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Abstract
This study introduces the P5 model - a founda-
tional method that utilizes reinforcement learning
(RL) to augment control, effectiveness, and scal-
ability in molecular dynamics simulations (MD).
Our novel strategy optimizes the sampling of tar-
get polymer chain conformations, marking an ef-
ficiency improvement of over 37.1%. The RL-
induced control policies function as an inductive
bias, modulating Brownian forces to steer the sys-
tem towards the preferred state, thereby expand-
ing the exploration of the configuration space be-
yond what traditional MD allows. This broadened
exploration generates a more varied set of confor-
mations and targets specific properties, a feature
pivotal for progress in polymer development, drug
discovery, and material design. Our technique
offers significant advantages when investigating
new systems with limited prior knowledge, open-
ing up new methodologies for tackling complex
simulation problems with generative techniques.

1. Introduction
Molecular dynamics has emerged as an invaluable tool for
examining molecular systems, albeit with certain limita-
tions. These methods often prove computationally intensive,
particularly when handling complex systems such as macro-
molecules, for instance, polymer chains with more than
104 atoms. In addition, uncertainties may arise due to this
increasing system complexity, inaccuracies in complex def-
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Figure 1. Simulated polymer chain of Cellulose Acetate with P5.

initions such as force fields, or limited knowledge about
de Novo molecular systems. Machine learning has shown
promise in addressing these challenges with data-driven
methods like property predictions using discriminative tech-
niques (Karuth et al., 2021; Tao et al., 2021), and machine
learning force fields (Doerr et al., 2021; Kleinschmidt et al.,
2022; Unke et al., 2021). Computational chemistry has
seen machine learning techniques gradually incorporate 3D
(Ganea et al., 2021) and graph representations (Antoniuk
et al., 2022; Park et al., 2022; You et al., 2018; Zuo et al.,
2021). Recent work has included physics analysis to inform
generative molecular machine learning (Liu et al., 2023).
Despite these advances, deriving molecular properties that
demand expectations over an ensemble of states or time-
dependent behavior of atoms and molecules remains rela-
tively unexplored.

This paper presents P5, an RL-based control policy sys-
tem in a three-dimensional physics engine simulator to en-
hance molecular simulation processes. P5 stands for Pre-
dicting Polymer Properties and Processability with Physics-
Informed Reinforcement Learning. By utilizing reinforce-
ment learning with a molecular dynamics module, including
Brownian Dynamics, we extend the scope of application for
control policies in molecular dynamics simulations. Our
approach demonstrated increased control over uncertainty
and addressed previous limitations in modeling and manipu-
lating the polymer chain’s structural dynamics.

Our work builds upon existing molecular dynamics sam-
pling machine learning algorithms. While Holdijk et al.
(2022) demonstrates how a physics-inspired approach for
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transition sampling may provide direct control over molecu-
lar systems, P5’s RL approach offers flexibility, adaptability,
and environmental feedback. Klein et al. (2023) introduce
’TimeWarp,’ which utilizes the Metropolis-Hastings algo-
rithm for probabilistic sampling, while P5 actively targets
specific states. Rose et al. (2021) deploy RL to sample rare
events in their molecular dynamics research, and P5 seeks
an array of targets. Our approach focuses on increasing con-
trol and efficiency over macromolecule dynamics. Further-
more, it builds upon RL extensive applications in robotics
through training on 3D physics engines (Muratore et al.,
2022; Brockman et al., 2016; Todorov et al., 2012; Juliani
et al., 2020), which are widely used for model-based control
learning. Reinforcement learning algorithms, notably A3C
(Mnih et al., 2016) and PPO (Schulman et al., 2017), form
the foundation of these platforms, driving control systems
for kinetic simulators.

