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ABSTRACT

We study the convergence rate of learning pairwise interactions in single-layer
attention-style models, where tokens interact through a weight matrix and a non-

linear activation function. We prove that the minimax rate is M — oA with M
being the sample size, depending only on the smoothness 3 of the activation, and
crucially independent of token count, ambient dimension, or rank of the weight
matrix. These results highlight a fundamental dimension-free statistical efficiency
of attention-style nonlocal models, even when the weight matrix and activation are
not separately identifiable and provide a theoretical understanding of the attention
mechanism and its training.

1 INTRODUCTION

The transformer architecture (Vaswani et al.,[2017) has achieved remarkable success in natural lan-
guage processing, computer vision, and other Al domains, with its impact most visible in large
language models (LLMs) such as GPT (OpenAl, 2024)), LLaMA (Touvron et al., |2023), and BERT
(Devlin et al} [2019). At its core, attention mechanisms model nonlocal dependencies between in-
put tokens through pairwise interactions, creating a function class capable of representing intricate
contextual relationships.

Despite the empirical success, our theoretical understanding remains incomplete. The attention
mechanism computes weighted averages of token representations using pairwise similarities, but
we observe only the aggregated outputs and not the underlying interaction structure that generates
them. This creates a fundamental inverse problem with critical sample complexity questions: can we
recover the interaction function from these aggregated observations, how many samples are needed
to learn token-to-token interactions for a given accuracy level, and how does the convergence rate
depend on embedding dimension, number of tokens, and smoothness of the activation function?
Recent phenomena like extreme attention weights on certain tokens (Sun et al.| 2024} |Guo et al.
2024b; |Xiao et al.l 2024 [Wang et al) [2021) further highlight gaps in our understanding of how
transformers process token interactions.

In this paper, we tackle these questions by analyzing an Interacting Particle System (IPS) model for
attention-style mechanisms. Tokens are viewed as “particles,” and the self-attention aggregates pair-
wise interactions between them. The interaction is a composite of an unknown embedding matrix
and an unknown nonlinear activation function, both are learned from data. This makes the problem
challenging as it is fundamentally nonconvex. Our IPS approach provides a natural framework for
understanding how transformers process inputs with a large number of correlated tokens, moving
beyond the restrictive assumption of independent, isotropic token distributions.

We summarize our main contribution below:

o We establish a connection between transformers and IPS models, enabling us to address the
challenging inverse problem of inferring nonlinear interactions learned by attention mecha-
nisms. Our analysis extends beyond the standard assumption of independent, isotropic token
distributions to allow for dependent and anisotropic data.
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o Inferring the interaction function is an inverse problem. We prove that under a coercivity
condition (Lemma [3.4), this problem is well-posed in the large sample limit. This condition
holds for a large class of input distributions.

e We prove that the rate of M —ghT is the optimal (up to logarithmic factors) minimax con-
vergence rate in estimating the 2d-dimensional pairwise interaction function where M is the
sample size and ( is the Holder exponent of the function. Importantly, this rate is independent
of the embedding dimension d and the weight matrix rank. This dimension-free rate stems
from the model’s intrinsic structure of a scalar activation on a bilinear form, which reduces
the sample complexity of the problem from learning a 2d dimensional interaction function to

23
a scalar function applied to a 1D bilinear form. The rate M~ 25+T is precisely the optimal rate
for this 1D estimation problem, confirming that the attention-style model evades the curse of
dimensionality.

1.1 RELATED WORKS

Neural networks and IPS. Modeling neural networks as dynamical systems through depth was
introduced in [Chen et al.| (2018)), which framed updates in ResNet architectures as the dynamics
of a state vector. This perspective has been generalized to various architectures, typically treating
skip connections as the evolving state across layers. Following this approach, in|Geshkovski et al.
(20235 2025) they view tokens as interacting particles, analyze the attention as an IPS, and study
clustering phenomena in continuous time (in depth). Similarly, Dutta et al. (2021) leverages a similar
framework to compute attention outputs directly from an initial state evolved over depth, thereby
reducing computational costs. While these works provide valuable insights, they focus exclusively
on the dynamics of tokens through the layers. To our knowledge, no existing work addresses the
learning theory for estimating the pairwise interactions in such particle systems.

