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ABSTRACT

Software engineering presents complex, multi-step challenges for Large Language
Models (LLMs), requiring reasoning over large codebases and coordinated tool
use. The difficulty of these tasks is exemplified by benchmarks like SWEBENCH,
where current LLMs still struggle to resolve real-world issues. A promising
approach to enhance performance is test-time scaling (TTS), but its gains are
heavily dependent on the diversity of model outputs. While standard alignment
methods such as Direct Preference Optimization (DPO) and Kahneman-Tversky
Optimization (KTO) are effective at aligning model outputs with human pref-
erences, this process can come at the cost of reduced diversity, limiting the ef-
fectiveness of TTS. Additionally, existing preference optimization algorithms are
typically designed for single-turn tasks and do not fully address the complexi-
ties of multi-turn reasoning and tool integration required for interactive coding
agents. To bridge this gap, we introduce ENTROPO, an entropy-enhanced frame-
work that adapts existing preference optimization algorithms to the multi-turn,
tool-assisted setting. ENTROPO augments the preference objective to explicitly
preserve policy entropy and generalizes learning to optimize over multi-turn inter-
actions rather than single-turn responses. We validate ENTROPO by fine-tuning a
diverse suite of models from different families and sizes (up to 106B parameters).
To maximize performance gains from TTS, we further propose a hybrid best-
trajectory selection scheme combining a learned verifier model with model-free
approaches. On the SWEBENCH leaderboard, our approach establishes new state-
of-the-art results among open-weight models. A 30B parameter model trained
with ENTROPO ranks 1st on SWEBENCH-LITE and 4th on SWEBENCH-VERIFIED
on the open-weight leaderboard, surpassed only by models with over 10x more
parameters(e.g., >350B). These results highlight the importance of preserving di-
versity for effective test-time scaling and establish ENTROPO as a robust method
for building powerful, interactive coding agents.

1 INTRODUCTION

Large Language Models (LLMs) have achieved impressive breadth across language understanding,
coding assistance, and planning. Yet, they still struggle on complex, multi-step software engineering
(SWE) tasks that demand reasoning over large codebases and coordinated tool use (e.g., search,
execution, and patching) (Yang et al., 2024b; Wang et al., 2025; Xia et al., 2024; Antoniades et al.,
2024; Zhang et al., 2024). A promising line of work that improves performance is test-time scaling
(TTS)—sampling more trajectories, searching deeper, and verifying candidates, which can uncover
higher-quality solutions on challenging instances (Snell et al., 2024; Beeching et al.; Yao et al., 2023;
Xu et al., 2024a). However, TTS only helps if the model produces sufficiently diverse candidates to
explore meaningfully different solution modes.

Recent alignment methods, including Reinforcement Learning from Human Feedback
(RLHF) (Ouyang et al., 2022; Ziegler et al., 2019; Bai et al., 2022) and Direct Preference Op-
timization (DPO) (Rafailov et al., 2023), have been observed to inadvertently reduce generation
diversity (Kirk et al., 2023; Padmakumar & He, 2023; Kim et al., 2024; O’Mahony et al., 2024;
Murthy et al., 2025). This diversity collapse limits the returns of TTS: when a model concentrates
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probability mass on a narrow set of responses for a given prompt, additional samples become redun-
dant, and deeper search yields diminishing marginal gains. Prior efforts to preserve diversity during
fine-tuning typically target single-turn settings (Slocum et al., 2025; Li et al., 2024; Wang et al.,
2024; Lanchantin et al., 2025) or adjust decoding temperatures at inference time (Renze, 2024).
These approaches do not directly address multi-turn, tool-using workflows, where diversity must be
maintained throughout the trajectory to encourage exploration of a sequence of tool calls and partial
hypotheses.

To address this limitation, we introduce ENTROPO, an entropy-enhanced preference optimization
method for multi-turn SWE agents. Our approach explicitly adds an entropy regularization term to
the standard preference optimization objective to preserve policy diversity. Crucially, ENTROPO
extends this entropy-regularized objective from single-turn to multi-turn trajectories. It provides a
general framework that adapts preference optimization algorithms like DPO and KTO to the multi-
turn, tool-assisted setting, whereas prior work has largely focused on single-turn DPO (Slocum et al.,
2025). By optimizing over multi-turn interactions, ENTROPO aligns the learning process with the
sequential nature of complex coding tasks, teaching the model to build better reasoning paths. We
also theoretically analyze the closed-form optimal policy with our method.

To maximize the performance gain of TTS, we pair ENTROPO with a hybrid best-trajectory selec-
tion scheme. We combine (i) a learned verifier model that scores trajectories with (ii) model-free
approaches that favor high-quality trajectories (e.g., passing tests, trajectory steps). This hybrid se-
lector improves sampling effectiveness and amplifies the gains from parallel rollouts.

We empirically validate ENTROPO across a diverse suite of models from different families and
sizes (up to 106B parameters) on SWEBENCH-VERIFIED (Chowdhury et al., 2024) and SWEBENCH-
LiTE (Jimenez et al., 2024). Our approach achieves state-of-the-art results among open-weight
models, with our 30B model ranking 1st on SWEBENCH-LITE and 4th on SWEBENCH-VERIFIED
(surpassed only by models over 350B, which are 10x larger). Across all evaluations, ENTROPO
significantly outperforms standard DPO and KTO in the TTS setting, maintaining higher trajectory
diversity, which translates into larger performance gains from increased test-time compute. Our re-
sults confirm that the entropy-preserving term is critical to avoid diversity collapse, and our hybrid
selector is more effective than model-only or model-free-only selection.

Our contributions are threefold:

* We propose ENTROPO, an entropy-enhanced multi-turn preference optimization method tailored
to tool-using coding agents that preserves policy diversity during fine-tuning.

* We theoretically analyze the closed-form optimal policy for our multi-turn objective.

* We present state-of-the-art results among open-weight models on SWEBENCH-VERIFIED and
SWEBENCH-LITE, showing significant performance gains from test-time scaling.

By addressing the critical challenge of preserving diversity in multi-turn agents, our work paves
the way for developing more powerful LLM-based tools capable of tackling real-world software
engineering tasks. We release the code, models, and datasets used for our work for reproducibility.

2 RELATED WORK

LLM Post-training. RLHF has become the standard approach for aligning LLMs with human
preferences (Ouyang et al., 2022; Ziegler et al., 2019; Bai et al., 2022; Schulman et al., 2017), but
the PPO-style online approach is computationally intensive, as it requires numerous interactions with
areward model or live environment to generate samples during training (Xu et al., 2024b; Wei et al.,
2025). To reduce the compute cost, preference learning methods replace explicit reward modeling
and online RL with simpler, reward-free objectives that require far less compute. DPO (Rafailov
etal., 2023) and its variants (KTO (Ethayarajh et al., 2024), SimPO (Meng et al., 2024), OrPO (Hong
et al., 2024)) have emerged as competitive and simpler alternatives to PPO-based RLHF.

