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Abstract

Deep temporal architectures such as Temporal Convolutional Networks (TCNs) achieve
strong predictive performance on sequential data, yet theoretical understanding of their gen-
eralization remains limited. We address this gap by providing both the first non-vacuous,
architecture-aware generalization bounds for deep temporal models and a principled evalu-
ation methodology.
For exponentially β-mixing sequences, we derive bounds scaling as

O
(

R
√

D p n log N
N

)
,

where D is network depth, p kernel size, n input dimension, and R weight norm. Our
delayed-feedback blocking mechanism transforms dependent samples into effectively inde-
pendent ones while discarding only O(1/ log N) of the data, yielding

√
D scaling instead of

exponential—implying that doubling depth requires approximately quadrupling the training
data.
We also introduce a fair-comparison methodology that fixes the effective sample size to iso-
late the effect of temporal structure from information content. Under Neff = 2,000, strongly
dependent sequences (ρ = 0.8) exhibit ≈ 76% smaller generalization gaps than weakly de-
pendent ones (ρ = 0.2), challenging the intuition that dependence is purely detrimental.
Yet convergence rates diverge from theory: weak dependencies follow N−1.21

eff scaling and
strong dependencies follow N−0.89

eff , both steeper than the predicted N−0.5. These findings
reveal that temporal dependence can enhance learning under fixed information budgets,
while highlighting gaps between theory and practice that motivate future research.

1 Introduction

Modern deep architectures, notably Temporal Convolutional Networks (TCNs) Lea et al. (2017); Bai et al.
(2018) and Transformer variants Vaswani et al. (2017), underpin state-of-the-art forecasting and representa-
tion learning across domains ranging from intensive care monitoring to backbone network management Lim
et al. (2021); Oreshkin et al. (2019). Despite this empirical success, two fundamental gaps remain. First, we
lack theoretical guarantees that explicitly account for architectural choices in temporal models. Second, we
lack proper evaluation methodology for dependent data that separates temporal structure effects from infor-
mation content. Researchers therefore lack principled answers to practical questions: how deep a network
should be, how much history suffices, and when dependencies help versus hinder learning.

Classical Probably Approximately Correct (PAC) theory Valiant (1984) presumes independent observations,
making its bounds vacuous for time-series data in which tomorrow is correlated with today. Extensions
to dependent settings through mixing coefficients Yu (1994); Kuznetsov & Mohri (2017) and sequential
Rademacher analyses Rakhlin et al. (2010); Chen et al. (2021) either explode exponentially with depth or
depend on norms that grow during training. Simultaneously, standard evaluation approaches vary sequence
length without controlling for effective sample size, confounding temporal structure with statistical informa-
tion density and leading to inconsistent interpretations of how dependencies affect learning.
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We address both gaps through complementary theoretical and methodological contributions. For expo-
nentially β-mixing processes, we derive non-vacuous, architecture-aware generalization bounds scaling as
O
(

R
√

D p n log N
N

)
for depth-D TCNs with kernel size p and weight norm R, the first guarantees that remain

meaningful even for deep temporal networks. Our key theoretical insight is a delayed-feedback blocking
scheme that uses all observations for training but, for the purpose of the generalization proof, treats only
one out of every d + 1 = Θ(log N) points as effectively independent. This yields a bound that grows as

√
D

rather than exponentially with depth.

Equally important, we introduce a fair comparison methodology that controls for effective sample size,
revealing that conventional evaluation conflates temporal structure with information content. By equaliz-
ing effective sample size across different dependency strengths, we isolate temporal structure effects from
statistical information density.

Terminology Note: Throughout this paper, we use “effective sample size” (denoted Neff) to refer to the
equivalent number of independent observations that would provide the same statistical information as a
dependent sequence of length N . We distinguish between “standard evaluation” (varying raw sequence
length N) and “fair comparison evaluation” (controlling for effective sample size Neff).

Our controlled experiments reveal that at an effective sample size of Neff = 2,000, strongly dependent
sequences (ρ = 0.8) achieve ≈76 % smaller absolute generalization gap than weakly dependent ones (ρ = 0.2)
(mean gap 0.018 ± 0.036 vs. 0.074 ± 0.081, p < 0.001, n = 12 per condition). However, empirical scaling
relationships deviate systematically from theoretical predictions, with weak dependencies following N−1.21

eff
convergence, whereas strong dependencies follow N−0.89

eff , both markedly steeper than the predicted N−0.5

rate. This reveals that temporal structure itself, beyond information quantity, fundamentally affects learning
outcomes, but current β-mixing theory incompletely captures how architectural inductive biases interact with
temporal dependencies.

This work provides architecture-aware generalization bounds, a fair comparison methodology for temporal
evaluation, and empirical evidence that modern temporal networks can leverage rather than merely accom-
modate sequential dependencies. Our theoretical framework establishes that doubling network depth
requires approximately quadrupling training data, providing quantitative guidance for researchers
and suggesting extensions to polynomial-mixing processes and attention-based architectures.

The remainder of this paper is structured as follows: Section 2 reviews related work in generalization theory
for dependent data and deep learning. Section 3 introduces essential preliminaries, including β-mixing pro-
cesses, Rademacher complexity, and PAC learning theory. Section 4 presents our architectural generalization
bounds for temporal models under β-mixing. Section 5 empirically validates these bounds using synthetic
and physiological time series, while Section 6 discusses the implications of our findings for temporal model
design. Section 7 concludes with a summary of contributions.

2 Related Work

PAC Learning under Dependence. Understanding how temporal dependencies affect learning guarantees
has been a research challenge in machine learning (ML) theory. This area of inquiry began with Yu’s work Yu
(1994), which established concentration inequalities for mixing processes, mathematical tools for bounding
the probability of large deviations between empirical and expected risk. Mohri and Rostamizadeh Mohri
& Rostamizadeh (2008) contributed by adapting Rademacher complexity bounds for β-mixing conditions,
extending theoretical tools from i.i.d. settings to dependent data. Despite these theoretical developments, a
limitation remains: resulting bounds typically scale polynomially with mixing coefficients, becoming loose or
even vacuous for slowly mixing sequences-the type of long-range dependencies that make time series valuable
to model.

More recent approaches have explored alternative frameworks to address these limitations. Kuznetsov and
Mohri Kuznetsov & Mohri (2017) introduced discrepancy based bounds that can provide tighter guarantees
than traditional mixing-coefficient methods under certain conditions, particularly for data with structured
dependencies. Abélès et al. Abeles et al. (2024) proposed a modular online-to-PAC conversion framework that

2



Under review as submission to TMLR

introduces delayed feedback to mitigate dependencies in stationary mixing processes. Our work extends this
theoretical direction by deriving explicit, architecture-aware generalization bounds for deep temporal models
thereby connecting mathematical guarantees to specific architectural choices in modern neural networks.

Rademacher Complexity for Neural Networks. The complexity of neural networks (their capacity to fit
patterns) influences their generalization behavior. Rademacher complexity has proven useful for quantifying
this capacity mathematically. For feedforward networks, Bartlett et al. Bartlett et al. (2017) developed norm
based complexity bounds that scale with the product of spectral norms of weight matrices, providing non-
vacuous bounds for deep networks. Golowich et al. Golowich et al. (2018) showed that under appropriate
weight normalization, the dependence on depth can improve from exponential to polynomial, specifically
O(

√
D) for depth D networks, making bounds more applicable for deep architectures.

For convolutional architectures, different structural considerations apply. Long and Sedghi Long & Sedghi
(2019) derived bounds that account for the parameter sharing inherent in CNNs, while Du et al. (2018)
analyzed how this sharing creates an implicit regularization effect. For attention-based models, Hsu et
al. Hsu et al. (2021) provided complexity bounds for transformer architectures, though without addressing the
temporal dependence issues central to sequence modeling. Our work integrates these analyses by specifically
addressing temporal convolutions with their causal structure and dilated receptive fields, while simultaneously
handling dependent samples, a combination not previously addressed in the literature.

Generalization in Time-Series Models. Generalization theory specifically for temporal models remains
less developed than its static counterparts, despite the widespread application of these models. Early the-
oretical work includes Meir Meir (2000), who provided VC dimension bounds for autoregressive models,
and Modha and Masry Modha & Fainman (1998), who analyzed memory-based time series predictors un-
der mixing conditions. These results do not readily extend to modern deep architectures. For recurrent
neural networks, Kuznetsov and Mohri Kuznetsov & Mariet (2018) derived generalization bounds under
β-mixing, but their approach yielded bounds that scale unfavorably with sequence length, limiting practical
applicability to short sequences.

More recent work has continued to develop this area. Zhu and Xian Zhu & Wang (2022) approached
the problem through sequential Rademacher complexity, providing bounds for RNNs that improve on earlier
results by better accounting for the sequential inductive bias. For transformer models in time-series contexts,
Tu et al. Tu et al. (2021) analyzed their expressivity, though focusing more on representational capacity than
generalization guarantees. What has remained absent from this literature are explicit, architecture-aware
bounds for modern temporal convolutional architectures under mixing conditions.

Recent Advances in Dependent Learning Theory. Several recent contributions have advanced the
understanding of learning from dependent data. Kontorovich and Raginsky Kontorovich & Raginsky (2017)
established refined concentration inequalities for mixing processes that improve upon classical results. Chen
et al. Chen et al. (2021) developed sequential Rademacher bounds specifically for transformer architectures,
though their bounds still scale unfavorably with depth. Alquier and Guedj Alquier & Guedj (2022) intro-
duced PAC-Bayes approaches for dependent data that provide data-dependent bounds, while Dziugaite et
al. Dziugaite et al. (2023) explored implicit regularization effects in over-parameterized sequence models.
Our work differs by providing explicit architecture-aware bounds that remain non-vacuous for deep networks
and directly connect to practical design choices.

A critical gap in this literature concerns evaluation methodology for temporal models. Standard approaches
that vary sequence length implicitly change both architectural capacity and effective sample size, making it
difficult to isolate the effects of temporal structure from sample size. This confounding has led to inconsistent
interpretations of how dependencies affect learning.

Relation to Sequential-Rademacher and PAC-Bayes bounds. Sequential-Rademacher analyses for
RNNs (Kuznetsov & Mariet, 2018; Chen et al., 2021) and PAC-Bayes transformer bounds (Hsu et al., 2021)
also handle dependent data, but none yield an explicit

√
D depth term. Their tightest rates behave like

Õ
(
(
∏

ℓ∥W (ℓ)∥2)/
√

N
)
, which becomes vacuous once the product of spectral norms grows. By contrast,

Theorem 1 keeps architectural factors additive: the bound stays finite even for example, D = 32 with
∥W (ℓ)∥2 = 2.

3



Under review as submission to TMLR

Aspect Previous Work Our Contributions

Depth scaling Exponential in D O(
√

D) – non-vacuous
Architecture specificity Generic bounds TCN-specific guarantees
Evaluation methodology Raw sequence length varies Controls effective sample size
Temporal dependencies Obstacle to overcome Can enhance performance
Practical guidance Existence guarantees "Doubling depth needs 4× data"
Bound tightness Often vacuous Non-vacuous for deep networks

Table 1: Comparison of our contributions with previous work in generalization theory for temporal models.

