRC model the effect
of the semantic intervention on causing answer changes. By learning such effect, MRC models
could effectively remove the spurious correlations and achieve superior performance on the stress
test. This work leaves many promising directions for future exploration: 1) adopting HTF to other
language understanding and reasoning tasks that are costly to construct counterfactual examples; 2)
expanding HTF to model the semantic relationships between multiple hypothetical examples; and
3) simultaneously pursuing “both good” performance on TAT-QA and the stress test.
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Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization.
arXiv preprint arXiv:1907.02893, 2019.

Remi Cadene, Corentin Dancette, Matthieu Cord, Devi Parikh, et al. Rubi: Reducing unimodal
biases for visual question answering. Advances in Neural Information Processing Systems, 32,
2019.

Long Chen, Xin Yan, Jun Xiao, Hanwang Zhang, Shiliang Pu, and Yueting Zhuang. Counterfactual
samples synthesizing for robust visual question answering. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 10800–10809, 2020a.

Wenhu Chen, Hanwen Zha, Zhiyu Chen, Wenhan Xiong, Hong Wang, and William Yang Wang.
Hybridqa: A dataset of multi-hop question answering over tabular and textual data. In Findings
of the Association for Computational Linguistics: EMNLP 2020, pp. 1026–1036, 2020b.

Zhiyu Chen, Wenhu Chen, Charese Smiley, Sameena Shah, Iana Borova, Dylan Langdon, Reema
Moussa, Matt Beane, Ting-Hao Huang, Bryan R Routledge, et al. Finqa: A dataset of numerical
reasoning over financial data. In Proceedings of the 2021 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pp. 3697–3711, 2021.

Seungtaek Choi, Myeongho Jeong, Hojae Han, and Seung-won Hwang. C2l: Causally contrastive
learning for robust text classification. 2022.

Christopher Clark, Mark Yatskar, and Luke Zettlemoyer. Don’t take the easy way out: Ensemble
based methods for avoiding known dataset biases. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP), pp. 4069–4082, 2019.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh, and Matt Gardner.
Drop: A reading comprehension benchmark requiring discrete reasoning over paragraphs. In
Proceedings of the 2019 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp.
2368–2378, 2019.

Amir Feder, Nadav Oved, Uri Shalit, and Roi Reichart. Causalm: Causal model explanation through
counterfactual language models. Computational Linguistics, 47(2):333–386, 2021.

Fuli Feng, Jizhi Zhang, Xiangnan He, Hanwang Zhang, and Tat-Seng Chua. Empowering language
understanding with counterfactual reasoning. In Findings of the Association for Computational
Linguistics: ACL-IJCNLP 2021, pp. 2226–2236, 2021.

Matt Gardner, Yoav Artzi, Victoria Basmov, Jonathan Berant, Ben Bogin, Sihao Chen, Pradeep
Dasigi, Dheeru Dua, Yanai Elazar, Ananth Gottumukkala, et al. Evaluating models’ local deci-
sion boundaries via contrast sets. In Findings of the Association for Computational Linguistics:
EMNLP 2020, pp. 1307–1323, 2020.

Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel, Wieland Brendel,
Matthias Bethge, and Felix A Wichmann. Shortcut learning in deep neural networks. Nature
Machine Intelligence, 2(11):665–673, 2020.

Mor Geva, Tomer Wolfson, and Jonathan Berant. Break, perturb, build: Automatic perturbation of
reasoning paths through question decomposition. Transactions of the Association for Computa-
tional Linguistics, 10:111–126, 2022.

10



Under review as a conference paper at ICLR 2023

Tejas Gokhale, Pratyay Banerjee, Chitta Baral, and Yezhou Yang. Mutant: A training paradigm for
out-of-distribution generalization in visual question answering. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language Processing (EMNLP), pp. 878–892, 2020.

He He, Sheng Zha, and Haohan Wang. Unlearn dataset bias in natural language inference by fit-
ting the residual. In Proceedings of the 2nd Workshop on Deep Learning Approaches for Low-
Resource NLP (DeepLo 2019), pp. 132–142, 2019.

Jonathan Herzig, Pawel Krzysztof Nowak, Thomas Mueller, Francesco Piccinno, and Julian Eisen-
schlos. Tapas: Weakly supervised table parsing via pre-training. In Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics, pp. 4320–4333, 2020.

Divyansh Kaushik, Eduard Hovy, and Zachary Lipton. Learning the difference that makes a differ-
ence with counterfactually-augmented data. In International Conference on Learning Represen-
tations, 2020.

