

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 BUILDING CODING AGENTS VIA ENTROPY- ENHANCED MULTI-TURN PREFERENCE OPTIMI- ZATION

006 **Anonymous authors**

007 Paper under double-blind review

010 ABSTRACT

013 Software engineering presents complex, multi-step challenges for Large Language
014 Models (LLMs), requiring reasoning over large codebases and coordinated tool
015 use. The difficulty of these tasks is exemplified by benchmarks like SWEBENCH,
016 where current LLMs still struggle to resolve real-world issues. A promising
017 approach to enhance performance is test-time scaling (TTS), but its gains are
018 heavily dependent on the diversity of model outputs. While standard alignment
019 methods such as Direct Preference Optimization (DPO) and Kahneman-Tversky
020 Optimization (KTO) are effective at aligning model outputs with human pref-
021 erences, this process can come at the cost of reduced diversity, limiting the ef-
022 fectiveness of TTS. Additionally, existing preference optimization algorithms are
023 typically designed for single-turn tasks and do not fully address the complexi-
024 ties of multi-turn reasoning and tool integration required for interactive coding
025 agents. To bridge this gap, we introduce ENTROPO, an entropy-enhanced frame-
026 work that adapts existing preference optimization algorithms to the multi-turn,
027 tool-assisted setting. ENTROPO augments the preference objective to explicitly
028 preserve policy entropy and generalizes learning to optimize over multi-turn inter-
029 actions rather than single-turn responses. We validate ENTROPO by fine-tuning a
030 diverse suite of models from different families and sizes (up to 106B parameters).
031 To maximize performance gains from TTS, we further propose a hybrid best-
032 trajectory selection scheme combining a learned verifier model with model-free
033 approaches. On the SWEBENCH leaderboard, our approach establishes new state-
034 of-the-art results among open-weight models. A 30B parameter model trained
035 with ENTROPO ranks 1st on SWEBENCH-LITE and 4th on SWEBENCH-VERIFIED
036 on the open-weight leaderboard, surpassed only by models with over 10x more
037 parameters (e.g., >350B). These results highlight the importance of preserving di-
038 versity for effective test-time scaling and establish ENTROPO as a robust method
039 for building powerful, interactive coding agents.

1 INTRODUCTION

041 Large Language Models (LLMs) have achieved impressive breadth across language understanding,
042 coding assistance, and planning. Yet, they still struggle on complex, multi-step software engineering
043 (SWE) tasks that demand reasoning over large codebases and coordinated tool use (e.g., search,
044 execution, and patching) (Yang et al., 2024b; Wang et al., 2025; Xia et al., 2024; Antoniades et al.,
045 2024; Zhang et al., 2024). A promising line of work that improves performance is test-time scaling
046 (TTS)—sampling more trajectories, searching deeper, and verifying candidates, which can uncover
047 higher-quality solutions on challenging instances (Snell et al., 2024; Beeching et al.; Yao et al., 2023;
048 Xu et al., 2024a). However, TTS only helps if the model produces sufficiently *diverse* candidates to
049 explore meaningfully different solution modes.

050 Recent alignment methods, including Reinforcement Learning from Human Feedback
051 (RLHF) (Ouyang et al., 2022; Ziegler et al., 2019; Bai et al., 2022) and Direct Preference
052 Optimization (DPO) (Rafailov et al., 2023), have been observed to inadvertently reduce generation
053 diversity (Kirk et al., 2023; Padmakumar & He, 2023; Kim et al., 2024; O’Mahony et al., 2024;
Murthy et al., 2025). This *diversity collapse* limits the returns of TTS: when a model concentrates

054 probability mass on a narrow set of responses for a given prompt, additional samples become redundant, and deeper search yields diminishing marginal gains. Prior efforts to preserve diversity during
 055 fine-tuning typically target single-turn settings (Slocum et al., 2025; Li et al., 2024; Wang et al.,
 056 2024; Lanchantin et al., 2025) or adjust decoding temperatures at inference time (Renze, 2024).
 057 These approaches do not directly address multi-turn, tool-using workflows, where diversity must be
 058 maintained *throughout the trajectory* to encourage exploration of a sequence of tool calls and partial
 059 hypotheses.
 060

061 To address this limitation, we introduce ENTROPO, an entropy-enhanced preference optimization
 062 method for multi-turn SWE agents. Our approach explicitly adds an entropy regularization term to
 063 the standard preference optimization objective to preserve policy diversity. Crucially, ENTROPO
 064 extends this entropy-regularized objective from single-turn to *multi-turn trajectories*. It provides a
 065 general framework that adapts preference optimization algorithms like DPO and KTO to the multi-
 066 turn, tool-assisted setting, whereas prior work has largely focused on single-turn DPO (Slocum et al.,
 067 2025). By optimizing over multi-turn interactions, ENTROPO aligns the learning process with the
 068 sequential nature of complex coding tasks, teaching the model to build better reasoning paths. We
 069 also theoretically analyze the closed-form optimal policy with our method.
 070

071 To maximize the performance gain of TTS, we pair ENTROPO with a hybrid best-trajectory selec-
 072 tion scheme. We combine (i) a learned verifier model that scores trajectories with (ii) model-free
 073 approaches that favor high-quality trajectories (e.g., passing tests, trajectory steps). This hybrid se-
 074 lector improves sampling effectiveness and amplifies the gains from parallel rollouts.
 075

076 We empirically validate ENTROPO across a diverse suite of models from different families and
 077 sizes (up to 106B parameters) on SWEBENCH-VERIFIED (Chowdhury et al., 2024) and SWEBENCH-
 078 LITE (Jimenez et al., 2024). Our approach achieves state-of-the-art results among open-weight
 079 models, with our 30B model ranking 1st on SWEBENCH-LITE and 4th on SWEBENCH-VERIFIED
 080 (surpassed only by models over 350B, which are 10x larger). Across all evaluations, ENTROPO
 081 significantly outperforms standard DPO and KTO in the TTS setting, maintaining higher trajectory
 082 diversity, which translates into larger performance gains from increased test-time compute. Our re-
 083 sults confirm that the entropy-preserving term is critical to avoid diversity collapse, and our hybrid
 084 selector is more effective than model-only or model-free-only selection.
 085

086 Our contributions are threefold:
 087

- 088 • We propose ENTROPO, an entropy-enhanced *multi-turn* preference optimization method tailored
 089 to tool-using coding agents that preserves policy diversity during fine-tuning.
- 090 • We theoretically analyze the closed-form optimal policy for our multi-turn objective.
- 091 • We present state-of-the-art results among open-weight models on SWEBENCH-VERIFIED and
 092 SWEBENCH-LITE, showing significant performance gains from test-time scaling.

093 By addressing the critical challenge of preserving diversity in multi-turn agents, our work paves
 094 the way for developing more powerful LLM-based tools capable of tackling real-world software
 095 engineering tasks. We release the code, models, and datasets used for our work for reproducibility.
 096

097 2 RELATED WORK

098 **LLM Post-training.** RLHF has become the standard approach for aligning LLMs with human
 099 preferences (Ouyang et al., 2022; Ziegler et al., 2019; Bai et al., 2022; Schulman et al., 2017), but
 100 the PPO-style online approach is computationally intensive, as it requires numerous interactions with
 101 a reward model or live environment to generate samples during training (Xu et al., 2024b; Wei et al.,
 102 2025). To reduce the compute cost, *preference learning* methods replace explicit reward modeling
 103 and online RL with simpler, reward-free objectives that require far less compute. DPO (Rafailov
 104 et al., 2023) and its variants (KTO (Ethayarajh et al., 2024), SimPO (Meng et al., 2024), OrPO (Hong
 105 et al., 2024)) have emerged as competitive and simpler alternatives to PPO-based RLHF.
 106

107 However, most preference-learning fine-tuning focuses on the *single-turn* setting and does not di-
 108 rectly model multi-turn, tool-using trajectories. Recent efforts have begun to extend preference
 109 optimization beyond single responses. Xiong et al. (2025) proposed M-DPO, which provided a
 110 framework for training multi-turn, tool-assisted agents on math tasks. While this established a foun-
 111 dation for learning from trajectory preferences in the multi-turn setting, we observe that the method
 112 suffers from *diversity collapse*, particularly in long-context coding tasks. This limitation is critical
 113

108 because, for complex coding tasks, the ability to explore a vast solution space is essential (Golubev
 109 et al., 2025; Gao et al., 2025). Offline preference objectives often reduce policy entropy, which
 110 undermines the exploration of the learned policy (Setlur et al., 2025). Empirical analyses have
 111 documented reduced output diversity under alignment fine-tuning (Kirk et al., 2023), and recent
 112 studies attribute mode collapse in fine-tuning to characteristics of offline objectives and KL
 113 constraints (Slocum et al., 2025; Wang et al., 2024). While recent methods have attempted to modify
 114 divergences, decouple KL components, or construct diversity-aware preference pairs to better control
 115 diversity (Slocum et al., 2025; Wang et al., 2024; Lanchantin et al., 2025), explicit entropy
 116 preservation remains underexplored in the multi-turn setting. For example, SPL (Slocum et al.,
 117 2025) decouples the KL divergence into separate cross-entropy and entropy terms to allow for sep-
 118 arate control of diversity. However, it mainly focuses on single-turn settings with DPO for tasks
 119 requiring a short context length, leaving the complex multi-turn settings untouched.

120 We address these challenges with ENTROPO, an entropy-enhanced preference optimization frame-
 121 work applicable to both DPO and KTO. To our knowledge, we are the first to provide a rigorous
 122 mathematical derivation of the entropy-augmented preference learning objective in the multi-turn
 123 setting. Empirically, our method achieves strong performance while preserving exploration through-
 124 out the sequence of tool calls. This enables the full potential of test-time scaling to realize larger
 125 gains for complex coding tasks.

126 **LLMs for Software Engineering.** Repository-level SWE benchmarks such as the
 127 SWEBENCH (Jimenez et al., 2024; Chowdhury et al., 2024) have accelerated progress on automated
 128 bug fixing and patch generation. Agentic systems like SWE-agent (Yang et al., 2024a) introduced in-
 129 terfaces for repository navigation and code editing, while alternative pipelines (e.g., Agentless) (Xia
 130 et al., 2024) achieved strong results with simpler localize-and-repair stages. General-purpose agent
 131 frameworks such as OpenHands (Wang et al., 2025) provide open tooling for agents and show com-
 132 petitive performance on SWEBENCH. Despite diverse implementations, these systems share core
 133 components (planning and tool-use) and must reason over large codebases via sequences of tool
 134 calls. This creates a critical need to maintain exploration and diversity throughout trajectories to
 135 enable more effective solution space exploration. Our work focuses on this gap by aligning models
 136 specifically for multi-turn, tool-using SWE tasks while preserving trajectory-level policy entropy,
 thereby enabling more effective exploration over repositories.

137 **Test-Time Inference Strategies.** TTS strategies improve performance by sampling more candi-
 138 dates, searching deeper, and verifying outputs (Snell et al., 2024; Beeching et al.; Yao et al., 2023;
 139 Xu et al., 2024a). These include Best-of- N sampling with verifier reranking and structured search
 140 methods such as Tree-of-Thoughts (Yao et al., 2023), which let models explore alternative reason-
 141 ing paths and self-evaluate. However, the returns from TTS depend on candidate diversity: when
 142 generations collapse to a narrow solution space, additional samples and deeper search provide di-
 143 minishing gains. Moreover, self-evaluation is not always reliable, which can lead to the incorrect
 144 selection of the best trajectory. We address these challenges by pairing ENTROPO with a hybrid
 145 best-trajectory selector that combines a learned verifier model with model-free approaches. This
 146 hybrid approach improves robustness to verifier errors and better exploits the increased diversity
 147 produced by ENTROPO, yielding stronger empirical gains as test-time compute scales.