However, most preference-learning fine-tuning focuses on the single-turn setting and does not di-
rectly model multi-turn, tool-using trajectories. Recent efforts have begun to extend preference
optimization beyond single responses. Xiong et al. (2025) proposed M-DPO, which provided a
framework for training multi-turn, tool-assisted agents on math tasks. While this established a foun-
dation for learning from trajectory preferences in the multi-turn setting, we observe that the method
suffers from diversity collapse, particularly in long-context coding tasks. This limitation is critical
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because, for complex coding tasks, the ability to explore a vast solution space is essential (Golubev
et al., 2025; Gao et al., 2025). Offline preference objectives often reduce policy entropy, which
undermines the exploration of the learned policy (Setlur et al., 2025). Empirical analyses have
documented reduced output diversity under alignment fine-tuning (Kirk et al., 2023), and recent
studies attribute mode collapse in fine-tuning to characteristics of offline objectives and KL con-
straints (Slocum et al., 2025; Wang et al., 2024). While recent methods have attempted to modify
divergences, decouple KL components, or construct diversity-aware preference pairs to better con-
trol diversity (Slocum et al., 2025; Wang et al., 2024; Lanchantin et al., 2025), explicit entropy
preservation remains underexplored in the multi-turn setting. For example, SPL (Slocum et al.,
2025) decouples the KL divergence into separate cross-entropy and entropy terms to allow for sep-
arate control of diversity. However, it mainly focuses on single-turn settings with DPO for tasks
requiring a short context length, leaving the complex multi-turn settings untouched.

We address these challenges with ENTROPO, an entropy-enhanced preference optimization frame-
work applicable to both DPO and KTO. To our knowledge, we are the first to provide a rigorous
mathematical derivation of the entropy-augmented preference learning objective in the multi-turn
setting. Empirically, our method achieves strong performance while preserving exploration through-
out the sequence of tool calls. This enables the full potential of test-time scaling to realize larger
gains for complex coding tasks.

LLMs for Software Engineering. Repository-level SWE benchmarks such as the
SWEBENCH (Jimenez et al., 2024; Chowdhury et al., 2024) have accelerated progress on automated
bug fixing and patch generation. Agentic systems like SWE-agent (Yang et al., 2024a) introduced in-
terfaces for repository navigation and code editing, while alternative pipelines (e.g., Agentless) (Xia
et al., 2024) achieved strong results with simpler localize-and-repair stages. General-purpose agent
frameworks such as OpenHands (Wang et al., 2025) provide open tooling for agents and show com-
petitive performance on SWEBENCH. Despite diverse implementations, these systems share core
components (planning and tool-use) and must reason over large codebases via sequences of tool
calls. This creates a critical need to maintain exploration and diversity throughout trajectories to
enable more effective solution space exploration. Our work focuses on this gap by aligning models
specifically for multi-turn, tool-using SWE tasks while preserving trajectory-level policy entropy,
thereby enabling more effective exploration over repositories.

Test-Time Inference Strategies. TTS strategies improve performance by sampling more candi-
dates, searching deeper, and verifying outputs (Snell et al., 2024; Beeching et al.; Yao et al., 2023;
Xu et al., 2024a). These include Best-of-N sampling with verifier reranking and structured search
methods such as Tree-of-Thoughts (Yao et al., 2023), which let models explore alternative reason-
ing paths and self-evaluate. However, the returns from TTS depend on candidate diversity: when
generations collapse to a narrow solution space, additional samples and deeper search provide di-
minishing gains. Moreover, self-evaluation is not always reliable, which can lead to the incorrect
selection of the best trajectory. We address these challenges by pairing ENTROPO with a hybrid
best-trajectory selector that combines a learned verifier model with model-free approaches. This
hybrid approach improves robustness to verifier errors and better exploits the increased diversity
produced by ENTROPO, yielding stronger empirical gains as test-time compute scales.

3 PROPOSED TECHNIQUE

We propose ENTROPO, an entropy-enhanced preference optimization framework for multi-turn,
tool-using coding agents. As shown in Figure 1, we use an agent that follows the standard SWE
workflow to interact with a sandboxed repository environment and receive execution feedback at
each turn. For TTS, we launch parallel rollouts to collect a set of trajectories for each issue. These
trajectories are then scored by a hybrid selector that combines a model-based verifier with model-
free approaches. The top-scoring trajectory is selected to submit as the final patch and is evaluated by
the benchmark tests. Our core contributions are a novel training objective that preserves trajectory-
level diversity and a hybrid selection mechanism that effectively exploits this diversity. To do so, we
augment the standard preference optimization objective with an explicit entropy regularization term,
which directly encourages the policy to maintain a broader distribution over potential solutions. For
the agent itself, we build upon a standard scaffold, avoiding the introduction of new tool schemas.
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Figure 1: Overview of ENTROPO with TTS. Given an issue and a repository, an LLM agent in-
teracts with a sandboxed environment over multiple turns, receiving execution feedback. We run
parallel rollouts to produce a pool of candidate trajectories. A hybrid selector ranks trajectories us-
ing a model-based verifier and model-free approaches, and selects the best trajectory to submit.

3.1 PROBLEM SETUP AND ASSUMPTION

We frame the multi-turn, tool-assisted coding task as a finite-horizon episodic Markov Decision
Process (MDP), represented by the tuple M = (S, A, H, P, dy, u). Here, S is the state space, A is
the action space, H is the maximum number of turns (horizon), IP is the transition dynamics, d is
the initial state distribution, and u is a trajectory-level utility function.

An initial state sy = x ~ dy corresponds to a coding problem statement. At each step
h € {1,...,H}, the agent’s policy 7w (ap|s,) observes the current state sp, which contains the
full interaction history, and generates an action ay, (e.g., a bash command). The environment ex-
ecutes ay, returns an observation oy, (e.g., compiler output, test results, or tool feedback), and
transitions to the next state s,11 = (Sp,ap,0r). This sequential process generates a trajectory
7= (x,a1,01,...,aH,0H), from which we construct a preference dataset D.

Our goal is to optimize the agent’s policy 7 using preference feedback, formalized under the follow-
ing assumption.

Assumption 3.1. We model the probability of preferring one completion over another using the
Bradley-Terry model (Bradley & Terry, 1952). Given a problem x, the probability that a completion
yT is preferred over y~ (y* = y~)is given by: P(yT = y~|z) = o(u(z,yT) — u(x,y7))
where u is a latent utility function that scores completions and o(-) is the sigmoid function. The
optimal utility function u* is learned by maximizing the log-likelihood of the observed preferences
in a dataset D: u* = argmax, E(; ,+ ,—)~pllogo(u(z,y™) —u(z,y7)).

In our setting, we rely on trajectory-level preference signals. These are supplied by an automated
oracle that determines if the final code in a trajectory passes a suite of unit tests. A trajectory that
passes is strictly preferred over one that fails.

3.2 ALGORITHMIC FORMULATION OF ENTROPO

Standard preference optimization methods, such as DPO (Rafailov et al., 2023) align a policy with a
preference dataset by maximizing the likelihood of preferred responses. While effective, this objec-
tive often causes the policy to collapse its probability mass onto a narrow set of “winning” solutions.
This phenomenon, known as diversity collapse (Murthy et al., 2025), is especially detrimental in
complex, multi-step SWE tasks. It hampers the effectiveness of TTS techniques—such as parallel
sampling or tree search—because repeated sampling yields redundant candidates, offering dimin-
ishing returns and preventing the discovery of potentially superior alternative solutions.

To counteract this, we augment the standard preference optimization objective with a weighted en-
tropy regularization term, AH (7). This term directly penalizes low-entropy policies, encouraging
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the model to maintain a broader distribution over viable action sequences. This ensures the model
not only learns what constitutes a high-quality trajectory but also retains the stochasticity needed to
explore a diverse set of candidates at inference time, thereby maximizing the benefit of TTS.