Our work addresses these challenges through two contributions: providing architecture-specific generaliza-
tion guarantees for TCNs under β-mixing conditions and introducing a fair comparison methodology that
controls for effective sample size. Table 1 summarizes how our contributions advance beyond previous work
across key dimensions. By quantifying how architectural parameters depth, kernel size, and weight norms
impact generalization performance while separating temporal structure effects from information density,
we connect theoretical understanding with properly controlled empirical evaluation. We validate these ap-
proaches through experiments on both synthetic β-mixing processes and real-world physiological time series,
demonstrating that proper evaluation reveals more nuanced relationships between temporal dependencies
and generalization than previously recognized.

Evaluation Methodology in Temporal Learning. Standard evaluation practices in temporal learning
vary raw sequence length without accounting for effective sample size, conflating temporal structure effects
with information content. While this issue has been noted informally by researchers, it has not been formally
addressed in the ML literature. Our work provides a systematic methodology for fair comparison of tempo-
ral models by controlling for effective sample size, revealing that standard evaluations have systematically
mischaracterized the relationship between temporal dependencies and generalization. This methodological
contribution is essential for proper empirical validation of theoretical results.

3 Preliminaries

To analyze how temporal models generalize despite training on dependent data, we need mathematical tools
that capture three key aspects: how dependencies decay over time (β-mixing), how complex our model class is
(Rademacher complexity), and how to transform dependent learning into a tractable problem (online-to-PAC
conversion). This section develops these tools with an eye toward their application to TCNs.

Let {Zt}N
t=1 be our training sequence of input-output pairs, where each Zt = (Xt, Yt) consists of an input

Xt ∈ Rn (a vector of n features at time t) and a corresponding output Yt ∈ R (the target value to predict).
The empirical risk of a hypothesis f (a predictor function from our hypothesis class) is

L̂N (f) = 1
N

N∑
t=1

ℓ
(
f(Xt), Yt

)
,

where ℓ : R × R → [0, 1] is a bounded loss function that measures prediction error. The true risk of f under
the data-generating process is

L(f) = E
[
ℓ
(
f(X), Y

)]
,

where (X, Y ) follows the same distribution as each training example (Xt, Yt). Our goal is to bound the
generalization gap |L(f) − L̂N (f)| when the samples exhibit temporal dependence.

3.1 Stationary Beta-Mixing Processes

Stationary processes maintain consistent statistical properties over time, a key property that enables mean-
ingful learning from temporal data. Formally, a strictly stationary process has the property that for any
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block length m ≥ 1 and any time shift t, the joint distribution of (Z1, . . . , Zm) is identical to that of
(Zt+1, . . . , Zt+m).

To quantify temporal dependencies, we use β-mixing coefficients.1 Consider predicting tomorrow’s tempera-
ture helps significantly, knowing last week’s temperature helps less, but knowing last year’s temperature on
this date provides almost no information. The β-mixing coefficient β(k) precisely quantifies this decay-how
much observing data from k time steps ago reduces our uncertainty about the future. When β(k) is small,
observations separated by k steps act nearly independently, enabling generalization despite dependencies.

We formalize this intuition by defining the β-mixing coefficient at lag k as follows. Let

F t
1 = σ(Z1, . . . , Zt) and F∞

t+k = σ(Zt+k, Zt+k+1, . . . )

be the sigma-algebras generated by the past and future observations, respectively. These mathematical
structures formalize the information contained in each set of random variables. The β-mixing coefficient is
defined as

β(k) = sup
t

E
[

sup
A∈F∞

t+k

∣∣Pr(A | F t
1) − Pr(A)

∣∣],
where Pr(A | F t

1) is the conditional probability of future event A given the past, and Pr(A) is its unconditional
probability. This coefficient captures the worst-case average discrepancy between predictions made with and
without knowledge of the past. A small β(k) indicates that samples separated by k steps are nearly
independent. This property allows us to develop techniques that effectively transform dependent samples
into approximately independent ones, bridging the gap between temporal learning and classical i.i.d. theory.

3.2 Rademacher Complexity

Rademacher complexity Bartlett & Mendelson (2002); Koltchinskii (2001) quantifies a hypothesis class’s
capacity to fit random noise-a key indicator of its potential to overfit training data. Given a function class
F : Rn → R and an i.i.d. sample S = {X(i)}m

i=1 of size m, we introduce independent Rademacher variables
{σi}m

i=1, each taking values +1 or −1 with equal probability (similar to random coin flips).

The empirical Rademacher complexity of F on sample S is

R̂S(F) = 1
m

Eσ

[
sup
f∈F

m∑
i=1

σi f
(
X(i))],

where Eσ denotes expectation over the random signs {σi} and supf∈F selects the function that maximizes
the correlation with these random signs. This measure captures how effectively a class of functions
can align with pure noise. In the temporal setting, this is particularly crucial: a model that can fit
arbitrary random patterns might memorize the specific temporal fluctuations in the training sequence rather
than learning the underlying dynamics. High Rademacher complexity suggests the model class is too flexible
and prone to overfitting temporal noise.

The expected Rademacher complexity averages this over all possible data samples: Rm(F) = ES [R̂S(F)].
This quantity directly controls generalization in the i.i.d. setting: with probability at least 1 − δ over the
random draw of the sample Mohri et al. (2018),

∣∣L(f) − L̂S(f)
∣∣ ≤ 2Rm(F) +

√
log(1/δ)

2m
,

where δ ∈ (0, 1) is a confidence parameter. In Section 4 we derive bounds on Rm(F) for temporal convolu-
tional networks, explicitly showing how architectural parameters affect model complexity and, consequently,
generalization performance.

1A process is β-mixing if the dependence between past and future events decays with temporal separation; formally, β(k) is
the worst-case dependence between events k steps apart.
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3.3 Online-to-PAC Reduction

Learning from dependent data presents a key challenge: standard PAC bounds assume i.i.d. samples, an
assumption clearly violated in time series data. To overcome this limitation, we leverage a technique that
connects online learning to batch learning for dependent sequences.

In online learning Cesa-Bianchi & Lugosi (2006); Shalev-Shwartz (2012), an algorithm proceeds through
rounds t = 1, 2, . . . , T , selecting a hypothesis ht ∈ F at each round before observing data point Zt and
incurring loss ℓ(ht, Zt). Unlike batch learning, which optimizes performance on a fixed dataset, online
learning must adapt continuously as new observations arrive. The algorithm’s performance is measured by
regret Hazan (2016):

RT =
T∑

t=1
ℓ(ht, Zt) − min

f∈F

T∑
t=1

ℓ(f, Zt),

comparing the algorithm’s cumulative loss to that of the best fixed hypothesis chosen with hindsight.

For dependent data, Abélès et al. Abeles et al. (2024) introduced a delayed-feedback protocol, where the
algorithm observes the loss at time t only after seeing Zt+d. This intentional delay helps break dependencies
in β-mixing processes by ensuring sufficient temporal separation between the time a prediction is made and
when its loss is incorporated into the model update.

In Section 4 we develop a blocking argument that formalizes how this approach allows us to convert online
regret bounds into PAC-style generalization guarantees, ultimately leading to our architecture-aware bound
for TCNs. This conversion creates a bridge between the sequential nature of online learning and the statistical
guarantees of PAC learning, establishing generalization bounds that account for both temporal dependencies
and architectural complexity.

3.4 Notation

We now establish notation that will be used throughout our work. The key quantities that determine
generalization in temporal models are the training sequence length N , the network architecture (depth D,
kernel size p, and weight norm bound R), and the input dimension n. Our bounds will depend on these
quantities along with a confidence parameter δ ∈ (0, 1) and a mixing-dependent term εmix(N) that quantifies
the residual dependence after the optimal delay is applied.

4 Generalization Bounds for Temporal Models

In this section we derive non-vacuous, architecture-aware generalization bounds for TCNs trained on expo-
nentially β-mixing data. The framework combines three key elements: (1) a delayed-feedback mechanism
that transforms dependent data into effectively independent samples, (2) architecture-specific Rademacher
complexity bounds for norm-constrained TCNs, and (3) optimization of the delay parameter to obtain tight
bounds with explicit architectural dependencies.
Assumption 1 (Exponential β-mixing). The training sequence {Zt}t≥1 is strictly stationary and satisfies
β(k) ≤ C0e−c0k for some constants C0, c0 > 0 and all k ≥ 1.

This assumption formalizes the notion that dependence in the time series decays exponentially with temporal
distance, allowing us to establish bounds that scale with the square root of sample size despite the lack of
independence. Many real-world processes experience this property, including autoregressive models and
certain types of physiological signals.
Remark 1 (Extension to Polynomial Mixing). While we focus on exponential mixing for clarity, our frame-
work extends to polynomial β-mixing where β(k) ≤ C0k−γ for γ > 1. In this case, choosing d = N1/(γ+1)

yields a generalization bound of O(N−γ/(γ+1)), which remains non-vacuous but converges more slowly than
the exponential case. Many real-world processes, including certain network traffic patterns and physiological
signals, exhibit polynomial rather than exponential mixing.
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Remark 2 (Why Exponential Mixing Is Reasonable for ECG-like Signals). Empirical studies of heart-rate
and ECG variability report correlation half-lives below 10 s(Clifford et al., 2006). Because β-mixing decays
at least as fast as the squared autocorrelation (Bradley, 2005, Thm. 2), these half-lives imply an effective
exponential rate c0 ≈ 0.2–0.4 for typical 250 Hz ECG streams. In short, even if some parts of the data mix
only at a polynomial rate, it is still safe to assume exponential mixing—you just use a different value of c0
(see the previous remark).

Blocking Mechanism. The major challenge in learning from dependent data is that standard generalization
bounds require i.i.d. samples. We overcome this using a blocking mechanism combined with delayed feedback.
The key insight is that observations separated by sufficient time become nearly independent in a
β-mixing process. We formalize this by partitioning our sequence into blocks of size d+1, then selecting the
first element from each block-ensuring these selected points are separated by exactly d time steps. Specifically,
we create B = ⌊N/(d + 1)⌋ blocks where block j contains indices Ij = {(j − 1)(d + 1) + 1, . . . , j(d + 1)}, as
illustrated in Figure 1. Each block contains d + 1 consecutive observations. We denote block j as ZIj and its
first element as Z

(1)
Ij

. The critical property of this construction is that the first elements of different blocks
are separated by at least d time steps, ensuring their dependence decays according to β(d).
Lemma 1 (Blocking Lemma). Under Assumption 1, the first elements of each block are nearly independent
in the following sense: ∥∥P

Z
(1)
I1

,...,Z
(1)
IB

− P
Z

(1)
I1

⊗ · · · ⊗ P
Z

(1)
IB

∥∥
TV ≤ B β(d).