The P5 framework, as a physics-informed reinforcement
learning model, contrasts with previous machine learning
approaches like Generative Adversarial Networks (GAN),
Variational Autoencoders (VAE), Adversarial Autoencoders
(AAE), Long Short-Term Memory Networks (LSTM),
Transformer networks, and the Generative Network Com-
plex (GNC) in its methodology (Martinelli, 2022). While
these models primarily focus on generating novel molecular
structures based on statistical learning from large datasets,
they don’t inherently model the physical behaviors of molec-
ular systems. The framework P5, conversely, utilizes a
simulation-based approach to optimize molecular dynamics
simulations, thereby modeling and predicting the behavior
of known and novel molecular systems. In the context of
de novo drug discovery, while the other models contribute
by generating new candidate molecules, the current state of
the P5 model can control and optimize molecular confor-
mations, a vital aspect affecting a molecule’s properties and
activities, thus opening up new avenues for designing novel
drug candidates.

While RL is not inherently generative, it can be used within
a generative modeling framework to learn policies that guide
data generation. In the case of P5, RL is employed to learn
control policies that influence the forces and behaviors of
polymer chains in molecular dynamics simulations. These
learned policies allow P5 to generate trajectories and explore
the conformational space of the polymer, or any molecule in
general, in a goal-directed manner. This can be particularly
useful in de novo molecule design, where the goal is to
create novel molecules with desired properties.

The primary rationale for considering the P5 model as a
promising tool for de novo molecular discovery is its proven
adaptability to novel, unencountered states, described in the
Results section. The reinforcement learning (RL) mecha-
nism in P5, underpinned by a rich state space encapsulating

geometric, dynamic, and environmental components, is de-
signed to dynamically manipulate Brownian forces acting
on the constituent beads of the polymer chain. This adjust-
ment directly responds to alterations in the initial states or
changes in the radii of gyration, enabling the model to tra-
verse a vast conformational space not strictly constrained by
its training corpus. By appropriately augmenting the reward
function, observational parameters, and the action space, the
model’s capabilities can be extended to cater to the de novo
design of molecular structures.

Through simulating a molecule of Cellulose Acetate (re-
newable biopolymer chain) with P5, we demonstrate how
RL-based control policies offer improved exploration of the
configuration space, adaptation to specific objectives, and
optimization of computational resources in over a 37.1% im-
provement of polymer chain conformation sampling target-
ing a known radius of gyration range. This approach boosts
the efficiency of the simulation process and fosters the de-
velopment of RL-based control policies, which enhance the
precision and efficiency of the simulations. Furthermore, P5
can be extended to various molecular systems, underscoring
its transferability to de Novo molecules, applicability to
cross-scale problems, and generating new conformations.
This development with inexpensive computation and data
makes P5 a promising tool for accelerating polymer inter-
disciplinary research and development. Furthermore, this
simulation technology advancement can accelerate discov-
eries in various scientific and engineering domains.

2. Methods
2.1. Simulation Architecture

We present P5, a generative simulator developed to predict
polymer properties and processing using physics-informed
reinforcement learning to advance molecular dynamics sim-
ulations. This system was built on Unity 3D, a physics game
engine that allows for the simulation of Newtonian physics
of motion and 3D geometric representation of chemical
structures. We incorporated the ML-agents module within
the Unity environment, including standard reinforcement
learning algorithms, Proximal Policy Optimization (PPO)
(Schulman et al., 2017), and other similar techniques. We
selected PPO as our reinforcement learning algorithm due
to its flexibility and balanced exploration-exploitation trade-
off. We ’froze’ the components of the MD, 3D-physics, RL,
and the molecular system, thus concentrating our efforts on
designing control policies for molecular dynamics1.

Our simulation framework incorporated the extensively-
validated Martini Force Field (Bereau & Kremer, 2015) as
shown in Figure 2 for representing organic molecules ex-
plained in Appendix 3. The geometric modeling of P5 is

1See Appendix 1, including error detection.
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performed in Unity, with hinge joints employed to emulate
bonds between polymer chain beads, facilitating precise ro-
tational dynamics and an accurate depiction of the structural
intricacies of the polymer chain. We utilized SMILE and
Gromacs readers for monomer topology, enabling precise
bead position retrieval in Cartesian space using RDKit (Lan-
drum, 2010). The nonbonded interactions were modeled
through Lennard-Jones and Brownian forces as an implicit
solvent. Collectively, these methodologies contribute to a
high-fidelity representation of polymeric molecular systems.

