

000 001 002 003 004 005 006 007 008 009 010 011 012 DIMENSION-FREE MINIMAX RATES FOR LEARN- ING PAIRWISE INTERACTIONS IN ATTENTION-STYLE MODELS

013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
Anonymous authors
024
025
026
027
028
029
030
031
Paper under double-blind review

011 012 ABSTRACT

013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
We study the convergence rate of learning pairwise interactions in single-layer
attention-style models, where tokens interact through a weight matrix and a non-
linear activation function. We prove that the minimax rate is $M^{-\frac{2\beta}{2\beta+1}}$ with M
being the sample size, depending only on the smoothness β of the activation, and
crucially independent of token count, ambient dimension, or rank of the weight
matrix. These results highlight a fundamental dimension-free statistical efficiency
of attention-style nonlocal models, even when the weight matrix and activation are
not separately identifiable and provide a theoretical understanding of the attention
mechanism and its training.

024 025 026 027 028 029 030 031 1 INTRODUCTION

024
025
026
027
028
029
030
031
The transformer architecture (Vaswani et al., 2017) has achieved remarkable success in natural lan-
guage processing, computer vision, and other AI domains, with its impact most visible in large
language models (LLMs) such as GPT (OpenAI, 2024), LLaMA (Touvron et al., 2023), and BERT
(Devlin et al., 2019). At its core, attention mechanisms model nonlocal dependencies between in-
put tokens through pairwise interactions, creating a function class capable of representing intricate
contextual relationships.

032
033
034
035
036
037
038
039
040
041
Despite the empirical success, our theoretical understanding remains incomplete. The attention
mechanism computes weighted averages of token representations using pairwise similarities, but
we observe only the aggregated outputs and not the underlying interaction structure that generates
them. This creates a fundamental inverse problem with critical *sample complexity* questions: can we
recover the interaction function from these aggregated observations, how many samples are needed
to learn token-to-token interactions for a given accuracy level, and how does the convergence rate
depend on embedding dimension, number of tokens, and smoothness of the activation function?
Recent phenomena like extreme attention weights on certain tokens (Sun et al., 2024; Guo et al.,
2024b; Xiao et al., 2024; Wang et al., 2021) further highlight gaps in our understanding of how
transformers process token interactions.

042
043
044
045
046
047
048
In this paper, we tackle these questions by analyzing an Interacting Particle System (IPS) model for
attention-style mechanisms. Tokens are viewed as “particles,” and the self-attention aggregates pair-
wise interactions between them. The interaction is a composite of an unknown embedding matrix
and an unknown nonlinear activation function, both are learned from data. This makes the problem
challenging as it is fundamentally *nonconvex*. Our IPS approach provides a natural framework for
understanding how transformers process inputs with a large number of correlated tokens, moving
beyond the restrictive assumption of independent, isotropic token distributions.

049
050
051
052
053
We summarize our main contribution below:

- We establish a connection between transformers and IPS models, enabling us to address the challenging inverse problem of inferring nonlinear interactions learned by attention mechanisms. Our analysis extends beyond the standard assumption of independent, isotropic token distributions to allow for dependent and anisotropic data.

- Inferring the interaction function is an inverse problem. We prove that under a *coercivity condition* (Lemma 3.4), this problem is well-posed in the large sample limit. This condition holds for a large class of input distributions.
- We prove that the rate of $M^{-\frac{2\beta}{2\beta+1}}$ is the optimal (up to logarithmic factors) minimax convergence rate in estimating the $2d$ -dimensional pairwise interaction function where M is the sample size and β is the Hölder exponent of the function. Importantly, this rate is independent of the embedding dimension d and the weight matrix rank. **This dimension-free rate stems from the model’s intrinsic structure of a scalar activation on a bilinear form, which reduces the sample complexity of the problem from learning a $2d$ dimensional interaction function to a scalar function applied to a 1D bilinear form.** The rate $M^{-\frac{2\beta}{2\beta+1}}$ is precisely the optimal rate for this 1D estimation problem, confirming that the attention-style model evades the curse of dimensionality.

1.1 RELATED WORKS

Neural networks and IPS. Modeling neural networks as dynamical systems through depth was introduced in Chen et al. (2018), which framed updates in ResNet architectures as the dynamics of a state vector. This perspective has been generalized to various architectures, typically treating skip connections as the evolving state across layers. Following this approach, in Geshkovski et al. (2023; 2025) they view tokens as interacting particles, analyze the attention as an IPS, and study clustering phenomena in continuous time (in depth). Similarly, Dutta et al. (2021) leverages a similar framework to compute attention outputs directly from an initial state evolved over depth, thereby reducing computational costs. While these works provide valuable insights, they focus exclusively on the dynamics of tokens through the layers. To our knowledge, no existing work addresses the learning theory for estimating the pairwise interactions in such particle systems.

Inference in attention models. Many theoretical works have studied the learnability of attention, focusing on specific regimes. Some consider simplified variants, such as linear or random feature target attention models (Wang et al., 2020; Lu et al., 2025; Marion et al., 2025; Hron et al., 2020; Fu et al., 2023), which explore the capability of this model under simple regression tasks. Deora et al. (2024) analyze logistic-loss optimization and prove a generalization rate under a “good” initialization. Others consider a more specific architecture, Li et al. (2023) study the training of shallow vision transformers (ViT) and show that, with suitable initialization and enough stochastic gradient steps, a transformer with additional ReLU layer can achieve zero error. Several works study softmax attention layers with trainable key and query matrices in the limit of high embedding dimension quadratically proportionate to samples with i.i.d. tokens Troiani et al. (2025); Cui et al. (2024); Cui (2025); Boncoraglio et al. (2025), which is further expanded in Troiani et al. (2025) for softmax attention (without the value matrix) with multiple layers. These works mainly focused on the linear/softmax attention model and do not consider a general interaction function. In addition, most studies assume the tokens are independent and do not draw the connection to the IPS system.

Inference for systems of interacting particles. There is a large body of work on the inference of systems of interacting particles; we state a few here. Parametric inference has been studied in Amorino et al. (2023); Chen (2021); Della Maestra & Hoffmann (2023); Kasonga (1990); Liu & Qiao (2022); Sharrock et al. (2021) for the operator (drift term) and in Huang et al. (2019) for the noise variance (diffusion term). Nonparametric inference on estimating the entire operator R_g , but not the kernel g , has been studied in Della Maestra & Hoffmann (2022); Yao et al. (2022). The closest to this study are Lu et al. (2021a; 2022; 2019); Wang et al. (2025). A key difference from these studies is that their goal is to estimate the radial interaction kernel, whereas our $2d$ -dimensional pairwise interaction function is not shift-invariant due to the weight matrix. In addition, all these studies focus on IPS in general, without a clear connection to attention models.

Activation function in transformer layer. Recent work has shown that attention models suffer from the “extreme-token phenomenon”, where certain tokens receive disproportionately high weights, creating challenges for downstream tasks (Sun et al., 2024; Guo et al., 2024b; Xiao et al., 2024; Wang et al., 2021). To address this, it was proposed to replace softmax with alternatives, such as ReLU (Guo et al., 2024a; Zhang et al., 2021), which can “turn off” irrelevant tokens, a capability that softmax lacks. While linear attention can outperform softmax in regression tasks by avoiding additional error offsets (Von Oswald et al., 2023; Katharopoulos et al., 2020; Yu et al., 2024;

Han et al., 2024), it may be inferior for classification (Oymak et al., 2023). These findings suggest no universally optimal activation function exists, making the theoretical analysis of a general interaction function in transformer-type models crucial. As for vision tasks, several Vision Transformer (ViT) variants remove the softmax activation while remaining competitive. For example, Lu et al. (2021b) consider an attention mechanism based on a Gaussian kernel, and Koohpayegani & Pirsiaavash (2024) apply linear attention after normalizing the Key-Query columns. Furthermore, Ramapuram et al. (2025) examine a sigmoid function as the attention activation, showing it acts as a universal function approximator and benefits from improved regularity compared to softmax attention.

Nonparametric and Semiparametric Estimation for Neural Networks Classical nonparametric estimation provides optimal minimax rates for simple structures. Gaiffas & Lecué (2007) provide bounds for the single index model $f(w^\top x)$ of order $M^{\frac{-2\beta}{2\beta+1}}$. For the more general projection pursuit model $f(x) = \sum_{j=1}^K f_j(\langle x, \beta_j \rangle)$, Györfi et al. (2006) shows that the minimax rate is the standard rate up to a log factor. These results directly apply to small single-layer neural networks.

Closer to deep learning, Horowitz & Mammen (2007) analyze generalized additive models with nested k -times differentiable compositions, showing the rate is $M^{-\frac{2k}{2k+1}}$. Schmidt-Hieber (2020) proves that connected deep ReLU networks achieve a near-optimal minimax rate (up to log factors) over a class of composed functions. In Bhattacharya et al. (2024) they study a nonparametric interaction model in high dimension settings and show sparsity assumptions and associated regularization are required in order to obtain optimal rates of convergence.

Notation. Throughout the paper, we use C to denote universal constants independent of the sample size M , particles N and the embedding dimension d, r . The notations C_β or $C_{\beta,L}$ denote constants depending on the subscripts. We introduce the L_ρ^2 inner product as $\langle f, g \rangle_{L_\rho^2} = \int f(r)g(r)\rho(dr)$ and denote the L_ρ^p norm by $\|f\|_{L_\rho^p}^p = \int |f(r)|^p \rho(dr)$ for all $p \geq 1$. For vectors $a, b \in \mathbb{R}^d$ and $A \in \mathbb{R}^{d \times d}$ we write $\langle a, b \rangle_A := a^\top Ab$.

2 PROBLEM FORMULATION

In this section, we describe our statistical task and connect it to the attention model.

Model setup and learning task. We consider a model of N interacting particles,

$$Y_i = \frac{1}{N-1} \sum_{j=1, j \neq i}^N \phi_\star(\langle X_i, X_j \rangle_{A_\star}) + \eta_i \quad (2.1)$$

where $\eta \in \mathbb{R}^N$ is noise as specified in Assumption 2.2, $\phi_\star : \mathbb{R} \rightarrow \mathbb{R}$ is an unknown interaction kernel, and $A_\star \in \mathbb{R}^{d \times d}$ is an unknown interaction matrix. Here, we write $\langle x, y \rangle_A := x^\top A y$ for $x, y \in \mathbb{R}^d$ and $A \in \mathbb{R}^{d \times d}$. The input $X = (X_1, \dots, X_N)^\top \in \mathcal{C}_d^N := ([0, 1]^d / \sqrt{d})^N \subset \mathbb{R}^{N \times d}$ denotes the particle positions (or token values), and the output $Y = (Y_1, \dots, Y_N) \in \mathbb{R}^{N \times 1}$ represents the average interactions between the particles.

We observe M i.i.d. samples

$$\mathcal{D}_M = \{(X^m, Y^m)\}_{m=1}^M, \quad X^m \in \mathcal{C}_d^N := ([0, 1]^d / \sqrt{d})^N, Y^m \in \mathbb{R}^N,$$

allowing the N particles and their entries to be dependent. The task is to learn the pairwise interaction function $g_\star : \mathbb{R}^d \times \mathbb{R}^d \rightarrow \mathbb{R}$,

$$g_\star(x, y) := \phi_\star(\langle x, y \rangle_{A_\star}), \quad (x, y) \in \mathbb{R}^d \times \mathbb{R}^d, \quad (2.2)$$

from the dataset of observations \mathcal{D}_M . We introduce the vectorized view of the model via the forward operator R_g for any candidate interaction function $g : \mathbb{R}^d \times \mathbb{R}^d \rightarrow \mathbb{R}$ as $R_g[X]_i := \frac{1}{N-1} \sum_{j=1, j \neq i}^N g(X_i, X_j)$. Accordingly, our model in equation 2.1 becomes $Y_i = R_{g_\star}[X]_i + \eta_i$.

162 **Connection to self-attention layer.** We view self-attention through the lens of an IPS: tokens are
 163 “particles,” and attention aggregates pairwise interactions between them. A typical self-attention
 164 layer is composed of an attention block with learnable query, key, and value matrices, $W_Q, W_K \in$
 165 $\mathbb{R}^{d \times d_k}$ with $d_k \leq d$ and $W_V \in \mathbb{R}^{d \times d_v}$ that compute

$$167 \quad \text{Att}(Q, K, V) = \text{softmax}\left(\frac{QK^\top}{\sqrt{d_k}}\right)V, \quad Q = XW_Q, \quad K = XW_K, \quad V = XW_V. \quad (2.3)$$

168 The attention operation is then often followed by an application of a multilayer perceptron (MLP),
 169 which maps the above into some other nonlinear function. The pairwise structure of attention
 170 motivates modeling token interactions via a scalar kernel function applied to a bilinear form of some
 171 score interaction matrix A_\star that can be viewed as the learned projections through $\frac{1}{\sqrt{d_k}}W_QW_K^\top$, i.e.,
 172

$$173 \quad \text{softmax}\left(\frac{QK^\top}{\sqrt{d_k}}\right) = \text{softmax}\left(XA_\star X^\top\right), \quad XA_\star X^\top = \left(X_i^\top \frac{W_Q W_K^\top}{\sqrt{d_k}} X_j\right)_{1 \leq i, j \leq N}.$$

175 The interaction function in [equation 2.2](#) can be interpreted as either a function induced by the MLP
 176 and softmax function, or as a general activation function with a constant value matrix, [see mode](#)
 177 [details in Appendix A](#). As stated in the related work, such a setup for a general activation function
 178 is often desirable due to the extreme-token phenomenon (Sun et al., 2024; Guo et al., 2024b; Xiao
 179 et al., 2024; Wang et al., 2021)

180 Consequently, the problem of estimating g_\star [from the samples described in](#) [equation 2.1](#) is analogous
 181 to the joint estimation of the activation function and weight matrix governing nonlocal token–token
 182 interactions in a single-layer self-attention mechanism.

183 **Goal of this study.** Our goal is to characterize the optimal (minimax) convergence rate of estima-
 184 tors of g_\star as the sample size M grows.

186 To assess the estimation error for the interaction function, we introduce empirical measures over
 187 pairs of particles/tokens (x, y) . Termed *exploration measures*, they quantify the extent to which the
 188 data explores the argument space relevant to the function.

189 **Definition 2.1 (Exploration measure)** Let $\{X^m \in \mathcal{C}_d\}_{m=1}^M$ be sampled sequence. Define the em-
 190 pirical exploration measure of off-diagonal pairs of particles

$$192 \quad \rho_M(B) := \frac{1}{MN(N-1)} \sum_{m=1}^M \sum_{i=1}^N \sum_{j=1, j \neq i}^N \mathbf{1}_{\{(X_i^m, X_j^m) \in B\}}$$

195 and the population exploration measure as $\rho(B) := \lim_{M \rightarrow \infty} \rho_M(B) = \mathbb{E}[\rho_M(B)]$, for any
 196 Lebesgue measurable set $B \subset \mathbb{R}^d \times \mathbb{R}^d$.

198 We aim to provide matching upper and lower bound rates for the L_ρ^2 error of the estimator \hat{g} , so as
 199 to obtain a minimax convergence rate:

$$200 \quad \mathbb{E}\left[\|\hat{g} - g_\star\|_{L_\rho^2}^2\right] \approx M^{-\frac{2\beta}{2\beta+1}}, \quad \text{as } M \rightarrow \infty, \quad (2.4)$$

202 where β is the Hölder exponent of g_\star (which is determined by the smoothness of ϕ_\star). This then
 203 demonstrates that the attention model is not susceptible to the curse of dimensionality. In particular,
 204 we aim to characterize the dependence of the rate on the embedding dimension d , the rank r of the
 205 interaction matrix, and the number of tokens N .

207 2.1 ASSUMPTIONS ON THE DATA DISTRIBUTION

209 We now state the assumptions on the distributions of the input and the noise used throughout this
 210 work. We do not assume that the N tokens are independent of each other.

211 **Assumption 2.1 (Data Distribution)** We assume the entries of the $\mathcal{C}_d^N = ([0, 1]^d / \sqrt{d})^N$ -valued
 212 random variable $X = (X_1, \dots, X_N)$ satisfy the following conditions:

214 (A1) The components of the random vector $X = (X_1, \dots, X_N)$ are exchangeable.

215 (A2) The joint distribution of (X_i, X_j) has a continuous density function for each pair.

These assumptions simplify the inverse problem and may be replaced by weaker constraints; see Wang et al. (2025) for a discussion and references therein. The exchangeability in (A1) simplifies the exploration measure in Lemma B.1. It enables the coercivity condition for the inverse problem to be well-posed, as detailed in Lemma 3.4, and is only used in the upper bound in Theorem 3.1. The continuity in Assumption (A2) ensures that the exploration measure has a continuous density, which is used in proving the lower minimax rate Theorem 4.4.

We next specify the noise setting. Assumption 2.2 details the constraints we assume for the noise:

Assumption 2.2 (Noise Distribution) *The noise $\eta \in \mathbb{R}^N$ is centered and independent of the random array X . Moreover, we assume the following conditions:*

(B1) *The entries of the noise vector $\eta = (\eta_1, \dots, \eta_N)$ are sub-Gaussian in the sense that for all i , $\mathbb{E}[e^{c\eta_i^2}] < \infty$ for some $c > 0$.*

(B2) *There exists a constant $c_\eta > 0$ such that The density p_η of η satisfies the following:*

$$\int_{\mathbb{R}^N} p_\eta(u) \log \frac{p_\eta(u)}{p_\eta(u+v)} du \leq c_\eta \|v\|^2, \quad \forall v \in \mathbb{R}^N. \quad (2.5)$$

We note that assumptions (B1) and (B2) hold for instance for Gaussian noise $\eta \sim \mathcal{N}(0, \sigma_\eta^2 I_N)$ with $c_\eta = 1/(2\sigma_\eta^2)$.

2.2 FUNCTION CLASSES AND MODEL/ESTIMATOR ASSUMPTIONS

We introduce the functional classes where g_* lies. Our goal is to consider as large a class of functions as possible while also tracking the properties of the models ϕ_* that control the rate. For that purpose, we introduce the Hölder class and assume that ϕ_* satisfies some smoothness order of β .