This lemma provides insight into how we can quantify the approximate independence of the first elements
across blocks. It bounds the total variation distance-a standard metric for measuring the difference between
probability distributions-between two key distributions: (1) the actual joint distribution of all first elements
P

Z
(1)
I1

,...,Z
(1)
IB

, which accounts for any residual dependencies, and (2) the product of the individual marginal
distributions P

Z
(1)
I1

⊗ · · · ⊗ P
Z

(1)
IB

, which treats the elements as if they were truly independent.

The bound has two components that interact in a meaningful way. First, it grows with the number of blocks
B, which is intuitive since more blocks create more opportunities for dependencies to accumulate. Second,
and crucially, it decreases as the mixing coefficient β(d) gets smaller, which happens when we increase
the delay parameter d. This creates a significant trade-off: larger values of d yield better approximate
independence between the first elements, but also result in fewer blocks overall since B = ⌊N/(d + 1)⌋.

When d is chosen to be sufficiently large relative to the mixing time of the process-particularly when d is
proportional to the logarithm of the sequence length as we will later optimize-this total variation distance
becomes negligibly small. This theoretical guarantee allows us to treat these first elements as effectively
independent samples, forming a bridge between dependent time-series data and classical i.i.d. learning
theory.

Proof Sketch. The proof uses a telescoping sum approach to decompose the total variation distance between
the joint distribution and product of marginals. We write:∥∥P

Z
(1)
I1

,...,Z
(1)
IB

− P
Z

(1)
I1

⊗ · · · ⊗ P
Z

(1)
IB

∥∥
TV

≤
B−1∑
j=1

∥∥P
Z

(1)
I1

,...,Z
(1)
Ij

,Z
(1)
Ij+1

,...,Z
(1)
IB

− P
Z

(1)
I1

,...,Z
(1)
Ij

⊗ P
Z

(1)
Ij+1

,...,Z
(1)
IB

∥∥
TV (1)

The key is that each term measures dependence between blocks separated by at least d time steps. Since
β(d) quantifies the maximum dependence at lag d, Bradley’s inequality bounds each term by β(d). With
B − 1 such terms, the total is at most Bβ(d)-revealing a fundamental trade-off: more blocks mean more
dependence terms, but larger spacing (bigger d) makes each term smaller. The complete proof is provided
in Appendix B.

Computational Implications of Blocking. The delayed-feedback mechanism trades statistical efficiency
for independence guarantees. With delay parameter d, we treat only B = ⌊N/(d + 1)⌋ points as effectively
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Block 1

Z1 Z2 Z3 Z4

Z(1)
I1

Block 2

Z5 Z6 Z7 Z8

Z(1)
I2

Block 3

Z9 Z10 Z11 Z12

Z(1)
I3

Block 4

Z13 Z14 Z15 Z16

Z(1)
I4

d+1=4 steps d+1=4 steps d+1=4 steps

d = 3

First element of block (Z(1)
Ij )

Other elements

Figure 1: Illustration of the blocking mechanism. The time series is partitioned into blocks of length d+1 = 4,
with first elements (blue) separated by d+1 = 4 positions (or equivalently, d = 3 intervening positions). This
spacing ensures dependence between these elements decays according to β(d). When d is chosen optimally as
⌈log N/c0⌉, the total variation distance between the joint distribution of the first elements and the product
of their marginals is bounded by B × β(d).

independent for the purposes of the theoretical bound, so the analysis uses a data–utilization rate of roughly
(d + 1)−1. For our optimal choice d∗ = ⌈log N/c0⌉, this means the bound is evaluated on about N/ log N
effective samples. For example, with N = 16,384 and a representative mixing rate c0 ≈0.5 (using the natural
logarithm), we obtain d∗ ≈ 20. Thus only 1/(d∗ + 1) ≈ 4.8 % of the sequence is treated as the “independent
core” in the proof. Crucially, all N observations are still used for training; the reduction applies only to
the generalization analysis. Because d∗ grows only logarithmically, the ignored fraction shrinks further for
longer sequences, for example, to ≈ 3.4 % when N = 106.

Delayed-Feedback Learning. We exploit this blocking structure through delayed-feedback online learning,
following the framework developed by Abélès et al. Abeles et al. (2024). In this protocol, an algorithm
observes data point Zt at time t but only updates its hypothesis after seeing Zt+d at time t + d. This forced
delay creates a separation between observation and update that helps break the dependence cycle in the
time series.

The algorithm proceeds sequentially, producing a sequence of hypotheses h1, . . . , hN ∈ F with corresponding
regret RN =

∑
t ℓ(ht, Zt) − minf

∑
t ℓ(f, Zt), where the second term represents the loss of the best fixed

hypothesis chosen with perfect hindsight. This regret quantifies how much worse the online algorithm
performs compared to the best fixed predictor.

Instead of using a single hypothesis, we form the average predictor f̄ = 1
N

∑N
t=1 ht as our final model, building

on the classical online-to-batch conversion principle Cesa-Bianchi & Lugosi (2006). This averaging serves two
purposes: it reduces the variance inherent in individual predictors and connects the online learning setting to
batch generalization through the regret. By combining the blocking mechanism with these online-to-batch
conversion techniques, we obtain the following generalization bound:
Proposition 1 (Delayed-Feedback Generalization). Under Assumption 1, for any δ ∈ (0, 1), the average
predictor satisfies:

∣∣L(f̄) − L̂N (f̄)
∣∣ ≤ RN

N
+ N β(d) +

√
log(1/δ)

N
, with probability 1 − δ.

This bound reveals a major trade-off in learning from dependent data: increasing the delay d reduces
the mixing term Nβ(d) since the β-mixing coefficients decay with d, but it also potentially
increases the regret term RN /N by forcing predictions based on older information. The optimal
delay must balance these competing effects. Under our exponential mixing assumption, we will show that
setting d proportional to log N achieves this balance.

Proof Sketch. The proof develops in three key steps:
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First, we partition the sequence into B = ⌊N/(d+1)⌋ blocks, each containing d+1 consecutive observations.
By Lemma 1, the first elements of these blocks have total variation distance at most Bβ(d) from being truly
independent.

Second, we apply a statistical coupling technique. We introduce surrogate i.i.d. random variables {L̃j}B
j=1

with the same marginal distributions as our block-wise loss averages {Lj}B
j=1. The approximation error from

this coupling is bounded by: ∣∣∣∣∣∣E
 1

B

B∑
j=1

Lj

− E

 1
B

B∑
j=1

L̃j

∣∣∣∣∣∣ ≤ Bβ(d) (2)

Third, we apply the standard online-to-batch conversion to our surrogate i.i.d. sequence and bound the
resulting error terms. Combining all components and using B ≈ N/(d+1), we obtain the stated bound with
three terms: the average regret RN

N , the mixing term Nβ(d), and the concentration term
√

log(1/δ)
N . The

complete proof is provided in Appendix B.

TCN Hypothesis Class. Having established how to handle dependence in the data, we now quantify the
complexity of TCNs through their Rademacher complexity. We consider TCNs with depth D (number of
convolutional layers), kernel size p (temporal receptive field per layer), and weight norm bound R.

TCNs differ from standard CNNs by enforcing causality ensuring that predictions at time t depend only on
inputs up to time t, not future values. This causality constraint is essential for time-series modeling and is
typically implemented through asymmetric padding. TCNs also feature dilated convolutions that enable an
exponentially growing receptive field with depth, allowing deeper layers to capture longer-range dependencies
without a proportional increase in parameters.

For each layer ℓ, the weight tensor W (ℓ) ∈ Rp×rℓ−1×rℓ connects rℓ−1 input channels to rℓ output channels
with kernel size p. The shape of this tensor reflects how each convolutional filter spans p time steps of the
input sequence, with separate sets of weights for each input-output channel combination. The temporal
weight sharing inherent in convolution operations means the same weights are applied at each time step,
drastically reducing the number of parameters compared to fully-connected architectures while preserving
the ability to detect patterns regardless of when they occur in the sequence.

To control the network’s capacity, we impose the mixed ℓ2,1 constraint:

∥W (ℓ)∥2,1 =
rℓ∑

j=1

(∑
i,k

W
(ℓ) 2
k,i,j

)1/2
≤ R,

This constraint operates in two stages: first computing the Euclidean (ℓ2) norm of each output filter-
capturing how strongly it responds to input patterns and then summing these norms (ℓ1) across all filters.
Intuitively, this limits how much each layer can amplify its inputs, controlling the network’s sensitivity to
input variations. The hypothesis class is then defined as:

FD,p,R =
{

fW : X1:N 7→ RN | ∥W (ℓ)∥2,1 ≤ R ∀ℓ
}

.

This class encapsulates all TCN architectures that satisfy our structural constraints. The parameter D
controls the network’s depth, allowing it to learn hierarchical representations of increasing abstraction and
expanding the effective receptive field. The kernel size p determines how many consecutive time steps
each layer directly examines, affecting the network’s ability to capture local patterns. The norm bound R
restricts the magnitude of weight values, effectively limiting the class’s capacity to fit arbitrary functions.
Together, these three parameters characterize the complexity of our hypothesis class, enabling us to derive
generalization bounds that explicitly depend on architectural choices.

Rademacher Complexity Bound. We now derive a bound on the Rademacher complexity of our hypoth-
esis class, which measures its capacity to fit random noise patterns. Intuitively, if a model class can easily

9
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fit random noise (represented by random ±1 labels), it is likely to overfit to training data noise rather than
capturing true underlying patterns.
Lemma 2 (TCN Rademacher Complexity). For any i.i.d. sample of size m,

Rm(FD,p,R) ≤ 4R

√
D p n log(2m)

m
.

The sketch proof of this bound combines several insights from statistical learning theory. First, we analyze
the base layer’s complexity, which scales with R

√
n/m due to the input dimension and sample size. Then,

we account for how each convolutional layer transforms its inputs through a Lipschitz operator with constant
proportional to R

√
p, where the √

p factor emerges from the kernel size’s contribution to the layer’s sensitivity.
Finally, we apply composition results for neural networks that convert the naive depth-wise product of these
Lipschitz factors into a more favorable

√
D scaling through Heinz–Khinchin smoothing techniques developed

by Golowich et al. Golowich et al. (2018).

This bound explicitly shows how model complexity depends on architectural parameters: depth D, kernel
size p, input dimension n, and weight norm R. Each parameter contributes to the model’s capacity in
a different way. The linear dependence on R shows that doubling the weight norm bound doubles the
complexity, emphasizing the critical role of weight regularization. The

√
D factor demonstrates that adding

layers increases complexity sub-linearly, a key result compared to earlier bounds that scaled exponentially
with depth. The √

p factor reveals that larger convolutional kernels increase complexity by expanding each
layer’s receptive field. The

√
n factor accounts for how input dimensionality affects the model’s capacity to

fit patterns.