Our full objective, framed as a regularized MDP, is to find the optimal policy 7* that maximizes the
expected utility with respect to a reference policy 7, :

m3XEm~do,ah~7r(-\Sh),Oh,~IF’h,(-\Sh,ah)[u(xv y)+A-H(n(-|x)) = B Drp(7|[mrey)] (1)

where the parameter A promotes diversity and the coefficient 5 penalizes the deviation between the
learned policy and the referenced policy 7, ¢. H(7(-|z)) = —7(-|z) log 7(-|x) denotes the entropy
of the learned policy 7. By decoupling the KL divergence, we can rewrite the objective as

mgx]EdeO’ahNﬂ'('lsh)’OhNPh('lsh’ah)[u(x7 y) +a- H(?T(|Z‘)) -8 H(ﬂ', 777'€f)] (2)

where « = A+ S and H(w, mpef) = —7(+|x) log T f (+|2) represents the cross entropy between the
learned policy 7 and the referenced policy 7ycf.

First, we establish the solution for the single-turn case (H = 1), which forms the basis for our
multi-turn algorithm.

Proposition 3.2. In the single-turn case (H = 1), the optimal policy for the objec-
tive in equation 2 is given by m(ylz) o mep(ylz)?/ exp( (a’y)). This optimal pol-
icy is identical to the one learned by optimizing the following DPO-style loss function:

w(yt|x T(y |z _
maxy; B, o+ y-)uD [loga (a [log mﬂf((zﬂ ‘|z))5/a —log Trmf((;/i ‘|I))B/a])} where y* = y~.

The proof of Proposition 3.2 can be found in Appendix B. Note that Proposition 3.2 aligns with
the conclusion in Slocum et al. (2025), which separates the entropy from the KL divergence term.
For the multi-turn case, we follow the derivation framework of Xiong et al. (2025) using backward
induction, which is essentially based on Ziebart (2010). The key insight is that the optimal policy
and value functions can be defined recursively from the final step h = H to the initial step A = 1.
This dynamic programming approach leads to the following general solution.

Proposition 3.3. We can recursively define the following Q value functions for a MDP with horizon

H.
u(sn,an) ifh=H
ShyQh) = . 3
Queplsn, an) {th"’P(‘Shyah)[VMsh+1(sh+1)] ifh<H-1 ©)
Based on the definition above, we have:
_ 7Tref’h(ahLSh)B/a Q. (Sh,an)
Tm.n(anlsn) = Zn(on) exp( " ) @
Varn(sn) = Eaymmpen () QM (Shy an) + aH (7(:|sp)) — BH (7, Trey)] = alog Zp,(sh)
where Zy(sn) = Y, c.a Tresn(anlsn) ¥/ exp(Seinnl)

We provide a detailed analysis in Appendix C. This recursive formulation provides the founda-
tion for our ENTROPO training objectives. Additionally, Appendix F offers a more concise, self-
contained alternative proof based directly on Ziebart (2010).

ENTROPO- DPO. For a preference pair (71, 77), the loss is:
Lgntroro-pPo(9)

= — Z log o (az [1Og 7o, (ay, |Sh) ~log 7r97h(a_;\s_;) }) (3)

(z,7+,77)€D Treg.n(ay |y )P/ mret.n(ay sy, )%

ENTROPO- KTO. For a dataset D of trajectories labeled as “desirable” or “undesirable”, we first
define an implicit reward for a trajectory 7 as rg(x,y) = Sor_, log % The ENTROPO-
KTO loss encourages high rewards for desirable trajectories and low rewards for undesirable ones,
relative to a margin zg:

Lgntroro—rx710(0) = Ezyp[Ay — V(2,9)] (6)
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where

Vi) = Apo(a(re(x,y) — z0)) if 7 is desirable
T ANo(alzo — ro(z,y))) if 7 is undesirable

Here, A and A_ are hyper-parameters weighting the loss for desirable and undesirable examples,
respectively, and 20 = Eyp (o) Db, [_H(ﬁ(.ph)) + ZH(m(|sn), Tre f(.|sh))]

3.3 TRAINING PIPELINE

Our training process follows a two-stage pipeline. The first stage is SFT, where we teach the base
model to use tools reliably. We generate a dataset Dgpr of successful interaction trajectories using
a strong teacher model. The student model is then fine-tuned on these examples to learn stable
tool-use patterns of the scaffold.

The second stage is preference learning with ENTROPO. After SFT, we generate a new pool of
trajectories by rolling out both the SFT-tuned student model and teacher model. We use a SWE
dataset with commit-corresponding test cases for each instance so that we can get the preference
label for each trajectory. If the final patch passes the test cases, it is labeled as preferred. Otherwise,
it is labeled as not preferred. ~ From this pool, we create a preference dataset Dp,.r by pairing
trajectories for the same problem, labeling the one with the higher score as preferred. The SFT
model is then further fine-tuned on this dataset using our entropy-enhanced objective, which aligns
the model with successful problem-solving strategies while preserving the policy diversity crucial
for test-time scaling.

3.4 TEST-TIME SCALING WITH HYBRID SELECTOR

At inference, we use TTS by running N parallel rollouts for each testing instance, producing tra-
jectories {7(M}N_ from the ENTROPO-tuned policy. We follow prior work (Jain et al., 2025) to
apply a hybrid selector that combines model-free approaches with a model-based verifier to prune
bad candidates and robustly pick a final patch. The verifier py(z,7) € [0,1] is a learned scorer
trained on D¢ with supervised learning. Unlike prior work (Jain et al., 2025) that uses pg as the
major ranking criterion, we use it as a conservative filter.

We apply the following filters in order to obtain a candidate set {7(")} and then choose a single
trajectory:

* Finished score (model-free). Discard any 7 truncated by step/token limits: keep only
1(finished(7) = 1).

* Regression test score (model-free). Run repository regression checks and keep only trajectories
that do not compromise existing functionality: 1(regress_free(r) = 1).

* Verifier probability (model-based). Filter out very unlikely candidates using a low threshold 7:
keep {7 € S : py(z,7) > n}; we do not rank by p,.

* Step-count heuristic (model-free). For example, for SWEBENCH-VERIFIED, longer successful
trajectories typically reflect broader exploration (e.g., more comprehensive tests) before patch sub-
mission. From the remaining set, select 7% € arg max, ¢,y L(7), where L(7) is the number
of environment interactions.

This hybrid selector improves sampling effectiveness and amplifies the gains from parallel rollouts.
As N grows, the selector can improve the final solve ratio by pruning failed or low-quality rollouts
and favoring well-executed, thoroughly explored solutions.

4 EXPERIMENTS

In this section, we show the performance of ENTROPO on benchmarks with R2E (Jain et al., 2025)
agent scaffold. §4.1 details datasets, models, and training/inference configurations, including verifier
training and the TTS budget. §4.2 presents main results and comparisons to official leaderboard
submissions. §4.3 analyzes scaling with the number of parallel rollouts /N and ablates ENTROPO
components and hyperparameters. Additional implementation details are provided in Appendix E.
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Table 1: Resolve rate (pass@1, %) on benchmarks. Results are mean + std over three runs and
the TTS uses N = 16 parallel rollouts. For each model, the best result is highlighted in green.