150 3 PROPOSED TECHNIQUE

152 We propose ENTROPO, an entropy-enhanced preference optimization framework for multi-turn,
 153 tool-using coding agents. As shown in Figure 1, we use an agent that follows the standard SWE
 154 workflow to interact with a sandboxed repository environment and receive execution feedback at
 155 each turn. For TTS, we launch parallel rollouts to collect a set of trajectories for each issue. These
 156 trajectories are then scored by a hybrid selector that combines a model-based verifier with model-
 157 free approaches. The top-scoring trajectory is selected to submit as the final patch and is evaluated by
 158 the benchmark tests. Our core contributions are a novel *training objective* that preserves trajectory-
 159 level diversity and a *hybrid selection* mechanism that effectively exploits this diversity. To do so, we
 160 augment the standard preference optimization objective with an explicit entropy regularization term,
 161 which directly encourages the policy to maintain a broader distribution over potential solutions. For
 the agent itself, we build upon a standard scaffold, avoiding the introduction of new tool schemas.

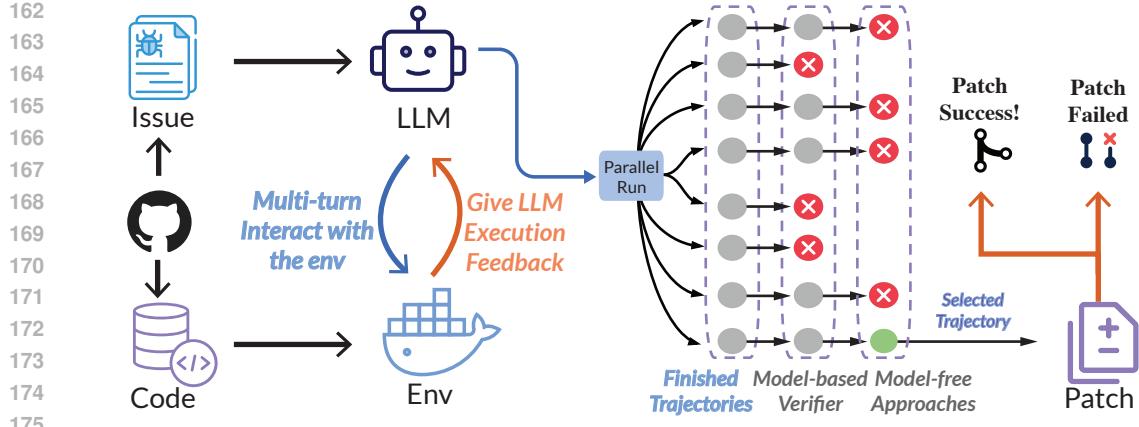


Figure 1: **Overview of ENTROPO with TTS.** Given an issue and a repository, an LLM agent interacts with a sandboxed environment over multiple turns, receiving execution feedback. We run parallel rollouts to produce a pool of candidate trajectories. A hybrid selector ranks trajectories using a model-based verifier and model-free approaches, and selects the best trajectory to submit.

3.1 PROBLEM SETUP AND ASSUMPTION

We frame the multi-turn, tool-assisted coding task as a finite-horizon episodic Markov Decision Process (MDP), represented by the tuple $\mathcal{M} = \langle \mathcal{S}, \mathcal{A}, H, \mathbb{P}, d_0, u \rangle$. Here, \mathcal{S} is the state space, \mathcal{A} is the action space, H is the maximum number of turns (horizon), \mathbb{P} is the transition dynamics, d_0 is the initial state distribution, and u is a trajectory-level utility function.

An initial state $s_1 = x \sim d_0$ corresponds to a coding problem statement. At each step $h \in \{1, \dots, H\}$, the agent’s policy $\pi(a_h|s_h)$ observes the current state s_h , which contains the full interaction history, and generates an action a_h (e.g., a bash command). The environment executes a_h , returns an observation o_h (e.g., compiler output, test results, or tool feedback), and transitions to the next state $s_{h+1} = (s_h, a_h, o_h)$. This sequential process generates a trajectory $\tau = (x, a_1, o_1, \dots, a_H, o_H)$, from which we construct a preference dataset \mathcal{D} .

Our goal is to optimize the agent’s policy π using preference feedback, formalized under the following assumption.

Assumption 3.1. *We model the probability of preferring one completion over another using the Bradley-Terry model (Bradley & Terry, 1952). Given a problem x , the probability that a completion y^+ is preferred over y^- ($y^+ \succ y^-$) is given by: $P(y^+ \succ y^-|x) = \sigma(u(x, y^+) - u(x, y^-))$ where u is a latent utility function that scores completions and $\sigma(\cdot)$ is the sigmoid function. The optimal utility function u^* is learned by maximizing the log-likelihood of the observed preferences in a dataset \mathcal{D} : $u^* = \arg \max_u \mathbb{E}_{(x, y^+, y^-) \sim \mathcal{D}} [\log \sigma(u(x, y^+) - u(x, y^-))]$.*

In our setting, we rely on **trajectory-level** preference signals. These are supplied by an automated oracle that determines if the final code in a trajectory passes a suite of unit tests. A trajectory that passes is strictly preferred over one that fails.

3.2 ALGORITHMIC FORMULATION OF ENTROPO

Standard preference optimization methods, such as DPO (Rafailov et al., 2023) align a policy with a preference dataset by maximizing the likelihood of preferred responses. While effective, this objective often causes the policy to collapse its probability mass onto a narrow set of “winning” solutions. This phenomenon, known as diversity collapse (Murthy et al., 2025), is especially detrimental in complex, multi-step SWE tasks. It hampers the effectiveness of TTS techniques—such as parallel sampling or tree search—because repeated sampling yields redundant candidates, offering diminishing returns and preventing the discovery of potentially superior alternative solutions.

To counteract this, we augment the standard preference optimization objective with a weighted entropy regularization term, $\lambda H(\pi)$. This term directly penalizes low-entropy policies, encouraging

the model to maintain a broader distribution over viable action sequences. This ensures the model not only learns what constitutes a high-quality trajectory but also retains the stochasticity needed to explore a diverse set of candidates at inference time, thereby maximizing the benefit of TTS.

Our full objective, framed as a regularized MDP, is to find the optimal policy π^* that maximizes the expected utility with respect to a reference policy π_{ref} :

$$\max_{\pi} \mathbb{E}_{x \sim d_0, a_h \sim \pi(\cdot|s_h), o_h \sim \mathbb{P}_h(\cdot|s_h, a_h)} [u(x, y) + \lambda \cdot H(\pi(\cdot|x)) - \beta \cdot D_{KL}(\pi||\pi_{ref})] \quad (1)$$

where the parameter λ promotes diversity and the coefficient β penalizes the deviation between the learned policy and the referenced policy π_{ref} . $H(\pi(\cdot|x)) = -\pi(\cdot|x) \log \pi(\cdot|x)$ denotes the entropy of the learned policy π . By decoupling the KL divergence, we can rewrite the objective as

$$\max_{\pi} \mathbb{E}_{x \sim d_0, a_h \sim \pi(\cdot|s_h), o_h \sim \mathbb{P}_h(\cdot|s_h, a_h)} [u(x, y) + \alpha \cdot H(\pi(\cdot|x)) - \beta \cdot H(\pi, \pi_{ref})] \quad (2)$$

where $\alpha = \lambda + \beta$ and $H(\pi, \pi_{ref}) = -\pi(\cdot|x) \log \pi_{ref}(\cdot|x)$ represents the cross entropy between the learned policy π and the referenced policy π_{ref} .

First, we establish the solution for the single-turn case ($H = 1$), which forms the basis for our multi-turn algorithm.

Proposition 3.2. *In the single-turn case ($H = 1$), the optimal policy for the objective in equation 2 is given by $\pi(y|x) \propto \pi_{ref}(y|x)^{\beta/\alpha} \exp(\frac{u(x,y)}{\alpha})$. This optimal policy is identical to the one learned by optimizing the following DPO-style loss function:*

$$\max_{\pi} \mathbb{E}_{(x, y^+, y^-) \sim D} \left[\log \sigma \left(\alpha \left[\log \frac{\pi(y^+|x)}{\pi_{ref}(y^+|x)^{\beta/\alpha}} - \log \frac{\pi(y^-|x)}{\pi_{ref}(y^-|x)^{\beta/\alpha}} \right] \right) \right] \text{ where } y^+ \succ y^-.$$

The proof of Proposition 3.2 can be found in Appendix B. Note that Proposition 3.2 aligns with the conclusion in Slocum et al. (2025), which separates the entropy from the KL divergence term. For the multi-turn case, we follow the derivation framework of Xiong et al. (2025) using backward induction, which is essentially based on Ziebart (2010). The key insight is that the optimal policy and value functions can be defined recursively from the final step $h = H$ to the initial step $h = 1$. This dynamic programming approach leads to the following general solution.

Proposition 3.3. *We can recursively define the following Q value functions for a MDP with horizon H .*

$$Q_{M,h}(s_h, a_h) = \begin{cases} u(s_h, a_h) & \text{if } h = H \\ \mathbb{E}_{o_h \sim \mathbb{P}(\cdot|s_h, a_h)} [V_{M,h+1}(s_{h+1})] & \text{if } h \leq H - 1 \end{cases} \quad (3)$$

Based on the definition above, we have:

$$\pi_{M,h}(a_h|s_h) = \frac{\pi_{ref,h}(a_h|s_h)^{\beta/\alpha}}{Z_h(s_h)} \exp\left(\frac{Q_{M,h}(s_h, a_h)}{\alpha}\right) \quad (4)$$

$$V_{M,h}(s_h) = \mathbb{E}_{a_h \sim \pi_{M,h}(\cdot|s_h)} [Q_{M,h}(s_h, a_h) + \alpha H(\pi(\cdot|s_h)) - \beta H(\pi, \pi_{ref})] = \alpha \log Z_h(s_h)$$

$$\text{where } Z_h(s_h) = \sum_{a_h \in \mathcal{A}} \pi_{ref,h}(a_h|s_h)^{\beta/\alpha} \exp\left(\frac{Q_{M,h}(s_h, a_h)}{\alpha}\right).$$

We provide a detailed analysis in Appendix C. This recursive formulation provides the foundation for our ENTROPO training objectives. Additionally, Appendix F offers a more concise, self-contained alternative proof based directly on Ziebart (2010).

ENTROPO- DPO. For a preference pair (τ^+, τ^-) , the loss is:

$$\begin{aligned} L_{EntroPO-DPO}(\theta) \\ = - \sum_{(x, \tau^+, \tau^-) \in D} \log \sigma \left(\alpha \sum_{h=1}^H \left[\log \frac{\pi_{\theta,h}(a_h^+|s_h^+)}{\pi_{ref,h}(a_h^+|s_h^+)^{\beta/\alpha}} - \log \frac{\pi_{\theta,h}(a_h^-|s_h^-)}{\pi_{ref,h}(a_h^-|s_h^-)^{\beta/\alpha}} \right] \right) \end{aligned} \quad (5)$$

ENTROPO- KTO. For a dataset \mathcal{D} of trajectories labeled as “desirable” or “undesirable”, we first define an implicit reward for a trajectory τ as $r_\theta(x, y) = \sum_{h=1}^H \log \frac{\pi_{M,h}(a_h|s_h)}{\pi_{ref,h}(a_h|s_h)^{\beta/\alpha}}$. The ENTROPO-KTO loss encourages high rewards for desirable trajectories and low rewards for undesirable ones, relative to a margin z_0 :

$$L_{EntroPO-KTO}(\theta) = \mathbb{E}_{x, y \sim D} [\lambda_y - V(x, y)] \quad (6)$$

270 where

$$272 \quad 273 \quad V(x, y) = \begin{cases} \lambda_+ \sigma(\alpha(r_\theta(x, y) - z_0)) & \text{if } \tau \text{ is desirable} \\ \lambda_- \sigma(\alpha(z_0 - r_\theta(x, y))) & \text{if } \tau \text{ is undesirable} \end{cases}$$

274 Here, λ_+ and λ_- are hyper-parameters weighting the loss for desirable and undesirable examples,
 275 respectively, and $z_0 = \mathbb{E}_{x \sim \mathcal{D}, \tau \sim \pi(\cdot|x)} \sum_{h=1}^H \left[-H(\pi(\cdot|s_h)) + \frac{\beta}{\alpha} H(\pi(\cdot|s_h), \pi_{ref}(\cdot|s_h)) \right]$.
 276

277 278 **3.3 TRAINING PIPELINE**

280 Our training process follows a two-stage pipeline. The first stage is SFT, where we teach the base
 281 model to use tools reliably. We generate a dataset \mathcal{D}_{SFT} of successful interaction trajectories using
 282 a strong teacher model. The student model is then fine-tuned on these examples to learn stable
 283 tool-use patterns of the scaffold.