Miyoung Ko, Jinhyuk Lee, Hyunjae Kim, Gangwoo Kim, and Jaewoo Kang. Look at the first sen-
tence: Position bias in question answering. In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP), pp. 1109–1121, 2020.

Moxin Li, Fuli Feng, Hanwang Zhang, Xiangnan He, Fengbin Zhu, and Tat-Seng Chua. Learning to
imagine: Integrating counterfactual thinking in neural discrete reasoning. In Proceedings of the
60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pp. 57–69, 2022a.

Yicong Li, Xiang Wang, Junbin Xiao, Wei Ji, and Tat-Seng Chua. Invariant grounding for video
question answering. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 2928–2937, 2022b.

Zujie Liang, Weitao Jiang, Haifeng Hu, and Jiaying Zhu. Learning to contrast the counterfactual
samples for robust visual question answering. In Proceedings of the 2020 Conference on Empiri-
cal Methods in Natural Language Processing (EMNLP), pp. 3285–3292, 2020.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Shayne Longpre, Kartik Perisetla, Anthony Chen, Nikhil Ramesh, Chris DuBois, and Sameer Singh.
Entity-based knowledge conflicts in question answering. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Processing (EMNLP), pp. 7052–7063, 2021.

Tom McCoy, Ellie Pavlick, and Tal Linzen. Right for the wrong reasons: Diagnosing syntactic
heuristics in natural language inference. In Proceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pp. 3428–3448, 2019.

Guoshun Nan, Jiaqi Zeng, Rui Qiao, Zhijiang Guo, and Wei Lu. Uncovering main causalities for
long-tailed information extraction. arXiv preprint arXiv:2109.05213, 2021.

Yulei Niu and Hanwang Zhang. Introspective distillation for robust question answering. Advances
in Neural Information Processing Systems, 34:16292–16304, 2021.

Yulei Niu, Kaihua Tang, Hanwang Zhang, Zhiwu Lu, Xian-Sheng Hua, and Ji-Rong Wen. Counter-
factual vqa: A cause-effect look at language bias. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 12700–12710, 2021.

Bhargavi Paranjape, Matthew Lamm, and Ian Tenney. Retrieval-guided counterfactual generation for
qa. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 1670–1686, 2022.

Panupong Pasupat and Percy Liang. Compositional semantic parsing on semi-structured tables. In
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the
7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers),
pp. 1470–1480, 2015.

11



Under review as a conference paper at ICLR 2023

Panupong Pasupat and Percy Liang. Inferring logical forms from denotations. In Proceedings of the
54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pp. 23–32, August 2016.

Judea Pearl et al. Models, reasoning and inference. Cambridge, UK: CambridgeUniversityPress,
19(2), 2000.

Adam Poliak, Jason Naradowsky, Aparajita Haldar, Rachel Rudinger, and Benjamin Van Durme.
Hypothesis only baselines in natural language inference. In Proceedings of the Seventh Joint
Conference on Lexical and Computational Semantics, pp. 180–191, 2018.

Lianhui Qin, Antoine Bosselut, Ari Holtzman, Chandra Bhagavatula, Elizabeth Clark, and Yejin
Choi. Counterfactual story reasoning and generation. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP), pp. 5043–5053, 2019.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions for
machine comprehension of text. In Proceedings of the 2016 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pp. 2383–2392, 2016.

Axel Sauer and Andreas Geiger. Counterfactual generative networks. In International Conference
on Learning Representations, 2021.

Damien Teney, Ehsan Abbasnedjad, and Anton van den Hengel. Learning what makes a difference
from counterfactual examples and gradient supervision. In European Conference on Computer
Vision, pp. 580–599, 2020.

Damien Teney, Ehsan Abbasnejad, Simon Lucey, and Anton van den Hengel. Evading the simplic-
ity bias: Training a diverse set of models discovers solutions with superior ood generalization.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
16761–16772, 2022.

Victor Veitch, Alexander D’Amour, Steve Yadlowsky, and Jacob Eisenstein. Counterfactual invari-
ance to spurious correlations in text classification. In Advances in Neural Information Processing
Systems, 2021.

Tan Wang, Chang Zhou, Qianru Sun, and Hanwang Zhang. Causal attention for unbiased visual
recognition. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
3091–3100, 2021a.

Wei Wang, Boxin Wang, Ning Shi, Jinfeng Li, Bingyu Zhu, Xiangyu Liu, and Rong Zhang. Coun-
terfactual adversarial learning with representation interpolation. In Findings of the Association
for Computational Linguistics: EMNLP 2021, pp. 4809–4820, 2021b.