Model \ Origin SFT ENTROPO-KTO ENTROPO-DPO  ENTROPO-KTO+TTS ENTROPO-DPO+TTS
SWEBENCH-VERIFIED
Qwen3-4B 1.7(£0.1) 24(£0.3) 52(£04) 49(£0.7) 11.5 (£ 0.6) 11.1 (£ 0.3)
Gemma-3-27b 7.1(£0.5) 7.0(£04) 10.1 (£ 0.4) 10.5 (£ 0.3) 17.6 (£ 0.3) 17.7 (£ 0.4)
Qwen3-Coder-30B | 37.7 (£0.2) 43.8 (£ 0.8) 51.6 (£0.7) 49.8 (£ 0.4) 59.4 (£ 0.3) 57.7 (£ 0.7)
GLM-4.5-Air 51.4(+£02) 51.5(+0.8) 53.5(£0.7) 52.5(+£0.7) 58.7 (£0.1) 57.5(+£0.4)
SWEBENCH-LITE
Qwen3-4B 1.2 (£0.3) 1.3 (£0.5) 4.8 (£ 04) 4.7 (£ 0.5) 10.0 (£ 0.8) 10.4 (£ 0.4)
Gemma-3-27b 6.0 (£ 0.8) 5.9 (£ 04) 10.4 (£ 0.2) 10.4 (£ 0.7) 14.6 (£ 0.6) 14.4 (£ 0.7)
Qwen3-Coder-30B | 28 (+£0.3) 33.9(+0.3) 44.0 (£0.3) 437 (£ 0.8) 49.2 (£ 0.7) 48.2 (£ 0.7)
GLM-4.5-Air 435(£0.6) 439 (+04) 449 (£ 0.4) 44.6 (£ 0.5) 48.4 (£ 0.1) 479 (£ 0.3)

4.1 IMPLEMENTATION DETAILS

Datasets. For SFT tuning, we use the SWE-Smith dataset (Yang et al., 2025), which does not rely
on oracles. For preference learning and verifier model training, we use the R2E-Gym-subset (Jain
et al., 2025), whose oracles provide trajectory-level utilities. We evaluate on SWEBENCH-VERIFIED
and SWEBENCH-LITE, reporting resolve rates based on their official protocols. All performance
numbers are pass@1 and no hint or web search is used.

Models. We evaluate a diverse set of models from three different families, with sizes ranging from
4B to 106B: Qwen3-4B-Instruct-2507 (Team, 2025), Gemma-3-27b-it (Team et al., 2025), Qwen3-
Coder-30B-A3B-Instruct, and GLM-4.5-Air-106B (Zeng et al., 2025a). The verifier is trained with
Qwen3-Coder-30B-A3B-Instruct for its strong coding quality and high token throughput.

Training and Inference. We train with LLaMAFactory (Zheng et al., 2024b) and set the maximum
training sequence length to 18,000 tokens to accommodate long SWE trajectories. To manage mem-
ory, we use QLoRA (Dettmers et al., 2023) for GLM-4.5-Air and LoRA (Gao et al., 2021) for the
other models. Unless noted, ENTROPO uses v = 1.1 and the sensitivity to « is reported in §4.3.
During SFT and preference training, we mask system and user prompts and make the LLM response
as the learning target. At inference, we allow up to 200 environment interactions per rollout and a
maximum sequence length of 131,072 tokens, with temperature 0.7 and top_k = 20. For test-time
scaling, we run /N = 16 parallel rollouts for open-weight models. To account for sampling random-
ness, all experiments on open-weight models are run three times, and we report mean + standard
deviation.

4.2 MAIN RESULTS

Comparison with Original and SFT-tuned Models. As shown in Table 1, ENTROPO consis-
tently outperforms both the original and SFT-tuned models across all benchmarks, even without
TTS. For models like Gemma-3-27b and GLM-4.5-Air, standard SFT yields minimal gains over the
base models. In contrast, ENTROPO delivers substantial improvements, which we attribute to its
entropy-regularized objective that preserves policy diversity. This increased diversity is critical for
effective exploration and better generalization to unseen problems. When combined with TTS, the
performance gains are further amplified, aligning with our theoretical analysis that diversity is key
to maximizing the benefits of test-time compute. Note that here the results for Qwen3-Coder-30B
are different from the original paper because we use the R2E scaffold instead of the OpenHands
scaffold and a much shorter maximum context length due to inference cost consideration.

The impact of ENTROPO is particularly evident for smaller models. For instance, the Qwen3-
4B model’s performance is negligible after SFT (1.7% on SWEBENCH-VERIFIED and 1.2% on
SWEBENCH-LITE), indicating a failure to learn the task. However, with ENTROPO and TTS, its
resolve rate surpasses 10%—a remarkable improvement that demonstrates the potential of our ap-
proach to make smaller, more efficient models viable for complex SWE tasks.

For larger models, ENTROPO also achieves significant gains. The Qwen3-Coder-30B model trained
with ENTROPO-KTO+TTS reaches 59.4% on SWEBENCH-VERIFIED and 49.2% on SWEBENCH-
LITE, establishing a strong performance baseline. We note that for GLM-4.5-Air, the improvements
from ENTROPO are less pronounced compared to Qwen3-Coder-30B. This is likely due to the use
of QLoRA for fine-tuning GLM-4.5-Air, which is not as effective as LoRA.
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Table 2: Resolve rate (pass@1, %) compared to representative SWEBENCH leaderboard sub-
missions. Our entries use the R2E scaffold, and we report the best single run for comparability.

Budgets and scaffolds may vary across submissions.

Submission Model \ Model Size  SWEBENCH-VERIFIED | SWEBENCH-LITE |
Closed Weight Models
Refact.ai Claude3.7/03/04-mini 74.4 60.0
SWE-agent Claude 4 Sonnet 66.6 56.7
SWE-agent Claude 3.7 Sonnet 62.4 48.0
Open Weight Models
OpenHands Qwen3-Coder 480B 69.6 -
OpenHands Kimi K2 1T 65.4 -
OpenHands GLM-4.5 355B 64.2 -
ENTROPO-KTO-TTS Qwen3-Coder 30B 59.8 49.3
DeepSWE-TTS Qwen3 32B 58.8 -
ENTROPO-KTO Qwen3-Coder 30B 51.6 44.7
Skywork-SWE-TTS Qwen2.5 32B 47 -
CodeFuse-CGM Qwen2.5 72B - 44.0
KGCompass DeepSeek V3 671B - 36.7
SWE-fixer Qwen2.5 72B 24.7 32.8
Moatless Deepseek V3 671B - 30.7

Comparison to the Official SWEBENCH Leaderboard. In Table 2, we compare our best-
performing model against submissions on the official SWEBENCH leaderboard. Our results are
highly competitive, particularly among open-weight models. On SWEBENCH-VERIFIED, our 30B
parameter ENTROPO-KTO-TTS model achieves a 59.8% resolve rate, surpassed only by models
with over 10x more parameters (e.g., >350B). On SWEBENCH-LITE, the same model sets a new
state-of-the-art for open-weight models at 49.3%, with our non-TTS version securing the second-
highest rank.

Crucially, ENTROPO-KTO-TTS outperforms other TTS-based submissions like DeepSWE-
TTS (Luo et al., 2025) and Skywork-SWE-TTS (Zeng et al., 2025b). This highlights the effective-
ness of our entropy-preserving training, which preserves the policy diversity essential for maximiz-
ing TTS gains. Note that DeepSWE-TTS is online RL-based, showing that our entropy-preserving
offline preference learning can be more effective than online RL. Compared to closed-weight mod-
els, our results are competitive with top-tier models like Claude 3.7 Sonnet, demonstrating that
ENTROPO can significantly narrow the performance gap with commercial models.

4.3 ABLATION STUDIES

In this section, we perform ablation studies to investigate the impact of different components of
ENTROPO and the sensitivity of the hyperparameters. We mainly focus on the ENTROPO-KTO,
as KTO requires fewer GPU memory compared with DPO, as DPO takes a pair of trajectories to
calculate the gradient during training.