Figure 2. Martinization of Cellulose Acetate Molecule).

In the P5 model, the operational timescale is denoted as a
dimensionless timestep, attributable to its implementation
in the physics engine. This dimensionless timestep can
be converted to physical time units such as femtoseconds
using characteristic values of the relevant properties (e.g.,
bond lengths, bond angles, atomic masses) to derive the
appropriate scaling factor. The selection of the exact scaling
factor is contingent on the specific system under study and
forms a crucial part of the model calibration process 2.

The development and training phase of the P5 model was
conducted on a standard laptop, demonstrating its com-
patibility with commonly accessible computing resources.
However, the model can be executed on cloud computing
platforms for increased performance by 10x and scalability.

2.2. Control Policy Development

The control policy is optimized by a neural network (NN)
agent that manipulates Brownian forces acting on the back-
bone beads of the polymer chain (PC). This process propels
the beads to swiftly alter their positions, enabling a tran-
sition from an initial conformation to a target ensemble
defined by a pre-specified radius of gyration (RG) range.

States St: The state space, denoted by S, combines sev-
eral elements: the Geometry component, Sgeometry, dihedral
angles dihedrals, and bond angles bonds are calculated
based on the position vectors. The Dynamics component,
Sdynamics, captures the position rs, velocity vs, and angular
velocity ws of the rigid body of the beads. The Environmen-

2See Appendix 2.

tal component, Senvironment, reflects the positions of other
neighboring beads’ rigid bodies, encapsulated in the set
otherss, within a specific observation radius around the
current rigid body, to provide environmental feedback. The
totality of the state space S is thus a combination of these
three components: S = Sgeometry ∪ Sdynamics ∪ Senvironment.

In the state space St, there will be a series of states corre-
sponding to target conformations with the desired radius of
gyration. These states capture the specific geometric and
dynamic properties of the polymer chain. The radius of
gyration (RG) is calculated in equation (1):

RG =

√√√√ 1

N

N∑
i=1

(ri − rcm)2 (1)

Where N is the number of beads in the chain, ri represents
the position of each bead, and rcm is the position of the
center of mass of the chain, quantifying the spatial extent of
the polymer chain. The RG is an intrinsic characteristic of a
polymer, a known property for widely studied polymers, and
obtained from the literature for P5. Its implementation estab-
lished a clear target state for developing a proof of concept.
In further P5 development, the RG can be estimated from
the simulation data to increase generalization. In addition,
the objective function is flexible enough to accommodate a
broad array of target objectives.

Actions At: Our system’s neural network (NN) is the agent
that controls the Brownian dynamics by adding a random
”kick” or disturbance to the particles at each timestep, simu-
lating the effect of random collisions with a fluid medium,
and rotations to the backbone beads of each monomer in
the chain, influencing the system’s dynamics. The force
applied to the bead is denoted as Flearned and is calculated
as follows: Flearned =

[
xa ya za

]
· (coef · αa). Here, xa,

ya, and za represent the directional components of the force,
while coef and αa are factors to control force magnitude.
The rotation angle action is denoted as θrotation and is calcu-
lated as θrotation = anglea · θmax. Here, anglea represents
the rotation angle action provided by the NN agent, and θmax
denotes the maximum rotation angle defined as a parameter
of the system. The rotation angle θrotation influences the di-
hedral angles of the beads and ultimately affects the overall
conformation of the polymer chain.

Rewards Rt: The reward function consists of three com-
ponents that are functions of the radius of gyration (RG)
and its deviation from the target range targetRGmin and
targetRGmax. The distance reward Rdist reward penalizes
the agent in proportion to the squared distance between
the current radius of gyration and the target range. The
radius of gyration reward RRG reward, this component incen-
tivizes the agent to maintain the radius of gyration within
the target range. The third reward is the shaping reward
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RRG shaping reward, which guides the agent’s exploration and
encourages stability. It rewards the agent for maintaining a
radius of gyration near the middle of the target range and
penalizes deviations.