Definition 2.2 (Hölder classes) *For $\beta, L, \bar{a} > 0$, the Hölder class $\mathcal{C}^\beta(L, \bar{a})$ on $[-\bar{a}, \bar{a}]$ is given by*

$$\mathcal{C}^\beta(L, \bar{a}) = \left\{ f : [-\bar{a}, \bar{a}] \rightarrow \mathbb{R} : |f^{(l)}(x) - f^{(l)}(y)| \leq L|x - y|^{\beta-l}, \forall x, y \in [-\bar{a}, \bar{a}] \right\}, \quad (2.6)$$

where $f^{(j)}$ denotes the j -th order derivative of functions f and $l = \lfloor \beta \rfloor$.

Low-rank Key and Query matrices often play an important role in the attention model. To keep track of the effects of the rank on the minimax rate, we introduce the following matrix class for the interaction matrix A_* , which is the product of the Key and Query matrices.

Definition 2.3 (Interaction matrix class) *For $\bar{a} > 0$, the d -dimensional matrix class $\mathcal{A}_d(r, \bar{a})$ with rank $r \in \mathbb{N}$ and $2 \leq r \leq d$ is given by*

$$\mathcal{A}_d(r, \bar{a}) = \{ A \in \mathbb{R}^{d \times d} : 2 \leq \text{rank}(A) \leq r, \|A\|_{\text{op}} \leq \bar{a} \}. \quad (2.7)$$

Combining both classes, we consider the following function class \mathcal{G}_r^β for all the possible pair-wise interaction functions.

Definition 2.4 (Target function class) *Given $L, B_\phi, \bar{a} > 0$ and rank $r \geq 2, \beta > 0$ define*

$$\mathcal{G}_r^\beta(L, B_\phi, \bar{a}) = \left\{ g_{\phi, A}(x, y) := \phi(x^\top A y) : \phi \in \mathcal{C}^\beta(L, \bar{a}), \|\phi\|_\infty \leq B_\phi, A \in \mathcal{A}_d(r, \bar{a}) \right\}. \quad (2.8)$$

For any $g \in \mathcal{G}_r^\beta = \mathcal{G}_r^\beta(L, B_\phi, \bar{a})$, moreover it follows $|R_g[X]_i| \leq B_\phi$. For technical reasons we requires $L \leq B_\phi(2\bar{a})^\beta$. This holds without loss of generality for any $\bar{a} \geq 1$ and $L \leq B_\phi$.

We provide both lower and upper bounds for the possible error rate by the number of samples for the interaction $g(\cdot, \cdot) \in \mathcal{G}_r^\beta$. We consider the following functional class for our estimator:

Definition 2.5 (Estimator function class) *Let $s := \max(\lfloor \beta \rfloor, 1)$ and $K_M \in \mathbb{N}$. Let $\Phi_{K_M}^s$ denote the class of piecewise polynomials of degree s , defined on K_M equal sub-intervals of $[-\bar{a}, \bar{a}]$. The corresponding estimator model class is*

$$\mathcal{G}_{r, K_M}^s := \left\{ g_{\phi, A} : \phi \in \Phi_{K_M}^s, \|\phi\|_\infty + \|\phi'\|_\infty \leq B_\phi, A \in \mathcal{A}_d(r, \bar{a}) \right\} \subseteq \mathcal{G}_r^\beta. \quad (2.9)$$

270 **3 UPPER BOUND**
 271

272 In this section, we provide an upper bound on estimating the token-token interaction. We propose
 273 the following estimator $\hat{g}_M(x, y) = \hat{\phi}(\langle x, y \rangle_{\hat{A}})$ as the empirical risk minimizer over the functional
 274 class 2.5
 275

$$276 \begin{cases} \hat{g}_M = \arg \min_{g_{\phi, A} \in \mathcal{G}_{r, K_M}^s} \mathcal{E}_M(g_{\phi, A}) := \frac{1}{N} \sum_{i=1}^N \mathcal{E}_M^{(i)}(g_{\phi, A}) \quad \text{with} \\ 277 \mathcal{E}_M^{(i)}(g_{\phi, A}) := \frac{1}{M} \sum_{m=1}^M \|Y_i^m - R_{g_{\phi, A}}[X^m]_i\|^2. \end{cases} \quad (3.1)$$

281 Here, $R_{g_{\phi, A}}[X]_i = \frac{1}{N-1} \sum_{j=1, j \neq i}^N g_{\phi, A}(X_i, X_j)$ the forward operator with interaction function
 282 $g_{\phi, A}$. Our goal is to prove that the estimator \hat{g}_M achieves the optimal upper bound. The large
 283 sample limit of $\mathcal{E}_M(g_{\phi, A})$ is then
 284

$$285 \mathcal{E}_{\infty}(g_{\phi, A}) := \lim_{M \rightarrow \infty} \mathcal{E}_M(g_{\phi, A}) = \frac{1}{N} \mathbb{E} [\|Y - R_{g_{\phi, A}}[X]\|_2^2].$$

287 The i -th error $\mathcal{E}_{\infty}^{(i)}(g_{\phi, A})$ for any $1 \leq i \leq N$ is defined in the same manner.
 288

289 The next theorem states that this estimator achieves the nearly optimal rate in estimating the interaction
 290 function. This rate matches the lower bound in Theorem 4.4 up to a logarithmic factor. Its
 291 proof is deferred to Appendix B.1.
 292

Theorem 3.1 Suppose $rd \leq (M/\log M)^{\frac{1}{2\beta+1}}$. Consider the estimator \hat{g}_M defined in equation 3.1
 293 computed on data M i.i.d. observation satisfying Assumptions 2.1 and (B1). Then, for \hat{g}_M defined
 294 in equation 3.1 it holds that

$$295 \limsup_{M \rightarrow \infty} \sup_{g_{\star} \in \mathcal{G}_r^{\beta}(L, B_{\phi}, \bar{a})} \mathbb{E} \left[M^{\frac{2\beta}{2\beta+1}} \|\hat{g}_M - g_{\star}\|_{L_p^2}^2 \right] \lesssim C_{N, L, \bar{a}, \beta, s}, \quad (3.2)$$

298 where $C_{N, L, \bar{a}, \beta, s} = N [C_1 \frac{L^2(s\bar{a})^{2\beta}}{(s!)^2} + C_2]$ for some universal positive constants C_1, C_2 .
 299

300 **Remark 3.2** The symbol \lesssim indicates that the upper bound holds up to a logarithmic factor of
 301 $(\log M)^{\frac{2\beta}{2\beta+1} + 4 \max(2\beta, 1)}$. We believe this factor can be improved, as it currently creates a gap
 302 between our upper and lower bounds, representing a limitation of our methods. It is worth noting
 303 that by working with uniformly bounded noise, this factor can be simplified (e.g., see Theorem 22.2
 304 in Györfi et al. (2006)). In simpler settings, such as standard regression or when the interaction
 305 matrix A is constant (e.g., for Euclidean distances), this logarithmic factor can be removed using
 306 more advanced techniques. This topic is discussed in several works, including Wang et al. (2025);
 307 Györfi et al. (2006); Van der Vaart (2000) and the references therein. However, in our model, the
 308 optimization depends on both the interaction matrix A and the function ϕ , which makes the problem
 309 non-convex. This difficulty makes the aforementioned techniques harder to implement. We therefore
 310 leave this for future work.
 311

Remark 3.3 This theorem demonstrates that the attention-style model is free from the curse of dimensionality. In particular, the embedding dimension d can be very large, satisfying the bound
 312 $rd \leq (M/\log M)^{\frac{1}{2\beta+1}}$. This condition becomes looser as β decreases, corresponding to rougher
 313 activation functions. When this condition is not satisfied, the error coming from the estimation of
 314 A_{\star} dominates. See Corollary B.2.
 315

316 The proof extends the technique in Györfi et al. (2006, Theorem 22.2) originally developed for the
 317 projection pursuit algorithm for multi-index models. Our setup differs from the multi-index setup
 318 in which one estimates $Y = \sum_{i=1}^K f_i(b_i^T X) + \eta$ with $\{f_i : \mathbb{R} \rightarrow \mathbb{R} \text{ and } b_i \in \mathbb{R}^d\}_{i=1}^K$ from sample
 319 data $\{(X^m, Y^m)\}_{m=1}^M$, where the data Y depends locally on a projected values of single particle
 320 X . Here, the attention-style model involves averaging multiple values of the pairwise interaction
 321 function, which is a composition of the unknown ϕ_{\star} and A . This nonlocal dependence, combined
 322 with the mixture of parametric and nonparametric estimations, presents a significant challenge.
 323

We list below the main challenges we address in the proof of Theorem 3.1.

324 1. *Nonlocal dependency.* The nonlocal dependence presents a challenge in estimating the interaction
 325 function. The forward operator $R_g[X]$ depends on the g non-locally through the weighted
 326 sum of multiple values of g of pairwise interaction. Thus, this is a type of inverse problem that
 327 raises significant hurdles in both well-posedness and the construction of estimators to achieve
 328 the minimax rate. To address these challenges, we show first that the inverse problem in the
 329 large sample limit is well-posed for a large class of distributions of X satisfying Assumption
 330 2.1. A crucial condition for well-posedness of this inverse problem is the *coercivity condition*
 331 studied in Li & Lu (2023); Li et al. (2021); Lu et al. (2019); Wang et al. (2025):

$$\frac{1}{N-1} \mathbb{E} \left[\|\hat{g}_M - g_\star\|_{L_p^2}^2 \right] \leq \mathcal{E}_\infty(\hat{g}_M) - \mathcal{E}_\infty(g_\star).$$

332 We prove this condition holds for a general function in our class in Lemma 3.4. Importantly,
 333 differing from these studies where the goal is to estimate the radial interaction kernel, our in-
 334 teraction is not shift-invariant due to the matrix and it is a $2d$ -dimensional pairwise interaction
 335 function.

336 2. *Tail decay noise distribution.* The proof in Györfi et al. (2006) is limited to bounded noise. We
 337 provide a more general statement for any sub-Gaussian noise. This is done by decomposing
 338 the error bound now into three parts.

$$\mathcal{E}_\infty(\hat{g}_M) - \mathcal{E}_\infty(g_\star) \leq \mathbb{E}[T_{1,M}] + \mathbb{E}[T_{2,M}] + \mathbb{E}[T_{3,M}]. \quad (3.3)$$

339 The first two terms are a clever form of a bias-variance decomposition applied to a truncated
 340 version of the target. To bound these terms, we use a similar technique as in Györfi et al.
 341 (2006). To control the last term $T_{3,M}$ due to the truncation, we apply a lemma proved in
 342 (Kohler & Mehnert, 2011, Lemma 2).

343 3. *Covering numbers estimates.* Since our interaction is of the form $\frac{1}{N-1} \sum_{j=1}^N \phi(X_i^\top A X_j)$
 344 instead of working in the space of vectors, we provide a covering estimate for the class of
 345 matrices with rank less than or equal to r . This is done in Lemma B.3.

346 The next lemma proves the crucial condition for the well-posedness of the inverse problem of esti-
 347 mating the interaction function. **This Lemma assumes exchangeability and allows us to extract the**
 348 **error of the mean interaction and obtain a dimension-free rate for that error.** Its proof is based on the
 349 exchangeability of the particle distribution and is postponed to Appendix B.1.

350 **Lemma 3.4 (Coercivity)** *Let $g, g_\star \in \mathcal{G}_r^\beta(L, B_\phi, \bar{a})$. Under exchangeability of $(X_i)_{i=1}^N$ in Assump-*
 351 *tion (A1), we have*

$$\frac{1}{N-1} \|g - g_\star\|_{L_p^2}^2 \leq \mathcal{E}_\infty(g) - \mathcal{E}_\infty(g_\star).$$

361 4 LOWER BOUND

362 This section establishes a lower bound for estimating $g_\star(x, y) := \phi_\star(x^\top A_\star y)$ that matches the upper
 363 bound in Theorem 3.1; together, these results determine the minimax rate.

364 The main challenge lies in the nonlocal dependence of the output Y_i on g_\star , which is determined
 365 through averaging over all particles, as we don't directly observe any value of g_\star . Thus, the estima-
 366 tion of g_\star is a deconvolution-type inverse problem, which is harder than estimating the single index
 367 model $Y = f(b^\top X) + \eta$ in Gaiffas & Lecué (2007). Importantly, the nonlinear joint dependence of
 368 g_\star on the unknown ϕ_\star and A_\star further complicates the problem.

369 We address the challenge by first reducing the supremum over all g_\star to the supremum over all ϕ_\star
 370 with a fixed $A_\star \in \mathcal{A}_d(r, \bar{a})$, building on a technical result in Lemma 4.1. This reduces the problem
 371 to the minimax lower bound of estimating the interaction kernel ϕ_\star only. We derive this lower bound
 372 using the scheme in Wang et al. (2025), a variant of the Fano-Tsybakov method in Tsybakov (2008).

373 Let $A_\star \in \mathcal{A}_d(r, \bar{a})$ and let

$$U_{ij} := X_i^\top A_\star X_j, \quad U \sim p_U(u) := \frac{1}{N(N-1)} \sum_{i=1}^N \sum_{j=1, j \neq i}^N p_{U_{ij}}(u), \quad (4.1)$$

378 where $p_{U_{ij}}$ denotes the probability density of U_{ij} . Here, the density $p_{U_{ij}}$ exists and is continuous
 379 because $\text{rank}(A_\star) \geq 2$ and the joint density of (X_i, X_j) exists by Assumption (A2), see Lemma
 380 C.1. Hence, the density p_U is continuous. Furthermore, since $\|A_\star\|_{\text{op}} \leq \bar{a}$ and $X_i \in \mathcal{C}_d$, we have
 381 $|U_{ij}| \leq \bar{a}$ and $\text{supp}(p_U) \subset [-\bar{a}, \bar{a}]$. In particular, when the distribution X is exchangeable, we
 382 have $p_{U_{ij}}(u) = p_{U_{12}}(u) = p_U(u)$ for all (i, j) , $u \in [-\bar{a}, \bar{a}]$. However, our proof below works for
 383 non-exchangeable distributions.

384 The next lemma allows us to reduce the supremum over all $g_\star(x, y) = \phi_\star(x^\top A_\star y)$ to all ϕ_\star by
 385 bounding $\|\hat{g} - g_\star\|_{L_p^2}$ from below by $\|\hat{\psi} - \phi_\star\|_{L_{p_U}^2}$ for a function $\hat{\psi}$ determined by \hat{g} and A_\star . Its
 386 proof can be found in Section C.

387 **Lemma 4.1** *Suppose Assumption (A2) holds. Let $A_\star, \hat{A} \in \mathcal{A}_d(r, \bar{a})$. Recall the definitions of U_{ij}
 388 and $U \sim p_U$ (defined according to A_\star) in equation 4.1. Let $\phi_\star, \hat{\phi} \in L_{p_U}^2$, and define a function $\hat{\psi}$
 389 that is determined by $(\hat{\phi}, \hat{A}, A_\star)$ and the distribution of X as*

$$390 \hat{\psi}_{ij}(u) := \mathbb{E}[\hat{\phi}(X_i^\top \hat{A} X_j) | U_{ij} = u], \quad \hat{\psi}(u) := \sum_{i=1}^N \sum_{j=1, j \neq i}^N \frac{p_{U_{ij}}(u)}{N(N-1)p_U(u)} \hat{\psi}_{ij}(u). \quad (4.2)$$

396 Then, the following inequality holds:

$$397 \|\hat{g} - g_\star\|_{L_p^2}^2 \geq \int_{-\bar{a}}^{\bar{a}} |\hat{\psi}(u) - \phi_\star(u)|^2 p_U(u) du.$$

401 The next lemma constructs a finite family of hypothesis functions that are well-separated in $L_{p_U}^2$,
 402 while their induced distributions remain close with a slowly increasing total Kullback-Leibler di-
 403 vergence, enabling the application of Fano's method to derive the minimax lower bound. Its proof
 404 follows the scheme in Wang et al. (2025) and is postponed to Section C.

405 **Lemma 4.2** *For each data set $\{(X^m, Y^m)\}_{m=1}^M$ sampled from the model $Y = R_{\phi_\star, A_\star}[X] + \eta$,
 406 where $A_\star \in \mathcal{A}_d(r, \bar{a})$ satisfying assumptions (B2) and (A2), there exists a set of hypothesis functions
 407 $\{\phi_{0,M} \equiv 0, \phi_{1,M}, \dots, \phi_{K,M}\}$ and positive constants $\{C_0, C_1\}$ independent of M, N, d, r , where*

$$408 K \geq 2^{\bar{K}/8}, \quad \text{with } \bar{K} = \lceil c_{0,N} M^{\frac{1}{2\beta+1}} \rceil, \quad c_{0,N} = C_0 N^{\frac{1}{2\beta+1}}, \quad (4.3)$$

411 such that the following conditions hold:

412 (D1) *Holder continuity: $\phi_{k,M} \in \mathcal{C}^\beta(L, \bar{a})$ and $\|\phi_{k,M}\|_\infty \leq B_\phi$ for each $k = 1, \dots, K$;*

414 (D2) *$2s_{N,M}$ -separated: $\|\phi_{k,M} - \phi_{k',M}\|_{L_{p_U}^2} \geq 2s_{N,M}$ with $s_{N,M} = C_1 c_{0,N}^{-\beta} M^{-\frac{\beta}{2\beta+1}}$;*

416 (D3) *Kullback-Leibler divergence estimate: $\frac{1}{K} \sum_{k=1}^K D_{\text{KL}}(\bar{\mathbb{P}}_k, \bar{\mathbb{P}}_0) \leq \alpha \log(K)$ with $\alpha < 1/8$,*

418 where $\bar{\mathbb{P}}_k(\cdot) = \mathbb{P}_{\phi_{k,M}}(\cdot | X^1, \dots, X^M)$ and p_U is the density of U defined in equation 4.1.

420 The following theorem provides a lower minimax rate for estimating ϕ_\star when A_\star is given. Its proof
 421 is available in Section C.