Impact of Entropy Regularization. To isolate the benefit of our entropy-preserving objective,
we compare ENTROPO-KTO against the M-KTO (Xiong et al., 2025) and SFT on the Qwen3-
Coder-30B model. As shown in Figure 2, ENTROPO-KTO consistently outperforms both baselines.
When N = 1, ENTROPO-KTO can outperform both SFT and M-KTO, showing its advantage even
without TTS. The performance gap between ENTROPO-KTO and multi-turn KTO widens with
larger N, confirming that explicit diversity preservation is critical for maximizing the gains from
TTS. Both preference-based methods outperform SFT, which aligns with findings that SFT can
harm generalization (Chu et al., 2025). We conduct a similar experiment on the ENTROPO-DPO
model and the M-DPO model, and the results are shown in Figure 5. The results show a similar
trend to the ENTROPO-KTO experiment.

Hybrid Selector Components. We analyze the contribution of each component of our hybrid se-
lector at N = 16. The left plot in Figure 3 shows that removing any single component degrades
performance, while the full hybrid selector achieves the best results. This confirms that combining
a learned verifier with model-free approaches is the most effective strategy.
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Figure 2: The Impact of Entropy Regularization on Test-Time Scaling. Performance of
ENTROPO-KTO, M-KTO, and SFT on SWEBENCH-VERIFIED (left) and SWEBENCH-LITE (right)
as the number of parallel rollouts (V) increases. ENTROPO’s entropy regularization consistently
yields better scaling.
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Figure 3: Ablation Studies on SWEBENCH-VERIFIED. (Left) Performance contribution of each
component in our hybrid selector at N = 16. (Right) Sensitivity analysis of the hyperparameter o
for ENTROPO-KTO.

Sensitivity to . The right plot in Figure 3 shows the performance of ENTROPO-KTO across
different values of the hyperparameter cv. The model is robust to a reasonable range of «, indicating
that it is not a sensitive hyperparameter. Performance degrades only when o becomes excessively
large, causing the training gradients to vanish.

Impact of Temperature on Performance. We also investigate whether increasing sampling tem-
perature can replicate the benefits of ENTROPO. As detailed in §E.5, simply raising the temperature
fails to deliver comparable performance gains. Instead, it degrades performance by introducing ex-
cessive sampling randomness, confirming that temperature tuning is no substitute for the principled
entropy regularization of ENTROPO.

5 DISCUSSIONS AND LIMITATIONS

While ENTROPO provides a robust framework for enhancing multi-turn agents, we acknowledge
several limitations and future directions. Our TTS experiments are limited to N = 16 parallel roll-
outs due to budget constraints. As our results in Figure 2 suggest that performance gains scale with
N, exploring this behavior with a larger number of rollouts could more conclusively demonstrate the
benefits of diversity preservation. Additionally, our end-to-end rollout strategy could be enhanced
by incorporating more sophisticated search techniques like Tree-of-Thought (Yao et al., 2023) or
solution merging methods (Luong et al., 2025) to explore the solution space more effectively.

Moreover, we acknowledge that the TTS component is an engineering design, guided by empirical
observations on SWE tasks, rather than a theoretically guaranteed strategy. As our ablation study in
Figure 3 validates, this approach proves to be effective in practice. However, its direct application
may not generalize universally to all software tasks or other domains without adaptation. This
highlights a promising direction for future research towards the development of a more principled
and theoretically backed TTS framework. Such a system might learn an adaptive selection policy
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or incorporate uncertainty estimates to move beyond fixed heuristics. We hope our study, which
validates the effectiveness of our current empirical design, will inspire the community to explore
these more robust and generalizable TTS systems.

Furthermore, due to computational resource constraints, our current implementation of ENTROPO
is based on offline preference learning. However, the core principle of entropy regularization can be
extended to an online reinforcement learning setting. In such a setup, one could explicitly reward the
agent for generating diverse trajectories, potentially leading to even more robust policies. We leave
this extension to online RL as a promising direction for future work. Finally, although validated on
software engineering, ENTROPO is task-agnostic and could be applied to other complex reasoning
domains like competitive mathematics or scientific discovery. We hope our work encourages further
exploration into diversity-preserving alignment for building more capable and robust LLM agents.

6 CONCLUSION

In this work, we introduce ENTROPO, an entropy-enhanced preference optimization framework de-
signed to improve the performance of multi-turn, tool-using agents on complex SWE tasks. By ex-
plicitly regularizing the preference objective to preserve policy diversity, ENTROPO overcomes the
limitations of standard alignment methods that often lead to diversity collapse. ENTROPO achieves
state-of-the-art results among open-weight models on the SWEBENCH leaderboard, establishing a
robust and effective method for building more powerful and reliable coding agents. We hope our
work encourages further exploration into diversity-preserving alignment for building more capable
and robust LLM agents.

10
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ETHICS STATEMENT

We have adhered to the ICLR Code of Ethics in conducting this research. Our work focuses on
enhancing the capabilities of open-weight LLMs for complex software engineering tasks. By devel-
oping methods that improve these publicly accessible models, we aim to foster transparency and re-
duce the performance gap between open-weight and closed-weight proprietary models. The datasets
used for training are derived from publicly available sources, and we are not aware of any person-
ally identifiable information or offensive content within them. Our research does not involve human
subjects, and we do not foresee any direct negative societal impacts or ethical concerns arising from
our methodology or its outcomes.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our research. All implementation details, in-
cluding datasets, models, and training/inference configurations, are thoroughly described in §4.1.
The theoretical analysis of our proposed method is detailed in §3 with complete proofs provided
in Appendix B. To facilitate full reproducibility, we will release all our code, the fine-tuned model
weights, and the specific data splits used for our experiments upon acceptance of the paper. While
the links are withheld for the anonymous review process, we pledge to make all artifacts publicly
available on Hugging Face, ensuring that the research community can easily verify, use, and build
upon our work.
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A THE USE OF LLMS

In compliance with ICLR 2026 guidelines regarding the disclosure of LLMs usage, we provide the
following statement:

Large Language Models are used solely as a general-purpose assist tool for grammar checking and
minor stylistic improvements during the writing process of this paper. Specifically, LLMs are em-
ployed to:

* Identify and correct grammatical errors in the manuscript
* Suggest improvements to sentence structure and clarity

All research ideas, methodological contributions, experimental results, and substantive written con-
tent are entirely the original work of the authors. The authors take full responsibility for all content
in this paper, including any text that may have been refined through LLM-assisted grammar check-
ing. The role of LLMs is limited to language polishing and does not rise to the level that would
warrant consideration as a contributor to the research.

B PROOF OF PROPOSITION 3.2

First, we analyze the optimal policy under the objective
mEJXEyNﬂ(y\x) [U(ZL’, y)} + OZH(7T(|SC)) - BH(’/Ta 7r7’€f)

By Assumption 3.1, we have

u* = arg mSXE(m7y+’y7)~p[log o(u(z,y™) —u(z,y))] 7

Denote policies 7(+|x), mrer(-|x) and utility function u(x, -) as vectors m, 7, s, u. We can rewrite
our objective as:
T T T _ T
max 7w u—oan logm+ B’ logmer =" (u— alogm + Slogmyeys)
P ®)

st |rf =1

The Lagrangian is
L(m,\) =77 (u— alogm + Blog myer) +>\(Z7Ti -1 )

Taking the derivative of the Lagrangian, we have
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It gives
allogm+1) =u+ flogmeer + A1

u+ flog mrer + A1
logr +1 = 27 ga ! (11)
utflog my.ep+(A—a)l
T = exp a

U(Z’y) )7Tref (y|x)

Then, we analyze the optimal policy under the objective

B/a,

which implies the optimal policy 7*(y|z) o exp(

7(yT|x) m(y~|z)
max B,y y-)~p [log" (“ P"g TPy )T

which is equivalent to

7T(y+|$) 7Tref(y-"_h")
maxE ,+ ,-)~pllogo(alog ———= — Blog ———=
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Note that 7(y|z) = exp(%u(x, Y)) e (ylx)P/® ) Z(x) is equivalent to u(z,y) = alogm(y|z) —
Blog e (y|z) + alog Z(z). Given the same prompt x, compute the utility difference between two
different responses y and y’. We have

u(z,y) —u(z,y') = alogn(y|lx) — Blog mref(y|z) + alog Z(x)
— [alogm(y'|x) — Blog e (y'|x) + alog Z ()]
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We now substitute u(z, y) into the Bradley-Terry objective in Assumption 3.1
, Tyt |z) Tref (Y |2)
©*(ylx) = argmaxE(, ,+ ,-pllog o(alog ———— — flog ————)] (13)
oot m(y~[z) Tres (y~|2)

which satisfies the relationship 7* (y|z) oc exp(“E2) ¢ (y|a)?/.