Inference in attention models. Many theoretical works have studied the learnability of attention,
focusing on specific regimes. Some consider simplified variants, such as linear or random feature
target attention models (Wang et al., [2020; [Lu et al., 2025} Marion et al., 2025} Hron et al., 2020;
Fu et al., [2023), which explore the capability of this model under simple regression tasks. |Deora
et al.| (2024) analyze logistic-loss optimization and prove a generalization rate under a “good” ini-
tialization. Others consider a more specific architecture, Li et al.|(2023)) study the training of shallow
vision transformers (ViT) and show that, with suitable initialization and enough stochastic gradient
steps, a transformer with additional ReLU layer can achieve zero error. Several works study soft-
max attention layers with trainable key and query matrices in the limit of high embedding dimension
quadratically proportionate to samples with i.i.d. tokens [Troiani et al.| (2025); [Cui et al.| (2024)); Cui
(2025); IBoncoraglio et al.| (2025), which is further expanded in Troiani et al.| (2025) for softmax
attention (without the value matrix) with multiple layers. These works mainly focused on the lin-
ear/softmax attention model and do not consider a general interaction function. In addition, most
studies assume the tokens are independent and do not draw the connection to the IPS system.

Inference for systems of interacting particles. There is a large body of work on the inference
of systems of interacting particles; we state a few here. Parametric inference has been studied in
Amorino et al.| (2023); (Chen| (2021); |Della Maestra & Hoffmann| (2023)); Kasongal (1990); |[Liu &
Qiaol (2022); |Sharrock et al.[(2021) for the operator (drift term) and in [Huang et al.| (2019) for the
noise variance (diffusion term). Nonparametric inference on estimating the entire operator R, but
not the kernel g, has been studied in |Della Maestra & Hoffmann| (2022)); |Yao et al.| (2022). The
closest to this study are [Lu et al.| (2021a; [2022; [2019); Wang et al.| (2025). A key difference from
these studies is that their goal is to estimate the radial interaction kernel, whereas our 2d-dimensional
pairwise interaction function is not shift-invariant due to the weight matrix. In addition, all these
studies focus on IPS in general, without a clear connection to attention models.

Activation function in transformer layer. Recent work has shown that attention models suf-
fer from the “extreme-token phenomenon”, where certain tokens receive disproportionately high
weights, creating challenges for downstream tasks (Sun et al.| 2024} |Guo et al., [2024b} [Xiao et al.,
2024} Wang et al.} 2021). To address this, it was proposed to replace softmax with alternatives, such
as ReLU (Guo et al., 20244} |Zhang et al.,[2021)), which can "turn off" irrelevant tokens, a capability
that softmax lacks. While linear attention can outperform softmax in regression tasks by avoid-
ing additional error offsets (Von Oswald et al., 2023; Katharopoulos et al., [2020; |Yu et al., 2024;
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[2024), it may be inferior for classification (Oymak et al. [2023). These findings sug-

gest no universally optimal activation function exists, making the theoretical analysis of a general
interaction function in transformer-type models crucial. As for vision tasks, several Vision Trans-
former (ViT) variants remove the softmax activation while remaining competitive. For example, [Lul
et al| (2021D) consider an attention mechanism based on a Gaussian kernel, and [Koohpayegani &
Pirsiavash| (2024)) apply linear attention after normalizing the Key-Query columns. Furthermore,
Ramapuram et al.| (2025) examine a sigmoid function as the attention activation, showing it acts
as a universal function approximator and benefits from improved regularity compared to softmax
attention.

Nonparametric and Semiparametric Estimation for Neural Networks Classical nonparametric
estimation provides optimal minimax rates for simple structures. |Gaiffas & Lecué| (2007)) provide

bounds for the single index model f(w ') of order M 2541, For the more general projection pursuit

model f(z) = Z]K:1 iz, B5)), |Gy6rﬁ et al.| (I2006I) shows that the minimax rate is the standard
rate up to a log factor. These results directly apply to small single-layer neural networks.

Closer to deep learning, Horowitz & Mammen| (2007) analyze generalized additive models with

nested k-times differentiable compositions, showing the rate is M — ot |Schmidt-Hiebe11 (]2020|)
proves that connected deep ReLU networks achieve a near-optimal minimax rate (up to log factors)
over a class of composed functions. In/Bhattacharya et al.|(2024) they study a nonparametric interac-
tion model in high dimension settings and show sparsity assumptions and associated regularization
are required in order to obtain optimal rates of convergence.