423 **Theorem 4.3** *Suppose Assumptions (A2) and (B2) hold. Let p_U be the density of U defined in
 424 equation 4.1. Then, for any $\beta > 0$, there exists a constant $c_0 > 0$ independent of M, d, r and N
 425 such that*

$$426 \liminf_{M \rightarrow \infty} \inf_{\hat{\psi}_M \in L_{p_U}^2} \sup_{\substack{\phi_\star \in \mathcal{C}^\beta(L, \bar{a}) \\ \|\phi_\star\|_\infty \leq B_\phi}} \mathbb{E}_{\phi_\star} \left[M^{\frac{2\beta}{2\beta+1}} \|\hat{\psi}_M - \phi_\star\|_{L_{p_U}^2}^2 \right] \geq c_0 N^{-\frac{2\beta}{2\beta+1}} \quad (4.4)$$

429 where $\hat{\psi}_M$ is estimated based on the observation model with M i.i.d. samples.

431 Following the above results, we can now provide a lower bound for the convergence rate when
 432 estimating g_\star over all possible estimators in the worst-case scenario.

432 **Theorem 4.4 (Minimax lower bound)** Suppose Assumptions (A2) and (B2) hold. Then, for any
 433 $\beta > 0$ there exists a constant $c_0 > 0$ independent of M , d , r and N , such that the following
 434 inequality holds:

$$436 \quad \liminf_{M \rightarrow \infty} \inf_{\hat{g}} \sup_{g_\star \in \mathcal{G}_r^\beta(L, B_\phi, \bar{a})} M^{\frac{2\beta}{2\beta+1}} \mathbb{E} \left[\|\hat{g} - g_\star\|_{L_\rho^2}^2 \right] \geq c_0 N^{-\frac{2\beta}{(2\beta+1)}} \quad (4.5)$$

439 where the infimum $\inf_{\hat{g}}$ is taken over all $\hat{g}(x, y) = \hat{\phi}(x^\top \hat{A} y)$ with $\hat{A} \in \mathcal{A}_d(r, \bar{a})$ and $\hat{\phi}$ such that
 440 $\hat{g} \in L_\rho^2$.

443 5 NUMERICAL SIMULATIONS

445 In this section, we empirically verify the convergence rates predicted by our theory, emphasizing
 446 their independence from the ambient dimension d and their dependence on the activation function's
 447 smoothness.

448 For all experiments, we use B-splines to represent the ground-truth activation ϕ_\star : a degree- p B-
 449 spline is C^{p-1} , so the degree directly controls the smoothness (Lyche et al., 2017). B-splines are
 450 linear in their basis coefficients, allowing us to efficiently compute an optimal coefficient estimator
 451 by least squares. Our estimator for the interaction function \hat{g} exploits this structure: we first fit
 452 ϕ_\star in the B-spline basis by least squares, then approximate the fitted activation with a multi-layer
 453 perceptron to enable backpropagation when estimating A_\star . This design enables us to control both
 454 the smoothness and the approximation accuracy of \hat{g} , ensuring that it achieves the minimax rate.
 455 Full simulation and parameter details appear in Appendix D.

456 Our experiments confirm the theoretical minimax rates.

- 458 • *Independence from the ambient dimension d .* Figure 1(a) compares convergence across em-
 459 bedding dimensions $d \in \{1, 5, 30\}$. In the log-log plots, the slopes (which encode the rates) are
 460 nearly parallel and close to the theoretical exponent $-2\beta/(2\beta + 1)$ for all three dimensions,
 461 indicating that the convergence rate is independent of d .
- 462 • *Dependence on the activation function's smoothness.* Figure 1(b) reports rates for varying
 463 smoothness exponents β , controlled by the B-spline degree used to represent ϕ_\star . As the spline
 464 degree (and hence β) increases, the log-log slope steepens as predicted by theory: for example,
 465 the empirical slopes are ≈ -0.81 for degree $P = 3$ and ≈ -0.899 for $P = 8$, closely matching
 466 the theoretical values -0.80 and -0.933 .

468 The two plots illustrate that the minimax rate is fully determined by the smoothness β and it is
 469 dimension-free.

471 6 CONCLUSIONS

474 We have established *dimension-free* minimax convergence rates in sample size for estimating the
 475 pairwise interaction functions in self-attention style models. Using a direct connection to interacting
 476 particle systems (IPS), we have proved that under a coercivity condition, one can learn the interaction
 477 function at an optimal rate $M^{-2\beta/(2\beta+1)}$ with β being the smoothness of the function. Notably, this
 478 rate is independent of both the embedding dimension and the number of tokens. Our analysis extends
 479 beyond the standard assumption of independent, isotropic token distributions to allow for correlated
 480 and anisotropic token distributions.

481 These dimension-free rates illuminate how attention can avoid the curse of dimensionality in high-
 482 dimensional regimes. Viewing attention through the IPS lens suggests a broad research agenda for
 483 understanding the attention models. Promising next steps include extending the theory to multi-head
 484 attention, residual connections and self-attention interactions induced by the value matrix. Advances
 485 in these directions will improve our understanding of learning mechanisms and generalization in
 transformers.

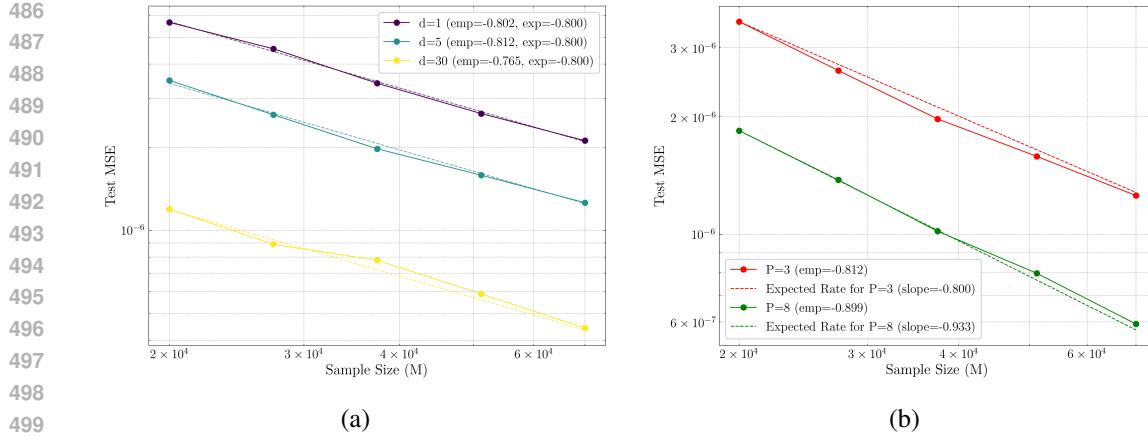


Figure 1: **(a)** Convergence rates with $d \in \{1, 5, 30\}$. Composed test Mean Squared Error (MSE) vs. sample size M in log scale; dashed lines show the expected rate $M^{-2\beta/(2\beta+1)}$; and the markers represent the median across seeds. The convergence rates are nearly the same for different values of d . **(b)** Convergence rates with varying smoothness exponents, which are controlled by the spline degree of ϕ_* and the estimator, with $P_{\text{true}} = P_{\text{est}} \in \{3, 8\}$, corresponding to $\beta \in \{2, 7\}$ and expected slopes -0.800 and -0.933 . The parameters in each simulation are described in Appendix D.

REFERENCES

- Chiara Amorino, Akram Heidari, Vytautė Pilipauskaitė, and Mark Podolskij. Parameter estimation of discretely observed interacting particle systems. *Stochastic Processes and their Applications*, 163:350–386, 2023. ISSN 0304-4149. doi: <https://doi.org/10.1016/j.spa.2023.06.011>. URL <https://www.sciencedirect.com/science/article/pii/S0304414923001321>.
- Sohom Bhattacharya, Jianqing Fan, and Debarghya Mukherjee. Deep neural networks for nonparametric interaction models with diverging dimension. *The Annals of Statistics*, 52(6):2738 – 2766, 2024. doi: 10.1214/24-AOS2442. URL <https://doi.org/10.1214/24-AOS2442>.
- Fabrizio Boncoraglio, Emanuele Troiani, Vittorio Erba, and Lenka Zdeborová. Bayes optimal learning of attention-indexed models, 2025. URL <https://arxiv.org/abs/2506.01582>.
- Giuseppe Bruno, Federico Pasqualotto, and Andrea Agazzi. Emergence of meta-stable clustering in mean-field transformer models. In *The Thirteenth International Conference on Learning Representations*, 2025. URL <https://openreview.net/forum?id=eBS3dQQ8GV>.
- Tian Qi Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary differential equations. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Garnett (eds.), *Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada*, pp. 6572–6583, 2018. URL <https://proceedings.neurips.cc/paper/2018/hash/69386f6bb1dfed68692a24c8686939b9-Abstract.html>.
- Xiaohui Chen. Maximum likelihood estimation of potential energy in interacting particle systems from single-trajectory data. *Electron. Commun. Probab.*, pp. 1–13, 2021.
- Hugo Cui. High-dimensional learning of narrow neural networks. *Journal of Statistical Mechanics: Theory and Experiment*, 2025(2):023402, 2025.
- Hugo Cui, Freya Behrens, Florent Krzakala, and Lenka Zdeborová. A phase transition between positional and semantic learning in a solvable model of dot-product attention. *Advances in Neural Information Processing Systems*, 37:36342–36389, 2024.
- Laetitia Della Maestra and Marc Hoffmann. Nonparametric estimation for interacting particle systems: McKean-Vlasov models. *Probability Theory and Related Fields*, pp. 1–63, 2022.

- 540 Laetitia Della Maestra and Marc Hoffmann. The lan property for mckean–vlasov models in a mean-
 541 field regime. *Stochastic Processes and their Applications*, 155:109–146, 2023.
- 542
- 543 Puneesh Deora, Rouzbeh Ghaderi, Hossein Taheri, and Christos Thrampoulidis. On the optimization
 544 and generalization of multi-head attention, 2024. URL <https://arxiv.org/abs/2310.12680>.
- 545
- 546 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
 547 bidirectional transformers for language understanding, 2019. URL <https://arxiv.org/abs/1810.04805>.
- 548
- 549 Subhabrata Dutta, Tanya Gautam, Soumen Chakrabarti, and Tanmoy Chakraborty. Redesigning
 550 the transformer architecture with insights from multi-particle dynamical systems, 2021. URL
 551 <https://arxiv.org/abs/2109.15142>.
- 552
- 553 Lawrence Craig Evans. *Measure theory and fine properties of functions*. Routledge, 2018.
- 554
- 555 Hengyu Fu, Tianyu Guo, Yu Bai, and Song Mei. What can a single attention layer learn? a
 556 study through the random features lens. *Advances in Neural Information Processing Systems*,
 36:11912–11951, 2023.
- 557
- 558 Stéphane Gaiffas and Guillaume Lecué. Optimal rates and adaptation in the single-index model
 559 using aggregation. *Electronic Journal of Statistics*, 1:538–573, 2007.
- 560
- 561 Borjan Geshkovski, Cyril Letrouit, Yury Polyanskiy, and Philippe Rigollet. The emergence of clus-
 562 ters in self-attention dynamics. In *Thirty-seventh Conference on Neural Information Processing
 Systems*, 2023. URL <https://openreview.net/forum?id=aMjaEkkXJx>.
- 563
- 564 Borjan Geshkovski, Cyril Letrouit, Yury Polyanskiy, and Philippe Rigollet. A mathematical per-
 565 spective on transformers. *Bulletin of the American Mathematical Society*, 62(3):427–479, 2025.
- 566
- 567 Tianyu Guo, Druv Pai, Yu Bai, Jiantao Jiao, Michael I. Jordan, and Song Mei. Active-dormant
 568 attention heads: Mechanistically demystifying extreme-token phenomena in llms, 2024a. URL
<https://arxiv.org/abs/2410.13835>.
- 569
- 570 Zhiyu Guo, Hidetaka Kamigaito, and Taro Watanabe. Attention score is not all you need for token
 571 importance indicator in kv cache reduction: Value also matters, 2024b. URL <https://arxiv.org/abs/2406.12335>.
- 572
- 573 László Györfi, Michael Kohler, Adam Krzyzak, and Harro Walk. *A distribution-free theory of
 574 nonparametric regression*. Springer Science & Business Media, 2006.
- 575
- 576 Dongchen Han, Yifan Pu, Zhuofan Xia, Yizeng Han, Xuran Pan, Xiu Li, Jiwen Lu, Shiji Song, and
 577 Gao Huang. Bridging the divide: Reconsidering softmax and linear attention. *Advances in Neural
 578 Information Processing Systems*, 37:79221–79245, 2024.
- 579
- 580 Joel L. Horowitz and Enno Mammen. Rate-optimal estimation for a general class of nonpara-
 581 metric regression models with unknown link functions. *The Annals of Statistics*, 35(6):2589–
 2619, 2007. doi: 10.1214/009053607000000415. URL <https://doi.org/10.1214/009053607000000415>.
- 582
- 583 Jiri Hron, Yasaman Bahri, Jascha Sohl-Dickstein, and Roman Novak. Infinite attention: Nngp and
 584 ntk for deep attention networks. In *International Conference on Machine Learning*, pp. 4376–
 585 4386. PMLR, 2020.
- 586
- 587 Hui Huang, Jian-Guo Liu, and Jianfeng Lu. Learning interacting particle systems: Diffusion pa-
 588 rameter estimation for aggregation equations. *Mathematical Models and Methods in Applied
 589 Sciences*, 29(01):1–29, 2019.
- 590
- 591 Raphael A. Kasonga. Maximum likelihood theory for large interacting systems. *SIAM J. Appl.
 592 Math.*, 50(3):865–875, 1990. ISSN 0036-1399, 1095-712X. doi: 10.1137/0150050.
- 593
- 594 Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
 595 rnns: Fast autoregressive transformers with linear attention. In *International conference on ma-
 596 chine learning*, pp. 5156–5165. PMLR, 2020.

- 594 Michael Kohler and Jens Mehnert. Analysis of the rate of convergence of least squares neural
 595 network regression estimates in case of measurement errors. *Neural Networks*, 24(3):273–279,
 596 2011. ISSN 0893-6080. doi: <https://doi.org/10.1016/j.neunet.2010.11.003>. URL <https://www.sciencedirect.com/science/article/pii/S0893608010002157>.
- 598 Soroush Abbasi Koohpayegani and Hamed Pirsiavash. Sima: Simple softmax-free attention for
 599 vision transformers. In *2024 IEEE/CVF Winter Conference on Applications of Computer Vision*
 600 (WACV), pp. 2595–2605, 2024. doi: 10.1109/WACV57701.2024.00259.
- 602 Hongkang Li, Meng Wang, Sijia Liu, and Pin yu Chen. A theoretical understanding of shallow
 603 vision transformers: Learning, generalization, and sample complexity, 2023. URL <https://arxiv.org/abs/2302.06015>.
- 605 Zhongyang Li and Fei Lu. On the coercivity condition in the learning of interacting particle systems.
 606 *Stochastics and Dynamics*, pp. 2340003, 2023.
- 608 Zhongyang Li, Fei Lu, Mauro Maggioni, Sui Tang, and Cheng Zhang. On the identifiability of inter-
 609 action functions in systems of interacting particles. *Stochastic Processes and their Applications*,
 610 132:135–163, 2021.
- 611 Meiqi Liu and Huijie Qiao. Parameter estimation of path-dependent McKean-Vlasov stochastic
 612 differential equations. *Acta Mathematica Scientia*, 42(3):876–886, 2022.
- 614 Fei Lu, Ming Zhong, Sui Tang, and Mauro Maggioni. Nonparametric inference of interaction laws
 615 in systems of agents from trajectory data. *Proc. Natl. Acad. Sci. USA*, 116(29):14424–14433,
 616 2019.
- 617 Fei Lu, Mauro Maggioni, and Sui Tang. Learning interaction kernels in heterogeneous systems of
 618 agents from multiple trajectories. *Journal of Machine Learning Research*, 22(32):1–67, 2021a.
- 619 Fei Lu, Mauro Maggioni, and Sui Tang. Learning interaction kernels in stochastic systems of in-
 620 teracting particles from multiple trajectories. *Foundations of Computational Mathematics*, 22:
 621 1013–1067, 2022.
- 623 Jiachen Lu, Jinghan Yao, Junge Zhang, Xiatian Zhu, Hang Xu, Weiguo Gao, Chunjing Xu, Tao
 624 Xiang, and Li Zhang. Soft: Softmax-free transformer with linear complexity. In *NeurIPS*, 2021b.
- 625 Yue M. Lu, Mary Letey, Jacob A. Zavatone-Veth, Anindita Maiti, and Cengiz Pehlevan. Asymp-
 626 totic theory of in-context learning by linear attention. *Proceedings of the National Academy
 627 of Sciences*, 122(28):e2502599122, 2025. doi: 10.1073/pnas.2502599122. URL <https://www.pnas.org/doi/abs/10.1073/pnas.2502599122>.
- 630 Tom Lyche, Carla Manni, and Hendrik Speleers. B-splines and spline approximation. 2017. URL
 631 <https://api.semanticscholar.org/CorpusID:195737484>.
- 632 Pierre Marion, Raphaël Berthier, Gérard Biau, and Claire Boyer. Attention layers provably solve
 633 single-location regression. In *The Thirteenth International Conference on Learning Representa-
 634 tions*, 2025. URL <https://openreview.net/forum?id=DV1Pp7Jd7P>.
- 636 OpenAI. Gpt-4 technical report, 2024. URL <https://arxiv.org/abs/2303.08774>.
- 637 Samet Oymak, Ankit Singh Rawat, Mahdi Soltanolkotabi, and Christos Thrampoulidis. On the role
 638 of attention in prompt-tuning, 2023. URL <https://arxiv.org/abs/2306.03435>.
- 640 Jason Ramapuram, Federico Danieli, Eeshan Dhekane, Floris Weers, Dan Busbridge, Pierre Ablin,
 641 Tatiana Likhomanenko, Jagrit Diganj, Zijin Gu, Amitis Shidani, and Russ Webb. Theory, analysis,
 642 and best practices for sigmoid self-attention. In *International Conference on Learning Represen-
 643 tations (ICLR)*, 2025. URL <https://openreview.net/forum?id=Zhdhg6n2OG>.
- 644 Michael E. Sander, Pierre Ablin, Mathieu Blondel, and Gabriel Peyré. Sinkformers: Transformers
 645 with doubly stochastic attention. In Gustau Camps-Valls, Francisco J. R. Ruiz, and Isabel Valera
 646 (eds.), *Proceedings of The 25th International Conference on Artificial Intelligence and Statistics*,
 647 volume 151 of *Proceedings of Machine Learning Research*, pp. 3515–3530. PMLR, 28–30 Mar
 2022.