(e

C PROOF OF PROPOSITION 3.3

First, we consider the case when H = 2. The key idea is to solve the optimization problem through
a backward iteration, i.e., fromh = H = 2to h = 1.

For h = 2, by Proposition 3.2, we have:

Tt 2(182) = AN B, o (52, 02) + AH (72 (152)) = BH (72, Tye2)]

(14)
u(sa, -
o 777’ef('|52)6/a eXp( ( 2 ))
Q@
Then, we define the value function and @ function w.r.t. maq 2 as:
Vm2(82) = Eay oy (-fs0) [u(s2, 1) + o (m(+]s2)) — BH (0, Trey)] 15)
QM,l(Shal) = E01NP1(~\S1,a1)[VM,Q(SQ)]
For h = 1, we have:
Tm,1(c]51) = argngngawm(.m)[QM,1(51,al) +aH(m(-s1)) — BH(m1, Trep1)]
(16)

o< wref71(-|31)ﬁ/a exp

(o),
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By construction, 4,2 is already optimal for A = 2.

Now, we consider a more general case h = H. We could repeat the above process H times starting
from Vg1 = 0. We define

u(sp,ap) ifh=H
r.h(Sh,an) = ) 17)
Qaan(sn, o) {th~P(-sh,ah)[VM,hH(ShHﬂ ifth<H-1 (
Based on the definition above, we have:
, Bla
i (anlsn) = Tref,h(an|sn) eXp(QM,h(Smah))
Zh(Sh)
Vin(sn) = Bay g (1sn) (@ (sn, an) + aH (7 ([sn)) — BH (7, 7res)] = arlog Zn(sn)
(18)
where Zy(sn) = D _,, ca Trep.n(an|sn)?/® exp(@).
To show how the expression of the state value holds, we focus on a general objective:
EyopU(w) — aH(p) + BH(p, 19
,in [EwpU(w) = aH(p) + BH(p; po)] (19)
where A(Q2) denotes the set of probabilities on w.
Note that
153 U(w
By )~ aH(p) + BH(p. ) = Fumlologp(w) o 1ogpo(w) - L))
20
5/ U (w) (20)
= Eunpllog p(w) —log(po(w)™* exp(=——))]

To ensure that g(w) is a valid probability distribution, we define the following normalization con-

stant:
U(w)

7 = /po(w)ﬁ/o‘ exp(— Ydw 21

Then the normalized distribution is p*(w) = ¢(w)/Z. Inserting back, we have

EwNp[U(w)} - OzH(p) + 6H(p>p0) = aE'wNp[Ing(w) - IOg(Z : p* (w))]

= aEy~p[logp(w) —logp* (w) — log Z] 22)

p(w)
= aEyy~plog () aBy~pllog Z]

Note that the first item is the KL divergence K L(p||p*). Thus, the minimizer of the above equa-

tion exists when p(w) = p*(w), i.e., p*(w) = Lpo(w)?/* exp(—@). The minimum value is
—alog Z. Thus, Vaqn(sy) = EahNWMﬁ(lm)[QM)h(sh,ah) + aH(7(:|sn)) — BH(m, Tref)] =
alog Zn(sp).

By definition, [m4,5] ., is optimal.

D DERIVATION OF ENTROPO LOSS

Based on Proposition 3.3, the optimal policy at step h is

Wref,h(ah|8h)ﬁ/a p(QM,h(Sh, ap) )

= 23
T, n(an|sn) Znlsn) ; (23)

with normalization factor
Zn(sn) = Z Trernlan | sn)%* exp(Qan(sn, an)/a), (24)

ap €A
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and the corresponding value
VM,h(Sh) = alogZh(sh). (25)

Starting from the policy expression,

(QM,hSh,ah))

Tamn(an | Sn) Zn(sn) = Tret,n(an | sn)P/* exp

(26)
Tmn(an | sn) Zn(sn)
— s =
eXp(QM’h(Sh ah)/a) Wref,h(ah | Sh)ﬂ/a
Taking the logarithm and multiplying by « gives
Qmn(8n,an) = alogman(an | sn) + alog Zn(sn) — Blog mres nlan | sn) 27
= Vmn(sn) + alogmagn(an | sn) — Blog mresn(an | sn).
We can further rewrite Q-value as:
™ ap|s
Qm,n(sn,an) = - log %‘hﬁ)/a + Vin(sn) (28)
Tref.h(@n|sh)
With the definition of ()-values Q) aq,, we have
s Qap|S .
EOhNPh('ISh:ah)VMJL-Fl(Sh+1) =a-log %‘hﬁ)/a + VMJL(Sh)a ifth<H-1
Tref,n(@n|sh)
(anlsn) 2
™ a S
u(sy,an) = a - log —A Hﬁ/a +Vm,u(sm)-
Tref,m(am|sm)P/™
Summing over h € [H], we have
u T h(an|sh)
u(sp,am) =« Z log % + Vam,a(s1)
hel Wref,h(ah|8h) T
1
1) (30)

H-1
+ Z Varnt1(8h41) = Eop by (s an) VM 41 (Shg1)]
h=1

(3)

Term (1) is similar to what we derive in Proposition 3.2. Term (2) can be viewed as a constant when
comparing two different responses for the same prompt s;. For Term (3), given the deterministic
nature of our tool-integrated coding task, Term (3) is equal to 0. Therefore, we can utilize the
maximum likelihood estimation of the utility function with a dataset D consisting of (z, 7%, 77) to
obtain our ENTROPO-DPO loss:

Lgntroro—pro(0)

== > 1Og‘7<a2[10g o1 (a;f |s})) ~log 7r9,h(af|8f) ]) (31)
JED

(w,r+,7— mreg.n(ay |sy))/e Tref.n(ay sy, )%«

With equation 30 implying that Term (3) = 0, the implicit reward r(x,y) is given by

Zthl log % Based on Ethayarajh et al. (2024), we can naturally derive our

ENTROPO-KTO loss
Lgntroro—rx10(0) = Ezyp[Ay — V(2,9)] (32)
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where

Zlog T M, h ah|8h)
Tref,n(anlsn)P/

_ A o(alre(z,y) — 20))
V($7y) - {)\U(OZ(ZO — 7"0(557:[/)))

2= Eonrr(in Z () + LH ) e (o)

E EXPERIMENT DETAILS

In this section, we provide additional details about the experiment details of ENTROPO.

E.1 DATASET DETAILS

Training Data. For SFT, we use the SWE-Smith dataset (Yang et al., 2025), selecting only Python-
based instances with problem statements that align with the SWEBENCH format. For preference
learning, we employ the R2E-Gym-subset (Jain et al., 2025), which we selected because it contains
no repository overlap with our test sets, thereby preventing data leakage.

Evaluation Data. We evaluate ENTROPO on the complete official test sets for both SWEBENCH-
VERIFIED and SWEBENCH-LITE. Detailed statistics for all datasets are provided in Table 3.