284 The second stage is preference learning with ENTROPO. After SFT, we generate a new pool of
 285 trajectories by rolling out both the SFT-tuned student model and teacher model. **We use a SWE**
 286 **dataset with commit-corresponding test cases for each instance so that we can get the preference**
 287 **label for each trajectory. If the final patch passes the test cases, it is labeled as preferred. Otherwise,**
 288 **it is labeled as not preferred.** From this pool, we create a preference dataset $\mathcal{D}_{\text{pref}}$ by pairing
 289 trajectories for the same problem, labeling the one with the higher score as preferred. The SFT
 290 model is then further fine-tuned on this dataset using our entropy-enhanced objective, which aligns
 291 the model with successful problem-solving strategies while preserving the policy diversity crucial
 292 for test-time scaling.

293 294 **3.4 TEST-TIME SCALING WITH HYBRID SELECTOR**

295 At inference, we use TTS by running N parallel rollouts for each testing instance, producing
 296 trajectories $\{\tau^{(n)}\}_{n=1}^N$ from the ENTROPO-tuned policy. We **follow prior work** (Jain et al., 2025) to
 297 apply a hybrid selector that combines model-free approaches with a model-based verifier to prune
 298 bad candidates and robustly pick a final patch. The verifier $p_\phi(x, \tau) \in [0, 1]$ is a learned scorer
 299 trained on $\mathcal{D}_{\text{pref}}$ with supervised learning. Unlike prior work (Jain et al., 2025) that uses p_ϕ as the
 300 major ranking criterion, we use it as a conservative filter.

301 We apply the following filters in order to obtain a candidate set $\{\tau^{(n)}\}$ and then choose a single
 302 trajectory:
 303

- 304 • **Finished score (model-free).** Discard any τ truncated by step/token limits: keep only
 305 $\mathbb{1}(\text{finished}(\tau) = 1)$.
- 306 • **Regression test score (model-free).** Run repository regression checks and keep only trajectories
 307 that do not compromise existing functionality: $\mathbb{1}(\text{regress_free}(\tau) = 1)$.
- 308 • **Verifier probability (model-based).** Filter out very unlikely candidates using a low threshold η :
 309 keep $\{\tau \in \mathcal{S} : p_\phi(x, \tau) \geq \eta\}$; we do not rank by p_ϕ .
- 310 • **Step-count heuristic (model-free).** For example, for SWEBENCH-VERIFIED, longer successful
 311 trajectories typically reflect broader exploration (e.g., more comprehensive tests) before patch sub-
 312 mission. From the remaining set, select $\tau^* \in \arg \max_{\tau \in \{\tau^{(n)}\}} L(\tau)$, where $L(\tau)$ is the number
 313 of environment interactions.

314 This hybrid selector improves sampling effectiveness and amplifies the gains from parallel rollouts.
 315 As N grows, the selector can improve the final solve ratio by pruning failed or low-quality rollouts
 316 and favoring well-executed, thoroughly explored solutions.

317 318 **4 EXPERIMENTS**

320 In this section, we show the performance of ENTROPO on benchmarks with R2E (Jain et al., 2025)
 321 agent scaffold. §4.1 details datasets, models, and training/inference configurations, including verifier
 322 training and the TTS budget. §4.2 presents main results and comparisons to official leaderboard
 323 submissions. §4.3 analyzes scaling with the number of parallel rollouts N and ablates ENTROPO
 components and hyperparameters. Additional implementation details are provided in Appendix E.

324 **Table 1: Resolve rate (pass@1, %) on benchmarks.** Results are mean \pm std over three runs and
 325 the TTS uses $N = 16$ parallel rollouts. For each model, the best result is highlighted in green.
 326

Model	Origin	SFT	ENTROPO-KTO	ENTROPO-DPO	ENTROPO-KTO+TTS	ENTROPO-DPO+TTS
SWEBENCH-VERIFIED						
Qwen3-4B	1.7 (± 0.1)	2.4 (± 0.3)	5.2 (± 0.4)	4.9 (± 0.7)	11.5 (± 0.6)	11.1 (± 0.3)
Gemma-3-27b	7.1 (± 0.5)	7.0 (± 0.4)	10.1 (± 0.4)	10.5 (± 0.3)	17.6 (± 0.3)	17.7 (± 0.4)
Qwen3-Coder-30B	37.7 (± 0.2)	43.8 (± 0.8)	51.6 (± 0.7)	49.8 (± 0.4)	59.4 (± 0.3)	57.7 (± 0.7)
GLM-4.5-Air	51.4 (± 0.2)	51.5 (± 0.8)	53.5 (± 0.7)	52.5 (± 0.7)	58.7 (± 0.1)	57.5 (± 0.4)
SWEBENCH-LITE						
Qwen3-4B	1.2 (± 0.3)	1.3 (± 0.5)	4.8 (± 0.4)	4.7 (± 0.5)	10.0 (± 0.8)	10.4 (± 0.4)
Gemma-3-27b	6.0 (± 0.8)	5.9 (± 0.4)	10.4 (± 0.2)	10.4 (± 0.7)	14.6 (± 0.6)	14.4 (± 0.7)
Qwen3-Coder-30B	28 (± 0.3)	33.9 (± 0.3)	44.0 (± 0.3)	43.7 (± 0.8)	49.2 (± 0.7)	48.2 (± 0.7)
GLM-4.5-Air	43.5 (± 0.6)	43.9 (± 0.4)	44.9 (± 0.4)	44.6 (± 0.5)	48.4 (± 0.1)	47.9 (± 0.3)

330 4.1 IMPLEMENTATION DETAILS

331 **Datasets.** For SFT tuning, we use the SWE-Smith dataset (Yang et al., 2025), which does not rely
 332 on oracles. For preference learning and verifier model training, we use the R2E-Gym-subset (Jain
 333 et al., 2025), whose oracles provide trajectory-level utilities. We evaluate on SWEBENCH-VERIFIED
 334 and SWEBENCH-LITE, reporting resolve rates based on their official protocols. All performance
 335 numbers are pass@1 and no hint or web search is used.

336 **Models.** We evaluate a diverse set of models from three different families, with sizes ranging from
 337 4B to 106B: Qwen3-4B-Instruct-2507 (Team, 2025), Gemma-3-27b-it (Team et al., 2025), Qwen3-
 338 Coder-30B-A3B-Instruct, and GLM-4.5-Air-106B (Zeng et al., 2025a). The verifier is trained with
 339 Qwen3-Coder-30B-A3B-Instruct for its strong coding quality and high token throughput.

340 **Training and Inference.** We train with LLaMAFactory (Zheng et al., 2024b) and set the maximum
 341 training sequence length to 18,000 tokens to accommodate long SWE trajectories. To manage mem-
 342 ory, we use QLoRA (Dettmers et al., 2023) for GLM-4.5-Air and LoRA (Gao et al., 2021) for the
 343 other models. Unless noted, ENTROPO uses $\alpha = 1.1$ and the sensitivity to α is reported in §4.3.
 344 During SFT and preference training, we mask system and user prompts and make the LLM response
 345 as the learning target. At inference, we allow up to 200 environment interactions per rollout and a
 346 maximum sequence length of 131,072 tokens, with temperature 0.7 and $\text{top_k} = 20$. For test-time
 347 scaling, we run $N = 16$ parallel rollouts for open-weight models. To account for sampling random-
 348 ness, all experiments on open-weight models are run three times, and we report mean \pm standard
 349 deviation.

350 4.2 MAIN RESULTS

351 **Comparison with Original and SFT-tuned Models.** As shown in Table 1, ENTROPO con-
 352 sistently outperforms both the original and SFT-tuned models across all benchmarks, even without
 353 TTS. For models like Gemma-3-27b and GLM-4.5-Air, standard SFT yields minimal gains over the
 354 base models. In contrast, ENTROPO delivers substantial improvements, which we attribute to its
 355 entropy-regularized objective that preserves policy diversity. This increased diversity is critical for
 356 effective exploration and better generalization to unseen problems. When combined with TTS, the
 357 performance gains are further amplified, aligning with our theoretical analysis that diversity is key
 358 to maximizing the benefits of test-time compute. **Note that here the results for Qwen3-Coder-30B**
 359 **are different from the original paper because we use the R2E scaffold instead of the OpenHands**
 360 **scaffold and a much shorter maximum context length due to inference cost consideration.**

361 The impact of ENTROPO is particularly evident for smaller models. For instance, the Qwen3-
 362 4B model’s performance is negligible after SFT (1.7% on SWEBENCH-VERIFIED and 1.2% on
 363 SWEBENCH-LITE), indicating a failure to learn the task. However, with ENTROPO and TTS, its
 364 resolve rate surpasses 10%—a remarkable improvement that demonstrates the potential of our ap-
 365 proach to make smaller, more efficient models viable for complex SWE tasks.

366 For larger models, ENTROPO also achieves significant gains. The Qwen3-Coder-30B model trained
 367 with ENTROPO-KTO+TTS reaches 59.4% on SWEBENCH-VERIFIED and 49.2% on SWEBENCH-
 368 LITE, establishing a strong performance baseline. We note that for GLM-4.5-Air, the improvements
 369 from ENTROPO are less pronounced compared to Qwen3-Coder-30B. This is likely due to the use
 370 of QLoRA for fine-tuning GLM-4.5-Air, which is not as effective as LoRA.

378
 379 **Table 2: Resolve rate (pass@1, %) compared to representative SWEBENCH leaderboard sub-**
 380 **missions.** Our entries use the R2E scaffold, and we report the best single run for comparability.
 381 Budgets and scaffolds may vary across submissions.

382 Submission	383 Model	384 Model Size	385 SWEBENCH-VERIFIED ↓	386 SWEBENCH-LITE ↓
<i>Closed Weight Models</i>				
384 Refact.ai	385 Claude3.7/o3/o4-mini	386 -	387 74.4	388 60.0
385 SWE-agent	386 Claude 4 Sonnet	387 -	388 66.6	389 56.7
386 SWE-agent	387 Claude 3.7 Sonnet	388 -	389 62.4	390 48.0
<i>Open Weight Models</i>				
388 OpenHands	389 Qwen3-Coder	390 480B	391 69.6	392 -
389 OpenHands	390 Kimi K2	391 1T	392 65.4	393 -
390 OpenHands	391 GLM-4.5	392 355B	393 64.2	394 -
391 ENTROPO-KTO-TTS	392 Qwen3-Coder	393 30B	394 59.8	395 49.3
392 DeepSWE-TTS	393 Qwen3	394 32B	395 58.8	396 -
393 ENTROPO-KTO	394 Qwen3-Coder	395 30B	396 51.6	397 44.7
394 Skywork-SWE-TTS	395 Qwen2.5	396 32B	397 47	398 -
395 CodeFuse-CGM	396 Qwen2.5	397 72B	398 -	399 44.0
396 KGCompass	397 DeepSeek V3	398 671B	399 -	400 36.7
397 SWE-fixer	398 Qwen2.5	399 72B	400 24.7	401 32.8
398 Moatless	399 Deepseek V3	400 671B	401 -	402 30.7

397
 398 **Comparison to the Official SWEBENCH Leaderboard.** In Table 2, we compare our best-
 399 performing model against submissions on the official SWEBENCH leaderboard. Our results are
 400 highly competitive, particularly among open-weight models. On SWEBENCH-VERIFIED, our 30B
 401 parameter ENTROPO-KTO-TTS model achieves a 59.8% resolve rate, surpassed only by models
 402 with over 10x more parameters (e.g., >350B). On SWEBENCH-LITE, the same model sets a new
 403 state-of-the-art for open-weight models at 49.3%, with our non-TTS version securing the second-
 404 highest rank.