With this reward structure, the RL agent explores confor-
mations where the radius of gyration falls within the target
range targetRGmin = 0 [nm], targetRGmax = 20 [nm].
Consequently, conformations within the target range were
sampled more frequently, leading to a higher concentration
of conformations ρπ(τ) around the target radius of gyration,
resulting in desired trajectories. The probability of the tra-
jectory τ of the polymer chain can be described based on
the expression:

ρπ(τ) = p(s0)

T−1∏
t=0

π(ft learned|st)p(st+1|st, ft learned) (2)

In expression (2), p(s0) represents the initial state s0 proba-
bility, which captures the likelihood of the polymer chain
starting in a particular conformation. This probability de-
pends on the initial conditions and can influence the explo-
ration of different regions of the conformational space. The
term π(ft learned|st) represents the policy π that selects the
action ft learned given the current state st. The policy π is
responsible for shaping the trajectory of the polymer chain
by guiding the selection of actions that maximize expected
rewards.

Transition Tt: The transition probability Tt defined by
p(st+1|st, ft learned) which captures the likelihood of tran-
sitioning from the current state st to the next state st+ 1
given the reward rt and the applied force ft learned. This
probability reflects how the dynamics of the polymer chain,
influenced by the applied forces and the rewards obtained,
lead to transitions between different conformations. The
probability ρπ(τ) represents the observability of the trajec-
tory τ of the polymer chain under the policy π. It captures
the likelihood of traversing a sequence of states as deter-
mined by the policy π optimized by the P5 model.

3. Results
Our study focused on Cellulose Acetate, a renewable and
biodegradable biopolymer. The cellulose acetate molecule
typically has between 65 to 350 monomers and is repre-
sented by a coarse-grained model following the Martini
Force Field with 75 monomers of 458 [g/mol]. The P5
model was trained for approximately 35 million episodes
with 20,000 simulation steps each. The trained policy was
then implemented in real-time simulation, enabling continu-
ous adjustment to ensure the polymer chain remained within
the target RG range of 0 to 20 nanometers throughout the
runtime. During the training phase, the cumulative reward
versus the environment optimized the policy quickly, as

shown in Figure 3. Intermittent dips in the cumulative re-
ward were attributed to the potential energy excess induced
by initially compressed conformations and high potential
energy spikes. Despite these dips, the NN converged with
sustained high values after six hours of training on a conven-
tional laptop. The P5 model demonstrates the effectiveness
of machine learning in efficiently controlling the conforma-
tional behavior of the Cellulose Acetate polymer.

Figure 3. Learning curve used to monitor training progress.

Figure 4. Comparing Conformations Control: P5 Model vs. Molec-
ular Dynamics Simulations in Cellulose Acetate.

Our results demonstrate the effectiveness of the P5 model
in efficiently controlling the conformational behavior of a
simulated molecule of Cellulose Acetate. With optimized
policies, P5 successfully guides the polymer chain to stay
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within the target range of the RG, resulting in a 37.1%
increase in sampling targeted states, as depicted in Figure
4. P5 effectively corrected conformation spikes due to high
initial potential energy. Notably, P5 achieves these target
conformations in half the wall clock time than MD.

The histogram trajectories shown in Figure 5, generated
by P5, demonstrate the robustness and effectiveness of the
model in correcting and guiding the polymer chain’s con-
formation toward the targeted RG values. By manually
changing the initial state and starting from different RG
values, the policy network within P5 dynamically adjusts
the forces acting on the beads to ensure the trajectory aligns
with the desired RG range. This showcases the model’s
ability to adapt to unseen states and highlights its compu-
tational viability and transferability to other polymers and
potentially de Novo molecules.

Figure 5. Trajectory Corrections of Polymer Chain Conformations
by P5 Model from Unseen States (manually perturbed initial states
explained in Appendix 4 and 5).