Table 3: Dataset Statistics: The table presents the number of training and test samples for each
dataset, along with the source of the dataset.

Dataset # Train Samples  # Test Samples  Source

SWE-Smith 8736 - https://huggingface.co/datasets/r2e-edits/swesmith-clean
R2E-Gym-subset 4578 - https://huggingface.co/datasets/R2E sym—-Subset

SWE-bench Verified - 500 https://huggingface.co/datasets/pri WE-bench_Verified
SWE-bench Lite - 300 https://huggingface.co/datasets/princeton nlz,/”wE bench_Lite

E.2 SCAFFOLD DETAILS

In our experiments, we utilize the standard R2E scaffold, which is recognized for its flexibility,
ease of use, and robust performance. This scaffold equips the agent with four essential tools:
file_editor for file editing, execute_bash for running bash commands, search for file
and code retrieval, and finish to conclude the task. The complete system prompt, detailing the
functionality and parameters of each tool, is provided below.

System Prompt of the Scaffold

You are a programming agent who is provided a GitHub issue and repository bash environ-

ment and is tasked to solve certain tasks (e.g., file localization, testcase generation, code

repair, and editing, etc) to resolve the issue.

We have access to the following functions:

— BEGIN FUNCTION #1: file_editor —

Description: Custom editing tool for viewing, creating, and editing files.

* State is persistent across command calls and discussions with the user

* If path is a file, view displays the result of applying cat —n. If path is a directory, view
lists of non-hidden files and directories up to 2 levels deep

* The create command cannot be used if the specified path already exists as a file

 If a command generates a long output, it will be truncated and marked with <response
clipped>

* The undo_edit command will revert the last edit made to the file at path

Notes for using the str_replace command:
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* The old_str parameter should match EXACTLY one or more consecutive lines from the
original file. Be mindful of whitespaces!

o If the o1d_str parameter is not unique in the file, the replacement will not be performed.
Make sure to include enough context in o1d_str to make it unique

* The new_str parameter should contain the edited lines that should replace the o1d_str

Parameters:

1. command (string, required)
Allowed values: [view, create, str_replace, insert, undo_edit].
The command to run.

2. path (string, required)
Absolute path to file or directory, e.g. /testbed/file.py or /testbed.

3. file_text (string, optional)
Required for the create command. Contains the content of the file to be created.

4. old_str (string, optional)
Required for the st r_.replace command. The exact string in the path to replace.

5. new_str (string, optional)

* Optional for the st r_replace command to specify the replacement string.
¢ Required for the insert command to specify the string to insert.

6. insert_line (integer, optional)
Required for the insert command. The new_st r will be inserted after the line number
specified here.

7. view_range (array, optional)
* Optional for the view command (when path is a file).
* If provided, specifies the line range to view, e.g. [11, 12] shows lines 11 and 12.
e [start_line, -1] will show all lines from start_line to the end of file.

8. concise (boolean, optional)
* Optional for the view command.
* Displays a concise skeletal view of the file. If set to False, it displays the full content
in the specified view_range.

— END FUNCTION #1 —
— BEGIN FUNCTION #2: execute_bash —
Description: Execute a bash command in the terminal.
Behavior notes:
* If a command may run indefinitely (long-running), consider running it in the background
and redirecting output, e.g. python3 app.py > server.log 2>&l &.
o If the bash command returns exit code -1, it means the process is still running. The assis-
tant may:
— Call this function again with the command as an empty string (
logs.
— Send more input to STDIN of the running process by calling this function again with
the command set to the text input.
— Send command="ctrl+c" to interrupt the currently running process.
* If the command times out, it will be interrupted (SIGINT). The assistant may then retry or
do further steps if needed.
Parameters:

9999

) to retrieve additional

1. cmd (string, required)
The bash command (and optional arguments) to execute.
* Can be empty (") to retrieve more logs if the process is still running.
e Can be “ctrl+c” to interrupt the running process.

— END FUNCTION #2 —
— BEGIN FUNCTION #3: search —
Description: Search for a term in a directory or a single file.
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o If path is a directory (or unspecified, default is . ), it recursively searches all non-hidden
files and directories for the search term.

* If path points to a file, it runs a grep -—n in that file to show line numbers matching the
search term.

* If more than 100 files match in a directory search, results are truncated, and the tool will
inform you to narrow your search.

* If no matches are found, it will inform you as well.

Parameters:

1. search_term (string, required)
The term or string to search for in files.

2. path (string, optional)
The file or directory to search in. Defaults to . if not specified.

— END FUNCTION #3 —

— BEGIN FUNCTION #4: finish —

Description: Finish the interaction once the task is complete or if no further progress can
be made.

Behavior notes:

* The submit command finalizes your output.

Parameters:

1. command (string, required)
Currently allowed value: [submit].

2. result (string, optional)
The result text or final message to submit. Defaults to an empty string if not provided.

— END FUNCTION #4 —
If you choose to call a function ONLY reply in the following format with NO suffix:

<function=example_function_name>
<parameter=example_parameter_l>value_1l</parameter>
<parameter=example_parameter_ 2>

This is the value for the second parameter

that can span

multiple lines

</parameter>

</function>

<IMPORTANT> Reminder:

* Function calls MUST follow the specified format, start with <function= and end with
</function>

* Required parameters MUST be specified

* Only call one function at a time

* VERY IMPORTANT: Each response must include both reasoning (as natural text) and
function call (in the above format) to solve the task.

E.3

Our implementation relies on the LLaMA-Factory (Zheng et al., 2024b) for model training and
SGLang (Zheng et al., 2024a) for efficient inference deployment. All experiments are performed
on a server configured with four 32-core AMD EPYC 7702 CPUs, 8 NVIDIA H100 (80GB) GPUs,
4 NVIDIA A100 (40GB) GPUs. The H100 GPUs are dedicated to the primary training and
inference workloads, while the A100 GPUs provided supplementary computational support during

and

RUNNING ENVIRONMENT

inference.

E.4 TRAINING AND INFERENCE DETAILS

Training Hyperparameters. We configure our training process as follows. For LoRA, we set
lora_rank=8, lora_alpha=16, and apply it to all available modules (lora_target=all).
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Figure 4: Impact of Temperature on Performance. Performance of multi-turn KTO and
KTO+TTS on SWEBENCH-VERIFIED with varying temperature, compared to ENTROPO with a fixed
temperature of 0.7. Increasing temperature fails to match the performance of ENTROPO and de-
grades performance past 0.9.

For the GLM-4.5-Air model, we use 4-bit QLoRA quantization. Across all models, we use a context
length of 18,000 tokens, a learning rate of le-5, and a warmup ratio of 0.1. This context length is
chosen to avoid Out of Memory errors during training as a longer context length would require much
more memory. The batch size is set to 4 for GLM-4.5-Air and 16 for all other models. Both the SFT
and preference optimization stages are trained for a single epoch using these settings.

Inference Parameters. During inference, each rollout is permitted a maximum of 200 environment
interaction steps and a total generation length of up to 131,072 tokens. We use a sampling tempera-
ture of 0.7, top_k of 20, and top_p of 0.8 for all models, which is the recommended setting from
Qwen3 model card.

Hybrid Trajectory Selection. Our hybrid selector employs a multi-stage filtering process to iden-
tify the best trajectory from the generated candidates. The process is as follows:

1. Initial Filtering: We first discard any trajectories that are truncated due to exceeding the
step or token limits.

2. Regression Testing: Next, we filter out trajectories that fail the regression tests generated
by the R2E-Gym framework.