405 Crucially, ENTROPO-KTO-TTS outperforms other TTS-based submissions like DeepSWE-
 406 TTS (Luo et al., 2025) and Skywork-SWE-TTS (Zeng et al., 2025b). This highlights the effectiveness
 407 of our entropy-preserving training, which preserves the policy diversity essential for maximizing
 408 TTS gains. Note that DeepSWE-TTS is online RL-based, showing that our entropy-preserving
 409 offline preference learning can be more effective than online RL. Compared to closed-weight models,
 410 our results are competitive with top-tier models like Claude 3.7 Sonnet, demonstrating that
 411 ENTROPO can significantly narrow the performance gap with commercial models.

413 4.3 ABLATION STUDIES

415 In this section, we perform ablation studies to investigate the impact of different components of
 416 ENTROPO and the sensitivity of the hyperparameters. We mainly focus on the ENTROPO-KTO,
 417 as KTO requires fewer GPU memory compared with DPO, as DPO takes a pair of trajectories to
 418 calculate the gradient during training.

419 **Impact of Entropy Regularization.** To isolate the benefit of our entropy-preserving objective,
 420 we compare ENTROPO-KTO against the M-KTO (Xiong et al., 2025) and SFT on the Qwen3-
 421 Coder-30B model. As shown in Figure 2, ENTROPO-KTO consistently outperforms both baselines.
 422 When $N = 1$, ENTROPO-KTO can outperform both SFT and M-KTO, showing its advantage even
 423 without TTS. The performance gap between ENTROPO-KTO and multi-turn KTO widens with
 424 larger N , confirming that explicit diversity preservation is critical for maximizing the gains from
 425 TTS. Both preference-based methods outperform SFT, which aligns with findings that SFT can
 426 harm generalization (Chu et al., 2025). We conduct a similar experiment on the ENTROPO-DPO
 427 model and the M-DPO model, and the results are shown in Figure 5. The results show a similar
 428 trend to the ENTROPO-KTO experiment.

429 **Hybrid Selector Components.** We analyze the contribution of each component of our hybrid se-
 430 lector at $N = 16$. The left plot in Figure 3 shows that removing any single component degrades
 431 performance, while the full hybrid selector achieves the best results. This confirms that combining
 a learned verifier with model-free approaches is the most effective strategy.

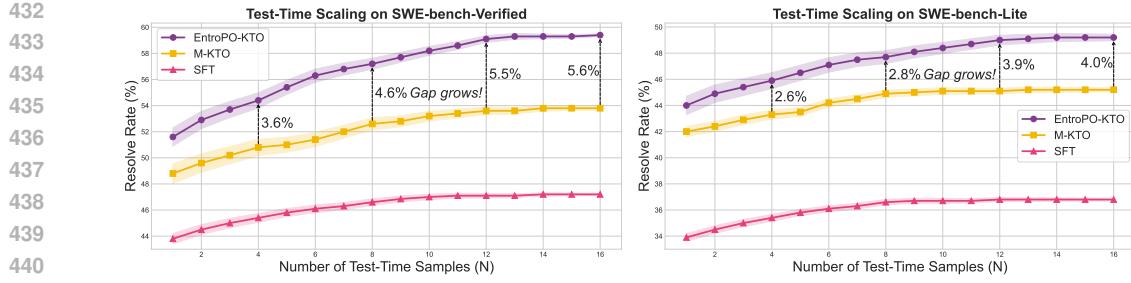


Figure 2: **The Impact of Entropy Regularization on Test-Time Scaling.** Performance of ENTROPO-KTO, M-KTO, and SFT on SWEBENCH-VERIFIED (left) and SWEBENCH-LITE (right) as the number of parallel rollouts (N) increases. ENTROPO’s entropy regularization consistently yields better scaling.

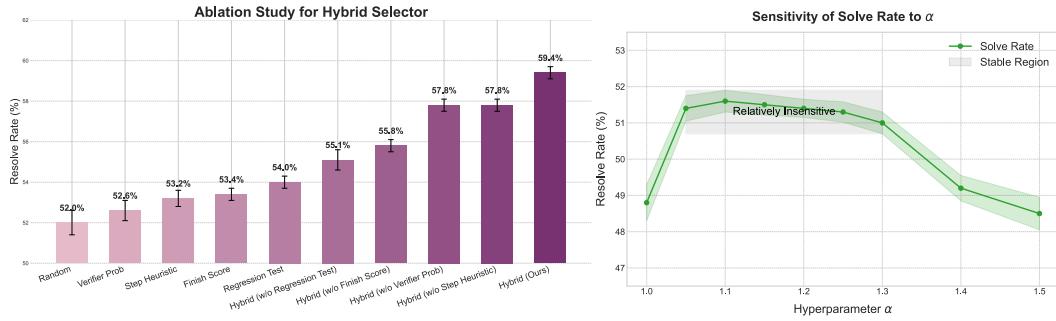


Figure 3: **Ablation Studies on SWEBENCH-VERIFIED.** (Left) Performance contribution of each component in our hybrid selector at $N = 16$. (Right) Sensitivity analysis of the hyperparameter α for ENTROPO-KTO.

Sensitivity to α . The right plot in Figure 3 shows the performance of ENTROPO-KTO across different values of the hyperparameter α . The model is robust to a reasonable range of α , indicating that it is not a sensitive hyperparameter. Performance degrades only when α becomes excessively large, causing the training gradients to vanish.

Impact of Temperature on Performance. We also investigate whether increasing sampling temperature can replicate the benefits of ENTROPO. As detailed in §E.5, simply raising the temperature fails to deliver comparable performance gains. Instead, it degrades performance by introducing excessive sampling randomness, confirming that temperature tuning is no substitute for the principled entropy regularization of ENTROPO.

5 DISCUSSIONS AND LIMITATIONS

While ENTROPO provides a robust framework for enhancing multi-turn agents, we acknowledge several limitations and future directions. Our TTS experiments are limited to $N = 16$ parallel rollouts due to budget constraints. As our results in Figure 2 suggest that performance gains scale with N , exploring this behavior with a larger number of rollouts could more conclusively demonstrate the benefits of diversity preservation. Additionally, our end-to-end rollout strategy could be enhanced by incorporating more sophisticated search techniques like Tree-of-Thought (Yao et al., 2023) or solution merging methods (Luong et al., 2025) to explore the solution space more effectively.

Moreover, we acknowledge that the TTS component is an engineering design, guided by empirical observations on SWE tasks, rather than a theoretically guaranteed strategy. As our ablation study in Figure 3 validates, this approach proves to be effective in practice. However, its direct application may not generalize universally to all software tasks or other domains without adaptation. This highlights a promising direction for future research towards the development of a more principled and theoretically backed TTS framework. Such a system might learn an adaptive selection policy

486 or incorporate uncertainty estimates to move beyond fixed heuristics. We hope our study, which
487 validates the effectiveness of our current empirical design, will inspire the community to explore
488 these more robust and generalizable TTS systems.

489 Furthermore, due to computational resource constraints, our current implementation of ENTROPO
490 is based on offline preference learning. However, the core principle of entropy regularization can be
491 extended to an online reinforcement learning setting. In such a setup, one could explicitly reward the
492 agent for generating diverse trajectories, potentially leading to even more robust policies. We leave
493 this extension to online RL as a promising direction for future work. Finally, although validated on
494 software engineering, ENTROPO is task-agnostic and could be applied to other complex reasoning
495 domains like competitive mathematics or scientific discovery. We hope our work encourages further
496 exploration into diversity-preserving alignment for building more capable and robust LLM agents.

498 6 CONCLUSION

500 In this work, we introduce ENTROPO, an entropy-enhanced preference optimization framework de-
501 signed to improve the performance of multi-turn, tool-using agents on complex SWE tasks. By ex-
502 plicitly regularizing the preference objective to preserve policy diversity, ENTROPO overcomes the
503 limitations of standard alignment methods that often lead to diversity collapse. ENTROPO achieves
504 state-of-the-art results among open-weight models on the SWEBENCH leaderboard, establishing a
505 robust and effective method for building more powerful and reliable coding agents. We hope our
506 work encourages further exploration into diversity-preserving alignment for building more capable
507 and robust LLM agents.

508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

540
541
ETHICS STATEMENT542
543
544
545
546
547
548
549
We have adhered to the ICLR Code of Ethics in conducting this research. Our work focuses on
enhancing the capabilities of open-weight LLMs for complex software engineering tasks. By developing
methods that improve these publicly accessible models, we aim to foster transparency and reduce
the performance gap between open-weight and closed-weight proprietary models. The datasets
used for training are derived from publicly available sources, and we are not aware of any personally
identifiable information or offensive content within them. Our research does not involve human
subjects, and we do not foresee any direct negative societal impacts or ethical concerns arising from
our methodology or its outcomes.550
551
REPRODUCIBILITY STATEMENT
552553
554
555
556
557
558
559
560
We are committed to ensuring the reproducibility of our research. All implementation details, including
datasets, models, and training/inference configurations, are thoroughly described in §4.1.
The theoretical analysis of our proposed method is detailed in §3 with complete proofs provided
in Appendix B. To facilitate full reproducibility, we will release all our code, the fine-tuned model
weights, and the specific data splits used for our experiments upon acceptance of the paper. While
the links are withheld for the anonymous review process, we pledge to make all artifacts publicly
available on Hugging Face, ensuring that the research community can easily verify, use, and build
upon our work.561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

594 REFERENCES
595

596 Aradhye Agarwal, Ayan Sengupta, and Tanmoy Chakraborty. First finish search: Efficient test-time
597 scaling in large language models. *arXiv preprint arXiv:2505.18149*, 2025.

598 Antonis Antoniades, Albert Örwall, Kexun Zhang, Yuxi Xie, Anirudh Goyal, and William Wang.
599 Swe-search: Enhancing software agents with monte carlo tree search and iterative refinement.
600 *arXiv preprint arXiv:2410.20285*, 2024.

601 Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
602 Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless
603 assistant with reinforcement learning from human feedback. *arXiv preprint arXiv:2204.05862*,
604 2022.

605 Edward Beeching, Lewis Tunstall, and Sasha Rush. Scaling test-time compute with
606 open models. URL [https://huggingface.co/spaces/HuggingFaceH4/
607 blogpost-scaling-test-time-compute](https://huggingface.co/spaces/HuggingFaceH4/blogpost-scaling-test-time-compute).

608 Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method
609 of paired comparisons. *Biometrika*, 39(3/4):324–345, 1952.

610 Neil Chowdhury, James Aung, Chan Jun Shern, Oliver Jaffe, Dane Sherburn, Giulio Starace, Evan
611 Mays, Rachel Dias, Marwan Aljubeh, Mia Glaese, Carlos E. Jimenez, John Yang, Leyton Ho,
612 Tejal Patwardhan, Kevin Liu, and Aleksander Madry. Introducing SWE-bench verified, 2024.
613 URL <https://openai.com/index/introducing-swe-bench-verified/>.

614 Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans, Quoc V
615 Le, Sergey Levine, and Yi Ma. Sft memorizes, rl generalizes: A comparative study of foundation
616 model post-training. *arXiv preprint arXiv:2501.17161*, 2025.

617 Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
618 of quantized llms. *Advances in neural information processing systems*, 36:10088–10115, 2023.

619 Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela. Kto: Model
620 alignment as prospect theoretic optimization. *arXiv preprint arXiv:2402.01306*, 2024.

621 Jiaxuan Gao, Wei Fu, Minyang Xie, Shusheng Xu, Chuyi He, Zhiyu Mei, Banghua Zhu, and Yi Wu.
622 Beyond ten turns: Unlocking long-horizon agentic search with large-scale asynchronous rl. *arXiv
623 preprint arXiv:2508.07976*, 2025.

624 Lei Gao, Zeyuan Yang, Yutong Chen, Zechun Zhang, Zhongyuan Zhang, Zhiyuan Wu, Wei Zhang,
625 and Ting Liu. Lora: Low-rank adaptation of large language models. In *International Conference
626 on Learning Representations*, 2021.

627 Alexander Golubev, Maria Trofimova, Sergei Polezhaev, Ibragim Badertdinov, Maksim Nekrashevich,
628 Anton Shevtsov, Simon Karasik, Sergey Abramov, Andrei Andriushchenko, Philipp Fisin, et al. Training long-context, multi-turn software engineering agents with reinforcement learning.
629 *arXiv preprint arXiv:2508.03501*, 2025.