4. Contributions and Future work
In this work, we introduced the P5 model, a powerful tool
that leverages machine learning control policies to optimize
molecular dynamics simulations and expand their generative
capabilities. The P5 simulator’s unique integration of en-
hanced optimization, computational efficiency, and intuitive
usability offers a novel approach for property evaluation,
morphology analysis, and mechanical property prediction
in complex molecular systems. Regarding efficiency and
cost-effectiveness, P5 significantly outperforms traditional
MD simulations by close to 40%, marking a pivotal step to-
wards the computational design of molecular systems using
generative machine learning techniques.

In acknowledging the current limitations of our empiri-
cal evaluation performed on cellulose acetate, we envision
promising future directions. While the presented results of

the P5 model derive from a single molecule application, it
is essential to clarify that these findings merely represent
an initial demonstration of the methodology rather than an
exhaustive exploration of its capabilities. The underlying
framework of the P5 model is designed with flexibility and
extensibility, capable of assimilating novel physics, diverse
target systems, and various training regimes. This robust
design positions P5 as a potent tool capable of performing
de novo analysis and expanding its applicability to various
molecules. As we progress, the crucial avenue for research
lies in undertaking further empirical evaluations across a
wider range of molecular structures. This research path will
bolster our claims regarding the broad applicability of the
P5 model, ushering in a new phase of enhanced performance
in molecular dynamics simulations.

We plan to extend the P5 model to a broader range of poly-
mer structures, benchmark against several other MD soft-
ware, and expand the model to full-atom simulations, pro-
viding a more comprehensive understanding of the model’s
efficacy and scalability. Additionally, we aim to explore
innovative control algorithms and integrate other physics
machine learning models, analytical approaches, and time-
coarse optimization to enhance the P5 model’s performance
further. These research paths are promising approaches that
combine physics-based machine learning and molecular
dynamics simulations.
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A. Appendix
A.1. Simulation Architecture

The development of the P5 model was a complex endeavor that required integrating a molecular dynamics (MD) module
within Unity3D, a robust physics engine, and the inclusion of reinforcement learning (RL). This project’s complexity was
heightened due to the need for accurate representation and simulation of atomic and molecular interactions, including
Brownian random kicks that eventually evolved into a learned force within the system. Unity3D facilitated the intricate
modeling and real-time visual inspection of simulations, which is critical for verifying model accuracy. Meanwhile, the
integration of RL demanded the creation of a high-performing reward function and a balance between exploration and
exploitation trade-offs. Amid these challenges, we opted for Proximal Policy Optimization (PPO) for its robustness,
computational efficiency, and relative simplicity, aiding more straightforward integration with the MD module. Furthermore,
despite the lack of extensive precedents, our pioneering effort in developing control policies for molecular dynamics
contributed to establishing a robust system, setting the stage for future refinement and optimization.

Quantifying the effects and efficiency of the reinforcement learning-driven Brownian ”kicks” in P5 molecular dynamics
(MD) simulations is crucial. Unity 3D visualization plays a significant role in this process by providing an additional layer
of validation, contributing to the robustness of the simulations. The raw data generated from MD simulations relevant for
P5 include particle coordinates, velocity, and acceleration data, energy data (kinetic and potential energies), bond lengths,
angles, dihedrals, and diffusion coefficients. This information helps track particles’ motion and energy changes influenced
by the Brownian ”kicks” and identify structural changes or bond breakages that could result from these rapid perturbations.

Despite the comprehensiveness of this raw data, it might overlook certain rapid phenomena, such as bond breakages induced
by Brownian ”kicks.” These events occur so swiftly that their detection might be challenging when solely relying on raw
data analysis. Unity 3D visualization becomes invaluable in this error detection, providing an interactive, visually rich
platform for identifying and rectifying inconsistencies or errors. By making potential issues visible that the raw data may
fail to detect, Unity 3D visualization ensures the simulations’ accuracy and validity, proving indispensable in the analytical
toolkit.