Wenjie Wang, Fuli Feng, Xiangnan He, Xiang Wang, and Tat-Seng Chua. Deconfounded recommen-
dation for alleviating bias amplification. In Proceedings of the 27th ACM SIGKDD Conference
on Knowledge Discovery & Data Mining, pp. 1717–1725, 2021c.

Tongshuang Wu, Marco Tulio Ribeiro, Jeffrey Heer, and Daniel Weld. Polyjuice: Generating coun-
terfactuals for explaining, evaluating, and improving models. In Proceedings of the 59th Annual
Meeting of the Association for Computational Linguistics and the 11th International Joint Con-
ference on Natural Language Processing (Volume 1: Long Papers), pp. 6707–6723, August 2021.

Xi Ye, Rohan Nair, and Greg Durrett. Connecting attributions and qa model behavior on realis-
tic counterfactuals. In Proceedings of the 2021 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pp. 5496–5512, 2021.

Sicheng Yu, Yulei Niu, Shuohang Wang, Jing Jiang, and Qianru Sun. Counterfactual variable control
for robust and interpretable question answering. arXiv preprint arXiv:2010.05581, 2020.

Zhongqi Yue, Tan Wang, Qianru Sun, Xian-Sheng Hua, and Hanwang Zhang. Counterfactual zero-
shot and open-set visual recognition. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 15404–15414, 2021.

12



Under review as a conference paper at ICLR 2023

Xiangji Zeng, Yunliang Li, Yuchen Zhai, and Yin Zhang. Counterfactual generator: A weakly-
supervised method for named entity recognition. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing (EMNLP), pp. 7270–7280, 2020.

Yilun Zhao, Yunxiang Li, Chenying Li, and Rui Zhang. Multihiertt: Numerical reasoning over
multi hierarchical tabular and textual data. In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 6588–6600, 2022.

Beier Zhu, Yulei Niu, Xian-Sheng Hua, and Hanwang Zhang. Cross-domain empirical risk mini-
mization for unbiased long-tailed classification. In Proceedings of the AAAI Conference on Arti-
ficial Intelligence, volume 36, pp. 3589–3597, 2022.

Fengbin Zhu, Wenqiang Lei, Youcheng Huang, Chao Wang, Shuo Zhang, Jiancheng Lv, Fuli Feng,
and Tat-Seng Chua. Tat-qa: A question answering benchmark on a hybrid of tabular and textual
content in finance. In Proceedings of the 59th Annual Meeting of the Association for Computa-
tional Linguistics and the 11th International Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pp. 3277–3287, 2021.

Qingfu Zhu, Weinan Zhang, Ting Liu, and William Yang Wang. Counterfactual off-policy training
for neural dialogue generation. In Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pp. 3438–3448, 2020.

13



Under review as a conference paper at ICLR 2023

A THE CREATION OF STRESS TEST SET

To evaluate the dependency on spurious correlation of tabular MRC models, we create a stress test
set by editing the factual tables in TAT-QA. Note that we define the stress test data as examples that
change the semantic of the factual context and lead to changed answers, which is different from the
definition of previous works (Veitch et al., 2021). We believe the stress test set can be used to test
the model’s genuine understanding of the question and the context, which cannot be accomplished
if the model learns shortcuts.

We edit the table of a factual example according to the assumption of the corresponding hypothetical
question. First, we extract the new number in the assumption to put in the table by identifying
numbers from text strings, e.g., extracting 38,298 from if the revenue in 2019 were $38,298. Next,
we locate the position in the table, e.g., locating the table cell representing“revenue in 2019”. Finally,
the stress test data is created by putting the new number into the location identified in the table, which
has the same answer as the hypothetical example.

we conduct a human evaluation to verify the quality of the stress test. We sample 70 instances
randomly from the stress test, and recruit two college students to examine the fidelity of instances
based on three questions: (1) whether the table follows the table-entry consistency (1 if agreed else
0); (2) whether the answer can be correctly derived from the context (1 if agreed else 0); and (3) the
complexity of answering the first two questions (0: easy;1:medium;2:hard). The average scores for
(1) and (2) are 0.91 and 0.97, showing that the annotators agree that most of the tables are consistent
and most of the answers can be correctly deducted. The standard deviation for the complexity score
is 0.59 and 0.63 respectively, showing that the stress test has diverse question difficulty. The Cohen’s
Kappa between the two annotators is 0.32, showing fair agreement between them.