- 648 Johannes Schmidt-Hieber. Nonparametric regression using deep neural networks with ReLU acti-
 649 vation function. *The Annals of Statistics*, 48(4):1875 – 1897, 2020. doi: 10.1214/19-AOS1875.
 650 URL <https://doi.org/10.1214/19-AOS1875>.
- 651 Louis Sharrock, Nikolas Kantas, Panos Parpas, and Grigoris A. Pavliotis. Parameter stimation for
 652 the McKean-Vlasov stochastic differential equation. *ArXiv210613751 Math Stat*, 2021.
- 653 Christopher D Sogge. *Fourier integrals in classical analysis*, volume 210. Cambridge University
 654 Press, 2017.
- 655 Mingjie Sun, Xinlei Chen, J. Zico Kolter, and Zhuang Liu. Massive activations in large language
 656 models, 2024. URL <https://arxiv.org/abs/2402.17762>.
- 657 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 658 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Ar-
 659 mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
 660 language models, 2023. URL <https://arxiv.org/abs/2302.13971>.
- 661 Emanuele Troiani, Hugo Cui, Yatin Dandi, Florent Krzakala, and Lenka Zdeborová. Fundamental
 662 limits of learning in sequence multi-index models and deep attention networks: High-dimensional
 663 asymptotics and sharp thresholds. *arXiv preprint arXiv:2502.00901*, 2025.
- 664 Alexandre B. Tsybakov. *Introduction to Nonparametric Estimation*. Springer New York, NY, 1st
 665 edition, 2008. ISBN 978-0-387-79051-0.
- 666 Aad W Van der Vaart. *Asymptotic statistics*, volume 3. Cambridge university press, 2000.
- 667 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 668 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
 669 Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), *Ad-
 670 vances in Neural Information Processing Systems*, volume 30. Curran Associates, Inc.,
 671 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fb053c1c4a845aa-Paper.pdf.
- 672 Roman Vershynin. *High-dimensional probability: An introduction with applications in data science*,
 673 volume 47. Cambridge University Press, 2018.
- 674 Johannes Von Oswald, Eyyvind Niklasson, Ettore Randazzo, Joao Sacramento, Alexander Mordvint-
 675 sev, Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient de-
 676 scent. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato,
 677 and Jonathan Scarlett (eds.), *Proceedings of the 40th International Conference on Machine Learn-
 678 ing*, volume 202 of *Proceedings of Machine Learning Research*, pp. 35151–35174. PMLR, 23–29
 679 Jul 2023. URL <https://proceedings.mlr.press/v202/von-oswald23a.html>.
- 680 Shulun Wang, Feng Liu, and Bin Liu. Escaping the gradient vanishing: Periodic alternatives of
 681 softmax in attention mechanism. *IEEE Access*, 9:168749–168759, 2021. doi: 10.1109/ACCESS.
 682 2021.3138201.
- 683 Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention
 684 with linear complexity, 2020. URL <https://arxiv.org/abs/2006.04768>.
- 685 Xiong Wang, Inbar Seroussi, and Fei Lu. Optimal minimax rate of learning nonlocal interaction
 686 kernels, 2025. URL <https://arxiv.org/abs/2311.16852>.
- 687 Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
 688 language models with attention sinks. In *The Twelfth International Conference on Learning Rep-
 689 resentations*, 2024. URL <https://openreview.net/forum?id=NG7sS51zVF>.
- 690 Rentian Yao, Xiaohui Chen, and Yun Yang. Mean-field nonparametric estimation of interacting
 691 particle systems. In *Conference on Learning Theory*, pp. 2242–2275. PMLR, 2022.
- 692 Yue Yu, Ning Liu, Fei Lu, Tian Gao, Siavash Jafarzadeh, and Stewart A Silling. Nonlocal attention
 693 operator: Materializing hidden knowledge towards interpretable physics discovery. *Advances in
 694 Neural Information Processing Systems*, 37:113797–113822, 2024.

702 Biao Zhang, Ivan Titov, and Rico Sennrich. Sparse attention with linear units. In Marie-Francine
 703 Moens, Xuanjing Huang, Lucia Specia, and Scott Wen-tau Yih (eds.), *Proceedings of the*
 704 *2021 Conference on Empirical Methods in Natural Language Processing, EMNLP 2021, Virtual*
 705 *Event / Punta Cana, Dominican Republic, 7-11 November, 2021*, pp. 6507–6520. Association
 706 for Computational Linguistics, 2021. doi: 10.18653/V1/2021.EMNLP-MAIN.523. URL
 707 <https://doi.org/10.18653/v1/2021.emnlp-main.523>.

709 A APPENDIX: REDUCTION FROM ATTENTION TO IPS ATTENTION MODEL

711 In this section, we provide a direct connection between the IPS attention model and the softmax self-
 712 attention layer, which typically includes an additional normalization step. Consider a sequence of
 713 tokens $\{X_i\}_{i=1}^N$. The output of the softmax self-attention layer is typically composed of an attention
 714 block with learnable query, key, and value matrices, $W_Q, W_K \in \mathbb{R}^{d \times d_k}$ with $d_k \leq d$ and $W_V \in$
 715 $\mathbb{R}^{d \times d_v}$ that compute

$$717 Y = \text{Att}(Q, K, V) = \text{softmax}\left(\frac{QK^\top}{\sqrt{d_k}}\right)V, \quad Q = XW_Q, K = XW_K, V = XW_V. \quad (\text{A.1})$$

719 As explained in the main text, we denote by $A = \frac{1}{\sqrt{d_k}}W_QW_K^\top$ the score interaction matrix. Using
 720 the definition of the softmax function, the output of the softmax self-attention layer for each particle
 721 can then be written

$$722 Y_i = \sum_{j=1}^N \frac{e^{\beta X_i^\top AX_j}}{Z_i[X]} V_j, \quad Z_i[X] = \sum_{\ell=1}^N e^{\beta X_i^\top AX_\ell}$$

724 with $\beta > 0$ being the inverse temperature parameter. When the number of particles is large, the
 725 partition function $Z_i[X]$ concentrates around its mean-field value with respect to the empirical
 726 distribution of the particles. If we denote by μ the continuum limit of the empirical measure, then
 727 $Z_i[X] \approx N\mathcal{Z}_i = N \int e^{\beta X_i^\top Ay} d\mu(y)$ conditioned on the i -th particle.

729 For the IPS surrogate we consider in this paper, we adopt two standard simplifications (Sander et al.,
 730 2022; Geshkovski et al., 2025; Bruno et al., 2025): we set $d_v = 1$, and treat \mathcal{Z}_i as a constant
 731 (independent of X) that can be absorbed into the nonlinearity, and focus only on the self-interaction
 732 for $i \neq j$, and setting V_j to be a constant, we get our IPS Attention Model:

$$733 Y_i = \frac{1}{N} \sum_{j \neq i} \phi(X_i^\top AX_j).$$

736 This reduction is similar in spirit to the surrogate model (USA) presented in Geshkovski et al. (2025).
 737 We note that a possible extension of our model to account for the softmax normalization would be
 738 to learn a function for each particle, ϕ_i . We suspect it will not change the overall rate. In fact, as
 739 stated in Geshkovski et al. (2025), this reduction seems to capture the essence of the dynamics of
 740 the self-attention (SA) model. Therefore, to simplify the setting, we focus on estimating a single
 741 function.

742 B APPENDIX: UPPER BOUND PROOFS

745 We begin by reducing the distribution of the pair-wise particles to the distribution of one pair by
 746 exchangeability. The exchangeability not only simplifies the proof of the upper bound, but also
 747 provides a sufficient condition for the coercivity, which makes the inverse problem well-posed.

748 **Lemma B.1 (Exploration measure under exchangeability)** *Under Assumption 2.1, the measure*
 749 *ρ is the distribution of $(X_1, X_2) \in \mathbb{R}^d \times \mathbb{R}^d$ and has a continuous density.*

751 **Proof.** The exchangeability in Assumption 2.1 implies that the distributions of (X_i, X_j) and
 752 (X_1, X_2) are the same for any $i \neq j$. Hence, by definition, the exploration measure is the distribution
 753 of the random variables (X_1, X_2) :

$$754 \rho(B) = \mathbb{P}((X_1, X_2) \in B)$$

755 which has a continuous density by Assumption 2.1. \square

756 B.1 PROOF OF THE UPPER BOUND IN THEOREM 3.1
757758 In this section, we provide the proof of the upper bound.
759760 We begin with the proof of the key coercivity lemma, which is crucial in bounding the error of the
761 interaction function and making the inverse problem well-posed in the large sample limit.
762763 **Proof of Lemma 3.4** Recall $R_g(X)_i = \frac{1}{N-1} \sum_{j \neq i} g(X_i, X_j)$. By definition
764

765
$$\mathcal{E}_\infty(g) - \mathcal{E}_\infty(g_\star) = \frac{1}{N} \mathbb{E} \langle R_{g-g_\star}[X], R_{g-g_\star}[X] \rangle = \frac{1}{N(N-1)^2} \sum_{i=1}^N \sum_{j \neq i} \sum_{j' \neq i} \mathbb{E} \langle \Delta_{ij}, \Delta_{ij'} \rangle,$$

766

767 where $\Delta_{ij} = (g - g_\star)(X_i, X_j)$ and $\sum_{j \neq i} = \sum_{j=1, j \neq i}^N$. By exchangeability,
768

769
$$\begin{aligned} 770 \frac{1}{N(N-1)^2} \sum_{i=1}^N \sum_{j \neq i} \sum_{j' \neq i} \mathbb{E} \langle \Delta_{ij}, \Delta_{ij'} \rangle &= \frac{1}{N-1} \mathbb{E} \|\Delta_{12}\|^2 + \frac{N-2}{N-1} \mathbb{E} \langle \Delta_{12}, \mathbb{E}[\Delta_{13} | X_1] \rangle \\ 771 &\geq \frac{1}{N-1} \mathbb{E} \|\Delta_{12}\|^2, \end{aligned}$$

772

773 since $\mathbb{E} \|\mathbb{E}[\Delta_{13} | X_1]\|^2 \geq 0$. The statement of the Lemma follows. \square
774775 **Proof of Theorem 3.1** The proof is divided into five steps.
776777 **Step 1: Error decomposition.** In this step, we decompose the mean squared error $\mathbb{E}[\|\hat{g}_M - g_\star\|_{L_\rho^2}^2]$ to two terms. Using Lemma 3.4, i.e., the coercivity condition and the definition of $\mathcal{E}_\infty(g) = \frac{1}{N} \mathbb{E}[\|Y - R_g[X]\|^2]$, we have for $c_H = \frac{1}{N-1}$

778
$$\begin{aligned} 779 c_H \mathbb{E} \left[\int |\hat{g}_M(x, y) - g_\star(x, y)|^2 d\rho(x, y) \right] \\ 780 &\leq \mathcal{E}_\infty(\hat{g}_M) - \mathcal{E}_\infty(g_\star) \\ 781 &= \frac{1}{N} \mathbb{E}[\|Y - R_{\hat{g}_M}[X]\|^2] - \frac{1}{N} \mathbb{E}[\|Y - R_{g_\star}[X]\|^2] \\ 782 &= \frac{1}{N} \mathbb{E}[\mathbb{E}[\|Y - R_{\hat{g}_M}[X]\|^2 | \mathcal{D}_M]] - \frac{1}{N} \mathbb{E}[\|Y - R_{g_\star}[X]\|^2]. \end{aligned} \tag{B.1}$$

790

791 Let $B_M := c_1 \log(M)$ with some constant $c_1 > 0$ and $Y_M := \min(B_M, \max(-B_M, Y))$. Let us
792 denote

793
$$T_{1,M} := 2[\mathcal{E}_M(\hat{g}_M) - \mathcal{E}_M(g_\star)] \tag{B.2}$$

794 and

795
$$T_{2,M} := \frac{1}{N} \mathbb{E}[\|Y_M - R_{\hat{g}_M}[X]\|^2 | \mathcal{D}_M] - \frac{1}{N} \mathbb{E}[\|Y_M - R_{g_\star}[X]\|^2] - T_{1,M}, \tag{B.3}$$

796

797
$$\begin{aligned} 798 T_{3,M} &:= \frac{1}{N} \mathbb{E}[\|Y - R_{\hat{g}_M}[X]\|^2 | \mathcal{D}_M] - \frac{1}{N} \mathbb{E}[\|Y - R_{g_\star}[X]\|^2] \\ 800 &\quad - \frac{1}{N} \mathbb{E}[\|Y_M - R_{\hat{g}_M}[X]\|^2 | \mathcal{D}_M] + \frac{1}{N} \mathbb{E}[\|Y_M - R_{g_\star}[X]\|^2]. \end{aligned} \tag{B.4}$$

801

802 By equation B.1, we can decompose the upper bound of the mean squared error as
803

804
$$\begin{aligned} 805 \mathbb{E} \left[\|\hat{g}_M - g_\star\|_{L_\rho^2}^2 \right] &= \mathbb{E} \left[\int |\hat{g}_M(x, y) - g_\star(x, y)|^2 d\rho(x, y) \right] \\ 806 &\leq c_H^{-1} (\mathbb{E}[T_{1,M}] + \mathbb{E}[T_{2,M}] + \mathbb{E}[T_{3,M}]). \end{aligned} \tag{B.5}$$

807

808 We shall proceed with our proof by bounding $\{\mathbb{E}[T_{i,M}]\}_{i=1}^3$ in the following Steps 2-4 via approxi-
809 mation error estimate, covering number estimate, and sub-Gaussian property, respectively.

810 **Step 2: Bounding $\mathbb{E}[T_{1,M}]$ via polynomial approximation.** Recall that \hat{g}_M is the minimizer of
 811 the empirical error functional $\mathcal{E}_M(g)$ over the estimator space \mathcal{G}_{r,K_M}^s . Thus, we have
 812

$$813 \quad \mathcal{E}_M(\hat{g}_M) - \mathcal{E}_M(g_\star) \leq \mathcal{E}_M(g_{\star,\mathcal{G}_r}) - \mathcal{E}_M(g_\star),$$

814 where $g_{\star,\mathcal{G}_{r,K_M}^s}$ is a minimizer in \mathcal{G}_{r,K_M}^s attaining $\inf_{g \in \mathcal{G}_{r,K_M}^s} [\mathcal{E}_\infty(g) - \mathcal{E}_\infty(g_\star)]$ (see, (Györfi et al.,
 815 2006, Lemma 11.1)). Therefore,

$$\begin{aligned} 816 \quad \frac{1}{2}\mathbb{E}[T_{1,M}] &= \mathbb{E}[\mathcal{E}_M(\hat{g}_M) - \mathcal{E}_M(g_\star)] \\ 817 \quad &\leq \mathbb{E}[\mathcal{E}_M(g_{\star,\mathcal{G}_{r,K_M}^s}) - \mathcal{E}_M(g_\star)] \\ 818 \quad &= \mathcal{E}_\infty(g_{\star,\mathcal{G}_{r,K_M}^s}) - \mathcal{E}_\infty(g_\star) = \inf_{g \in \mathcal{G}_{r,K_M}^s} [\mathcal{E}_\infty(g) - \mathcal{E}_\infty(g_\star)]. \end{aligned} \quad (B.6)$$

819 Note that

$$\begin{aligned} 820 \quad \mathcal{E}_\infty(g) - \mathcal{E}_\infty(g_\star) &= \frac{1}{N}\mathbb{E}[\|R_{g_\star-g}[X] + \eta\|^2 - \|\eta\|^2] \\ 821 \quad &= \frac{1}{N}\sum_{i=1}^N \mathbb{E}\left[\left|\frac{1}{N-1}\sum_{j=1,j \neq i}^N [g - g_\star](X_i, X_j)\right|^2\right]. \end{aligned} \quad (B.7)$$

822 Applying Jensen's inequality to get

$$\frac{1}{N}\sum_{i=1}^N \mathbb{E}\left[\left|\frac{1}{N-1}\sum_{j=1,j \neq i}^N [g - g_\star](X_i, X_j)\right|^2\right] \leq \frac{1}{N(N-1)}\sum_{i=1}^N \sum_{j=1,j \neq i}^N \mathbb{E}[|g - g_\star|(X_i, X_j)]^2 \quad (B.8)$$

823 and by the exchangeability assumption (A1), we have that the expectations are equal and thus

$$\begin{aligned} 824 \quad \frac{1}{2}\mathbb{E}[T_{1,M}] &\leq \inf_{g \in \mathcal{G}_{r,K_M}^s} \|g - g_\star\|_{L_\rho^2}^2 \\ 825 \quad &= \inf_{\phi \in \Phi_{K_M}^s, \|A\|_{\text{op}} \leq \bar{a}} \int |\phi(\langle x, y \rangle_A) - \phi_\star(\langle x, y \rangle_{A_\star})|^2 d\rho(x, y). \end{aligned} \quad (B.9)$$

826 Next, setting $A = A_\star$ in equation B.9, it is clear that

$$\begin{aligned} 827 \quad \frac{1}{2}\mathbb{E}[T_{1,M}] &\leq \inf_{\phi \in \Phi_{K_M}^s} \int |\phi(\langle x, y \rangle_{A_\star}) - \phi_\star(\langle x, y \rangle_{A_\star})|^2 d\rho(x, y) \\ 828 \quad &\leq \inf_{\phi \in \Phi_{K_M}^s} \left\{ \sup_{u \in [-\bar{a}, \bar{a}]} |\phi(u) - \phi_\star(u)|^2 \right\}. \end{aligned}$$

829 Then, one can choose ϕ following the construction in (Györfi et al., 2006, Lemma 11.1) and that
 830 $\phi_\star \in C^\beta(L, \bar{a})$ which shows that there exists a piecewise polynomial function f of degree β or
 831 less with respect to an equidistant partition of $[-\bar{a}, \bar{a}]$ consisting of K_M intervals of length $1/K_M$.
 832 For any $x, y \sim \rho$ and any matrix $A \in \mathbb{R}^{d \times d}$ such that $u = \langle x, y \rangle_A \in [-\bar{a}, \bar{a}]$, we will choose the
 833 dimension K_M (to be specified later) so that

$$\sup_{u \in [-\bar{a}, \bar{a}]} |\phi(u) - \phi_\star(u)| \leq \frac{L\bar{a}^\beta}{[\beta]!K_M^\beta}.$$

834 We thus conclude that

$$\mathbb{E}[T_{1,M}] \leq \frac{2L^2\bar{a}^{2\beta}}{([\beta]!)^2 K_M^{2\beta}}. \quad (B.10)$$

864 **Step 3: Bounding $\mathbb{E}[T_{2,M}]$ via covering number estimates.** We introduce the following notations to simplify the presentation. Define $\Delta\mathcal{E}_M^{(i)}(g) := \mathcal{E}_M^{(i)}(g) - \mathcal{E}_M^{(i)}(g_\star)$. Also, we denote

$$867 \quad \Delta\mathcal{E}_{\mathcal{D}_M}^{(i)}(\hat{g}_M) := \mathbb{E}[|Y_i - R_{\hat{g}_M}[X]_i|^2 \mid \mathcal{D}_M] - \mathbb{E}[|Y_i - R_{g_\star}[X]_i|^2],$$

868 where $\hat{g}_M \in \mathcal{G}_{r,K_M}^s$ depends on the samples $\mathcal{D}_M = \{(X^m, Y^m)\}_{m=1}^M$ and write similarly

$$870 \quad \Delta\mathcal{E}_\infty^{(i)}(g) := \mathbb{E}[|Y_i - R_g[X]_i|^2] - \mathbb{E}[|Y_i - R_{g_\star}[X]_i|^2],$$

871 for any $g \in \mathcal{G}_{r,K_M}^s$. Note that $\Delta\mathcal{E}_{\mathcal{D}_M}^{(i)}(g) = \Delta\mathcal{E}_\infty^{(i)}(g)$ for any (deterministic) $g \in \mathcal{G}_{r,K_M}^s$.