A.2. Timescale Factor Calculation

To convert the dimensionless timescale to physical units, specifically milliseconds, we use the fundamental relationship
τ = r

v , where τ is the characteristic time, r is the characteristic length, and v is the characteristic velocity.

Characteristic Length (r): In the P5 model, the units of length are in Angstroms (Å), which equals 10−10 m.

Characteristic Mass (m): The model uses mass units based on the Van der Waals mass. For a polymer composed of
monomers with seven beads, each with a total molecular weight of 458 g/mol, the characteristic mass of each bead
(mbead) is calculated by dividing this molecular weight by 7 (to account for the seven beads), and by Avogadro’s number
NA = 6.022× 1023 to convert to atomic mass units.

Characteristic Velocity (v): The characteristic velocity comes from the kinetic theory of gases and the equipartition theorem,
which states that the mean kinetic energy of a molecule due to its motion through space is given by 1

2mv2 = 3
2kT , where m

is mass, v is velocity, k is Boltzmann’s constant, and T is temperature. Here, we can calculate the characteristic velocity
vchar when T is set to a typical room temperature (say, 298 K) and m is set to mbead.

Characteristic Time (τ ): The characteristic time can then be found by substituting r and vchar into the equation τ = r
vchar

.

The timestep factor to convert from dimensionless to femtoseconds is 209.7915273799608.

A.3. Martnini Model and Hyperparameters

This model results in seven types of beads, each categorized as ”Na” (non-polar, hydrogen-acceptor), ”P3” (polar, polarity
level 3), or ”SP1” (small, in ring, polar, polarity level 1). These beads carry assigned masses according to the Martini Model.
Van der Waals’ diameters are 5.2 Angstroms for regular beads and 4.7 Angstroms for smaller beads in a ring (designated
with an ’S’ prefix). Additionally, we incorporate an implicit solvent model in the form of Brownian dynamics to provide
a more representative simulation environment, accounting for the effects of the solvent on the behavior of our molecular
system.
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Figure 6. Parameters of the polymer chain agent.

A.4. Generative P5

We conducted a series of experiments to demonstrate the generative capabilities of the P5 model. We manually perturbed the
initial state of 10 episodes, each consisting of 20,000 steps, while keeping the P5-MD system in standby mode. By changing
the positions of the beads in the initial state, we introduced variations in the starting configurations. Remarkably, the P5
model effectively corrected the trajectory in each episode, guiding the polymer chain toward the desired gyration (RG) range
radius. This showcases the model’s ability to generate new conformations within a target space by leveraging its learned
control policies. These generated conformations serve as valuable data points that can be further analyzed to gain insights
into specific functional groups’ structural properties, energy landscape, and behavior. Moreover, these conformations
can be utilized in various downstream applications, such as predicting molecular properties, exploring structure-activity
relationships, or conducting virtual screening for drug discovery. The P5 model’s generative capabilities open up exciting
opportunities for researchers to expand their understanding of molecular behavior, explore previously uncharted regions of
chemical space, and drive innovation in diverse scientific domains.

Further, P5 autonomously generates data through modified molecular dynamics simulations, obviating the reliance on
substantial experimental chemical datasets typically required in similar approaches. P5 finds conformations that may not be
accessible to pure molecular dynamics.

A.5. compares gyration radius (RG) trajectories from P5 and traditional molecular dynamics (MD) simulations that
provide critical insights into the conformational latent space. RG trajectories from pure MD showcase the molecule’s
inherent behavior. In contrast, P5 trajectories, driven by reinforcement learning-guided Brownian ”kicks,” demonstrate an
enhanced ability to explore broader or alternative regions within this latent space. This comparison reveals the influence
and effectiveness of the learned ”kicks” in navigating the latent space, serving as a pivotal tool in assessing P5’s generative
capabilities and directing future model improvements.
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A.5. Trajectories Comparison

Figure 7. P5 & MD trajectories for the Radius of Gyration Values.