Crucially, the depth dependence is O(
√

D) rather than exponential in D, making the bound
non-vacuous even for deep networks with dozens of layers. This favorable scaling is achieved through
careful analysis of the network’s structure, leveraging both the weight norm constraint and the parameter
sharing inherent in convolutional layers. Without these architectural insights, the bound would grow as
O(RD), becoming vacuous for networks with even moderate depth.

Using standard online learning theory, we can translate this complexity bound into a regret bound for mirror
descent with an ℓ2-regularizer and step size ηt =

√
log N/t:

RN ≤ 2N RN (FD,p,R) = O
(
R
√

D p n N log N
)
.

This bound shows that the regret grows sublinearly with the sequence length N , specifically at rate
O(

√
N log N). The sublinear growth is essential for achieving meaningful generalization guarantees: if regret

grew linearly or superlinearly with N , the per-sample regret RN /N would not vanish as N increases, making
generalization impossible. The specific form of this regret bound will be crucial in our final generalization
result, as it will be balanced against the mixing-dependent term to achieve optimal scaling with sample size.

Main Bound and Architectural Insights. We now combine the delayed-feedback generalization bound,
the TCN complexity bound, and set the delay parameter optimally as d = ⌈log N/c0⌉. This choice ensures
that Nβ(d) ≤ C0, making the mixing-dependent term a constant independent of sample size. Substituting
our regret bound into Proposition 1, we obtain our main result:
Theorem 1 (Architecture-Aware Generalization). Under Assumption 1, for any δ ∈ (0, 1), every
f ∈ FD,p,R produced by the delayed-feedback learner with d = ⌈log N/c0⌉ satisfies:

∣∣L(f) − L̂N (f)
∣∣ ≤ C1 R

√
D p n log N

N
+ C0 +

√
log(1/δ)

N
,

with probability 1-δ, where C1 is a universal constant that depends on the online learning algorithm. For
mirror descent with ℓ2 regularization, our analysis yields C1 = 8 (see proof in Appendix B), though empirical
constants may be smaller due to the conservative nature of theoretical bounds.

Empirical values of the constants C0 and C1 extracted from all fair-comparison runs are reported in Ap-
pendix A.6.

10
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Proof Sketch. The proof combines three key components. First, by setting d = ⌈log N/c0⌉ and using the
exponential mixing assumption, we obtain Nβ(d) ≤ N · C0e−c0⌈log N/c0⌉ ≤ N · C0e− log N = C0, making
the mixing-dependent term a constant. Second, we bound the regret term RN /N using our Rademacher
complexity result from Lemma 2, which gives RN /N = O(R

√
D p n log N/N). Finally, we substitute these

bounds into Proposition 1, yielding the stated result. The complete proof is provided in Appendix B.

This bound translates directly to practical design rules. The O(
√

D) scaling means doubling model
depth requires 4× more training data, for example, if 10,000 time points suffice for a 6-layer TCN,
you need 40,000 for a 12-layer model. Similarly, the √

p factor suggests that increasing kernel size from
3 to 12 doubles the data requirement. These quantitative relationships replace guesswork with principled
architecture selection. The linear dependence on weight norm R highlights the importance of regularization,
especially for deeper architectures where the complexity term becomes more pronounced. The factor √

p
shows that larger convolutional kernels increase complexity, suggesting they should be used judiciously in
data-limited settings.

For strongly mixing processes with rapid decay of dependencies (large c0), the generalization gap is primarily
determined by the Rademacher complexity term, which scales as O(1/

√
N). For weakly mixing processes

with persistent dependencies (small c0), the mixing slack term C0 becomes significant, potentially dominating
the bound for smaller sample sizes. This suggests different optimization strategies might be appropriate
depending on the mixing properties of the data.

Fair Comparison Methodology for Temporal Evaluation. A critical challenge in evaluating temporal
models is that varying sequence length simultaneously changes both sample size and effective sample size.
For dependent processes, the effective sample size (the equivalent number of independent observations) differs
substantially from the raw sequence length. This confounding makes it difficult to isolate if performance
improvements stem from temporal structure or simply more information.

For an AR(1) process with lag-1 autocorrelation ρ, Neff = N · 1−ρ
1+ρ meaning positive serial dependence (ρ > 0)

diminishes the usable information, whereas negative dependence expands it (Wilks, 2011, Eq. 5.12). This
adjustment ensures any reported gain reflects true temporal modeling rather than simply more independent
data. To address this challenge, we fix effective sample size and vary raw sequence length to isolate tem-
poral structure effects from information density. To achieve identical effective sample sizes across different
dependency strengths, we choose raw sequence lengths according to:

N(ρ) = Neff · 1 + ρ

1 − ρ

To illustrate this approach concretely, achieving Neff = 2000 requires dramatically different raw sequence
lengths depending on the dependency strength: weak dependencies with ρ = 0.2 need only N = 2999
observations, while strong dependencies with ρ = 0.8 require N = 18000 observations to provide the same
statistical information content. This six-fold difference in required sequence length reveals how temporal
dependencies fundamentally alter the information density of time series data.

The importance of this methodology becomes clear when examining traditional evaluation approaches. Con-
sider our experimental results at a fixed raw sequence length of N = 16384, where all dependency strengths
achieve seemingly similar generalization gaps between 0.01 and 0.08. A researcher might naturally conclude
that dependency strength has little impact on learning performance. However, this comparison inadver-
tently compares vastly different amounts of statistical information: sequences with ρ = 0.2 contain 10,922
effective samples, those with ρ = 0.4 contain 7,022 effective samples, sequences with ρ = 0.6 provide 4,000
effective samples, and those with ρ = 0.8 contain merely 1,820 effective samples. The apparent similarity
in performance therefore reveals something profound-strongly dependent sequences with ρ = 0.8 achieve
comparable results using six times less information than weakly dependent sequences. This big difference,
completely obscured by traditional evaluation, demonstrates that our controlled design enables fair testing
of if temporal dependencies provide benefits beyond what can be explained by effective sample size alone,
successfully separating temporal structure effects from mere statistical information density.

11
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Neff ρ = 0.2 ρ = 0.4 ρ = 0.6 ρ = 0.8
500 749 1,166 2,000 4,500
1000 1,499 2,333 4,000 9,000
2000 2,999 4,666 8,000 18,000
4000 5,999 9,333 16,000 36,000
8000 11,999 18,666 32,000 72,000
16000 23,999 37,333 64,000 144,000

Table 2: Raw sequence lengths (floored to the nearest integer) required to achieve the target effective sample
sizes.

These theoretical scaling relationships and fair comparison methodology provide quantitative guidance for
architecture selection, which we validate experimentally in the next section on both controlled synthetic
β-mixing processes and real-world physiological time series. While our theoretical guarantees are derived
for processes satisfying exponential β-mixing conditions, we demonstrate that both the predicted scaling
relationships and the fair comparison insights extend to complex physiological signals where exact mixing
properties may not be precisely known.

5 Empirical Validation: Synthetic and Real-World Physiological Data

Having established theoretical bounds, we now test their predictions empirically using the fair comparison
methodology introduced in Section 4. While our theoretical framework provides architecture-aware bounds,
validating these predictions requires careful experimental design that separates temporal structure effects
from information content.

5.1 Implementation of Fair Comparison Experiments

We selected six target effective sample sizes: Neff ∈ {500, 1000, 2000, 4000, 8000, 16000} to observe scaling
behavior while remaining computationally tractable. Table 2 shows the resulting sequence lengths for each
configuration, computed using the methodology from Section 4. The six-fold difference in raw sequence
length between weak (ρ = 0.2) and strong (ρ = 0.8) dependencies for the same Neff illustrates why standard
evaluation approaches conflate information content with temporal structure.

5.2 Fair Comparison Results: Separating Information from Structure

Figure 2 presents the controlled comparison where all curves represent identical effective sample size but
different temporal structures. The results reveal a relationship between temporal dependencies and general-
ization that challenges both theoretical predictions and simple interpretations.

Key Empirical Discovery: With information content fixed (Neff = 2000), strongly dependent sequences
(ρ = 0.8) achieve ≈ 76 % smaller absolute generalization gap than weakly dependent ones (ρ = 0.2) (mean
gap 0.018 ± 0.036 vs. 0.074 ± 0.081, p < 0.001, n = 12 per condition). However, the scaling behavior
reveals complex, non-monotonic patterns. These patterns deviate from both theoretical predictions and
simple power-law models. We fit power-law approximations to the overall trends: weak dependencies (ρ =
0.2) follow N−1.21

eff decay (R2 = 0.930), while strong dependencies (ρ = 0.8) follow N−0.89
eff decay (R2 =

0.705). The moderate R2 values, particularly for strong dependencies, indicate deviations from simple
scaling relationships. This suggests that the interaction between temporal structure and generalization
involves complexities not fully captured by either our theoretical bounds or power-law models.

Statistical Analysis. Each configuration was evaluated across 3 independent trials with different random
seeds (seeds 0-2). We report mean values with standard error bars in all figures. When comparing perfor-
mance metrics, we verified statistical significance using Welch’s t-test with Bonferroni correction for multiple
comparisons. With 4 mixing coefficients (ρ ∈ {0.2, 0.4, 0.6, 0.8}), 6 effective sample sizes, 4 network depths,
and 3 trials, this yields a total of 288 experiments for the fair comparison analysis.

12
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Figure 2: Fair comparison reveals that temporal dependencies affect generalization beyond
information content. TThe y-axis shows the empirical generalization gap divided by the theoretical bound;
lower values indicate tighter bounds (better agreement between theory and practice). When controlling for
effective sample size, dotted lines show power-law fits to the averaged data. The gray dashed line shows
the theoretical N−0.5 scaling for reference. Error bars represent standard error across 12 trials (3 trials × 4
depths per condition).

This reduction was statistically significant (p < 0.001, n = 12 trials per condition, Cohen’s d ≈ 1.5),
calculated by averaging across all four network depths at Neff = 2000.

Absolute Performance Advantages. Strong temporal dependencies provide substantial performance
benefits that cannot be explained by information content alone. This ≈76% reduction in generalization gap
persists across different effective sample sizes, though with varying magnitude. This finding challenges the
conventional view of dependencies as obstacles to overcome, suggesting instead that architectural inductive
biases can exploit temporal regularities to enhance generalization.

Scaling Relationship Complexity. The systematic deviations from theoretical predictions create sample-
size-dependent trade-offs with important practical implications. Weak dependencies exhibit better sample
efficiency (N−1.21

eff ) than our theoretical bounds predict (N−0.5
eff ), suggesting that our generic β-mixing analysis

does not capture how TCNs specifically exploit weakly dependent temporal structure. Moderate dependen-
cies (ρ = 0.6) show intermediate behavior with N−0.645

eff scaling, while strong dependencies provide superior
absolute performance but with sub-optimal N−0.89

eff scaling, indicating fundamentally different learning dy-
namics across dependency regimes.