630 Michael Hassid, Gabriel Synnaeve, Yossi Adi, and Roy Schwartz. Don’t overthink it. preferring
631 shorter thinking chains for improved llm reasoning. *arXiv preprint arXiv:2505.17813*, 2025.

632 Jiwoo Hong, Noah Lee, and James Thorne. Orpo: Monolithic preference optimization without refer-
633 ence model. In *Proceedings of the 2024 Conference on Empirical Methods in Natural Language
634 Processing*, pp. 11170–11189, 2024.

635 Naman Jain, Jaskirat Singh, Manish Shetty, Liang Zheng, Koushik Sen, and Ion Stoica. R2e-gym:
636 Procedural environments and hybrid verifiers for scaling open-weights swe agents. *arXiv preprint
637 arXiv:2504.07164*, 2025.

638 Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
639 Narasimhan. Swe-bench: Can language models resolve real-world github issues? In *The Twelfth
640 International Conference on Learning Representations*, 2024.

648 Jiyeon Kim, Hyunji Lee, Hyowon Cho, Joel Jang, Hyeonbin Hwang, Seungpil Won, Youbin Ahn,
 649 Dohaeng Lee, and Minjoon Seo. Knowledge entropy decay during language model pretraining
 650 hinders new knowledge acquisition. *arXiv preprint arXiv:2410.01380*, 2024.

651

652 Robert Kirk, Ishita Mediratta, Christoforos Nalmpantis, Jelena Luketina, Eric Hambro, Edward
 653 Grefenstette, and Roberta Raileanu. Understanding the effects of rlhf on llm generalisation and
 654 diversity. *arXiv preprint arXiv:2310.06452*, 2023.

655

656 Jack Lanchantin, Angelica Chen, Shehzaad Dhuliawala, Ping Yu, Jason Weston, Sainbayar
 657 Sukhbaatar, and Ilia Kulikov. Diverse preference optimization. *arXiv preprint arXiv:2501.18101*,
 658 2025.

659

660 Ziniu Li, Congliang Chen, Tian Xu, Zeyu Qin, Jiancong Xiao, Zhi-Quan Luo, and Ruoyu
 661 Sun. Preserving diversity in supervised fine-tuning of large language models. *arXiv preprint
 arXiv:2408.16673*, 2024.

662

663 Michael Luo, Naman Jain, Jaskirat Singh, Sijun Tan, Ameen Patel, Qingyang Wu, Alpay Ariyak,
 664 Colin Cai, Tarun Venkat, Shang Zhu, Ben Athiwaratkun, Manan Roongta, Ce Zhang, Li Erran
 665 Li, Raluca Ada Popa, Koushik Sen, and Ion Stoica. DeepSwe: Training a state-of-the-art coding
 666 agent from scratch by scaling rl, 2025. Notion Blog.

667

668 Thang Luong, Edward Lockhart, et al. Advanced version of gemini with deep think officially
 achieves gold-medal standard at the international mathematical olympiad. *DeepMind Blog*, 2025.

669

670 Yu Meng, Mengzhou Xia, and Danqi Chen. Simpo: Simple preference optimization with a
 671 reference-free reward. *Advances in Neural Information Processing Systems*, 37:124198–124235,
 2024.

672

673 Sonia Krishna Murthy, Tomer Ullman, and Jennifer Hu. One fish, two fish, but not the whole sea:
 674 Alignment reduces language models' conceptual diversity. In *Proceedings of the 2025 Conference
 675 of the Nations of the Americas Chapter of the Association for Computational Linguistics: Human
 676 Language Technologies (Volume 1: Long Papers)*, pp. 11241–11258, 2025.

677

678 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 679 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
 680 low instructions with human feedback. *Advances in neural information processing systems*, 35:
 27730–27744, 2022.

681

682 Laura O'Mahony, Leo Grinsztajn, Hailey Schoelkopf, and Stella Biderman. Attributing mode col-
 683 lapse in the fine-tuning of large language models. In *ICLR 2024 Workshop on Mathematical and
 684 Empirical Understanding of Foundation Models*, volume 2, 2024.

685

686 Vishakh Padmakumar and He He. Does writing with language models reduce content diversity?
arXiv preprint arXiv:2309.05196, 2023.

687

688 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 689 Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances
 690 in Neural Information Processing Systems*, 36:53728–53741, 2023.

691

692 Matthew Renze. The effect of sampling temperature on problem solving in large language models.
 In *Findings of the association for computational linguistics: EMNLP 2024*, pp. 7346–7356, 2024.

693

694 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 695 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

696

697 Amrith Setlur, Nived Rajaraman, Sergey Levine, and Aviral Kumar. Scaling test-time compute
 without verification or rl is suboptimal. *arXiv preprint arXiv:2502.12118*, 2025.

698

699 Stewart Slocum, Asher Parker-Sartori, and Dylan Hadfield-Menell. Diverse preference learning for
 700 capabilities and alignment. In *International Conference on Learning Representations*, 2025.

701

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
 can be more effective than scaling model parameters. *arXiv preprint arXiv:2408.03314*, 2024.

702 Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
 703 Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, et al. Gemma 3 technical
 704 report. *arXiv preprint arXiv:2503.19786*, 2025.

705 Qwen Team. Qwen3 technical report, 2025. URL <https://arxiv.org/abs/2505.09388>.

707 Chaoqi Wang, Yibo Jiang, Chenghao Yang, Han Liu, and Yuxin Chen. Beyond reverse kl: General-
 708 izing direct preference optimization with diverse divergence constraints. In *International Confer-
 709 ence on Learning Representations*, 2024.

710 Xingyao Wang, Boxuan Li, Yufan Song, Frank F. Xu, Xiangru Tang, Mingchen Zhuge, Jiayi Pan,
 711 Yueqi Song, Bowen Li, Jaskirat Singh, Hoang H. Tran, Fuqiang Li, Ren Ma, Mingzhang Zheng,
 712 Bill Qian, Yanjun Shao, Niklas Muennighoff, Yizhe Zhang, Binyuan Hui, Junyang Lin, Robert
 713 Brennan, Hao Peng, Heng Ji, and Graham Neubig. Openhands: An open platform for AI soft-
 714 ware developers as generalist agents. In *The Thirteenth International Conference on Learning
 715 Representations*, 2025. URL <https://openreview.net/forum?id=OJd3ayDDoF>.

716 Yuxiang Wei, Olivier Duchenne, Jade Copet, Quentin Carbonneaux, Lingming Zhang, Daniel Fried,
 717 Gabriel Synnaeve, Rishabh Singh, and Sida I Wang. Swe-rl: Advancing llm reasoning via rein-
 718 forcement learning on open software evolution. *arXiv preprint arXiv:2502.18449*, 2025.

720 Chunqiu Steven Xia, Yinlin Deng, Soren Dunn, and Lingming Zhang. Agentless: Demystifying
 721 llm-based software engineering agents. *arXiv preprint*, 2024.

722 Wei Xiong, Chengshuai Shi, Jiaming Shen, Aviv Rosenberg, Zhen Qin, Daniele Calandriello, Misha
 723 Khalman, Rishabh Joshi, Bilal Piot, Mohammad Saleh, et al. Building math agents with multi-
 724 turn iterative preference learning. In *ICLR*, 2025.

726 Shicheng Xu, Liang Pang, Huawei Shen, Xueqi Cheng, and Tat-Seng Chua. Search-in-the-chain:
 727 Interactively enhancing large language models with search for knowledge-intensive tasks. In
 728 *Proceedings of the ACM Web Conference 2024*, pp. 1362–1373, 2024a.

729 Shusheng Xu, Wei Fu, Jiaxuan Gao, Wenjie Ye, Weilin Liu, Zhiyu Mei, Guangju Wang, Chao Yu,
 730 and Yi Wu. Is dpo superior to ppo for llm alignment? a comprehensive study. *arXiv preprint
 731 arXiv:2404.10719*, 2024b.

732 John Yang, Carlos E Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik Narasimhan,
 733 and Ofir Press. Swe-agent: Agent-computer interfaces enable automated software engineering.
 734 *Advances in Neural Information Processing Systems*, 37:50528–50652, 2024a.

736 John Yang, Carlos E Jimenez, Alexander Wettig, Kilian Lieret, Shunyu Yao, Karthik R Narasimhan,
 737 and Ofir Press. SWE-agent: Agent-computer interfaces enable automated software engineering.
 738 In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024b. URL
 739 <https://arxiv.org/abs/2405.15793>.

740 John Yang, Kilian Lieret, Carlos E. Jimenez, Alexander Wettig, Kabir Khandpur, Yanzhe Zhang,
 741 Binyuan Hui, Ofir Press, Ludwig Schmidt, and Diyi Yang. Swe-smith: Scaling data for software
 742 engineering agents, 2025. URL <https://arxiv.org/abs/2504.21798>.

744 Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
 745 Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. *Ad-
 746 vances in neural information processing systems*, 36:11809–11822, 2023.

747 Aohan Zeng, Xin Lv, Qinkai Zheng, Zhenyu Hou, Bin Chen, Chengxing Xie, Cunxiang Wang,
 748 Da Yin, Hao Zeng, Jiajie Zhang, et al. Glm-4.5: Agentic, reasoning, and coding (arc) foundation
 749 models. *arXiv preprint arXiv:2508.06471*, 2025a.

750 Liang Zeng, Yongcong Li, Yuzhen Xiao, Changshi Li, Chris Yuhao Liu, Rui Yan, Tianwen Wei,
 751 Jujie He, Xuchen Song, Yang Liu, et al. Skywork-swe: Unveiling data scaling laws for software
 752 engineering in llms. *arXiv preprint arXiv:2506.19290*, 2025b.

754 Yuntong Zhang, Haifeng Ruan, Zhiyu Fan, and Abhik Roychoudhury. Autocoderover: Autonomous
 755 program improvement. In *Proceedings of the 33rd ACM SIGSOFT International Symposium on
 Software Testing and Analysis*, pp. 1592–1604, 2024.

756 Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue Livia Sun, Jeff Huang, Cody Hao Yu, Shiyi
 757 Cao, Christos Kozyrakis, Ion Stoica, Joseph E Gonzalez, et al. Sqlang: Efficient execution of
 758 structured language model programs. *Advances in neural information processing systems*, 37:
 759 62557–62583, 2024a.

760 Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, Zheyuan Luo, Zhangchi Feng, and
 761 Yongqiang Ma. Llamafactory: Unified efficient fine-tuning of 100+ language models. In *Pro-
 762 ceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
 763 3: System Demonstrations)*, Bangkok, Thailand, 2024b. Association for Computational Linguis-
 764 tics. URL <http://arxiv.org/abs/2403.13372>.

765 Brian D Ziebart. *Modeling purposeful adaptive behavior with the principle of maximum causal
 766 entropy*. Carnegie Mellon University, 2010.

768 Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei, Paul
 769 Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. *arXiv
 770 preprint arXiv:1909.08593*, 2019.

772 A THE USE OF LLMs

774 In compliance with ICLR 2026 guidelines regarding the disclosure of LLMs usage, we provide the
 775 following statement:

777 Large Language Models are used solely as a general-purpose assist tool for grammar checking and
 778 minor stylistic improvements during the writing process of this paper. Specifically, LLMs are em-
 779 ployed to:

- 780 • Identify and correct grammatical errors in the manuscript
- 781 • Suggest improvements to sentence structure and clarity

782 All research ideas, methodological contributions, experimental results, and substantive written content
 783 are entirely the original work of the authors. The authors take full responsibility for all content
 784 in this paper, including any text that may have been refined through LLM-assisted grammar check-
 785 ing. The role of LLMs is limited to language polishing and does not rise to the level that would
 786 warrant consideration as a contributor to the research.