873 It is straightforward to observe that $\mathbb{E}[T_{2,M}]$ can be expressed as the average error per particle, that
874 is, $\mathbb{E}[T_{2,M}] = \frac{1}{N} \sum_{i=1}^N \mathbb{E}[T_{2,M}^{(i)}]$ where $T_{2,M}^{(i)} := \Delta\mathcal{E}_{\mathcal{D}_M}^{(i)}(\hat{g}_M) - T_{1,M}^{(i)}$ with $T_{1,M}^{(i)} = 2\Delta\mathcal{E}_M^{(i)}(\hat{g}_M)$.
875 To estimate $\mathbb{E}[T_{2,M}^{(i)}]$, it suffices to bound the following probability tail for the i -th particle
876

$$\begin{aligned} 877 \quad \mathbb{P}\left\{T_{2,M}^{(i)} > t\right\} &= \mathbb{P}\left\{\Delta\mathcal{E}_{\mathcal{D}_M}^{(i)}(\hat{g}_M) - \Delta\mathcal{E}_M^{(i)}(\hat{g}_M) > \frac{1}{2}[t + \Delta\mathcal{E}_{\mathcal{D}_M}^{(i)}(\hat{g}_M)]\right\} \\ 878 \\ 879 &\leq \mathbb{P}\left\{\exists f \in \mathcal{G}_{r,K_M}^s : \Delta\mathcal{E}_{\mathcal{D}_M}^{(i)}(f) - \Delta\mathcal{E}_M^{(i)}(f) > \frac{1}{2}[t + \Delta\mathcal{E}_{\mathcal{D}_M}^{(i)}(f)]\right\} \\ 880 \\ 881 &= \mathbb{P}\left\{\exists f \in \mathcal{G}_{r,K_M}^s : \Delta\mathcal{E}_\infty^{(i)}(f) - \Delta\mathcal{E}_M^{(i)}(f) > \frac{1}{2}[t + \Delta\mathcal{E}_\infty^{(i)}(f)]\right\}. \quad (\text{B.11}) \\ 882 \\ 883 \end{aligned}$$

884 We first observe that the probability tail above depends on the joint distribution of all particles
885 since the term $\Delta\mathcal{E}_M^{(i)}(f)$ in equation B.11 involves all particles. To bound the tail probability of
886 $T_{2,M}^{(i)}$, we invoke Györfi et al. (2006, Theorem 11.4), which is applicable to classes of uniformly
887 bounded functions. In our setting, this condition translates to the boundedness of the operator R_g .
888 Specifically, if $\|g\|_\infty \leq B_\phi$, then for all $i \in [N]$, we have $|R_g[X]_i| \leq B_\phi$. Recall that $B_M :=$
889 $c_1 \log(M)$ and $\mathcal{C}_d := ([0, 1]/\sqrt{d})^d$. Applying Theorem 11.4 in Györfi et al. (2006) to equation B.11
890 (with $\alpha = \beta = t/2$ and $\epsilon = 1/2$), we get for arbitrary $t \geq 1/M$

$$\begin{aligned} 891 \quad \mathbb{P}\left\{T_{2,M}^{(i)} > t\right\} &\leq 14 \sup_{\{X^m \in \mathcal{C}_d^N\}_{m=1}^M} \mathcal{N}_1\left(\frac{t}{80B_M}, \mathcal{G}_{r,K_M}^s, \rho_M\right) e^{-\frac{tM}{24 \cdot 214 B_M^4}} \\ 892 \\ 893 &\leq 14 \sup_{\{X^m \in \mathcal{C}_d^N\}_{m=1}^M} \mathcal{N}_1\left(\frac{1}{80B_M M}, \mathcal{G}_{r,K_M}^s, \rho_M\right) e^{-\frac{tM}{24 \cdot 214 B_M^4}} \quad (\text{B.12}) \\ 894 \\ 895 \end{aligned}$$

896 where $\mathcal{N}_1(\epsilon, \mathcal{G}_{r,K_M}^s, \rho_M)$ is the empirical covering number with respect to the L_ρ^1 radius smaller
897 than ϵ over the function class \mathcal{G}_{r,K_M}^s .
898

899 Employing the identity $\mathbb{E}[X] = \int_0^\infty \mathbb{P}(X > t)dt$ and the standard integral decomposition $\int_0^\infty =$
900 $\int_0^\varepsilon + \int_\varepsilon^\infty$ with ε to be determined, we get for $\varepsilon \geq 1/M$

$$901 \quad \mathbb{E}[T_{2,M}^{(i)}] = \int_0^\infty \mathbb{P}(T_{2,M}^{(i)} > t)dt \leq \varepsilon + \int_\varepsilon^\infty \mathbb{P}(T_{2,M}^{(i)} > t)dt. \quad (\text{B.13})$$

902 Then, substituting equation B.12 in equation B.13 leads to

$$903 \quad \mathbb{E}[T_{2,M}^{(i)}] \leq \varepsilon + \int_\varepsilon^\infty 14 \sup_{\{X^m \in \mathcal{C}_d^N\}_{m=1}^M} \mathcal{N}_1\left(\frac{t}{80B_M}, \mathcal{G}_{r,K_M}^s, \rho_M\right) e^{-\frac{tM}{24 \cdot 214 B_M^4}} dt. \quad (\text{B.14})$$

904 Notice that we can bound the covering number by its value at $1/M$ since $\varepsilon \geq 1/M$ inside the integral
905 in equation B.14 when $t \geq \varepsilon$. It then follows that

$$906 \quad \mathbb{E}[T_{2,M}^{(i)}] \leq \varepsilon + 14 \sup_{\{X^m \in \mathcal{C}_d^N\}_{m=1}^M} \mathcal{N}_1\left(\frac{1}{80B_M M}, \mathcal{G}_{r,K_M}^s, \rho_M\right) \int_\varepsilon^\infty e^{-\frac{tM}{24 \cdot 214 B_M^4}} dt. \quad (\text{B.15})$$

907 We can now apply the estimate of covering number in equation B.22:

$$\begin{aligned} 908 \quad \mathbb{E}[T_{2,M}] &= \frac{1}{N} \sum_{i=1}^N \mathbb{E}[T_{2,M}^{(i)}] \\ 909 \\ 910 &\leq \varepsilon + 42 \cdot (L_{1,M} M)^{2rd} (L_{2,M} M)^{2K_M(s+1)+2} \cdot \frac{L_{3,M}}{M} e^{-\frac{\varepsilon M}{L_{3,M}}} \quad (\text{B.16}) \\ 911 \\ 912 \end{aligned}$$

918 with $L_{1,M} := 12r\bar{a}B_\phi \cdot 80B_M$, $L_{2,M} := 24eB_\phi \cdot 80B_M$ and $L_{3,M} := 24 \cdot 214 \cdot B_M^4$. Since the
919 quantity ε on the right-hand side of equation B.16 is arbitrary, we may tighten the bound by choosing
920

$$921 \quad \varepsilon = \frac{L_{3,M}}{M} \cdot \log [42 \cdot (L_{1,M}M)^{2rd}(L_{2,M}M)^{2K_M(s+1)+2}],$$

922 which yields the desired upper bound:
923

$$924 \quad \mathbb{E}[T_{2,M}] \leq \frac{L_{3,M}}{M} \left[1 + \log(42) + 2rd \log(L_{1,M}) \right. \\ 925 \quad \left. + 2(K_M(s+1)+1) \cdot \log(L_{2,M}) + 2(K_M(s+1)+1+rd) \cdot \log(M) \right] \\ 926 \quad \leq \frac{L_{3,M}(20K_Ms+5rd)\log(M)}{M} \quad (B.17)$$

927 when $M \geq \max(42 \cdot L_{1,M}^{2rd}, L_{2,M})$.
928

929 **Step 4: Bounding $\mathbb{E}[T_{3,M}]$ via sub-Gaussian property.** As $R_{g_\star}[X]_i \leq B_\phi < B_M$ and
930 $R_{\hat{g}_M}[X]_i \leq B_\phi < B_M$ a.s. We assume that the noise η is sub-Gaussian and that R_g is bounded for
931 any $g \in \mathcal{G}_r^\beta$. Thus, using Lemma 2 in Kohler & Mehnert (2011) with Y_M and B_M given above, one
932 can obtain that with
933

$$934 \quad \left| \mathbb{E}[T_{3,M}] \right| \leq \frac{1}{N} \sum_{i=1}^N \left| \mathbb{E}[|Y_{i,M} - R_{g_\star}[X_i]|^2] - \mathbb{E}[|Y_i - R_{g_\star}[X_i]|^2] \right| \\ 935 \quad + \frac{1}{N} \sum_{i=1}^N \left| \mathbb{E}[|Y_{i,M} - R_{\hat{g}_M}[X_i]|^2] - \mathbb{E}[|Y_i - R_{\hat{g}_M}[X_i]|^2] \right| \\ 936 \quad \leq c_2 \frac{\log(M)}{M}, \quad (B.18)$$

937 for some constant $c_2 > 0$ independent of M and N .
938

939 **Step 5: Deriving the upper optimal rate.** We now combine the bounds from equation B.10, equation
940 B.16 and equation B.18, which control the terms $\mathbb{E}[T_{1,M}]$, $\mathbb{E}[T_{2,M}]$ and $\mathbb{E}[T_{3,M}]$, respectively,
941 to obtain an upper bound on the total error in equation B.5:
942

$$943 \quad \mathbb{E} \left[\|\hat{g}_M - g_\star\|_{L_\rho^2}^2 \right] \\ 944 \quad \leq c_{\mathcal{H}}^{-1} \left(\frac{2L^2\bar{a}^{2\beta}}{(s!)^2 K_M^{2\beta}} + \frac{L_{3,M}(20K_Ms+5rd)\log(M)}{M} + c_2 \frac{\log(M)}{M} \right) \\ 945 \quad \leq c_{\mathcal{H}}^{-1} \left(\frac{2L^2\bar{a}^{2\beta}}{(s!)^2 K_M^{2\beta}} + \frac{L_{3,M}20K_Ms(1+5L_{3,M})\log(M)}{M} + c_2 \frac{\log(M)}{M} \right) \quad (B.19)$$

946 using the assumption of the theorem $rd \leq \left(\frac{M}{\log M} \right)^{\frac{1}{2\beta+1}}$ and setting the value of K_M as
947

$$948 \quad K_M = \left\lceil \frac{1}{20L_{3,M}s} \left(\frac{M}{\log M} \right)^{\frac{1}{2\beta+1}} \right\rceil. \quad (B.20)$$

949 A relatively straightforward choice of K_M balances the terms in equation B.19 and leads to a desired
950 upper bound. We note that a careful choice of K_M may affect the constants and the power of $\log(M)$
951 in the upper bound. Putting equation B.20 back into equation B.19 and noticing $c_{\mathcal{H}}^{-1} \leq N$, we get
952

$$953 \quad \mathbb{E} \left[\|\hat{g}_M - g_\star\|_{L_\rho^2}^2 \right] \leq c_{\mathcal{H}}^{-1} \left[\frac{2L^2(20L_{3,M}s\bar{a})^{2\beta}}{(s!)^2} \left(\frac{\log M}{M} \right)^{\frac{2\beta}{2\beta+1}} + (1+5L_{3,M}) \left(\frac{\log M}{M} \right)^{\frac{2\beta}{2\beta+1}} \right. \\ 954 \quad \left. + \frac{c_2 \log(M)}{M} \right] \\ 955 \quad \leq N \left[\frac{2L^2(20sL_{3,M}\bar{a})^{2\beta}}{(s!)^2} + (1+5L_{3,M}) + c_2 \right] \left(\frac{\log M}{M} \right)^{\frac{2\beta}{2\beta+1}} \quad (B.21)$$

when $M \geq \max(42 \cdot L_{1,M}^{2rd}, L_{2,M})$ with $L_{1,M} := 12r\bar{a}B_\phi \cdot 80B_M$, $L_{2,M} := 24eB_\phi \cdot 80B_M$. Recalling that $L_{3,M} = 24 \cdot 214 \cdot B_M^4 = 24 \cdot 214 \cdot c_1 \cdot \log(M)$, we get from equation B.21 that

$$\begin{aligned} \mathbb{E} \left[\|\hat{g}_M - g_\star\|_{L_\rho^2}^2 \right] &\leq N \frac{2L^2(2024 \cdot 214 \cdot c_1 \cdot s\bar{a})^{2\beta}}{(s!)^2} \cdot \frac{[\log(M)]^{\frac{2\beta}{2\beta+1}+8\beta}}{M^{\frac{2\beta}{2\beta+1}}} \\ &\quad + N[1 + 5 \cdot 24 \cdot 214 + c_2] \cdot \frac{(\log M)^{\frac{2\beta}{2\beta+1}+4}}{M^{\frac{2\beta}{2\beta+1}}} \\ &\leq N \left[C_1^\beta \frac{L^2(s\bar{a})^{2\beta}}{(s!)^2} + C_2 \right] \cdot \frac{[\log(M)]^{\frac{2\beta}{2\beta+1}+4 \max(2\beta, 1)}}{M^{\frac{2\beta}{2\beta+1}}} \end{aligned}$$

for some positive constant C_1, C_2 . We complete the proof of Theorem 3.1 with $C_{N,L,\bar{a},\beta,s} = N[C_1^\beta \frac{L^2(s\bar{a})^{2\beta}}{(s!)^2} + C_2]$. \square

Finally, to highlight the tradeoff between the parametric and the non-parametric part of the error, we present the following corollary. This corollary is directly derived from equation B.19 and equation B.20 not using the assumption $rd \leq \left(\frac{M}{\log M}\right)^{\frac{1}{2\beta+1}}$.

Corollary B.2 Consider the estimator \hat{g}_M defined in equation 3.1 computed on data M i.i.d. observation satisfying Assumptions 2.1 and (B1). Then, for \hat{g}_M defined in equation 3.1 it holds that

$$\mathbb{E} \left[\|\hat{g}_M - g_\star\|_{L_\rho^2}^2 \right] \leq N \left[C_1^\beta \frac{L^2(s\bar{a})^{2\beta}}{(s!)^2} + C_2 \right] \cdot \frac{[\log(M)]^{\frac{2\beta}{2\beta+1}+4 \max(2\beta, 1)}}{M^{\frac{2\beta}{2\beta+1}}} + C_3 rd \cdot \frac{(\log M)^2}{M}$$

where C_1, C_2 and C_3 are positive constants (maybe take different values than in the Theorem 3.1).

B.2 AUXILIARY LEMMAS FOR THE UPPER BOUND

Recall that the covering number $\mathcal{N}(\varepsilon, \mathcal{G}, d)$ is defined as the cardinality of the smallest ε -cover of \mathcal{G} with respect to the metric d . When d is the Euclidean metric, we omit it from the notation and simply write $\mathcal{N}(\varepsilon, \mathcal{G})$. It is also common to take d to be an L^p -norm, either with respect to a probability measure ρ or its empirical counterpart ρ_M . In these cases, we write

$$\mathcal{N}_p(\varepsilon, \mathcal{G}, \rho) := \mathcal{N}(\varepsilon, \mathcal{G}, \|\cdot\|_{L_\rho^p}), \quad \mathcal{N}_p(\varepsilon, \mathcal{G}, \rho_M) := \mathcal{N}(\varepsilon, \mathcal{G}, \|\cdot\|_{L_{\rho_M}^p}).$$

We next derive an upper bound for $\mathcal{N}_1(\varepsilon, \mathcal{G}_{r,K_M}^s, \rho_M)$, i.e., $p = 1$, by covering the matrix component and the functional component separately. Our argument combines the covering number estimates for matrices from Vershynin (2018) with the results of Györfi et al. (2006) for function classes.