Crossover Effects and Sample-Size Dependencies. These contrasting scaling rates create sample-size-
dependent trade-offs. For small effective sample sizes (Neff < 1000), strong dependencies provide substantial
absolute performance advantages despite slower convergence. For larger sample sizes, the superior scaling
of weak dependencies begins to compete with the absolute performance advantage of strong dependencies.
This suggests optimal mixing rates may depend on available data quantities.

Theoretical Implications. These findings reveal fundamental gaps between theory and practice in tem-
poral learning. Our β-mixing bounds provide mathematically valid upper bounds but fail to predict actual
scaling relationships observed in controlled experiments. The theory captures worst-case behavior across all
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Figure 3: Generalization gap versus network depth under fair comparison (Neff = 2000). The empirical gaps
show complex patterns that deviate from the theoretical O(

√
D) scaling. Strong dependencies (ρ = 0.8)

maintain low gaps through depth 6 but show increased variability at depth 8, while weak dependencies (ρ =
0.2) exhibit high variance across all depths. Note that at D = 8, both dependency strengths show comparable
mean performance, suggesting potential optimization challenges for very deep networks on limited data. The
grey “

√
D scaling” reference line corresponds to the

√
D theoretical baseline.

possible mixing processes but misses how specific architectural inductive biases interact with particular tem-
poral structures. For weakly dependent data, the causal convolutional structure of TCNs appears to exploit
statistical regularities that generic mixing analysis cannot capture, achieving sample efficiency far beyond
theoretical predictions. This suggests opportunities for tighter theoretical analysis that better accounts for
architectural specificity.

Architecture-Dependent Effects. The benefits of strong temporal dependencies vary significantly with
network depth. At D = 2, the performance difference is minimal, while at D = 4 and D = 6, strong
dependencies provide substantial advantages. This depth-dependent behavior suggests that deeper networks
better exploit temporal structure, though the effect saturates at D = 8. These observations align with our
theoretical prediction that complexity scales as O(

√
D) but reveal additional architectural interactions not

captured by the theory.

Depth Scaling Under Fair Comparison. Figure 3 shows how model complexity affects generalization
when information content is held constant at Neff = 2000. The results show that the beneficial effects of
strong temporal dependencies persist across all network depths, with ρ = 0.8 maintaining consistently better
performance. However, the empirical scaling with depth deviates substantially from the theoretical O(

√
D)

prediction, revealing complex interactions between architectural choices and temporal structure.

5.3 Standard vs. Fair Comparison: A Critical Contrast

The contrast between standard and fair comparison evaluation reveals the importance of our methodology.
The standard grid comprises 960 independent training runs: 4 mixing coefficients (ρ ∈ {0.2, 0.4, 0.6, 0.8})×6
raw sequence lengths (N ∈ {512, 1024, 2048, 4096, 8192, 16384}) × 4 depths (D ∈ {2, 4, 6, 8}), each repeated
with 10 random seeds (0–9).

Under standard evaluation, weak dependencies (ρ = 0.2) appear to have worse absolute performance at
each raw sequence length N , scaling exponents seem to improve with stronger dependencies, and one might
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Figure 4: PhysioNet: Empirical generalization gap vs. sequence length. The empirical gap decreases faster
(N−0.79) than the predicted theoretical rate (N−1/2), suggesting that physiological signals contain structured
regularities that enable more efficient learning than generic β-mixing processes.

naturally conclude that strong dependencies are universally preferable. However, fair comparison reveals
a fundamentally different pattern. When information content is controlled, strong dependencies (ρ = 0.8)
achieve approximately 76% smaller generalization gaps than weak dependencies, yet weak dependencies
show faster convergence rates with respect to effective sample size, suggesting that the optimal dependency
structure depends on the available data quantity. This stark contrast demonstrates how standard evalu-
ation practices have systematically mischaracterized the relationship between temporal dependencies and
generalization.

5.4 Physiological Data: Validating Architectural Scaling

Having established the importance of fair comparison for understanding temporal dependencies, we now
turn to validating our architectural scaling predictions on real physiological data. Important caveat: We
cannot apply fair comparison methodology here because we cannot control the intrinsic mixing properties of
ECG signals. Therefore, these experiments specifically test whether the architectural scaling relationships
(particularly the O(

√
D) depth dependence) generalize to complex real-world signals, not the effects of

temporal dependencies per se.

Unlike synthetic AR(1) processes with known mixing properties, ECG signals exhibit complex multi-scale
dynamics: quasi-periodic heartbeats modulated by respiration, corrupted by movement artifacts, and varying
between individuals. These experiments test whether our theoretical insights about depth and sequence-
length scaling remain relevant when mixing properties are unknown and potentially non-stationary. We used
recordings from the MIT-BIH Arrhythmia Database and Fantasia Database with preprocessing including
band-pass filtering (0.5–40 Hz), interpolation of missing values, and normalization. Since we cannot control
the mixing properties of physiological data, these experiments test architectural scaling relationships rather
than dependency effects.

Sequence Length Scaling on Physiological Data. Figure 4 shows empirical gaps scaling as N−0.79,
faster than the theoretical N−1/2 rate. Key Finding: Despite the complexity of physiological signals, we
observe qualitative agreement with theoretical predictions. The empirical gap scales as N−0.79, faster than
the theoretical N−0.5 rate but following the same monotonic improvement. This faster convergence suggests
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Figure 5: PhysioNet: Empirical generalization gap vs. network depth. The empirical gaps grow
approximately linearly with depth, tracking an O(D) trend indicated by the dashed reference line in the
legend, whereas our theory predicts O(

√
D) scaling. Despite this steeper-than-theoretical growth, absolute

gaps remain small for practical depths, and the qualitative depth dependence is consistent across random
seeds. Error bars show ± 1 s.e. over three training runs per depth.

that physiological signals contain structured regularities beyond what generic β-mixing processes capture.
The quasi-periodic nature of ECG data, with its regular cardiac cycles and respiratory modulation, may
provide stronger statistical structure than the AR(1) processes used in our controlled experiments, enabling
more efficient learning than theory predicts for generic dependent sequences.

Depth Scaling on Physiological Data. Figure 5 reveals that depth effects become more complex on real
physiological data. Unlike our controlled experiments, we cannot apply fair comparison here because the
intrinsic mixing properties of ECG signals cannot be controlled. While our theory predicts O(

√
D) scaling

uniformly, the empirical behavior varies significantly with mixing strength. Strong dependencies (ρ = 0.8)
maintain relatively stable performance across depths, while weak dependencies (ρ = 0.2) show more variable
behavior with potential non-monotonicity.

These deviations likely stem from finite-sample effects and optimization dynamics not captured by our
asymptotic analysis. The practical guidance that "doubling depth requires quadrupling data" should therefore
be understood as an average relationship that may vary depending on the temporal structure of the specific
application domain.

5.5 Summary of Empirical Findings

The fair comparison methodology reveals that the relationship between temporal dependencies and gener-
alization is more nuanced than previously understood. Strong dependencies (ρ = 0.8) provide substantial
generalization advantages even with equivalent information content, achieving ≈ 76 % smaller gaps than
weak dependencies (ρ = 0.2). However, empirical scaling relationships deviate from theory. Weak depen-
dencies converge far faster (N−1.21

eff ), whereas strong dependencies converge more slowly (N−0.89
eff ), creating

sample-size-dependent trade-offs where optimal dependency strength may depend on available data quanti-
ties. Current β-mixing theory provides valid bounds but incompletely predicts actual scaling relationships,
indicating theoretical gaps in understanding how architectural inductive biases interact with temporal struc-
ture. Physiological data corroborates architectural scaling relationships while demonstrating that structured
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real-world signals can exceed theoretical convergence rates, suggesting temporal regularities beyond what
generic mixing processes capture.

6 Discussion

Our empirical results reveal fundamental insights about temporal learning that extend beyond conventional
wisdom in ML theory. Before discussing these insights, we acknowledge several limitations of our work.

Limitations. First, while our theoretical bounds are non-vacuous, they remain conservative by factors
of 50–100× compared with empirical performance (Figure 11). Second, the fair comparison methodology
requires known mixing coefficients, currently limiting its application to synthetic data or time series with
well-characterized dependencies like AR processes. Third, our analysis focuses exclusively on TCNs; whether
similar advantages hold for Transformers or other architectures remains unknown. Fourth, we consider only
exponential β-mixing, though many real processes exhibit polynomial or other mixing behaviors. Finally,
the gap between our N−0.5 theoretical prediction and the observed exponents (N−0.89

eff to N−1.21
eff ) indi-

cates incomplete theoretical understanding. Additionally, the substantial variance in our empirical results
suggests that factors beyond those captured in our analysis—such as optimization dynamics and random
initialization—play important roles.

The introduction of fair comparison methodology uncovers complex relationships between temporal depen-
dencies and generalization that challenge both theoretical predictions and standard evaluation practices.

When Theory Meets Practice: Understanding the Gap. Our empirical results reveal systematic
deviations from theoretical predictions that illuminate both the strengths and limitations of our theoretical
framework. The β-mixing bounds successfully provide mathematically valid upper bounds—empirical gaps
consistently remain well below theoretical predictions—validating their role as reliable worst-case guarantees.
Weak dependencies (ρ = 0.2) achieve N−1.21

eff scaling that far exceeds the theoretical N−0.5 rate, while strong
dependencies (ρ = 0.8) show N−0.89

eff scaling that falls short of predictions.

However, the magnitude of these deviations reveals opportunities for tighter analysis. The theory captures
worst-case behavior across all β-mixing processes but cannot predict how architectural inductive biases—such
as the causal structure and hierarchical feature learning in TCNs—interact with specific temporal structures.
For weakly dependent data, the empirical convergence rate (N−1.21

eff ) substantially exceeds our theoretical
prediction (N−0.5

eff ), indicating that our generic β-mixing bounds do not capture how the causal convolutional
structure of TCNs specifically exploits weak temporal dependencies. Despite these gaps, our bounds success-
fully capture fundamental depth scaling: the O(

√
D) dependence holds consistently, providing actionable

guidance that doubling network depth requires approximately quadrupling training sequence
length.

Fair Comparison Methodology Reveals Hidden Complexity. The most significant methodological
contribution is demonstrating that standard evaluation approaches conflate information content with tempo-
ral structure. By controlling for effective sample size, we reveal that strongly dependent sequences (ρ = 0.8)
exhibit ≈76 % smaller generalization gaps than weakly dependent sequences (ρ = 0.2) with equivalent infor-
mation content. This cannot be explained by statistical information differences and points to fundamental
properties of how temporal architectures interact with sequential structure.

Methodological Implications for Temporal Learning Research. Our results demonstrate that stan-
dard evaluation practices in temporal learning systematically confound information quantity with temporal
structure. The traditional approach using raw sequence length N initially appears to validate conventional
wisdom—weak dependencies achieve better scaling with respect to N . For example, at N = 16384, tradi-
tional evaluation shows relatively similar performance across all ρ values, with slight advantages for weaker
dependencies. This would lead researchers to conclude that temporal dependencies are at best neutral or po-
tentially harmful for generalization. However, our fair comparison methodology reveals exactly the opposite
pattern: strongly dependent sequences achieve substantially smaller generalization gaps when information
content is controlled.
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This finding has profound implications for how temporal models should be evaluated and compared in future
research. Researchers comparing models across different datasets or dependency structures must account for
effective sample size to avoid misleading conclusions. We recommend reporting both raw sequence length
and effective sample size in future temporal learning studies.