788 B PROOF OF PROPOSITION 3.2

790 First, we analyze the optimal policy under the objective

$$792 \max_{\pi} \mathbb{E}_{y \sim \pi(y|x)}[u(x, y)] + \alpha H(\pi(\cdot|x)) - \beta H(\pi, \pi_{ref})$$

794 By Assumption 3.1, we have

$$796 u^* = \arg \max_u \mathbb{E}_{(x, y^+, y^-) \sim \rho} [\log \sigma(u(x, y^+) - u(x, y^-))] \quad (7)$$

798 Denote policies $\pi(\cdot|x)$, $\pi_{ref}(\cdot|x)$ and utility function $u(x, \cdot)$ as vectors π , π_{ref} , \mathbf{u} . We can rewrite
 799 our objective as:

$$800 \max_{\pi} \pi^T \mathbf{u} - \alpha \pi^T \log \pi + \beta \pi^T \log \pi_{ref} = \pi^T (\mathbf{u} - \alpha \log \pi + \beta \log \pi_{ref}) \quad (8)$$

$$801 \text{s.t. } \|\pi\|_1 = 1$$

803 The Lagrangian is

$$805 L(\pi, \lambda) = \pi^T (\mathbf{u} - \alpha \log \pi + \beta \log \pi_{ref}) + \lambda (\sum_i \pi_i - 1) \quad (9)$$

808 Taking the derivative of the Lagrangian, we have

$$809 \frac{\partial L}{\partial \pi} = \mathbf{u} - \alpha(\log \pi + \mathbf{1}) + \beta \log \pi_{ref} + \lambda \mathbf{1} = 0 \quad (10)$$

810 It gives
 811

$$\begin{aligned} 812 \quad \alpha(\log \pi + \mathbf{1}) &= \mathbf{u} + \beta \log \pi_{ref} + \lambda \mathbf{1} \\ 813 \quad \log \pi + \mathbf{1} &= \frac{\mathbf{u} + \beta \log \pi_{ref} + \lambda \mathbf{1}}{\alpha} \\ 814 \quad \pi &= \exp^{\frac{\mathbf{u} + \beta \log \pi_{ref} + (\lambda - \alpha) \mathbf{1}}{\alpha}} \end{aligned} \quad (11)$$

815 which implies the optimal policy $\pi^*(y|x) \propto \exp(\frac{u(x,y)}{\alpha}) \pi_{ref}(y|x)^{\beta/\alpha}$.
 816

817 Then, we analyze the optimal policy under the objective
 818

$$\max_{\pi} \mathbb{E}_{(x,y^+,y^-) \sim D} \left[\log \sigma \left(\alpha \left[\log \frac{\pi(y^+|x)}{\pi_{ref}(y^+|x)^{\beta/\alpha}} - \log \frac{\pi(y^-|x)}{\pi_{ref}(y^-|x)^{\beta/\alpha}} \right] \right) \right]$$

819 which is equivalent to
 820

$$\max_{\pi} \mathbb{E}_{(x,y^+,y^-) \sim D} [\log \sigma(\alpha \log \frac{\pi(y^+|x)}{\pi(y^-|x)} - \beta \log \frac{\pi_{ref}(y^+|x)}{\pi_{ref}(y^-|x)})]$$

821 Note that $\pi(y|x) = \exp(\frac{1}{\eta} u(x,y)) \pi_{ref}(y|x)^{\beta/\alpha} / Z(x)$ is equivalent to $u(x,y) = \alpha \log \pi(y|x) - \beta \log \pi_{ref}(y|x) + \alpha \log Z(x)$. Given the same prompt x , compute the utility difference between two
 822 different responses y and y' . We have
 823

$$\begin{aligned} 824 \quad u(x,y) - u(x,y') &= \alpha \log \pi(y|x) - \beta \log \pi_{ref}(y|x) + \alpha \log Z(x) \\ 825 \quad &\quad - [\alpha \log \pi(y'|x) - \beta \log \pi_{ref}(y'|x) + \alpha \log Z(x)] \\ 826 \quad &= \alpha \log \frac{\pi(y|x)}{\pi(y'|x)} - \beta \log \frac{\pi_{ref}(y|x)}{\pi_{ref}(y'|x)} \end{aligned} \quad (12)$$

827 We now substitute $u(x,y)$ into the Bradley-Terry objective in Assumption 3.1
 828

$$\pi^*(y|x) = \arg \max_{\pi} \mathbb{E}_{(x,y^+,y^-) \sim D} [\log \sigma(\alpha \log \frac{\pi(y^+|x)}{\pi(y^-|x)} - \beta \log \frac{\pi_{ref}(y^+|x)}{\pi_{ref}(y^-|x)})] \quad (13)$$

829 which satisfies the relationship $\pi^*(y|x) \propto \exp(\frac{u(x,y)}{\alpha}) \pi_{ref}(y|x)^{\beta/\alpha}$.
 830

831 C PROOF OF PROPOSITION 3.3

832 First, we consider the case when $H = 2$. The key idea is to solve the optimization problem through
 833 a backward iteration, *i.e.*, from $h = H = 2$ to $h = 1$.
 834

835 For $h = 2$, by Proposition 3.2, we have:
 836

$$\begin{aligned} 837 \quad \pi_{\mathcal{M},2}(\cdot|s_2) &= \arg \max_{\pi_2} \mathbb{E}_{a_2 \sim \pi_2(\cdot|s_2)} [u(s_2, a_2) + \alpha H(\pi_2(\cdot|s_2)) - \beta H(\pi_2, \pi_{ref,2})] \\ 838 \quad &\propto \pi_{ref}(\cdot|s_2)^{\beta/\alpha} \exp\left(\frac{u(s_2, \cdot)}{\alpha}\right) \end{aligned} \quad (14)$$

839 Then, we define the value function and Q function w.r.t. $\pi_{\mathcal{M},2}$ as:
 840

$$\begin{aligned} 841 \quad V_{\mathcal{M},2}(s_2) &= \mathbb{E}_{a_2 \sim \pi_2(\cdot|s_2)} [u(s_2, \cdot) + \alpha H(\pi(\cdot|s_2)) - \beta H(\pi, \pi_{ref})] \\ 842 \quad Q_{\mathcal{M},1}(s_1, a_1) &= \mathbb{E}_{o_1 \sim \mathbb{P}_1(\cdot|s_1, a_1)} [V_{\mathcal{M},2}(s_2)] \end{aligned} \quad (15)$$

843 For $h = 1$, we have:
 844

$$\begin{aligned} 845 \quad \pi_{\mathcal{M},1}(\cdot|s_1) &= \arg \max_{\pi_1} \mathbb{E}_{a_1 \sim \pi_1(\cdot|s_1)} [Q_{\mathcal{M},1}(s_1, a_1) + \alpha H(\pi_1(\cdot|s_1)) - \beta H(\pi_1, \pi_{ref,1})] \\ 846 \quad &\propto \pi_{ref,1}(\cdot|s_1)^{\beta/\alpha} \exp\left(\frac{u(s_1, \cdot)}{\alpha}\right) \end{aligned} \quad (16)$$

864 By construction, $\pi_{\mathcal{M},2}$ is already optimal for $h = 2$.
 865

866 Now, we consider a more general case $h = H$. We could repeat the above process H times starting
 867 from $V_{\mathcal{M},H+1} = 0$. We define

$$868 \quad 869 \quad Q_{M,h}(s_h, a_h) = \begin{cases} u(s_h, a_h) & \text{if } h = H \\ E_{o_h \sim \mathbb{P}(\cdot|s_h, a_h)}[V_{M,h+1}(s_{h+1})] & \text{if } h \leq H - 1 \end{cases} \quad (17)$$

871 Based on the definition above, we have:
 872

$$873 \quad \pi_{\mathcal{M},h}(a_h|s_h) = \frac{\pi_{ref,h}(a_h|s_h)^{\beta/\alpha}}{Z_h(s_h)} \exp\left(\frac{Q_{\mathcal{M},h}(s_h, a_h)}{\alpha}\right) \\ 874 \quad V_{\mathcal{M},h}(s_h) = \mathbb{E}_{a_h \sim \pi_{\mathcal{M},h}(\cdot|s_h)}[Q_{\mathcal{M},h}(s_h, a_h) + \alpha H(\pi(\cdot|s_h)) - \beta H(\pi, \pi_{ref})] = \alpha \log Z_h(s_h) \\ 875 \quad (18)$$

876 where $Z_h(s_h) = \sum_{a_h \in \mathcal{A}} \pi_{ref,h}(a_h|s_h)^{\beta/\alpha} \exp\left(\frac{Q_{\mathcal{M},h}(s_h, a_h)}{\alpha}\right)$.
 877

878 To show how the expression of the state value holds, we focus on a general objective:
 879

$$881 \quad 882 \quad \min_{p \in \Delta(\Omega)} [E_{w \sim p} U(w) - \alpha H(p) + \beta H(p, p_0)] \quad (19)$$

883 where $\Delta(\Omega)$ denotes the set of probabilities on w .
 884

885 Note that

$$886 \quad 887 \quad E_{w \sim p} U(w) - \alpha H(p) + \beta H(p, p_0) = E_{w \sim p} [\alpha \log p(w) - \alpha \left(\frac{\beta}{\alpha} \log p_0(w) - \frac{U(w)}{\alpha}\right)] \\ 888 \quad 889 \quad = E_{w \sim p} [\log p(w) - \log(p_0(w)^{\beta/\alpha} \exp(-\frac{U(w)}{\alpha}))] \\ 890$$

891 To ensure that $q(w)$ is a valid probability distribution, we define the following normalization con-
 892 stant:

$$893 \quad Z = \int p_0(w)^{\beta/\alpha} \exp(-\frac{U(w)}{\alpha}) dw \quad (21)$$

894 Then the normalized distribution is $p^*(w) = q(w)/Z$. Inserting back, we have
 895

$$896 \quad 897 \quad E_{w \sim p} [U(w)] - \alpha H(p) + \beta H(p, p_0) = \alpha E_{w \sim p} [\log p(w) - \log(Z \cdot p^*(w))] \\ 898 \quad 899 \quad = \alpha E_{w \sim p} [\log p(w) - \log p^*(w) - \log Z] \\ 900 \quad 901 \quad = \alpha E_{w \sim p} \log \frac{p(w)}{p^*(w)} - \alpha E_{w \sim p} [\log Z] \quad (22)$$

902 Note that the first item is the KL divergence $KL(p||p^*)$. Thus, the minimizer of the above equa-
 903 tion exists when $p(w) = p^*(w)$, i.e., $p^*(w) = \frac{1}{Z} p_0(w)^{\beta/\alpha} \exp(-\frac{U(w)}{\alpha})$. The minimum value is
 904 $-\alpha \log Z$. Thus, $V_{\mathcal{M},h}(s_h) = \mathbb{E}_{a_h \sim \pi_{\mathcal{M},h}(\cdot|s_h)}[Q_{\mathcal{M},h}(s_h, a_h) + \alpha H(\pi(\cdot|s_h)) - \beta H(\pi, \pi_{ref})] =$
 905 $\alpha \log Z_h(s_h)$.
 906

907 By definition, $[\pi_{\mathcal{M},h}]_{h=1}^H$ is optimal.
 908

909 D DERIVATION OF ENTROPO LOSS

910 Based on Proposition 3.3, the optimal policy at step h is

$$911 \quad 912 \quad \pi_{\mathcal{M},h}(a_h|s_h) = \frac{\pi_{ref,h}(a_h|s_h)^{\beta/\alpha}}{Z_h(s_h)} \exp\left(\frac{Q_{\mathcal{M},h}(s_h, a_h)}{\alpha}\right), \quad (23)$$

913 with normalization factor
 914

$$915 \quad Z_h(s_h) = \sum_{a_h \in \mathcal{A}} \pi_{ref,h}(a_h | s_h)^{\beta/\alpha} \exp(Q_{\mathcal{M},h}(s_h, a_h)/\alpha), \quad (24)$$

918 and the corresponding value

$$919 \quad V_{\mathcal{M},h}(s_h) = \alpha \log Z_h(s_h). \quad (25)$$

920
921 Starting from the policy expression,

$$922 \quad \pi_{\mathcal{M},h}(a_h | s_h) Z_h(s_h) = \pi_{ref,h}(a_h | s_h)^{\beta/\alpha} \exp\left(\frac{Q_{\mathcal{M},h}(s_h, a_h)}{\alpha}\right) \quad (26)$$

$$923 \quad \Rightarrow \quad \exp(Q_{\mathcal{M},h}(s_h, a_h)/\alpha) = \frac{\pi_{\mathcal{M},h}(a_h | s_h) Z_h(s_h)}{\pi_{ref,h}(a_h | s_h)^{\beta/\alpha}}.$$