3. Verifier-Based Filtering: We then apply a verifier model and remove trajectories with a
probability below a threshold of 0.01. We choose a conservative threshold because we
empirically observe that many valid solutions do not receive high probability scores, but
scores below 0.01 are a strong indicator of a flawed trajectory.

If any filtering step results in an empty set of candidates, we revert to the candidate pool from the
previous step.

After filtering, we apply a final model-free heuristic for selection. We select the trajectory with the
most environment interaction steps for SWEBENCH-VERIFIED and the fewest for SWEBENCH-LITE.
This distinction is motivated by the nature of the benchmarks and our observation. For SWEBENCH-
VERIFIED, every instance has been manually verified by human engineers at OpenAl (Chowdhury
et al., 2024) to have accurate problem statements and robust environments. Thus, a longer successful
trajectory can be a positive signal, potentially indicating more comprehensive reasoning, the addition
of more thorough test cases, or the consideration of more corner cases before submitting a final
patch. However, for SWEBENCH-LITE, the situation is different. It is known to contain instances with
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Figure 5: The Impact of Entropy Regularization on Test-Time Scaling. Performance of
ENTROPO-DPO, M-DPO, and SFT on SWEBENCH-VERIFIED (left) and SWEBENCH-LITE (right)
as the number of parallel rollouts (V) increases. ENTROPO’s entropy regularization consistently
yields better scaling.

misleading or incomplete problem statements. Xia et al. (2024) and Chowdhury et al. (2024) note
that the original SWE-bench dataset contains underspecified problem statements and problematic
environment setups that cause some unit tests to fail regardless of the solution. In such cases, a long
trajectory can signal that the agent is misled by a vague prompt or is “hallucinating” complexity in
response to incorrect unit test feedback. Therefore, we adopt the strategy from prior work (Agarwal
et al., 2025; Hassid et al., 2025) to prefer shorter solutions, which helps mitigate the negative impact
of these problematic instances. We conduct ablation studies on the impact of this strategy in §E.5
which shows that this strategy is effective on SWEBENCH-LITE.

E.5 ADDITIONAL EXPERIMENTS

Impact of Temperature on Performance. To investigate whether increased sampling diversity
can replicate the benefits of our entropy-regularized approach, we evaluate the multi-turn KTO and
multi-turn KTO+TTS models under varying temperatures. We test the Qwen3-Coder-30B model
on SWEBENCH-VERIFIED with temperatures ranging from 0.5 to 1.8 and compare its performance
to ENTROPO-KTO and ENTROPO-KTO+TTS, which use a fixed temperature of 0.7. As shown in
Figure 4, increasing the temperature provides no performance benefit. In fact, performance begins
to decline beyond a temperature of 0.9, as excessive sampling randomness undermines the precision
required for SWE tasks involving tool use and code editing. These results demonstrate that merely
increasing temperature is not a substitute for principled entropy regularization, as it fails to match
the performance gains achieved by ENTROPO.

Impact of Entropy Regularization on DPO. To investigate whether our entropy-regularized
approach can benefit DPO, we conduct experiments on the Qwen3-Coder-30B model with the
ENTROPO-DPO and M-DPO (Xiong et al., 2025) models. We test the Qwen3-Coder-30B model
on SWEBENCH-VERIFIED and SWEBENCH-LITE with different number of parallel rollouts (/V) and
compare its performance to ENTROPO-DPO, M-DPO, and SFT. As shown in Figure 5, ENTROPO-
DPO consistently outperforms M-DPO and SFT. When N = 1, ENTROPO-DPO can outperform
both SFT and M-DPO, showing its advantage can be independent of TTS. As N increases, the per-
formance gap between ENTROPO-DPO and M-DPO widens, similar to our findings in Figure 2.

Impact of Step Heuristic on SWEBENCH-LITE. We adopt different step heuristics for ENTROPO-
KTO with model Qwen3-Coder-30B on SWEBENCH-LITE as follows: 1) Prioritize the trajectory
with the most environment interaction steps. 2) Prioritize the trajectory with the fewest environment
interaction steps. 3) Randomly select a trajectory as the step heuristic. The results are shown in
Table 4. We can observe that when using the fewest steps heuristic, the performance of ENTROPO-
KTO is best, which verifies our motivation in §E.4. However, even using the longest steps heuristic
or random selection heuristic, the performance of ENTROPO-KTO is still better than the best open-
source submission on SWEBENCH-LITE (CodeFuse-CGM with 44.0% resolve rate), which demon-
strates the robustness of our overall framework.

Heuristics for a Random Real-World SWE Problem. The above analysis leads to a practical
guide for choosing a heuristic for a random real-world SWE problem:
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o If the developer trust the specification of the SWE problem: Favor Longest Steps.

« If the specification is vague/noisy: Favor Shortest Steps.

* If the developer has no idea (The Default Strategy): We recommend favoring Longest
Steps.

As shown in Table 4, when we applied the “Longest Steps” heuristic to SWEBENCH-LITE (where it
is empirically suboptimal), the performance (47.3%) was comparable to Random Selection (47.1%).
This means that even if the heuristic is “suboptimal” for the data distribution, it causes no significant
harm. However, on high-quality data (SWEBENCH-VERIFIED), using Longest Steps yields significant
gains. Therefore, prioritizing the longest trajectory can be a default choice—it captures the upside
on good data without degrading performance on noisy data.

Table 4: Impact of Step Heuristic on SWEBENCH-LITE.: The table presents the performance of
different step heuristics on SWEBENCH-LITE. We compare prioritizing trajectories with the most
steps, fewest steps, and random selection.
Most Steps  Fewest Steps Random
Resolve Rate (%) 47.3(£03) 49.2(x£07) 47.1(x0.6)

F ALTERNATIVE DERIVATION OF ENTROPO-DPO

Building on the framework of entropy-regularized MDPs (Ziebart, 2010), we define the regularized
value function for any policy 7 as:

(ah|§h)
[Z ( Sh,ap) — alog Wref(ah|sh)’8/a> §1 = s] (33)

To facilitate the analysis, we define a modified reward function ' that incorporates the reference
policy:
r'(s,a) = r(s,a) + Blog mer(als) (34)

Using this modified reward, the regularized Q-function of a policy 7 is defined as:

Q" (s,a) =7'(s,a) + Egropls,a) [V ()] (35)
The relationship between the value function and Q-function is:
V7 (s) = Equn(.|s)[—log m(als) + Q™ (s, a)] (36)

The regularized optimal policy 7*, which maximizes V™ (s), is characterized by the optimal Q-
function (Q* and value function V*. The optimal policy is given by:

7*(als) = exp <Q*<S’ “)a_ V*(S)> (37)

By substituting this form of 7* back into the sum of the log-ratios, we can rewrite the sum of the
log-ratios as follows:
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H

Zalog m@1H) NN (5 an) — V(51) — Blog mer(anlsn) (38)

Tref( ah|5h)ﬁ/a Pt

p”ﬁm

[u(sn,an) + Blog met(anlsn) + Eg op(sp,an)V(s") = V*(sn)

h=1
(39
— Blog mer(an|sn)] (40)
H H-1
=3 (ulsnyan) =V (s0) + 3 EarmpClsnan (V' () = V" (sn41)]
h=1 h=1
(41)
(42)
Given the deterministic nature of our software engineering task, we have
H-1
> BompCionan (V7 (5)) =V (sn1)] = 0 (43)
h=1

This simplification leads to the final relationship linking the total reward to the regularized policy
and the initial value:

H
Zu(sh,ah Zalo m*(anlsn) +V*(s1) (44)
h=1

7Tref ah‘sh)ﬁ/a

Finally, combining this result with Assumption 3.1 allows us to derive the EntroPO-PPO loss.
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