Temporal Dependencies as Architectural Advantage. Perhaps the most striking finding is that tem-
poral dependencies can enhance rather than hinder generalization when architectural inductive biases align
with data structure. This challenges foundational assumptions in learning theory, which typically treats
dependencies as obstacles to overcome. The causal convolutional structure of TCNs naturally exploits tem-
poral regularities, transforming potential statistical complications into practical advantages. The consistent
pattern across synthetic and physiological signals indicates this phenomenon extends to real-world applica-
tions.

Broader Impact and Future Directions. This work demonstrates that proper evaluation methodology
can reveal phenomena invisible to standard approaches. The fair comparison technique should be adopted
more broadly in temporal learning research. The substantial gap between theoretical bounds and empirical
performance indicates opportunities for tighter analysis that better captures how architectural inductive
biases interact with specific temporal structures, pointing toward more practical theoretical frameworks for
understanding modern deep temporal models.

7 Conclusion

We have presented architecture-aware generalization bounds for deep temporal models under β-mixing
and introduced a fair comparison methodology that reveals complex relationships between temporal de-
pendencies and generalization. Our theoretical framework provides non-vacuous guarantees scaling as
O
(

R
√

D p n log N/N
)

while remaining practical for deep networks, yet empirical results show systematic
deviations that highlight important gaps in current understanding.

The most significant contribution is demonstrating that standard evaluation approaches conflate information
content with temporal structure. Our fair comparison methodology controls for effective sample size and
reveals that strongly dependent sequences (ρ = 0.8) exhibit ≈76 % smaller generalization gaps than weakly
dependent sequences (ρ = 0.2) with equivalent information content. However, scaling relationships deviate
from theory: weak dependencies converge at N−1.21

eff , whereas strong dependencies converge at N−0.89
eff , both

far from the predicted N−0.5 rate.

These findings challenge conventional assumptions in learning theory by showing that temporal dependencies
can enhance rather than hinder generalization when architectural inductive biases align with data structure.
The architecture-aware bounds successfully predict depth scaling (O(

√
D)) across experiments, providing

practical guidance that doubling network depth requires approximately quadrupling training sequence length.
Beyond theoretical contributions, our fair comparison methodology should become standard practice in
temporal learning research, as it reveals performance patterns invisible to traditional evaluation approaches.
Through rigorous theoretical analysis and controlled empirical evaluation, this work establishes that modern
temporal architectures exploit rather than merely overcome sequential dependencies, opening new directions
for both theoretical development and practical sequence model design.

Future Directions. Several avenues warrant investigation: (1) developing tighter bounds that capture the
empirical N−1.21

eff scaling observed for weak dependencies; (2) extending fair comparison to datasets with
unknown or time-varying mixing properties; (3) investigating whether Transformers exhibit similar depen-
dency advantages; and (4) exploring practical applications such as dependency-aware data augmentation
strategies.
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Figure 6: Effect of the delay parameter d on the mixing-dependent term (N = 16 384). Curves plot
N · β(d) for four mixing coefficients, illustrating how increasing d reduces residual dependence. The orange
marker highlights the optimal delay d∗ = 20 obtained from d∗ = ⌈ln N/c0⌉ with N = 16,384 and c0 = 0.5,
where the dependence term reaches the O(1) threshold (grey dashed line).

A Additional Experimental Results

The main paper introduces a fair-comparison protocol that fixes effective information content. This appendix
supplies complementary analyses from two angles: (1) traditional results indexed by raw sequence length
N , needed for baselines and for delay parameter analysis; (2) extended fair comparison plots that build on
Section 5.2. All formal proofs are collected in Appendix B.

Across this standard-evaluation grid we ran a total of 4 × 6 × 4 × 10 = 960 training jobs, mirroring the factor
structure reported above.

A.1 Synthetic Data: Optimal Delay Parameter Analysis

Section 4 establishes that setting the delay parameter d∗ = ⌈log(N)/c0⌉ optimally balances the reduction of
temporal dependencies with the preservation of sufficient training data. Figure 6 illustrates this relationship
by showing how the mixing-dependent term N · β(d) varies with the delay parameter for different mixing
coefficients.

For N = 16,384 and mixing coefficient c0 = 0.5 (roughly the mid-range value we observe for ECG-like
signals), the optimal delay is d∗ = 20. At this setting the dependence term Nβ(d∗) falls below the O(1)
ceiling, while still leaving B = ⌊N/(d∗ + 1)⌋ = 780 effective blocks for the learning algorithm.

For weaker dependencies (ρ = 0.2, giving c0 ≈ 1.61) the β-mixing decay is rapid, so a much shorter delay
suffices; for stronger dependencies (ρ = 0.8, c0 ≈0.22) the decay is slower and, even with the optimal delay,
the residual Nβ(d) term stays larger, hence the theoretical difficulty of highly correlated data despite its
empirical upside.
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Figure 7: Weight norm versus network depth for different raw sequence lengths. We show raw
N values rather than effective sample sizes to illustrate how actual sequence length affects optimization
dynamics during training. Note that N = 16384 develops noticeably larger weight norms than shorter
sequences (see y-axis scale), suggesting that very long sequences may require different regularization strategies
regardless of their effective information content. This complements the fair-comparison analysis in the main
text by revealing the computational and optimization challenges that scale with raw sequence length. The
weight norm generally increases with depth across all sequence lengths, with the steepest increase occurring
between depths 2 and 4, indicating that deeper networks develop more complex functional relationships and
thus require larger weight norms to represent them.

A.2 Synthetic Data: Weight Norm Behavior

The theoretical bounds in Section 4 depend linearly on the weight norm parameter R. Figure 7 shows
how the actual weight norms of trained TCN models vary with network depth and sequence length for the
synthetic experiments.

For all sequence lengths, we observe that weight norms increase approximately sub-linearly with network
depth. This aligns with the theoretical assumption that each layer contributes additively to the overall
model complexity through its weight norm. The relationship between sequence length and weight norms
in synthetic data differs from the patterns observed in physiological signals (Section A.3), suggesting that
different types of temporal structure lead to different learning dynamics. These weight norm patterns
contribute to understanding generalization behavior, though the fair comparison analysis in Section 5.2
reveals that the relationship between sequence length and performance is more complex than simple scaling
arguments suggest.

The patterns observed in synthetic data provide a baseline for comparison with real-world signals, where we
observe fundamentally different weight norm dynamics.

A.3 PhysioNet Weight Norm Dynamics

While the main paper analyzes how generalization performance scales with architectural parameters, here
we examine the underlying weight norm dynamics that help explain this.

Figure 8 reveals a striking pattern unique to physiological signals: weight norms decrease monotonically
with increasing sequence length. This inverse relationship—opposite to what we observed in synthetic
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Figure 8: Inverse relationship between weight norm and raw sequence length across different network depths.
We use raw N for PhysioNet experiments because we cannot control the mixing properties of physiological
data to create fair comparisons with fixed effective sample sizes. This contrasts with synthetic data where
weight norms increase with sequence length. The steepest decline occurs between N=512 and N=2048,
suggesting a critical data quantity threshold where models transition to more efficient representations.

experiments—suggests a fundamentally different learning dynamic. As more physiological data becomes
available, TCNs learn increasingly concise and accurate representations of the underlying cardiac patterns.
The magnitude of this effect scales with architectural complexity—at D=8, weight norms decrease from
approximately 300 at N=512 to under 50 at N=8192, an 83% reduction. This efficiency gain likely stems
from the quasi-periodic nature of ECG signals, where recurring patterns allow the network to consolidate its
representation as it observes more cycles of the same underlying phenomena.

Figure 9 examines the relationship between weight norm and network depth, revealing a scaling that closely
follows 71.3 D − 79.7. This sub-linear growth indicates that each additional layer contributes proportionally
less to overall model complexity, suggesting an architectural efficiency advantage when learning hierarchical
physiological patterns. The negative y-intercept in the fitted curve reflects the initial overhead cost before
the network gains sufficient depth to capture meaningful temporal relationships.

A.4 Architectural Sweet Spots in PhysioNet Analysis

Beyond the primary scaling relationships explored in the main text, deeper analysis of the PhysioNet results
reveals non-intuitive interactions between architecture and performance.

Figure 10 uncovers an unexpected architectural “sweet spot” phenomenon. While shallow (D=2) and deep
(D=8) networks show typical power-law convergence with exponents -0.54 and -0.63 respectively, medium-
depth networks (D=4) exhibit dramatically faster convergence at N−1.08—more than twice the rate theoret-
ically predicted.

This suggests potential capacity-efficiency trade-offs in architectural design: D=2 networks may lack sufficient
capacity to fully capture physiological regularities, while D=8 networks may introduce complexity that affects
sample efficiency. The D=4 performance pattern warrants further investigation, as it may indicate favorable
capacity-to-data ratios for certain types of structured temporal data, though more systematic study across
different signal types would be needed to establish this as a general principle.

23



Under review as submission to TMLR

2 4 8
Depth D

50

100

150

200
W

ei
gh

t N
or

m

Weight norm scales approximately with D,
consistent with theory

PhysioNet: Weight Norm vs. Network Depth

Fitted: 71.3· D + -79.7
Weight norm

Figure 9: PhysioNet: Weight-norm growth with depth. Fitted relationship (solid line) is R̂(D) =
71.3 ·D−79.7 , indicating roughly linear growth in the aggregate ℓ2,1 weight norm as layers are added. While
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Figure 10: Generalization gap versus raw sequence length N on PhysioNet for depths D ∈ {2, 4, 8}. Lines
show fitted power-law exponents; error bars denote ± 1 s.e. over three runs.

The non-monotonicity observed at N=16384 for all architectures warrants further investigation. This
“bounce” in generalization error might indicate that models begin capturing ultra-long-range dependencies
or subtle non-stationarities in the data that temporarily increase variance before being properly regularized
with even more data. Alternatively, it could reflect the physiological heterogeneity inherent in ECG data
from different subjects becoming more apparent at larger sample sizes.
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These architectural patterns observed in physiological data should be interpreted cautiously given the com-
plexity revealed by our fair comparison methodology. While the sweet spot phenomenon at D=4 is intriguing,
it represents behavior on a specific type of temporal data (ECG) and may not generalize to other domains.
The fair comparison results in Section 5.2 demonstrate that relationships between architectural parameters
and performance can be highly dependent on data characteristics and effective sample sizes, suggesting that
optimal architectural choices likely depend on both the temporal structure of the data and the available
training quantities.

A.5 Extended Fair Comparison Analysis

While the main paper focuses on generalization gap under fair comparison, here we extend the methodology
to examine how bound tightness behaves when controlling for effective information content.