Lemma B.3 Let \mathcal{G}_{r,K_M}^s be defined in Definition 2.5. Assume that the sampled data $\{X_i^m\}_{i,m=1}^{N,M}$ are distributed according to Assumption 2.1. Then we have

$$\mathcal{N}_1(\varepsilon, \mathcal{G}_{r,K_M}^s, \rho_M) \leq 3 \cdot \left(\frac{12r\bar{a}B_\phi}{\varepsilon} \right)^{2rd} \left(\frac{24eB_\phi}{\varepsilon} \right)^{2K_M(s+1)+2}. \quad (\text{B.22})$$

Proof. Recall the matrix class defined in Definition 2.3:

$$\mathcal{A}_d(r, \bar{a}) := \{A \in \mathbb{R}^{d \times d} : \text{rank}(A) \leq r, \|A\|_{\text{op}} \leq \bar{a}\}.$$

Write $A = QK^\top$ via the truncated SVD, where $Q = U_r \Sigma_r^{1/2} \in \mathbb{R}^{d \times r}$ and $K = V_r \Sigma_r^{1/2} \in \mathbb{R}^{d \times r}$, with singular values belonging to $[0, \bar{a}]$, and U_r, V_r^\top are semi unitary matrices of size $d \times r$, and Σ_r is a diagonal matrix of size $r \times r$. Then

$$\|Q\|_F^2 = \text{Tr}(\Sigma_r) \leq r\bar{a}, \quad \|K\|_F^2 \leq r\bar{a}.$$

Indeed, let $\delta > 0$ the δ -covering of the matrix class $\mathcal{Q}_{rd}(\sqrt{r\bar{a}}) := \{Q \in \mathbb{R}^{d \times r} : \|Q\|_F \leq \sqrt{r\bar{a}}\}$ is equivalent to the δ -covering of $B_{rd}(\sqrt{r\bar{a}})$, a centered ball with radius $\sqrt{r\bar{a}}$ in \mathbb{R}^{rd} and (Vershynin, 2018, Corollary 4.2.11) implies that

$$n = \mathcal{N}(\epsilon, \mathcal{Q}_{rd}(\sqrt{r\bar{a}}), \|\cdot\|_F) = \mathcal{N}(\epsilon, B_{rd}(\sqrt{r\bar{a}})) \leq \left(\frac{3\sqrt{r\bar{a}}}{\epsilon} \right)^{rd}. \quad (\text{B.23})$$

1026 Notice that for $A_1 = Q_1 K_1^\top$ and $A_2 = Q_2 K_2^\top$ with $\{Q_i \in \mathcal{Q}_{rd}(\sqrt{r\bar{a}}), K_i \in \mathcal{Q}_{rd}(\sqrt{r\bar{a}})\}_{i=1}^2$ such
1027 that $\|Q_1 - Q_2\|_F \leq \delta/(2\sqrt{\bar{a}})$, $\|K_1 - K_2\|_F \leq \delta/(2\sqrt{\bar{a}})$, we have
1028

$$1029 \|A_1 - A_2\|_{\text{op}} = \|Q_1 K_1^\top - Q_2 K_2^\top\|_{\text{op}} \leq \|Q_1\|_{\text{op}} \|K_1 - K_2\|_F + \|Q_1 - Q_2\|_F \|K_2\|_{\text{op}} \leq \delta.$$

1030 Moreover, by Assumption 2.1 that X_i, X_j lie within the unit unit ball and the assumption that $\phi \in \Phi_{K_M}^s$, a degree- s piecewise-polynomial approximation with K_M intervals, we get:
1031

$$1032 |\phi(\langle x, y \rangle_{A_1}) - \phi(\langle x, y \rangle_{A_2})| \leq B_\phi \|A_1 - A_2\|_{\text{op}} \leq B_\phi \delta$$

1033 since $\|x\|, \|y\| \leq 1$. This proves that if A_1, A_2 are within δ in operator norm, the corresponding
1034 functions differ by at most $B_\phi \delta$. Thus,
1035

$$1036 \mathcal{N}_1(2B_\phi \delta, \mathcal{G}_{r, K_M}^s, \rho_M) \leq \sum_{i,j \neq i}^n \mathcal{N}_1(B_\phi \delta, \{\phi(\langle x, y \rangle_{Q_i K_j^\top}) : \phi \in \Phi_{K_M}^s\}, \rho_M). \quad (\text{B.24})$$

1038 On the other hand, (Györfi et al., 2006, Theorem. 9.4–9.5) shows the following bound
1039

$$1040 \mathcal{N}_1(B_\phi \delta, \Phi_{K_M}^s, \rho_M) \leq 3 \left(\frac{6e(B_\phi + 1)}{B_\phi \delta} \right)^{2K_M(s+1)+2} \leq 3 \left(\frac{12e}{\delta} \right)^{2K_M(s+1)+2}$$

1042 for the empirical measure ρ_M in Definition 2.1 with $\{X^m \in \mathcal{C}_d\}_{m=1}^M$. Putting it back to equation
1043 B.24, we obtain that
1044

$$1045 \mathcal{N}_1(2B_\phi \delta, \mathcal{G}_{r, K_M}^s, \rho_M) \leq 3 \cdot \left(\frac{6r\bar{a}}{\delta} \right)^{2rd} \left(\frac{12e}{\delta} \right)^{2K_M(s+1)+2}. \quad (\text{B.25})$$

1046 Now re-parameterize by $\varepsilon = 2B_\phi \delta$, i.e. $\delta = \varepsilon/2B_\phi$, and absorb constants in equation B.25. This
1047 gives our desired estimate in equation B.22. \square
1048

1049 **Remark B.4** As a by-product, we show that a $\frac{\delta}{2\sqrt{r\bar{a}}}$ -cover for Q and K induces a δ -cover for
1050 $\mathcal{A}_d(r, \bar{a})$ in operator norm. Taking all pairs $Q_i K_j^\top$ and substituting $\epsilon = \frac{\delta}{2\sqrt{r\bar{a}}}$ in equation B.23 give
1051 that
1052

$$1053 \mathcal{N}(\delta, \mathcal{A}(r, \bar{a}), \|\cdot\|_{\text{op}}) \leq \left(\frac{6r\bar{a}}{\delta} \right)^{2rd}.$$

1056 C APPENDIX: LOWER BOUND PROOFS

1057 **Lemma C.1 (Continuous density of the bilinear form.)** Let $(X, Y) \in \mathbb{R}^{2d}$ have a joint density
1058 $p \in L^1(D)$ with $D \subset \mathbb{R}^{2d}$ being a bounded open set. Let $A \in \mathbb{R}^{d \times d}$ have rank $r \geq 1$, and define
1059 $U = X^\top A Y$. Then:

- 1060 (i) (Existence) For every $r \geq 1$, the law of U is absolutely continuous with respect to Lebesgue
1061 measure on \mathbb{R} with a density denoted by p_U .
1062 (ii) (Continuity) If $r \geq 2$, then $p_U \in C(\mathbb{R})$.

1063 Note that $r \geq 2$ is sharp for p_U to be continuous: for $r = 1$, continuity at 0 may not hold: if X, Y
1064 are independent standard Gaussian in \mathbb{R} and $A = I$, then $U = XY$ has density $p_U(u) = \frac{1}{\pi} K_0(|u|)$,
1065 where $K_0(x) \sim -\log x$ as $x \downarrow 0$, so p_U is singular at 0.

1066 **Proof.** The proof consists of three steps: reduction to a canonical quadratic form on \mathbb{R}^{2r} , existence
1067 of the density, and continuity.

1068 **Step 1. Reduction to the canonical quadratic form on \mathbb{R}^{2r} .** Let $A = W\Sigma V^\top$ be a singular
1069 value decomposition with $\Sigma = \text{diag}(\sigma_1, \dots, \sigma_r, 0, \dots, 0)$, where $\sigma_i > 0$ and $W, V \in \mathbb{R}^{d \times d}$ are
1070 orthonormal. Set $\alpha := W^\top X$, $\beta := V^\top Y$. Orthonormal changes preserve absolute continuity, so
1071 (α, β) has a joint density $\tilde{p}(\alpha, \beta) = p(W\alpha, V\beta)$ with support $\tilde{D} = \{(\alpha, \beta) = (W^{-1}x, V^{-1}y) :
1072 (x, y) \in D\}$, which is a bounded subset in \mathbb{R}^{2d} . Split $\alpha = (\alpha^{(r)}, \alpha^{\perp})$ and $\beta = (\beta^{(r)}, \beta^{\perp})$, where
1073 the superscript (r) denotes the first r coordinates. Then

$$1074 U = X^\top A Y = \sum_{i=1}^r \sigma_i \alpha_i^{(r)} \beta_i^{(r)}.$$

1080 Integrating out $(\alpha^\perp, \beta^\perp)$ yields a marginal density $q \in L^1(\mathbb{R}^{2r})$ for $Z := (\alpha^{(r)}, \beta^{(r)})$ and it has a
 1081 bounded support, which we denote by Ω . Thus it suffices to work in \mathbb{R}^{2r} with
 1082

$$1083 \Phi(\alpha, \beta) := \sum_{i=1}^r \sigma_i \alpha_i \beta_i, \quad U = \Phi(Z), \quad Z \sim q \in L^1(\Omega).$$

1085 **Step 2. Existence by the coarea formula.** For any bounded measurable test function $\varphi : \mathbb{R} \rightarrow \mathbb{R}$,
 1086

$$1087 \mathbb{E}[\varphi(U)] = \int_{\Omega} \varphi(\Phi(z)) q(z) dz. \quad (\text{C.1})$$

1088 Note that Φ has gradient $\nabla \Phi(\alpha, \beta) = (\sigma_1 \beta_1, \dots, \sigma_r \beta_r, \sigma_1 \alpha_1, \dots, \sigma_r \alpha_r)$, which is Lipschitz continuous on Ω . Applying the Coarea formula (i.e., for any $f : \Omega \subset \mathbb{R}^n \rightarrow \mathbb{R}$ Lipschitz and $g \in L^1_{\text{loc}}(\mathbb{R}^n)$,
 1089 $\int_{\mathbb{R}^n} g(z) |\nabla f(z)| dz = \int_{\mathbb{R}} \left(\int_{f^{-1}(u)} g(z) d\mathcal{H}^{n-1}(z) \right) du$, where $\mathcal{H}^{n-1}(z)$ denotes the Hausdorff
 1090 measure, see, e.g., Evans (2018)) to $f = \Phi$ with $g(z) = q(z) \varphi(\Phi(z)) / |\nabla \Phi(z)|$ gives
 1091

$$1092 \int_{\Omega} \varphi(\Phi(z)) q(z) dz = \int_{\mathbb{R}} \left(\int_{\Phi^{-1}(u)} \frac{q(z)}{|\nabla \Phi(z)|} d\mathcal{H}^{2r-1}(z) \right) \varphi(u) du.$$

1093 Hence, $p_U(u) = \int_{\Phi^{-1}(u)} \frac{q(z)}{|\nabla \Phi(z)|} d\mathcal{H}^{2r-1}(z)$ for $u \neq 0$.
 1094

1095 Note that under the change of variables $z = \sqrt{|u|} w$, the Hausdorff surface measure scales by
 1096 $|u|^{(2r-1)/2}$ and $|\nabla \Phi|$ by $|u|^{1/2}$. Then, for $u \neq 0$, the above equation can be written as
 1097

$$1098 \int_{\Omega} \varphi(\Phi(z)) q(z) dz = \int_{\mathbb{R}} |u|^{r-1} \left(\int_{\Phi(w)=\text{sign}(u)} \frac{q(\sqrt{|u|} w)}{|\nabla \Phi(w)|} d\mathcal{H}^{2r-1}(w) \right) \varphi(u) du. \quad (\text{C.2})$$

1099 Comparing equation C.1 and equation C.2, the push-forward measure is absolutely continuous with
 1100 density
 1101

$$1102 p_U(u) = |u|^{r-1} \int_{\Phi(w)=\text{sign}(u)} \frac{q(\sqrt{|u|} w)}{|\nabla \Phi(w)|} d\mathcal{H}^{2r-1}(w) \quad (\text{C.3})$$

1103 for all $u \neq 0$. This proves (i) for all $r \geq 1$.
 1104

1105 **Step 3. Continuity.** Let $\xi_U(t) = \mathbb{E}[e^{itU}] = \int_{\mathbb{R}^{2r}} e^{it\Phi(z)} q(z) dz$ be the characteristic function. The
 1106 phase $t\Phi(z)$ is a non-degenerate quadratic form with constant Hessian $H = t \begin{pmatrix} 0 & \Sigma \\ \Sigma & 0 \end{pmatrix}$ (of full rank
 1107 $2r$). By the standard stationary phase bound for quadratic phases (see, e.g., (Sogge, 2017, Theorem
 1108 1.1.4))

$$1109 |\xi_U(t)| \leq C (1 + |t|)^{-r},$$

1110 with C depending on q (e.g. if $q \in C_c^\infty$, then C depends on a finite number of derivatives; and it
 1111 extends to general $q \in L^1$ since C_c^∞ is dense in L^1). Hence, if $r \geq 2$, then $\xi_U \in L^1(\mathbb{R})$ and Fourier
 1112 inversion yields a bounded continuous density $p_U(u) = \frac{1}{2\pi} \int_{\mathbb{R}} e^{-itu} \xi_U(t) dt$. \square
 1113

1114 Next, we provide the proof of Lemma 4.1.

1115 **Proof of Lemma 4.1.** Consider

$$1116 U_{ij} = X_i^\top A_\star X_j, \quad V_{ij} = X_i^\top \hat{A} X_j,$$

1117 so that $\hat{g}(X_i, X_j) = \hat{\phi}(V_{ij})$ and $g^*(X_i, X_j) = \phi^*(U_{ij})$. Recall that $p_{U_{ij}}$ is the density of U_{ij} and
 1118 $p_U = \frac{1}{N(N-1)} \sum_{i,j: i \neq j} p_{U_{ij}}$. Also, recall that the following functions are defined in equation 4.2:

$$1119 \hat{\psi}_{ij}(u) := \mathbb{E}[\hat{\phi}(V_{ij}) | U_{ij} = u], \quad \hat{\psi}(u) := \sum_{i=1}^N \sum_{j=1, j \neq i}^N \frac{p_{U_{ij}}(u)}{N(N-1)p_U(u)} \hat{\psi}_{ij}(u).$$

1120 Since $\sum_{i=1}^N \sum_{j=1, j \neq i}^N \frac{p_{U_{ij}}(u)}{N(N-1)p_U(u)} = 1$, we have, by applying Jensen's inequality,
 1121

$$1122 |\hat{\psi}(u) - \phi_\star(u)|^2 = \left| \sum_{i=1}^N \sum_{j=1, j \neq i}^N \frac{p_{U_{ij}}(u)}{N(N-1)p_U(u)} \hat{\psi}_{ij}(u) - \phi_\star(u) \right|^2 \\ 1123 \leq \sum_{i=1}^N \sum_{j=1, j \neq i}^N \frac{p_{U_{ij}}(u)}{N(N-1)p_U(u)} |\hat{\psi}_{ij}(u) - \phi_\star(u)|^2. \quad (\text{C.4})$$

1134 Also, by applying Jensen's inequality to the conditional expectation, we have
 1135

$$\begin{aligned} 1136 \mathbb{E}[\|\hat{\phi}(V_{ij}) - \phi_{\star}(U_{ij})\|^2] &= \mathbb{E}[\mathbb{E}[\|\hat{\phi}(V_{ij}) - \phi_{\star}(U_{ij})\|^2 | U_{ij}]] \\ 1137 &\geq \mathbb{E}[\mathbb{E}[\|\hat{\phi}(V_{ij}) - \phi_{\star}(U_{ij})|U_{ij}]\|^2] = \int_{-\bar{a}}^{\bar{a}} |\hat{\psi}_{ij}(u) - \phi_{\star}(u)|^2 p_{U_{ij}}(u) du. \\ 1138 \\ 1139 \end{aligned}$$

1140 Averaging over the pairs as in equation C.4, we have
 1141

$$\begin{aligned} 1142 \frac{1}{N(N-1)} \sum_{i=1}^N \sum_{j=1, j \neq i}^N \mathbb{E}[\|\hat{\phi}(V_{ij}) - \phi_{\star}(U_{ij})\|^2] \\ 1143 &\geq \int_{-\bar{a}}^{\bar{a}} \frac{1}{N(N-1)} \sum_{i=1}^N \sum_{j=1, j \neq i}^N |\hat{\psi}_{ij}(u) - \phi_{\star}(u)|^2 \frac{p_{U_{ij}}(u)}{p_U(u)} p_U(u) du \\ 1144 \\ 1145 &\geq \int_{-\bar{a}}^{\bar{a}} |\hat{\psi}(u) - \phi_{\star}(u)|^2 p_U(u) du, \\ 1146 \\ 1147 \\ 1148 \\ 1149 \end{aligned}$$

1150 which is the desired inequality. \square
 1151

1152 **Proof of Lemma 4.2** We construct $\bar{K} = [c_{0,N} M^{\frac{1}{2\beta+1}}]$ disjoint equidistance intervals.
 1153

$$1154 \{\Delta_{\ell} = (r_{\ell} - h_M, r_{\ell} + h_M)\}_{\ell=1}^{\bar{K}}, \quad \text{with } h_M = \frac{L_0}{8n_0 \bar{K}}, \quad (\text{C.5}) \\ 1155$$

1156 where $\{r_{\ell}\}$, n_0 and L_0 are specific values that will be determined below. We will define the intervals
 1157 by separating into two cases: one where the density of p_U is bounded below by $\underline{a}_0 > 0$ and one
 1158 where it is not.