B THE EXPANSION OF HQ WITH THE SAME ANSWER AS OQ

We identify the questions that involves numerical comparison via the following keywords: larger,
higher, highest, largest, exceed, less than. We extract the entity E and the number N within the
assumption of HQ which intervenes the factual context and changes the answer of OQ. We pair up
the hypothetical examples with the factual examples and compare their answers via some simple
rules. For example, the question asks about which entity has a higher value, and E within the
assumption is the answer to HQ which replaces the factual answer. We can largely decrease the
number N in the assumption to create an HQ with the factual answer. We set the range to decrease
N to make sure it satisfy the condition most of the times. We can process conversely if E equals the
factual answer by increasing N. In total, we create 693 additional HQ for training. We do not create
the additional HQ for validation data, and use the same validation set as baseline methods which is
a mix of OQ and HQ validation data.

C HYPERPARAMETER SETTING

We use one 32GB GPU. We set the batch size as 16, learning rate as 1e-4 for first-stage training and
1e-5 for second-stage fine-tuning. We train 80 epoch for the first stage and 60 epoch for the second
stage. We select the checkpoint with the best validation F1 result. For the fine-tuning, we wait for
10 epochs before the validation begin. We use Adam as the optimizer and gradient accumulation
step of 4. We select α = 0.07 and β = 1.3, both in the range of [0.01, 0.09] with step 0.01 and [0.1,
1.5] with step 0.1.

D IMPLEMENTATION DETAILS OF BASELINE METHODS

• CF-VQA: we adopt a table-only branch to learn the language bias where only the table is
remained in the input. We use the RuBi function as the fusion strategy. During inference,
the learned table-only bias is subtracted from the total effect. Since CF-VQA does not
require counterfactual data, we train it with the factual examples.

• xERM: it is an extension of the above CF-VQA with weights added. We use the empirical
risk of the MRC model to calculate the weight.
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• CLO: we intend to encode the semantic resemblance of HQ to its corresponding OQ since
they differ in a small semantic change. The contrastive loss use the corresponding OQ as the
positive example of HQ, and a randomly selected OQ as the negative example. Formally,
the contrastive loss is

Lclo =
edist(rh,ro)

edist(rh,ro) + edist(rh,r
oirr )

(7)

where rh, ro and roirr denotes the representation of hypothetical example, factual example
and an irrelevant factual example encoded by PrLM, and dist denotes cosine similarity after
max-pooling the representation. The contrastive loss is added to the total MRC learning
objective and weighted as 1.

• GS: we calculate the gradient loss via a pair of factual and hypothetical examples and add
the gradient loss to the total MRC learning objective. We set the weight for the gradient
loss as 0.01.

Factual Table

Year 2019 2018
from 

2018 to 
2019 (%)

2017
from 

2017 to 
2018 (%) 

Average 
of 3 

years

Revenue ($) 34,298 37,566 -8.7 32,553 15.4 34805.7

Cost ($) 4,550 6,240 -27.9 5,256 18.7 5348.7

Net Profit ($) 29,748 31,326 -5.1 27,297 14.8 29,457

In which year would the net profit  be larger 
if the amount in 2017 were $38,553 instead?

Question: In which year was the net profit larger? 
Answer: 2018

Change the revenue of 
2017 to 38,553 to change 

the answer to 2017 

Counterfactual Table

Year 2019 2018 from 2018 
to 2019 (%) 2017 from 2017 

to 2018 (%) 
Average of 

3 years

Revenue ($) 34,298 37,566 -8.7 38,553 15.4 36805.7

Cost ($) 4,550 6,240 -27.9 5,256 18.7 5348.7

Net Profit ($) 29,748 31,326 -5.1 33,297 -5.9 31,457

Creating Faithful Counterfactual Table

Writing HQ

(1)

(2) (3) (4)

(5)

Question: In which year was the net profit larger? 
Answer: 2017

Answer: 2017

Figure 6: An example of annotation cost comparison for hypothetical example and faithful coun-
terfactual table. For the assumption to change the revenue of 2017 to $ 38533, creating the faithful
counterfactual table requires calculating and editing at least 5 numbers, while creating the hypothet-
ical question is much easier by merely writing the assumption in natural language and appending it
to the question.

E ANNOTATION EFFORT COMPARISON OF HQ AND FAITHFUL
COUNTERFACTUAL TABLE

We give an example to illustrate the distinction in annotation effort between creating faithful coun-
terfactual tables and HQ as shown in Figure 6. After reading the factual example and deciding
the intervention of changing the revenue in 2017 to $ 38533, the cost for creating HQ is simply
writing the assumption in natural language and appending it to the question. However, to create
faithful counterfactual table, at least 5 numbers need to be calculated and edited as highlighted in
the counterfactual table which is time consuming. As the table gets larger and more complicate,
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the annotation cost keeps increasing. This example illustrates that the effort for creating faithful
counterfactual table is likely to be much larger than writing HQ, thus HQ is an economical choice.
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