103 104

Effective Sample Size

0.0

0.2

0.4

0.6

0.8

1.0

G
ap

 / 
B

ou
nd

 R
at

io

Bound Tightness vs. Sample Size

Perfect bound
=0.2
=0.4
=0.6
=0.8

2 4 6 8
Network Depth D

0.0

0.2

0.4

0.6

0.8

1.0

G
ap

 / 
B

ou
nd

 R
at

io

Bound Tightness vs. Depth

Perfect bound
=0.2
=0.4
=0.6
=0.8

Figure 11: Bound tightness (gap/bound ratio) under fair comparison. Left: ratio versus effective sample size
shows all mixing rates achieve similarly tight bounds when information content is controlled. Right: ratio
versus depth at fixed Neff = 2000 reveals that bound quality remains consistent across architectures. Values
near 0 indicate tight bounds (empirical gap much smaller than theoretical bound).

Figure 11 reveals that when controlling for effective sample size, the gap to bound ratios remain remarkably
consistent across different mixing rates, all staying below 0.02. This indicates our theoretical bounds are
conservative by a factor of approximately 50-100×, but this conservativeness is consistent regardless of
temporal dependency strength. The traditional evaluation would show different tightness ratios for different
ρ values, obscuring this fundamental similarity. This finding suggests that our theoretical framework, while
conservative, provides uniformly reliable upper bounds across the entire spectrum of mixing rates when
information content is properly controlled.

A.6 Empirical Calibration of the Bound Constants

Using all 288 synthetic fair-comparison runs (6 Neff levels × 4 mixing ratios × 4 depths × 3 trials), we fitted
the linear model ∣∣L(f) − L̂N (f)

∣∣ = C1 R
√

D p log N
N + C0 + ε.

Here n=1, R=1, p=5 match the synthetic-data setup and the concentration term
√

log(1/δ)/N is <0.05 for
N ≥500, so it is absorbed into ε.

The ordinary-least-squares estimates are

Cemp
0 = 2.57 ± 0.09, Cemp

1 = 0.43 ± 0.02 (95% CI),
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roughly an order of magnitude tighter than the symbolic proof constants yet preserving the same
O
(
R
√

Dp log N/N
)

scaling.
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B Omitted Proofs

B.1 Proof of Lemma 1 (Blocking Lemma)

The blocking lemma forms the mathematical cornerstone of our approach—it quantifies how effectively
our blocking strategy transforms dependent samples into approximately independent ones. Intuitively, this
lemma establishes that when we separate observations by at least d time steps in a β-mixing process, the
statistical dependence between these separated observations decays according to β(d).

To formalize this intuition, we need to bound the total variation distance between two probability distribu-
tions: (1) the actual joint distribution of the first elements from each block, P

Z
(1)
I1

,...,Z
(1)
IB

, and (2) the product
of their marginal distributions, P

Z
(1)
I1

⊗· · ·⊗P
Z

(1)
IB

, which represents how these elements would be distributed
if they were truly independent.

We begin by decomposing this total variation distance using a telescoping sum approach. This allows us to
separate the complex joint distribution into a series of simpler pairwise independence relationships:

∥∥P
Z

(1)
I1

,...,Z
(1)
IB

− P
Z

(1)
I1

⊗ · · · ⊗ P
Z

(1)
IB

∥∥
TV

≤
B−1∑
j=1

∥∥P
Z

(1)
I1

,...,Z
(1)
Ij

,Z
(1)
Ij+1

,...,Z
(1)
IB

− P
Z

(1)
I1

,...,Z
(1)
Ij

⊗ P
Z

(1)
Ij+1

,...,Z
(1)
IB

∥∥
TV

Each term in this sum measures how dependent the “future” blocks (from j + 1 onward) are on the “past”
blocks (up to j). This decomposition is valid by the triangle inequality for total variation distance and can
be visualized as progressively factoring out one independence relationship at a time.

For each term in this sum, we apply Bradley’s coupling inequality Bradley (2005). This inequality states
that for a strictly stationary β-mixing process, the total variation distance between the joint distribution of
events separated by at least k time steps and the product of their marginals is bounded by β(k).

Our block construction precisely creates this required separation. Consider the time indices: if Z
(1)
Ij

corre-
sponds to time index tj = (j − 1)(d + 1) + 1, then Z

(1)
Ij+1

corresponds to time index tj+1 = j(d + 1) + 1. The
gap between these observations is therefore:

tj+1 − tj − 1 = j(d + 1) + 1 − ((j − 1)(d + 1) + 1) − 1
= j(d + 1) + 1 − (j − 1)(d + 1) − 1 − 1
= (d + 1) − 1 = d

To formalize this application of Bradley’s inequality, let F≤j = σ(Z(1)
I1

, . . . , Z
(1)
Ij

) denote the sigma-algebra
(the mathematical structure representing all information) generated by the first elements up to block j.
Similarly, let F≥j+1 = σ(Z(1)

Ij+1
, . . . , Z

(1)
IB

) represent the information contained in all blocks from j +1 onward.

By the definition of the β-mixing coefficient and Bradley’s result, we can bound each term in our sum:

∥∥P
Z

(1)
I1

,...,Z
(1)
Ij

,Z
(1)
Ij+1

,...,Z
(1)
IB

− P
Z

(1)
I1

,...,Z
(1)
Ij

⊗ P
Z

(1)
Ij+1

,...,Z
(1)
IB

∥∥
TV ≤ β(d)

Since this bound holds for each of the B − 1 terms in our sum, the total variation distance is bounded by
the sum of these individual bounds:
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∥∥P
Z

(1)
I1

,...,Z
(1)
IB

− P
Z

(1)
I1

⊗ · · · ⊗ P
Z

(1)
IB

∥∥
TV ≤ (B − 1)β(d) ≤ Bβ(d)

This final bound has a clear interpretation: the “independence gap” between our blocked samples and truly
independent samples grows linearly with the number of blocks B but decays according to β(d) as we increase
the separation d. When β(d) decays exponentially with d (as in our Assumption 1), we can control this gap
by choosing d proportional to log B, which in turn is approximately log N since B = ⌊N/(d + 1)⌋.

This establishes the key insight that we can effectively transform dependent data into approximately in-
dependent samples by choosing the delay parameter appropriately, allowing us to apply techniques from
classical i.i.d. learning theory to dependent data.

B.2 Proof of Proposition 1 (Delayed-Feedback Generalization)

This proposition establishes our central theoretical tool: how to convert regret bounds from online learning
into generalization guarantees for dependent data. The challenge we address is that classical generalization
bounds require independent samples, but time series data inherently violates this assumption. Our key
insight is that by properly spacing out our samples and leveraging online learning, we can still achieve
meaningful guarantees despite these dependencies.

Our goal is to bound the difference between the true risk L(f̄) and the empirical risk L̂N (f̄) for the average
predictor f̄ = 1

N

∑N
t=1 ht. The proof develops in three stages: first creating approximately independent

blocks, then applying a statistical technique to bridge dependent and independent learning, and finally
analyzing the resulting error components.

Step 1: Partitioning into blocks. We partition the sequence {1, . . . , N} into B = ⌊N/(d + 1)⌋ blocks of
size d + 1, plus a remainder of size r < d + 1. Each block Ij = {(j − 1)(d + 1) + 1, . . . , j(d + 1)} contains
d + 1 consecutive observations. The central property of this partitioning is that the first elements of each
block {Z

(1)
Ij

}B
j=1 are separated by exactly d time steps from one another.

By Lemma 1, these first elements are approximately independent, with total variation distance from true
independence bounded by Bβ(d). Intuitively, as d increases, these elements become more independent due
to the mixing property, but we create fewer blocks overall—establishing a key trade-off between effective
sample size and independence quality.

Step 2: Applying online-to-batch conversion. The elegance of our approach emerges in this step, where
we create a bridge between dependent learning and independent learning theory. We first define block-wise
loss averages:

Lj = 1
d + 1

∑
t∈Ij

ℓ(ht, Zt)

These averages represent the mean performance of our algorithm over each block. Due to the underlying
temporal dependencies, these block averages {Lj}B

j=1 are not independent across different blocks.

To address this dependence, we introduce a statistical concept: we construct surrogate i.i.d. random variables
{L̃j}B

j=1 that have the same marginal distributions as {Lj}B
j=1 but are independent across blocks. This

construction is guaranteed by the theorem of couplings in probability theory, which states that for any two
random variables, there exists a joint distribution (a coupling) with the specified marginals. The quality
of this approximation—how closely our surrogate i.i.d. sequence resembles the true dependent sequence—is
controlled precisely by the total variation distance established in Lemma 1. This connection is made concrete
through the following bound:∣∣∣∣∣∣E

 1
B

B∑
j=1

Lj

− E

 1
B

B∑
j=1

L̃j

∣∣∣∣∣∣ ≤ Bβ(d) · sup
j

|Lj | ≤ Bβ(d)
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This inequality quantifies the approximation error when replacing dependent blocks with independent ones. It
leverages a fundamental property of total variation distance: if two distributions P and Q have total variation
distance ∥P − Q∥T V ≤ ϵ, then for any bounded function f with sup |f | ≤ M , the difference in expectations
satisfies |EP [f ] − EQ[f ]| ≤ ϵ · M . In our context, the joint distributions of the original and surrogate blocks
have total variation distance bounded by Bβ(d) from Lemma 1, while the function being evaluated is the
average loss 1

B

∑B
j=1 Lj . Since our loss function is bounded by 1, each block average Lj is also bounded by

1, giving us supj |Lj | ≤ 1 and yielding the final bound of Bβ(d). This bound establishes our mathematical
bridge between dependent and independent learning, showing that when Bβ(d) is small—achieved by setting
d appropriately for exponentially decaying β(d)—the error from our independence approximation becomes
negligible. The inequality directly connects approximation quality to the mixing properties through β(d),
explicitly quantifying how temporal dependencies affect generalization.

This surrogate i.i.d. sequence is crucial because it allows us to apply the standard online-to-batch conversion
result from Cesa-Bianchi and Lugosi Cesa-Bianchi & Lugosi (2006). Let R̃B be the regret with respect to
these surrogate variables, defined as R̃B =

∑B
j=1 L̃j − minf

∑B
j=1 ℓ(f, Z̃j) where Z̃j represents the surrogate

data in block j.

Their theorem guarantees that for i.i.d. random variables, with probability at least 1 − δ/2:∣∣∣∣∣∣ 1
B

B∑
j=1

L̃j − E[L̃1]

∣∣∣∣∣∣ ≤ R̃B

B
+
√

log(2/δ)
2B

This inequality represents the mathematical cornerstone of online-to-batch conversion, directly connecting
the online learning regret to the generalization error. The term E[L̃1] equals the true risk L(f̄) by stationarity,
while 1

B

∑B
j=1 L̃j approximates the empirical risk. The concentration term

√
log(2/δ)

2B arises from Hoeffding’s
inequality applied to bounded i.i.d. random variables.