1159 If $p_U(u) \geq \underline{a}_0 > 0$, we can simply use the uniform partition of $\text{supp}(p_U)$ to obtain the desired $\{\Delta_{\ell}\}$.
 1160 That is, we set $n_0 = 1$, $L_0 = 4$, and $r_{\ell} = -\bar{a} + (2\ell - 1)h_M$. If p_U is not bounded away from zero,
 1161 we shall build the partition based on its continuity. Since p_U is continuous on $[-\bar{a}, \bar{a}]$, the constant
 1162 $a_0 = \sup_{x \in [-\bar{a}, \bar{a}]} p_U(x)$ exists, now consider $\underline{a}_0 < a_0 \wedge 1$. We can construct the \bar{K} intervals
 1163 described in equation C.5 which satisfy the following $\bigcup_{\ell} \Delta_{\ell} \subset A_0 := \{u \in [-\bar{a}, \bar{a}] : p_U(u) > \underline{a}_0\}$.
 1164

1164 Let $L_0 := \frac{1-2\underline{a}_0}{a_0 - \underline{a}_0}$. Since for all $u \in A_0$, $p_U(u) \leq a_0$ and for all $u \in A_0^c$, $p_U(u) \leq \underline{a}_0$, together with
 1165 the fact that $1 = \int_{A_0} p_U(u) du + \int_{A_0^c} p_U(u) du$, we get:
 1166

$$1167 1 \leq a_0 \text{Leb}(A_0) + \underline{a}_0(2\bar{a} - \text{Leb}(A_0)) \Rightarrow L_0 \leq \text{Leb}(A_0) \leq 2\bar{a}. \quad (\text{C.6}) \\ 1168$$

1169 Also, note that the set A_0 is open by continuity of p_U . Thus, there exist disjoint intervals (a_j, b_j)
 1170 such that $A_0 = \bigcup_{j=1}^{\infty} (a_j, b_j)$. Without loss of generality, we assume that these intervals are de-
 1171 scendingly ordered according to their length $b_j - a_j$. Let
 1172

$$1173 n_0 = \min\{n : \sum_{j=1}^n (b_j - a_j) > \frac{L_0}{2}\}. \quad (\text{C.7}) \\ 1174 \\ 1175$$

1176 One can see that $n_0 > 1$. Now, we construct the first n_1 disjoint intervals $\{\Delta_{\ell} = (r_{\ell} - h_M, r_{\ell} + h_M)\}_{\ell=1}^{n_1} \subset (a_1, b_1)$ such that $r_{\ell} = a_1 + \ell h_M$ and $n_1 = \lfloor \frac{b_1 - a_1}{2h_M} \rfloor$. If $n_1 \geq \bar{K}$, we stop. Otherwise,
 1177 we construct additional disjoint intervals $\{\Delta_{\ell} = (r_{\ell} - h_M, r_{\ell} + h_M)\}_{\ell=n_1+1}^{n_1+n_2} \subset (a_2, b_2)$ similarly,
 1178 and continue to (a_j, b_j) until obtaining \bar{K} intervals $\{\Delta_{\ell}\}$.
 1179

1180 To show that we will at least obtain \bar{K} such intervals, we show that $K_{\star} \geq \bar{K}$, where K_{\star} is the
 1181 total number of intervals $\{\Delta_{\ell}\}_{\ell=1}^{K_{\star}}$. Since the Lebesgue measure of $(a_j, b_j) \setminus \bigcup_{\ell=1}^{K_{\star}} \Delta_{\ell}$ is less than
 1182 $2h_M$ for each j , the Lebesgue measure of the uncovered parts $\bigcup_{j=1}^{n_0} (a_j, b_j) \setminus (\bigcup_{\ell=1}^{K_{\star}} \Delta_{\ell})$ is at most
 1183 $2n_0 h_M$.
 1184

1185 Thus, by equation C.7 the intervals $\{\Delta_{\ell}\}_{\ell=1}^{K_{\star}}$ must have a total length no less than $\frac{L_0}{2} - 2n_0 h_M$. And
 1186 since each of them is in length of $2h_M$ the total number must satisfy:
 1187

$$K_{\star} \geq (\frac{L_0}{2} - 2n_0 h_M) / (2h_M)$$

1188 and plugging in the definition of h_M from equation C.5 we get:
 1189
 1190
$$K_\star \geq 2\bar{K}n_0 - n_0 \geq \bar{K}.$$

 1191

1192 Now we construct hypothesis functions satisfying Conditions (D1)–(D3). We first define $2^{\bar{K}}$ func-
 1193 tions, from which we will select a subset of 2s-separated hypothesis functions,

$$1194 \phi_\omega(u) = \sum_{\ell=1}^{\bar{K}} \omega_\ell \psi_{\ell,M}(u), \quad \omega = (\omega_1, \dots, \omega_{\bar{K}}) \in \{0, 1\}^{\bar{K}},$$

1197 where the basis functions are

$$1198 \psi_{\ell,M}(u) := Lh_M^\beta \psi\left(\frac{u-r_\ell}{h_M}\right), \quad u \in [-\bar{a}, \bar{a}] \quad (C.8)$$

1200 with $\psi(u) = e^{-\frac{1}{1-(2u)^2}} \mathbf{1}_{|u| \leq 1/2}$. Note that the support of $\psi_{\ell,M}(u)$ is Δ_ℓ , and $\int_{\Delta_\ell} |\psi_{\ell,M}(u)|^2 du =$
 1201 $L^2 h_M^{2\beta+1} \|\psi\|_2^2$. By definition, these hypothesis functions satisfy Condition (D1), i.e., they are Holder
 1202 continuous and

$$1204 \|\psi_{\ell,M}\|_\infty \leq Lh_M^\beta \leq L\|p_U\|_\infty^{-\beta} \leq L(2\bar{a})^{-\beta} \leq B_\phi$$

1205 since $h_M = \frac{L_0}{8n_0\bar{K}} < L_0 \leq \frac{1}{a_0}$ with $a_0 = \|p_U\|_\infty$ and $\|p_U\|_\infty \leq \frac{1}{2\bar{a}}$.

1207 Then, denoting $\phi_k(x) = \phi_{\omega^{(k)}}(x)$, we proceed to verify Conditions (D2)–(D3). Next, we select a
 1208 subset of $2s_{N,M}$ -separated functions $\{\phi_{k,M} := \phi_{\omega^{(k)}}\}_{k=1}^K$ satisfying Condition (D2), i.e., $\|\phi_{\omega^{(k)}} -$
 1209 $\phi_{\omega^{(k')}}\|_{L_{p_U}^2} \geq 2s_{N,M}$ for any $k \neq k' \in \{1, \dots, K\}$. Here $s_{N,M} = C_1 c_{0,N}^{-\beta} M^{-\frac{\beta}{2\beta+1}}$ with C_1 being a
 1210 positive constant to be determined below. Since $\Delta_\ell = \text{supp}(\psi_{\ell,M}) \subseteq \Delta_\ell$ are disjoint, we have

$$1212 \|\phi_\omega - \phi_{\omega'}\|_{L_{p_U}^2} = \left(\int_{\mathbb{R}} \left| \sum_{\ell=1}^{\bar{K}} (\omega_\ell - \omega'_\ell) \psi_{\ell,M}(u) \right|^2 p_U(u) du \right)^{\frac{1}{2}} \\ 1213 = \left(\sum_{\ell=1}^{\bar{K}} (\omega_\ell - \omega'_\ell)^2 \int_{\Delta_\ell} |\psi_{\ell,M}(u)|^2 p_U(u) du \right)^{\frac{1}{2}}.$$

1218 Since $p_U(u) \geq \underline{a}_0$ over each Δ_ℓ , we have

$$1219 \int_{\Delta_\ell} |\psi_{\ell,M}(u)|^2 p_U(u) du \geq \underline{a}_0 \int_{\Delta_\ell} |\psi_{\ell,M}(u)|^2 du = \underline{a}_0 L^2 h_M^{2\beta+1} \|\psi\|_2^2.$$

1222 Applying the Varshamov-Gilbert bound (Tsybakov, 2008, Lemma 2.9), one can obtain a subset
 1223 $\{\omega^{(k)}\}_{k=1}^K$ with $K \geq 2^{\bar{K}/8}$ such that $\sum_{\ell}^{\bar{K}} (\omega_\ell^{(k)} - \omega_\ell^{(k')})^2 \geq \frac{\bar{K}}{8}$ for any $k \neq k' \in \{1, \dots, K\}$. Thus,

$$1225 \|\phi_\omega - \phi_{\omega'}\|_{L_{p_U}^2} \geq \sqrt{\underline{a}_0} L \|\psi\|_2 \sqrt{\frac{\bar{K}}{8}} \left(\frac{L_0}{8n_0\bar{K}} \right)^{\beta+1/2} \\ 1226 = \sqrt{\underline{a}_0} L \|\psi\|_2 \frac{\bar{K}^{1/2}}{2\sqrt{2}} \left(\frac{L_0}{8n_0} \right)^{\beta+1/2} \bar{K}^{-(\beta+1/2)} \\ 1227 = \left(\frac{\sqrt{\underline{a}_0} L \|\psi\|_2}{2\sqrt{2}} \left(\frac{L_0}{8n_0} \right)^{\beta+1/2} \right) \bar{K}^{-\beta} = s_{N,M}$$

1233 where $s_{N,M} = C_1 c_{0,N}^{-\beta} M^{-\frac{\beta}{2\beta+1}}$ with

$$1235 C_1 := \frac{\sqrt{\underline{a}_0} L \|\psi\|_2}{4\sqrt{2}} \left(\frac{L_0}{8n_0} \right)^{\beta+1/2}.$$

1238 To verify condition (D3) for each fixed dataset $\{X^m\}_{m=1}^M$, we first compute the Kullback-Leibler
 1239 (KL) divergence. Define $u_{ij}^m := (X_i^m)^\top A X_j^m$. Then for each m ,

$$1241 R_\phi[X^m]_i = \frac{1}{N-1} \sum_{j \neq i} \phi(u_{ij}^m).$$

Under the hypothesis $\phi_{k,M}$, the density of the outputs $\{Y^m\}_{m=1}^M$ is

$$p_k(y^1, \dots, y^M) = \prod_{m=1}^M p_\eta\left(y^m - R_{\phi_{k,M}}[X^m]\right),$$

where $y^m \in \mathbb{R}^d$ represents the observed output Y^m . By definition of KL divergence and the i.i.d. noise assumption,

$$D_{\text{KL}}(\bar{\mathbb{P}}_k, \bar{\mathbb{P}}_0) = \int \dots \int \log \prod_{m=1}^M \frac{p_\eta(y^m)}{p_\eta(y^m + R_{\phi_{k,M}}[X^m])} \prod_{m=1}^M p_\eta(y^m) dy^m.$$

This simplifies to

$$D_{\text{KL}}(\bar{\mathbb{P}}_k, \bar{\mathbb{P}}_0) = \sum_{m=1}^M \int_{\mathbb{R}^d} \log \left[\frac{p_\eta(y^m)}{p_\eta(y^m + R_{\phi_{k,M}}[X^m])} \right] p_\eta(y^m) dy^m.$$

Finally, by the noise smoothness assumption 2.2, for each m ,

$$\int p_\eta(y) \log \left[\frac{p_\eta(y)}{p_\eta(y+v)} \right] dy \leq c_\eta \|v\|^2,$$

where $v = R_{\phi_{k,M}}[X^m]$. Summing over $m = 1, \dots, M$ yields

$$D_{\text{KL}}(\bar{\mathbb{P}}_k, \bar{\mathbb{P}}_0) \leq c_\eta \sum_{m=1}^M \|R_{\phi_{k,M}}[X^m]\|^2, \quad (\text{C.9})$$

Employing Jensen's inequality, we have

$$\|R_{\phi_{k,M}}[X^m]\|^2 = \sum_{i=1}^N \left(\frac{1}{N-1} \sum_{j \neq i} \phi_{k,M}(u_{ij}^m) \right)^2 \leq \sum_{i=1}^N \frac{1}{N-1} \sum_{j \neq i} |\phi_{k,M}(u_{ij}^m)|^2 = \frac{1}{N-1} \sum_{i=1}^N \sum_{j \neq i} |\phi_{k,M}(u_{ij}^m)|^2. \quad (\text{C.10})$$

Recalling that $\phi_{k,M}(u_{ij}^m) = \sum_{\ell=1}^{\bar{K}} \omega_\ell^{(k)} \psi_{\ell,M}(u_{ij}^m)$, where $\text{supp}(\psi_{\ell,M}) \subseteq \Delta_\ell$ are disjoint and $|\psi_{\ell,M}(u_{ij}^m)| = L h_M^\beta \psi\left(\frac{u_{ij}^m - r_\ell}{h_M}\right) \leq L h_M^\beta \|\psi\|_\infty \mathbf{1}_{\{u_{ij}^m \in \Delta_\ell\}}$, we have

$$|\phi_{k,M}(u_{ij}^m)|^2 = \sum_{\ell=1}^{\bar{K}} \omega_\ell^{(k)} |\psi_{\ell,M}(u_{ij}^m)|^2 \leq L^2 h_M^{2\beta} \|\psi\|_\infty^2 \sum_{\ell=1}^{\bar{K}} \mathbf{1}_{\{u_{ij}^m \in \Delta_\ell\}}, \quad (\text{C.11})$$

where we have used the fact that $0 \leq \omega_\ell^{(k)} \leq 1$. By plugging in both equation C.10 and equation C.11 into equation C.9, we obtain

$$\begin{aligned} D_{\text{KL}}(\bar{\mathbb{P}}_k, \bar{\mathbb{P}}_0) &\leq \frac{c_\eta}{N-1} \sum_{m=1}^M \sum_{i=1}^N \sum_{j \neq i} \left(L^2 h_M^{2\beta} \|\psi\|_\infty^2 \sum_{\ell=1}^{\bar{K}} \mathbf{1}_{\{u_{ij}^m \in \Delta_\ell\}} \right) \\ &\leq \frac{c_\eta L^2 \|\psi\|_\infty^2 h_M^{2\beta}}{N-1} \sum_{i,j,m} \left(\sum_{\ell=1}^{\bar{K}} \mathbf{1}_{\{u_{ij}^m \in \Delta_\ell\}} \right). \end{aligned}$$

Since the intervals $\{\Delta_\ell\}$ are disjoint, the inner sum is at most 1. The total sum over i, j, m is therefore bounded by $N^2 M$, which gives:

$$D_{\text{KL}}(\bar{\mathbb{P}}_k, \bar{\mathbb{P}}_0) \leq c_\eta L^2 \|\psi\|_\infty^2 N M h_M^{2\beta}.$$

Hence, by assigning $h_M = \frac{L_0}{8n_0 \bar{K}}$ from equation C.5 and $\bar{K} = \lceil c_{0,N} M^{\frac{1}{2\beta+1}} \rceil$, we obtain

$$\begin{aligned} \frac{1}{\bar{K}} \sum_{k=1}^{\bar{K}} D_{\text{KL}}(\bar{\mathbb{P}}_k, \bar{\mathbb{P}}_0) &\leq \left(c_\eta L^2 \|\psi\|_\infty^2 \left(\frac{L_0}{8n_0} \right)^{2\beta} \right) N \left(\frac{\bar{K}}{c_{0,N}} \right)^{2\beta+1} \bar{K}^{-2\beta} \\ &= \left(\frac{c_\eta L^2 \|\psi\|_\infty^2 N}{c_{0,N}^{2\beta+1}} \left(\frac{L_0}{8n_0} \right)^{2\beta} \right) \bar{K} \leq \alpha \log \bar{K} \end{aligned}$$

1296 with $\alpha = \left(\frac{c_\eta L^2 \|\psi\|_\infty^2 N}{c_{0,N}^{2\beta+1}} \left(\frac{L_0}{8n_0} \right)^{2\beta} \right) \frac{8}{\log 2}$ since $K \geq 2^{\bar{K}/8}$. Thus, for condition (D3) to hold, i.e.,
1297 $\alpha < 1/8$, we need
1298

$$1299 \quad 1300 \quad c_{0,N}^{2\beta+1} \geq 64c_\eta L^2 \|\psi\|_\infty^2 N \left(\frac{L_0}{8n_0} \right)^{2\beta}.$$

1301 Following $c_{0,N} = C_0 N^{\frac{1}{2\beta+1}}$, it suffices to set C_0 to be
1302

$$1303 \quad 1304 \quad C_0 := (32c_\eta L^2 \|\psi\|_\infty^2 \left(\frac{L_0}{8n_0} \right)^{2\beta})^{\frac{1}{2\beta+1}}.$$

1306 \square

1307 To prove the lower bound minimax rate, we will use the following lower bound for hypothesis test
1308 error, see e.g., Proposition 2.3 Tsybakov (2008) or Lemma 4.3 in Wang et al. (2025).

1309 **Lemma C.2 (Lower bound for hypothesis test error)** *Let $\Theta = \{\theta_k\}_{k=0}^K$ with $K \geq 2$ be a set of
1310 2s-separated hypotheses, i.e., $d(\theta_k, \theta_{k'}) \geq 2s > 0$ for all $0 \leq k < k' \leq K$, for a given metric d on
1311 Θ . Denote $\mathbb{P}_k = \mathbb{P}_{\theta_k}$ and suppose they satisfy $\mathbb{P}_k \ll \mathbb{P}_0$ for each $k \geq 1$ and*

$$1313 \quad 1314 \quad \frac{1}{K+1} \sum_{k=1}^K D_{\text{KL}}(\mathbb{P}_k, \mathbb{P}_0) \leq \alpha \log(K), \quad \text{with } 0 < \alpha < 1/8. \quad (\text{C.12})$$

1316 Then, the average probability of the hypothesis testing error has a lower bound:

$$1317 \quad 1318 \quad \inf_{k_{\text{test}}} \frac{1}{K+1} \sum_{k=0}^K \mathbb{P}_k(k_{\text{test}} \neq k) \geq \frac{\log(K+1) - \log(2)}{\log(K)} - \alpha, \quad (\text{C.13})$$

1320 where $\inf_{k_{\text{test}}}$ denotes the infimum over all tests.

1321 **Proof of Theorem 4.3** We aim to apply Tsybakov's method to simplify probability bounds by con-
1322 sidering a finite set of hypothesis functions. Reducing the supremum over $\mathcal{C}^\beta(L, \bar{a})$ to the finite set
1324 of hypothesis functions, and applying the Markov inequality, we obtain

$$1325 \quad \sup_{\substack{\phi_\star \in \mathcal{C}^\beta(L, \bar{a}) \\ \|\phi_\star\|_\infty \leq B_\phi}} \mathbb{E}_{\phi_\star} \left[\|\hat{\phi}_M - \phi_\star\|_{L_{p_U}^2}^2 \right] \\ 1326 \quad \geq \max_{\phi_{k,M} \in \{\phi_{0,M}, \dots, \phi_{K,M}\}} \mathbb{E}_{\phi_{k,M}} \left[\|\hat{\phi}_M - \phi_{k,M}\|_{L_{p_U}^2}^2 \right] \\ 1327 \quad \geq \max_{\phi_{k,M} \in \{\phi_{0,M}, \dots, \phi_{K,M}\}} s_{N,M}^2 \mathbb{P}_{\phi_{k,M}} \left[\|\hat{\phi}_M - \phi_{k,M}\|_{L_{p_U}^2} > s_{N,M} \right] \\ 1328 \quad \geq s_{N,M}^2 \frac{1}{K+1} \sum_{k=0}^K \mathbb{E}_{X^1, \dots, X^M} \left[\mathbb{P}_{\phi_{k,M}} \left(\|\hat{\phi}_M - \phi_{k,M}\|_{L_{p_U}^2} > s_{N,M} \mid X^1, \dots, X^M \right) \right], \quad (\text{C.14})$$

1335 where the last inequality follows since the maximal value over the functions is no less than the
1336 average and since $\mathbb{P}(A) = \mathbb{E}[1_A] = \mathbb{E}_Z[\mathbb{E}[1_A | Z]] = \mathbb{E}[\mathbb{P}(A | Z)]$.