924
925 Taking the logarithm and multiplying by α gives

$$926 \quad Q_{\mathcal{M},h}(s_h, a_h) = \alpha \log \pi_{\mathcal{M},h}(a_h | s_h) + \alpha \log Z_h(s_h) - \beta \log \pi_{ref,h}(a_h | s_h) \quad (27)$$

$$927 \quad = V_{\mathcal{M},h}(s_h) + \alpha \log \pi_{\mathcal{M},h}(a_h | s_h) - \beta \log \pi_{ref,h}(a_h | s_h).$$

928 We can further rewrite Q-value as:

$$929 \quad Q_{\mathcal{M},h}(s_h, a_h) = \alpha \cdot \log \frac{\pi_{\mathcal{M},h}(a_h | s_h)}{\pi_{ref,h}(a_h | s_h)^{\beta/\alpha}} + V_{\mathcal{M},h}(s_h) \quad (28)$$

930
931 With the definition of Q -values $Q_{\mathcal{M},h}$, we have

$$932 \quad \mathbb{E}_{o_h \sim \mathbb{P}_h(\cdot | s_h, a_h)} V_{\mathcal{M},h+1}(s_{h+1}) = \alpha \cdot \log \frac{\pi_{\mathcal{M},h}(a_h | s_h)}{\pi_{ref,h}(a_h | s_h)^{\beta/\alpha}} + V_{\mathcal{M},h}(s_h), \quad \text{if } h \leq H-1 \quad (29)$$

$$933 \quad u(s_H, a_H) = \alpha \cdot \log \frac{\pi_{\mathcal{M},H}(a_H | s_H)}{\pi_{ref,H}(a_H | s_H)^{\beta/\alpha}} + V_{\mathcal{M},H}(s_H).$$

934
935 Summing over $h \in [H]$, we have

$$936 \quad u(s_H, a_H) = \underbrace{\alpha \sum_{h=1}^H \log \frac{\pi_{\mathcal{M},h}(a_h | s_h)}{\pi_{ref,h}(a_h | s_h)^{\beta/\alpha}}}_{(1)} + \underbrace{V_{\mathcal{M},1}(s_1)}_{(2)}$$

$$937 \quad + \underbrace{\sum_{h=1}^{H-1} [V_{\mathcal{M},h+1}(s_{h+1}) - \mathbb{E}_{o_h \sim \mathbb{P}_h(\cdot | s_h, a_h)} V_{\mathcal{M},h+1}(s_{h+1})]}_{(3)} \quad (30)$$

938 Term (1) is similar to what we derive in Proposition 3.2. Term (2) can be viewed as a constant when
939 comparing two different responses for the same prompt s_1 . For Term (3), given the deterministic
940 nature of our tool-integrated coding task, Term (3) is equal to 0. Therefore, we can utilize the
941 maximum likelihood estimation of the utility function with a dataset \mathcal{D} consisting of (x, τ^+, τ^-) to
942 obtain our ENTRPO-DPO loss:

$$943 \quad L_{EntroPO-DPO}(\theta)$$

$$944 \quad = - \sum_{(x, \tau^+, \tau^-) \in \mathcal{D}} \log \sigma \left(\alpha \sum_{h=1}^H \left[\log \frac{\pi_{\theta,h}(a_h^+ | s_h^+)}{\pi_{ref,h}(a_h^+ | s_h^+)^{\beta/\alpha}} - \log \frac{\pi_{\theta,h}(a_h^- | s_h^-)}{\pi_{ref,h}(a_h^- | s_h^-)^{\beta/\alpha}} \right] \right) \quad (31)$$

945
946 With equation 30 implying that Term (3) = 0, the implicit reward $r(x, y)$ is given by
947 $\sum_{h=1}^H \log \frac{\pi_{\mathcal{M},h}(a_h | s_h)}{\pi_{ref,h}(a_h | s_h)^{\beta/\alpha}}$. Based on Ethayarajh et al. (2024), we can naturally derive our
948 ENTRPO-KTO loss

$$949 \quad L_{EntroPO-KTO}(\theta) = E_{x,y \sim \mathcal{D}} [\lambda_y - V(x, y)] \quad (32)$$

972 where

$$r_\theta(x, y) = \sum_{h=1}^H \log \frac{\pi_{\mathcal{M}, h}(a_h | s_h)}{\pi_{ref, h}(a_h | s_h)^{\beta/\alpha}}$$

$$V(x, y) = \begin{cases} \lambda_+ \sigma(\alpha(r_\theta(x, y) - z_0)) \\ \lambda_- \sigma(\alpha(z_0 - r_\theta(x, y))) \end{cases}$$

$$z_0 = \mathbb{E}_{x \sim \mathcal{D}, \tau \sim \pi(\cdot | x)} \sum_{h=1}^H \left[-H(\pi(\cdot | s_h)) + \frac{\beta}{\alpha} H(\pi(\cdot | s_h), \pi_{ref}(\cdot | s_h)) \right]$$

983 E EXPERIMENT DETAILS

985 In this section, we provide additional details about the experiment details of ENTROPO.

987 E.1 DATASET DETAILS

989 **Training Data.** For SFT, we use the SWE-Smith dataset (Yang et al., 2025), selecting only Python-
990 based instances with problem statements that align with the SWEBENCH format. For preference
991 learning, we employ the R2E-Gym-subset (Jain et al., 2025), which we selected because it contains
992 no repository overlap with our test sets, thereby preventing data leakage.

993 **Evaluation Data.** We evaluate ENTROPO on the complete official test sets for both SWEBENCH-
994 VERIFIED and SWEBENCH-LITE. Detailed statistics for all datasets are provided in [Table 3](#).

996 **Table 3: Dataset Statistics:** The table presents the number of training and test samples for each
997 dataset, along with the source of the dataset.

Dataset	# Train Samples	# Test Samples	Source
SWE-Smith	8736	-	https://huggingface.co/datasets/r2e-edits/swesmith-clean
R2E-Gym-subset	4578	-	https://huggingface.co/datasets/R2E-Gym/R2E-Gym-Subset
SWE-bench Verified	-	500	https://huggingface.co/datasets/princeton-nlp/SWE-bench_Verified
SWE-bench Lite	-	300	https://huggingface.co/datasets/princeton-nlp/SWE-bench_Lite

1004 E.2 SCAFFOLD DETAILS

1005 In our experiments, we utilize the standard R2E scaffold, which is recognized for its flexibility,
1006 ease of use, and robust performance. This scaffold equips the agent with four essential tools:
1007 `file_editor` for file editing, `execute_bash` for running bash commands, `search` for file
1008 and code retrieval, and `finish` to conclude the task. The complete system prompt, detailing the
1009 functionality and parameters of each tool, is provided below.

1011 System Prompt of the Scaffold

1013 You are a programming agent who is provided a GitHub issue and repository bash environment
1014 and is tasked to solve certain tasks (e.g., file localization, testcase generation, code
1015 repair, and editing, etc) to resolve the issue.

1016 We have access to the following functions:

1017 — BEGIN FUNCTION #1: `file_editor` —

1018 **Description:** Custom editing tool for viewing, creating, and editing files.

- 1019 • State is persistent across command calls and discussions with the user
- 1020 • If path is a file, view displays the result of applying `cat -n`. If path is a directory, view
1021 lists of non-hidden files and directories up to 2 levels deep
- 1022 • The `create` command cannot be used if the specified path already exists as a file
- 1023 • If a command generates a long output, it will be truncated and marked with `<response
1024 clipped>`
- 1025 • The `undo_edit` command will revert the last edit made to the file at path

1025 **Notes for using the `str_replace` command:**

1026

- The `old_str` parameter should match EXACTLY one or more consecutive lines from the original file. Be mindful of whitespaces!
- If the `old_str` parameter is not unique in the file, the replacement will not be performed. Make sure to include enough context in `old_str` to make it unique
- The `new_str` parameter should contain the edited lines that should replace the `old_str`

1027 **Parameters:**

1028 1. `command` (string, required)
1029 Allowed values: [view, create, str_replace, insert, undo_edit].
1030 The command to run.

1031 2. `path` (string, required)
1032 Absolute path to file or directory, e.g. /testbed/file.py or /testbed.

1033 3. `file_text` (string, optional)
1034 Required for the `create` command. Contains the content of the file to be created.

1035 4. `old_str` (string, optional)
1036 Required for the `str_replace` command. The exact string in the path to replace.

1037 5. `new_str` (string, optional)

- Optional for the `str_replace` command to specify the replacement string.
- Required for the `insert` command to specify the string to insert.

1038 6. `insert_line` (integer, optional)
1039 Required for the `insert` command. The `new_str` will be inserted after the line number specified here.

1040 7. `view_range` (array, optional)

- Optional for the `view` command (when path is a file).
- If provided, specifies the line range to view, e.g. [11, 12] shows lines 11 and 12.
- [start_line, -1] will show all lines from `start_line` to the end of file.

1041 8. `concise` (boolean, optional)

- Optional for the `view` command.
- Displays a concise skeletal view of the file. If set to `False`, it displays the full content in the specified `view_range`.

1042 — END FUNCTION #1 —

1043 — BEGIN FUNCTION #2: `execute_bash` —

1044 **Description:** Execute a bash command in the terminal.

1045 **Behavior notes:**

- If a command may run indefinitely (long-running), consider running it in the background and redirecting output, e.g. `python3 app.py > server.log 2>&1 &`.
- If the bash command returns exit code -1, it means the process is still running. The assistant may:
 - Call this function again with the command as an empty string ("") to retrieve additional logs.
 - Send more input to STDIN of the running process by calling this function again with the command set to the text input.
 - Send `command="ctrl+c"` to interrupt the currently running process.
- If the command times out, it will be interrupted (SIGINT). The assistant may then retry or do further steps if needed.

1046 **Parameters:**

1047 1. `cmd` (string, required)
1048 The bash command (and optional arguments) to execute.

- Can be empty ("") to retrieve more logs if the process is still running.
- Can be "ctrl+c" to interrupt the running process.