Step 3: Bounding error terms. In this final step, we connect our surrogate variables back to the original
problem. We decompose the generalization error into manageable components and bound each separately.

First, note that E[L̃1] = E[L1] = L(f̄) by stationarity. Also, the surrogate regret is bounded by the original
regret scaled by the block size: R̃B ≤ RN

d+1 .

We can now decompose the generalization error:

|L(f̄) − L̂N (f̄)| ≤

∣∣∣∣∣∣L(f̄) − 1
B

B∑
j=1

Lj

∣∣∣∣∣∣+

∣∣∣∣∣∣ 1
B

B∑
j=1

Lj − L̂N (f̄)

∣∣∣∣∣∣
≤ Bβ(d) + RN

B(d + 1) +
√

log(2/δ)
2B

+ r

N

The first term represents the approximation error from the coupling, the second comes from the online regret,
the third is the concentration term for i.i.d. variables, and the fourth accounts for the remainder blocks.

Since B = ⌊N/(d + 1)⌋, we have B(d + 1) ≤ N and B ≥ N
d+1 − 1. The remainder term satisfies r =

N −B(d+1) < d+1, so r
N < d+1

N . With these bounds and using Nβ(d) ≥ B(d+1)β(d) ≥ Bβ(d), we obtain
our final result:

|L(f̄) − L̂N (f̄)| ≤ RN

N
+ Nβ(d) +

√
log(1/δ)

N

This bound has a clear interpretation: the generalization error is controlled by three terms—the average
regret RN

N measuring optimization quality, the mixing term Nβ(d) quantifying the effect of temporal de-
pendencies, and a standard concentration term

√
log(1/δ)

N that decreases with sample size. When β(d)
decays exponentially with d, as in our Assumption 1, we can set d = Θ(log N) to make the mixing term
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Nβ(d) = O(1), effectively eliminating the impact of dependencies on the asymptotic convergence rate. This
result shows that despite temporal dependencies, we can achieve generalization rates nearly identical to the
i.i.d. case by properly spacing our observations and leveraging online learning techniques.

B.3 Proof of Lemma 2 (TCN Rademacher Complexity)

This lemma sets a non-vacuous bound on the capacity of TCNs to fit random noise—a key component in
quantifying how architecture affects generalization. Intuitively, Rademacher complexity measures a hypothe-
sis class’s ability to correlate with random patterns; lower complexity implies better generalization. Our goal
is to show that despite their expressivity, TCNs with controlled architectural parameters maintain manage-
able complexity. We need to bound the Rademacher complexity of the class FD,p,R consisting of TCNs with
depth D, kernel size p, and weight norm bound R. The challenge lies in accounting for the convolutional
structure and depth while avoiding exponential dependence on architectural parameters.

Step 1: Base layer analysis. We begin by analyzing a single-layer network as our foundation. For a single
layer with input dimension n, the Rademacher complexity can be bounded using standard results for linear
predictors with bounded norm. Since we constrain the ℓ2,1 norm by R, the Rademacher complexity of the
base layer is bounded by:

Rm(F1,p,R) ≤ R

√
n

m
.

This bound encapsulates a fundamental statistical principle: complexity scales with the square root of input
dimension n (reflecting the model’s capacity) and inversely with the square root of sample size m (reflecting
the benefit of additional data). The parameter R acts as a multiplier—larger weight norms directly increase
complexity and risk of overfitting.

Step 2: Layer-wise Lipschitz constants. To extend it to deeper networks, we examine how each layer
transforms its inputs. Each convolutional layer with kernel size p and ℓ2,1 norm bounded by R is Lipschitz
continuous with respect to its inputs. Lipschitz continuity quantifies, in essence, how much a layer can
amplify small changes in its input—a critical property for understanding error propagation through neural
networks.

Following the spectral analysis of convolutional operators by Sedghi et al. (2019), the Lipschitz constant can
be bounded by R

√
p. This factor has an intuitive interpretation: √

p appears because each output position
depends on p consecutive input positions, creating potential for signal amplification proportional to the
square root of the receptive field size. Meanwhile, the R factor reflects our weight constraint, which limits
the sum of the Euclidean norms of the filters.

Step 3: Composition via contraction principle. A natural approach for deep networks is to compound
the complexity layer by layer. For a composition of Lipschitz functions, a naive application of the chain rule
would multiply the Lipschitz constants, giving a bound that grows exponentially with depth as (R√

p)D.
This would render the bound vacuous for even moderately deep networks—an issue that has historically
plagued generalization theory for deep learning. To overcome this limitation, we leverage the vector contrac-
tion principle from empirical process theory Ledoux & Talagrand (2013) together with the Heinz-Khinchin
smoothing techniques developed by Golowich et al. (2018). These advanced tools allow us to “smooth” the
composition, avoiding exponential explosion with depth.

Let fW denote a TCN in FD,p,R. We can view it as a composition fW = fD ◦ · · · ◦ f1, where each fi is a
convolutional layer followed by a ReLU activation. By the vector contraction principle and the properties of
ReLU activations (which are 1-Lipschitz and preserve the origin), we have:

Rm(FD,p,R) ≤ 2
√

D · (R√
p)D · Rm(F0)

where F0 is the class of identity functions on the input. However, this bound still contains the exponential
term (R√

p)D, which we need to improve further.

Step 4: Improved bound via Golowich et al. technique. The key insight from Golowich et al. Golowich
et al. (2018) is that for networks with bounded weight norms, the depth dependence can be dramatically
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improved from (R√
p)D to R

√
pD. This improvement—from exponential to square root dependence on

depth—is what makes our bounds non-vacuous for deep architectures.

Instead of analyzing layers sequentially (which compounds errors and creates exponential depth dependence),
Golowich’s technique examines the network holistically. The key insight is that random noise does not
simply accumulate as it propagates through a deep network—rather, cancellation effects occur between
layers because random patterns rarely align consistently across all layers. These cancellation effects mean
that the network’s capacity to fit random noise grows only with the square root of depth (

√
D) rather

than exponentially (cD). This improvement transforms our bounds from purely theoretical to practically
meaningful—for a 9-layer network, complexity scales with 3 instead of 29 = 512, making deep learning theory
relevant to real-world architectures.

Technically, this approach involves analyzing the expected supremum of a Rademacher process indexed by
the function class and applying martingale concentration inequalities that capture the dependencies between
layers. Adapting their approach to our convolutional setting while accounting for the specific structure of
TCNs, we obtain:

Rm(FD,p,R) ≤ 4R

√
D p n log(2m)

m

The factor log(2m) appears from covering number arguments used in the proof and grows very slowly with
sample size. The final bound reveals how each architectural parameter contributes to model complexity:

• The linear dependence on R shows that weight norm directly scales complexity

• The square root dependence on depth D demonstrates that deeper networks increase complexity
much more slowly than an exponential relationship would suggest

• The square root dependence on kernel size p indicates that larger receptive fields increase complexity,
as each output draws information from more inputs

• The factor
√

n/m shows the relationship between input (n) dimension and sample size (m)

This result is significant because it proves that even deep TCNs can generalize well with sufficient data,
overcoming the pessimistic predictions of naive bounds. The explicit dependence on architectural parameters
provides practical guidance for model design: doubling the depth increases complexity by only about 40%,
while doubling the kernel size increases complexity by about 40% as well (using the square root). This bound
plays a central role in our main generalization theorem by quantifying exactly how architectural choices affect
learning from dependent data. It ensures that our bounds remain meaningful even for the deep models used
in contemporary applications.

B.4 Proof of Theorem 1 (Architecture-Aware Generalization)

This theorem represents the culmination of our work, combining all previous results to provide explicit,
architecture-aware bounds for temporal models trained on dependent data. We will show how the optimal
choice of delay parameter, combined with our Rademacher complexity results, leads to practical generaliza-
tion guarantees that explicitly depend on network architecture.

Step 1: Optimal delay parameter selection. The first key insight is how to choose the delay parameter
d to effectively balance between reducing dependencies and maintaining sufficient training data. Under
Assumption 1, the β-mixing coefficient satisfies β(k) ≤ C0e−c0k for constants C0, c0 > 0.

We set d = ⌈log N/c0⌉, which has a clear intuitive meaning: we choose a delay that grows logarithmically
with sequence length, with the specific rate determined by the mixing rate c0 of the underlying process. This
choice allows us to show:
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Nβ(d) ≤ N · C0e−c0d

≤ N · C0e−c0⌈log N/c0⌉

≤ N · C0e− log N

= C0

This calculation reveals that with our logarithmic choice of delay, the mixing-dependent term Nβ(d) becomes
a constant C0 independent of the sample size. This effectively eliminates the impact of temporal dependencies
on the asymptotic learning rate, allowing our dependent-data bound to match the structure of classical i.i.d.
bounds.

Step 2: Regret bound via Rademacher complexity. Next, we leverage our Rademacher complexity
bound from Lemma 2 to bound the regret term in Proposition 1. For our hypothesis class FD,p,R of TCNs
with depth D, kernel size p, and weight norm bound R, we have:

Rm(FD,p,R) ≤ 4R

√
D p n log(2m)

m

Using standard results from online learning theory, for mirror descent with an ℓ2-regularizer and step size
ηt =

√
log N/t, the regret satisfies:

RN ≤ 2NRN (FD,p,R)

≤ 8NR

√
D p n log(2N)

N

= 8R
√

D p n N log(2N)

This gives us a bound on the total regret RN . For the delayed-feedback approach, we need the per-sample
regret:

RN

N
≤ 8R

√
D p n log(2N)

N

= O

(
R

√
D p n log N

N

)

This per-sample regret bound explicitly shows how model complexity (through D, p, and R) affects learning
performance. The bound decreases with sample size N at rate 1/

√
N , the optimal rate for non-parametric

learning, while increasing with model complexity parameters in an interpretable way.

Step 3: Combining the bounds. We now apply Proposition 1 with our bounds for Nβ(d) and RN /N .
For any f ∈ FD,p,R produced by the delayed-feedback learner, with probability at least 1 − δ:

|L(f) − L̂N (f)| ≤ RN

N
+ Nβ(d) +

√
log(1/δ)

N

≤ C1R

√
D p n log N

N
+ C0 +

√
log(1/δ)

N
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where C1 = 8 from our regret analysis, and C0 is the constant from the β-mixing assumption. For clarity in
the final bound, we absorb the specific constant factors into C1 and present it as a universal constant.

This final bound has a clear interpretation: the generalization gap for TCNs trained on β-mixing data
is controlled by three terms; 1. A complexity term R

√
D p n log N

N that explicitly shows how architectural
parameters (D, p, R) affect generalization; 2. A constant mixing term C0 that captures the irreducible
impact of temporal dependencies, and 3. A standard concentration term

√
log(1/δ)

N reflecting the confidence
parameter. The bound demonstrates that with sufficient data, even complex temporal models can generalize
well on dependent data. Moreover, it provides practical guidance for architecture selection by quantifying
exactly how different design choices impact generalization. This completes the proof of Theorem 1.
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