1337 Next, we transform to bounds in the average probability of testing error of the $2s_{N,M}$ -separated
1338 hypothesis functions. Define k_{test} as the minimum distance test:

$$1340 \quad 1341 \quad k_{\text{test}} = \arg \min_{k=0, \dots, K} \|\hat{\phi}_M - \phi_{k,M}\|_{L_{p_U}^2}.$$

1342 Since $\phi_{k_{\text{test}},M}$ is the closest one, we have that $\|\hat{\phi}_M - \phi_{k_{\text{test}},M}\|_{L_{p_U}^2} \leq \|\hat{\phi}_M - \phi_{k,M}\|_{L_{p_U}^2}$ for all
1343 $k \neq k_{\text{test}}$. Using the fact that the function $\phi_{k,M}$ are built as $2s_{N,M}$ separated functions and using the
1344 triangle inequality we have:

$$1345 \quad 2s_{N,M} \leq \|\phi_{k,M} - \phi_{k_{\text{test}},M}\|_{L_{p_U}^2} \leq \|\hat{\phi}_M - \phi_{k_{\text{test}},M}\|_{L_{p_U}^2} + \|\hat{\phi}_M - \phi_{k,M}\|_{L_{p_U}^2} \leq 2\|\hat{\phi}_M - \phi_{k,M}\|_{L_{p_U}^2},$$

1346 so $s_{N,M} \leq \|\hat{\phi}_M - \phi_{k,M}\|_{L_{p_U}^2}$ for all $k \neq k_{\text{test}}$. Hence,

$$1347 \quad \mathbb{P}_{\phi_{k,M}} \left(\|\hat{\phi}_M - \phi_{k,M}\|_{L_{p_U}^2} \geq s_{N,M} \mid X^1, \dots, X^M \right) \geq \mathbb{P}(k_{\text{test}} \neq k \mid X^1, \dots, X^M). \quad (\text{C.15})$$

1350 Consequently,

$$\begin{aligned}
 1352 \quad & \frac{1}{K+1} \sum_{k=0}^K \mathbb{P}_{\phi_{k,M}} (\|\hat{\phi}_M - \phi_{k,M}\|_{L_{p_U}^2} \geq s_{N,M} \mid X^1, \dots, X^M) \\
 1353 \quad & \geq \inf_{k_{\text{test}}} \frac{1}{K+1} \sum_{k=0}^K \mathbb{P}_{\phi_{k,M}} (k_{\text{test}} \neq k \mid X^1, \dots, X^M) = \inf_{k_{\text{test}}} \frac{1}{K+1} \sum_{k=0}^K \bar{\mathbb{P}}_k (k_{\text{test}} \neq k) \quad (\text{C.16})
 \end{aligned}$$

1357 where $\bar{\mathbb{P}}_k(\cdot) = \mathbb{P}_{\phi_{k,M}}(\cdot \mid X^1, \dots, X^M)$.

1358 The Kullback divergence estimate in equation (D3) from Lemma 4.2 holds with $0 < \alpha < 1/8$, and
 1359 by Lemma C.2 and the fact that $K = 2^{\lceil c_{0,N} M^{\frac{1}{2\beta+1}} \rceil}$ in equation 4.3 increases exponentially in M ,
 1360 we have:

$$\inf_{k_{\text{test}}} \frac{1}{K+1} \sum_{k=0}^K \bar{\mathbb{P}}_k (k_{\text{test}} \neq k) \geq \frac{\log(K+1) - \log(2)}{\log(K)} - \alpha \geq \frac{1}{2} \quad (\text{C.17})$$

1361 if M is large. Note that the above lower bound of $\inf_{k_{\text{test}}} \frac{1}{K+1} \sum_{k=0}^K \bar{\mathbb{P}}_k (k_{\text{test}} \neq k)$ is independent
 1362 of the dataset $\{X^m\}_{m=1}^M$. Using equation C.17, equation C.16 and equation C.14, we obtain with
 1363 $c_0 = \frac{1}{2} [C_1 C_0^{-\beta}]^2$,

$$\sup_{\phi_{\star} \in \mathcal{C}^{\beta}(L, \bar{a})} \mathbb{E}_{\phi_{\star}} \left[\|\hat{\phi}_M - \phi_{\star}\|_{L_{p_U}^2}^2 \right] \geq \frac{s_{N,M}^2}{2} = c_0 N^{-\frac{2\beta}{2\beta+1}} M^{-\frac{2\beta}{2\beta+1}} \quad (\text{C.18})$$

1364 for any estimator. Hence, the lower bound equation 4.3 holds. \square

1365 **Proof of Theorem 4.4** First, we reduce the supremum over all A_{\star} to a single one. Let $A^1 \in \mathcal{A}_d(r, \bar{a})$
 1366 with $\text{rank}(A^1) \geq 2$. Since

$$\mathcal{G}_{A^1} := \left\{ g_{\phi, A^1}(x, y) = \phi(x^T A^1 y) : \phi \in \mathcal{C}^{\beta}(L, \bar{a}), \|\phi\|_{\infty} \leq B_{\phi} \right\} \subseteq \mathcal{G}_r^{\beta}(L, B_{\phi}, \bar{a}),$$

1367 we have for any \hat{g} ,

$$\sup_{g_{\star} \in \mathcal{G}_r^{\beta}(L, B_{\phi}, \bar{a})} \mathbb{E} \|\hat{g} - g_{\star}\|_{L_{p_U}^2}^2 \geq \sup_{g_{\star} \in \mathcal{G}_{A^1}} \mathbb{E} \|\hat{g} - g_{\star}\|_{L_{p_U}^2}^2. \quad (\text{C.19})$$

1368 Thus, to prove equation 4.5, it suffices to prove it with $g_{\star} \in \mathcal{G}_{A^1}$.

1369 Let U^1 be the random variable defined in (4.1) with $A_{\star} = A^1$. Then, Lemma 4.1 implies that

$$\|\hat{g} - g_{\star}\|_{L_{p_U}^2}^2 \geq \|\hat{\psi} - \phi_{\star}\|_{L_{p_U}^2}^2$$

1370 for any $\hat{g}(x, y) := \hat{\phi}(x^T \hat{A} y)$ with $\hat{\phi} \in L_{p_{U^1}}^2$ and $\hat{A} \in \mathcal{A}_d(r, \bar{a})$ and any $g_{\star} \in \mathcal{G}_{A^1}$. Here, $\hat{\psi}$, defined
 1371 in equation 4.2, varies according to \hat{g} since both A_{\star} and the distribution of X are fixed. Taking first
 1372 the expectation over \hat{g} , then taking the supremum over $g_{\star} \in \mathcal{G}_{A^1}$ followed by the infimum over \hat{A}
 1373 and $\hat{\phi}$, we obtain

$$\inf_{\hat{A} \in \mathcal{A}_d(r, \bar{a})} \sup_{g_{\star} \in \mathcal{G}_{A^1}} \mathbb{E} \|\hat{g} - g_{\star}\|_{L_{p_U}^2}^2 \geq \inf_{\hat{\psi} \in L_{p_{U^1}}^2} \sup_{\substack{\phi_{\star} \in \mathcal{C}^{\beta}(L, \bar{a}) \\ \|\phi_{\star}\|_{\infty} \leq B_{\phi}}} \mathbb{E} \|\hat{\psi} - \phi_{\star}\|_{L_{p_{U^1}}^2}^2. \quad (\text{C.20})$$

1374 Meanwhile, Theorem 4.3 gives a lower bound

$$\liminf_{M \rightarrow \infty} \inf_{\hat{\psi} \in L_{p_{U^1}}^2} \sup_{\substack{\phi_{\star} \in \mathcal{C}^{\beta}(L, \bar{a}) \\ \|\phi_{\star}\|_{\infty} \leq B_{\phi}}} M^{\frac{2\beta}{2\beta+1}} \mathbb{E} \|\hat{\psi} - \phi_{\star}\|_{L_{p_{U^1}}^2}^2 \geq c_0 N^{-\frac{2\beta}{2\beta+1}} \quad (\text{C.21})$$

1375 with $c_0 > 0$.

1376 Combining (C.19)–(C.21), we then obtain:

$$\begin{aligned}
 1377 \quad & \liminf_{M \rightarrow \infty} \inf_{\hat{g}} \sup_{g_{\star} \in \mathcal{G}_r^{\beta}(L, B_{\phi}, \bar{a})} M^{\frac{2\beta}{2\beta+1}} \mathbb{E} \left[\|\hat{g} - g_{\star}\|_{L_{p_U}^2}^2 \right] \\
 1378 \quad & \geq \liminf_{M \rightarrow \infty} \inf_{\hat{g}} \sup_{g_{\star} \in \mathcal{G}_{A^1}} M^{\frac{2\beta}{2\beta+1}} \mathbb{E} \left[\|\hat{g} - g_{\star}\|_{L_{p_U}^2}^2 \right] \\
 1379 \quad & \geq \liminf_{M \rightarrow \infty} \inf_{\hat{\psi} \in L_{p_{U^1}}^2} \sup_{\substack{\phi_{\star} \in \mathcal{C}^{\beta}(L, \bar{a}) \\ \|\phi_{\star}\|_{\infty} \leq B_{\phi}}} M^{\frac{2\beta}{2\beta+1}} \mathbb{E} \|\hat{\psi} - \phi_{\star}\|_{L_{p_{U^1}}^2}^2 \geq c_0 N^{-\frac{2\beta}{2\beta+1}},
 \end{aligned}$$

1404 which gives the desired result in equation 4.5. □

1406 D NUMERICAL SIMULATIONS CONFIGURATION

1409 This section provides a detailed description of the simulations presented in Section 5.

1411 D.1 DATA GENERATION

1413 For each sample size M , we run a Monte Carlo simulation over different seeds as follows. We draw
 1414 token arrays $X^{(m)} = (X_1^{(m)}, \dots, X_N^{(m)}) \in \mathcal{C}_d^N$ i.i.d. with $X_i^{(m)} \sim \text{Unif}[0, 1]^d / \sqrt{d}$ sampled i.i.d.
 1415 and construct the $(X_i^{(m)})^\top A_\star X_j^{(m)}$ terms, evaluate the interaction via ϕ_\star (the sampling method of
 1416 ϕ_\star and A_\star is detailed below, and aggregate and add i.i.d. noise $\eta_i^{(m)} \sim \mathcal{N}(0, \sigma^2)$ as described in
 1417 equation 2.1 to generate $Y_i^{(m)}$.
 1418

1419 For each simulation, we sample the ground truth interaction $g_\star(x, y) = \phi_\star(x^\top A_\star y)$ by drawing
 1420 random ϕ_\star and choosing A_\star . We represent ϕ_\star as a B-spline of degree P_\star defined on an open
 1421 uniform knots with K basis functions on $[-1, 1]$.
 1422

$$1423 \phi_\star(u) = \sum_{k=1}^{K_\star} \theta_\star^k B_k(u).$$

1426 For each seed, we draw $\theta_\star \sim \mathcal{N}(0, I_{K_\star})$ and then normalize it for $\|\theta_\star\| = \sqrt{K_\star}$.
 1427

1428 D.2 ESTIMATOR

1430 If A_\star was known, the estimator can be computed by setting $\hat{A} = A_\star$ and setting $\hat{\phi}(u) =$
 1431 $\sum_{k=1}^K \hat{\theta}_k B_k(u)$ with degree P_{est} and $\hat{\theta}$ chosen according to the ridge regression formula:
 1432

$$1433 \hat{\theta} = (U^\top U + \lambda_\theta I)^{-1} U^\top y, \quad (\text{D.1})$$

1435 where $U = (U_{(m,i),k}) \in \mathbb{R}^{MN \times K}$ with
 1436

$$1437 U_{(m,i),k} := \frac{1}{N-1} \sum_{j \neq i} B_k((X_i^{(m)})^\top A X_j^{(m)}) \quad (\text{D.2})$$

1440 and $y = (Y_i^{(m)}) \in \mathbb{R}^{MN \times 1}$.
 1441

1442 However, since A_\star is unknown, the joint estimation of (A, ϕ) is non-convex due to the composition
 1443 $\phi(x^\top A y)$. To mitigate local minima, we use a hot start and an alternating scheme. We perform the
 1444 hot start by setting $A^{(0)} = A_\star + \Delta_A$ with Δ_A being a perturbation specified in Table 1 and setting
 1445 the initial $\theta^{(0)}$ as the matching ridge solution D.1. In the PyTorch implementation, the scheme
 1446 includes a description of the function $\hat{\phi}$ as a neural network. This is because representing it as
 1447 B-splines directly would require differentiating through the B-spline basis, which is cumbersome
 1448 for automatic differentiation. To address this, we introduce a neural-network surrogate Φ_{net} that
 1449 approximates the spline and can be used as a differentiable link in the A -step.
 1450

1451 Alternating Optimization for $\hat{\phi}, \hat{A}$

1452 1. **Hot start:** set $A^{(0)} = A_\star + \Delta_A$ and compute $\theta^{(0)} = (U^\top U + \lambda_\theta I)^{-1} U^\top y$ with U
 1453 computed according to $A^{(0)}$ in equation D.2
 1454

1455 2. **For** $t = 1, \dots, T$:

1456 (a) *Approximate the current spline using a multilayer perceptron (MLP).* Fit an MLP
 1457 $\Phi_{\text{net}}^{(t-1)}$ on a grid $\{u_\ell\}$ to minimize $\sum_\ell |\Phi_{\text{net}}^{(t-1)}(u_\ell) - \tilde{\phi}^{(t-1)}(u_\ell)|^2$

1458
 1459 (b) *A-step through optimization.* Update A by minimizing the empirical loss with $\hat{\phi} =$
 1460 $\Phi_{\text{net}}^{(t-1)}$ held fixed using the Adam optimizer

1461
$$\min_A \frac{1}{MN} \sum_{m=1}^M \sum_{i=1}^N \left(\sum_{j \neq i} \hat{g}_{A, \Phi_{\text{net}}^{(t-1)}}(X_i^{(m)}, X_j^{(m)}) - Y_i^{(m)} \right)^2 + \frac{\lambda_A}{2} \|A\|_F^2. \quad (\text{D.3})$$

 1462
 1463

1464 (c) *θ -step through closed form.* With A fixed at $A^{(t)}$, compute $\theta^{(t)}$ by ridge regression:
 1465 stack $y \in \mathbb{R}^{MN}$ from $Y_i^{(m)}$, and build $U \in \mathbb{R}^{MN \times K}$ with
 1466

1467
$$U_{(m,i),k} = \frac{1}{N-1} \sum_{j \neq i} B_k((X_i^{(m)})^\top A^{(t)} X_j^{(m)})$$

 1468
 1469

1470 and compute

1471
$$\theta^{(t)} = (U^\top U + \lambda_\theta I)^{-1} U^\top y.$$

 1472

1473 **Choice of K_{est} and λ_θ .** We set the number of spline coefficients by the bias variance trade-off for
 1474 a β -Hölder smoothness as done in equation B.20

1475
$$K_{\text{est}} = \text{round}\left(K_{\text{scale}}(M/\log M)^{1/(2\beta+1)}\right)$$

 1476

1477 where K_{scale} is a chosen constant. For the ridge regularization constant λ_θ we follow the standard
 1478 scaling for least squares models with MN responses and K coefficients, the variance of $\hat{\theta}$ should
 1479 scale like $K/(MN)$, so we take
 1480

1481
$$\lambda_\theta = \lambda_{\text{scale}} \frac{K_{\text{est}}}{M(N-1)},$$

 1482

1483 D.3 ERROR ESTIMATE

1484 We measure accuracy via the estimator test MSE, sampling never seen inputs $X^{(m)} \sim$
 1485 $\text{Unif}[0, 1]^d / \sqrt{d}$ and evaluating:

1486
$$\text{MSE}_g = \frac{1}{N_{\text{test}}} \sum_{m=1}^{N_{\text{test}}} \frac{1}{N(N-1)} \sum_{i=1}^N \left| \sum_{j \neq i} \hat{g}_{\hat{A}, \hat{\phi}}(X_i^{(m)}, X_j^{(m)}) - g_{\star}(X_i^{(m)}, X_j^{(m)}) \right|^2.$$

 1487

1491 D.4 SIMULATION PARAMETERS

1492 The following table details the parameters used for the simulations described in Section 5.

1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511

Table 1: Chosen parameters for the simulation

Parameter	Value
Seeds	300
A_\star	Diagonal matrix with i.i.d. entries $A_{11} = 1, \forall i > 1 A_{ii} \sim \text{Unif}[-1, 1]$
Sample sizes M	[20000, 27355, 37416, 51177, 70000]
N	3
Gaussian noise std σ_η	0.07 (Gaussian)
Estimator degree	$P_{\text{est}} = P_\star$
K_\star	16
K_{scale}	[(a) and (b) for $P_\star = 3$]: 16 [(b) for $P_\star = 8$]: 30
Basis size K_{est}	[(a) and (b) for $P_\star = 3$]: {73, 78, 82, 87, 92} (matching the M grid) [(b) for $P_\star = 8$]: {50, 51, 52, 53, 54} (matching the M grid)
λ_A	10^{-5}
λ_{scale}	2
λ_θ	[(a) and (b) for $P_\star = 3$]: $10^{-3} \times \{6.85, 5.30, 4.12, 3.19, 2.46\}$ [(b) for $P_\star = 8$]: {2.50, 1.86, 1.39, 1.04, 0.77} (matching the M grid)
Δ_A	Entry wise Gaussian noise with an std of $5/d \times 10^{-7}$
T	4
A -step optimizer	Adam, lr = 10^{-8} , 20 epochs.
$\Phi_{\text{net}}^{(t)}$ architecture	1-hidden layer of width 32 (GELU activation)
$\Phi_{\text{net}}^{(t)}$ optimization	1000 epochs (Adam) lr = 0.01
Test set	2000 samples