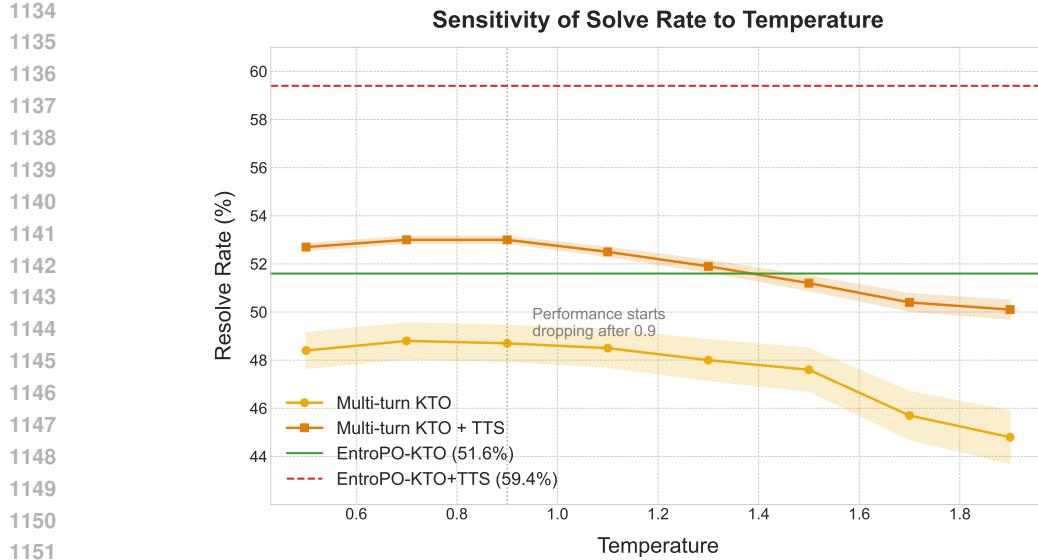
1049 — END FUNCTION #2 —

1050 — BEGIN FUNCTION #3: `search` —

1051 **Description:** Search for a term in a directory or a single file.

```

1080
1081 • If path is a directory (or unspecified, default is . ), it recursively searches all non-hidden
1082 files and directories for the search term.
1083 • If path points to a file, it runs a grep -n in that file to show line numbers matching the
1084 search term.
1085 • If more than 100 files match in a directory search, results are truncated, and the tool will
1086 inform you to narrow your search.
1087 • If no matches are found, it will inform you as well.
1088 Parameters:
1089 1. search_term (string, required)
1090     The term or string to search for in files.
1091 2. path (string, optional)
1092     The file or directory to search in. Defaults to . if not specified.
1093 — END FUNCTION #3 —
1094 — BEGIN FUNCTION #4: finish —
1095 Description: Finish the interaction once the task is complete or if no further progress can
1096 be made.
1097 Behavior notes:
1098 • The submit command finalizes your output.
1099 Parameters:
1100 1. command (string, required)
1101     Currently allowed value: [submit].
1102 2. result (string, optional)
1103     The result text or final message to submit. Defaults to an empty string if not provided.
1104 — END FUNCTION #4 —
1105 If you choose to call a function ONLY reply in the following format with NO suffix:
1106 <function=example_function_name>
1107 <parameter=example_parameter_1>value_1</parameter>
1108 <parameter=example_parameter_2>
1109     This is the value for the second parameter
1110     that can span
1111     multiple lines
1112 </parameter>
1113 </function>
1114 <IMPORTANT> Reminder:
1115 • Function calls MUST follow the specified format, start with <function= and end with
1116     </function>
1117 • Required parameters MUST be specified
1118 • Only call one function at a time
1119 • VERY IMPORTANT: Each response must include both reasoning (as natural text) and
1120     function call (in the above format) to solve the task.
1121
1122
1123 E.3 RUNNING ENVIRONMENT
1124 Our implementation relies on the LLaMA-Factory (Zheng et al., 2024b) for model training and
1125 SGLang (Zheng et al., 2024a) for efficient inference deployment. All experiments are performed
1126 on a server configured with four 32-core AMD EPYC 7702 CPUs, 8 NVIDIA H100 (80GB) GPUs,
1127 and 4 NVIDIA A100 (40GB) GPUs. The H100 GPUs are dedicated to the primary training and
1128 inference workloads, while the A100 GPUs provided supplementary computational support during
1129 inference.
1130
1131 E.4 TRAINING AND INFERENCE DETAILS
1132
1133 Training Hyperparameters. We configure our training process as follows. For LoRA, we set
lora_rank=8, lora_alpha=16, and apply it to all available modules (lora_target=all).
```



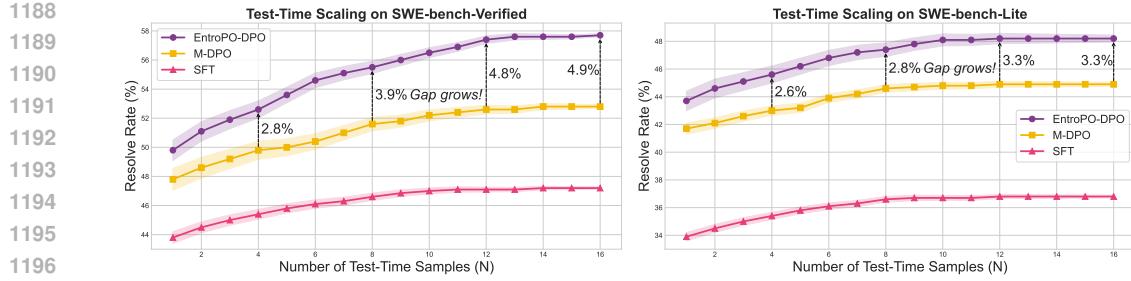


Figure 5: **The Impact of Entropy Regularization on Test-Time Scaling.** Performance of ENTROPO-DPO, M-DPO, and SFT on SWEBENCH-VERIFIED (left) and SWEBENCH-LITE (right) as the number of parallel rollouts (N) increases. ENTROPO’s entropy regularization consistently yields better scaling.

misleading or incomplete problem statements. Xia et al. (2024) and Chowdhury et al. (2024) note that the original SWE-bench dataset contains underspecified problem statements and problematic environment setups that cause some unit tests to fail regardless of the solution. In such cases, a long trajectory can signal that the agent is misled by a vague prompt or is “hallucinating” complexity in response to incorrect unit test feedback. Therefore, we adopt the strategy from prior work (Agarwal et al., 2025; Hassid et al., 2025) to prefer shorter solutions, which helps mitigate the negative impact of these problematic instances. We conduct ablation studies on the impact of this strategy in §E.5 which shows that this strategy is effective on SWEBENCH-LITE.

E.5 ADDITIONAL EXPERIMENTS

Impact of Temperature on Performance. To investigate whether increased sampling diversity can replicate the benefits of our entropy-regularized approach, we evaluate the multi-turn KTO and multi-turn KTO+TTS models under varying temperatures. We test the Qwen3-Coder-30B model on SWEBENCH-VERIFIED with temperatures ranging from 0.5 to 1.8 and compare its performance to ENTROPO-KTO and ENTROPO-KTO+TTS, which use a fixed temperature of 0.7. As shown in Figure 4, increasing the temperature provides no performance benefit. In fact, performance begins to decline beyond a temperature of 0.9, as excessive sampling randomness undermines the precision required for SWE tasks involving tool use and code editing. These results demonstrate that merely increasing temperature is not a substitute for principled entropy regularization, as it fails to match the performance gains achieved by ENTROPO.

Impact of Entropy Regularization on DPO. To investigate whether our entropy-regularized approach can benefit DPO, we conduct experiments on the Qwen3-Coder-30B model with the ENTROPO-DPO and M-DPO (Xiong et al., 2025) models. We test the Qwen3-Coder-30B model on SWEBENCH-VERIFIED and SWEBENCH-LITE with different number of parallel rollouts (N) and compare its performance to ENTROPO-DPO, M-DPO, and SFT. As shown in Figure 5, ENTROPO-DPO consistently outperforms M-DPO and SFT. When $N = 1$, ENTROPO-DPO can outperform both SFT and M-DPO, showing its advantage can be independent of TTS. As N increases, the performance gap between ENTROPO-DPO and M-DPO widens, similar to our findings in Figure 2.

Impact of Step Heuristic on SWEBENCH-LITE. We adopt different step heuristics for ENTROPO-KTO with model Qwen3-Coder-30B on SWEBENCH-LITE as follows: 1) Prioritize the trajectory with the most environment interaction steps. 2) Prioritize the trajectory with the fewest environment interaction steps. 3) Randomly select a trajectory as the step heuristic. The results are shown in Table 4. We can observe that when using the fewest steps heuristic, the performance of ENTROPO-KTO is best, which verifies our motivation in §E.4. However, even using the longest steps heuristic or random selection heuristic, the performance of ENTROPO-KTO is still better than the best open-source submission on SWEBENCH-LITE (CodeFuse-CGM with 44.0% resolve rate), which demonstrates the robustness of our overall framework.

Heuristics for a Random Real-World SWE Problem. The above analysis leads to a practical guide for choosing a heuristic for a random real-world SWE problem:

1242 • **If the developer trust the specification of the SWE problem:** Favor Longest Steps.
 1243 • **If the specification is vague/noisy:** Favor Shortest Steps.
 1244 • **If the developer has no idea (The Default Strategy):** We recommend favoring Longest
 1245 Steps.

1246 As shown in Table 4, when we applied the “Longest Steps” heuristic to SWEBENCH-LITE (where it
 1247 is empirically suboptimal), the performance (47.3%) was comparable to Random Selection (47.1%).
 1248 This means that even if the heuristic is “suboptimal” for the data distribution, it causes no significant
 1249 harm. However, on high-quality data (SWEBENCH-VERIFIED), using Longest Steps yields significant
 1250 gains. Therefore, prioritizing the longest trajectory can be a default choice—it captures the upside
 1251 on good data without degrading performance on noisy data.

1252
 1253
 1254 Table 4: **Impact of Step Heuristic on SWEBENCH-LITE.**: The table presents the performance of
 1255 different step heuristics on SWEBENCH-LITE. We compare prioritizing trajectories with the most
 1256 steps, fewest steps, and random selection.

	Most Steps	Fewest Steps	Random
Resolve Rate (%)	47.3 (± 0.3)	49.2 (± 0.7)	47.1 (± 0.6)

F ALTERNATIVE DERIVATION OF ENTROPO-DPO

1264 Building on the framework of entropy-regularized MDPs (Ziebart, 2010), we define the regularized
 1265 value function for any policy π as:

$$V^\pi(s) = \mathbb{E}_\pi \left[\sum_{h=1}^H \left(u(s_h, a_h) - \alpha \log \frac{\pi(a_h|s_h)}{\pi_{\text{ref}}(a_h|s_h)^{\beta/\alpha}} \right) \middle| s_1 = s \right] \quad (33)$$

1271 To facilitate the analysis, we define a modified reward function r' that incorporates the reference
 1272 policy:

$$r'(s, a) = r(s, a) + \beta \log \pi_{\text{ref}}(a|s) \quad (34)$$

1277 Using this modified reward, the regularized Q-function of a policy π is defined as:

$$Q^\pi(s, a) = r'(s, a) + \mathbb{E}_{s' \sim p(\cdot|s, a)}[V^\pi(s')] \quad (35)$$

1282 The relationship between the value function and Q-function is:

$$V^\pi(s) = \mathbb{E}_{a \sim \pi(\cdot|s)}[-\alpha \log \pi(a|s) + Q^\pi(s, a)] \quad (36)$$

1287 The regularized optimal policy π^* , which maximizes $V^\pi(s)$, is characterized by the optimal Q-
 1288 function Q^* and value function V^* . The optimal policy is given by:

$$\pi^*(a|s) = \exp \left(\frac{Q^*(s, a) - V^*(s)}{\alpha} \right) \quad (37)$$

1294 By substituting this form of π^* back into the sum of the log-ratios, we can rewrite the sum of the
 1295 log-ratios as follows:

1296

1297

$$\sum_{h=1}^H \alpha \log \frac{\pi^*(a_h|s_h)}{\pi_{\text{ref}}(a_h|s_h)^{\beta/\alpha}} = \sum_{h=1}^H (Q^*(s_h, a_h) - V^*(s_h) - \beta \log \pi_{\text{ref}}(a_h|s_h)) \quad (38)$$

1300

1301

$$= \sum_{h=1}^H [u(s_h, a_h) + \beta \log \pi_{\text{ref}}(a_h|s_h) + \mathbb{E}_{s' \sim p(\cdot|s_h, a_h)} V^*(s') - V^*(s_h)] \quad (39)$$

1303

1304

$$- \beta \log \pi_{\text{ref}}(a_h|s_h)] \quad (40)$$

1305

1306

$$= \sum_{h=1}^H (u(s_h, a_h) - V^*(s_1)) + \sum_{h=1}^{H-1} [\mathbb{E}_{s' \sim p(\cdot|s_h, a_h)} (V^*(s')) - V^*(s_{h+1})] \quad (41)$$

1308

1309

1310

1311

Given the deterministic nature of our software engineering task, we have

1312

1313

$$\sum_{h=1}^{H-1} [\mathbb{E}_{s' \sim p(\cdot|s_h, a_h)} (V^*(s')) - V^*(s_{h+1})] = 0 \quad (43)$$

1316

1317

This simplification leads to the final relationship linking the total reward to the regularized policy and the initial value:

1319

1320

1321

1322

1323

$$\sum_{h=1}^H u(s_h, a_h) = \sum_{h=1}^H \alpha \log \frac{\pi^*(a_h|s_h)}{\pi_{\text{ref}}(a_h|s_h)^{\beta/\alpha}} + V^*(s_1) \quad (44)$$

1324

Finally, combining this result with Assumption 3.1 allows us to derive the EntroPO-PPO loss.

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349