Notation. Throughout the paper, we use C' to denote universal constants independent of the sample
size M, particles IV and the embedding dimension d, r. The notations Cg or Cjg 1, denote constants
depending on the subscripts. We introduce the L% inner product as {f, g) 1z = § f(r)g(r)p(dr) and

denote the L& norm by | f||7, = §|f(r)|Pp(dr) for all p > 1. For vectors a,b € R? and A € R*¢
P

we write (a,bys := a' Ab.

2 PROBLEM FORMULATION
In this section, we describe our statistical task and connect it to the attention model.

Model setup and learning task. We consider a model of NV interacting particles,

1

N
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where 1 € RY is noise as specified in Assumption o« : R — Ris an unknown interaction kernel,
and A, € R?*? is an unknown interaction matrix. Here, we write (z,y)4 := ' Ay for z,y € R?

and A € R The input X = (X1,...,Xn)" € CY := ([0,1]4/V/d)¥ = RN¥*? denotes
the particle positions (or token values), and the output Y = (Y7,...,Yy) € RV*! represents the
average interactions between the particles.

We observe M i.i.d. samples
Dy = {(X™ Y™ M ., Xmec) = (0, 1)4Va)N,y™eRY,

allowing the N particles and their entries to be dependent. The task is to learn the pairwise interac-
tion function g, : R¢ x R? — R,

g*(‘ra y) = ¢* (<l‘ay>A,)7 ($, y) € Rd X Rda (22)

from the dataset of observations Dj;. We introduce the vectorized view of the model via the
forward operator R, for any candidate interaction function g : R x R? — R as Ry[X]; :=

T Zi\;“ 43 9(Xi, Xj). Accordingly, our model in equationbecomes Y; = R,, [X]i + mi.
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Connection to self-attention layer. We view self-attention through the lens of an IPS: tokens are
“particles,” and attention aggregates pairwise interactions between them. A typical self-attention
layer is composed of an attention block with learnable query, key, and value matrices, Wq, Wi €
R¥*x with dj, < d and Wy € R4*% that compute

Att(Q, K, V) = softmax(%)V, Q=XWq, K =XWg, V=XWy. (23
The attention operation is then often followed by an application of a multilayer perceptron (MLP),
which maps the above into some other nonlinear function. The pairwise structure of attention mo-
tivates modeling token interactions via a scalar kernel function applied to a bilinear form of some
score interaction matrix A, that can be viewed as the learned projections through ﬁWQ Wi, ie.,

softmax (2 ) = softmax (XA, XT), XAXT = (XTWelrx;)
The interaction function in equation[2.2] can be interpreted as either a function induced by the MLP
and softmax function, or as a general activation function with a constant value matrix, see mode
details in Appendix[A] As stated in the related work, such a setup for a general activation function
is often desirable due to the extreme-token phenomenon (Sun et al.| 2024{ |Guo et al.| [2024b} | Xiao
et al., [2024} [Wang et al.| 2021)

Consequently, the problem of estimating g, from the samples described in equation[2.T]is analogous
to the joint estimation of the activation function and weight matrix governing nonlocal token—token
interactions in a single-layer self-attention mechanism.

Goal of this study. Our goal is to characterize the optimal (minimax) convergence rate of estima-
tors of g, as the sample size M grows.

To assess the estimation error for the interaction function, we introduce empirical measures over
pairs of particles/tokens (x,y). Termed exploration measures, they quantify the extent to which the
data explores the argument space relevant to the function.

Definition 2.1 (Exploration measure) Let {X™ € Cq}M_, be sampled sequence. Define the em-
pirical exploration measure of off-diagonal pairs of particles

1 M N N
pm(B) 1= ——— 1y xm xm)eB
NN 1) ﬂ;l;j:;;# (X XpeB)

and the population exploration measure as p(B) := limp/—o pp(B) = E[pa(B)], for any
Lebesgue measurable set B < R% x R?,

We aim to provide matching upper and lower bound rates for the L/2, error of the estimator g, so as
to obtain a minimax convergence rate:

E[1§— 9.3 | ~ M77T, as M -, 2.4)

where (3 is the Holder exponent of g, (which is determined by the smoothness of ¢,). This then
demonstrates that the attention model is not susceptible to the curse of dimensionality. In particular,
we aim to characterize the dependence of the rate on the embedding dimension d, the rank 7 of the
interaction matrix, and the number of tokens V.

2.1 ASSUMPTIONS ON THE DATA DISTRIBUTION

We now state the assumptions on the distributions of the input and the noise used throughout this
work. We do not assume that the N tokens are independent of each other.

Assumption 2.1 (Data Distribution) We assume the entries of the C) = ([0,1]%/+/d)N -valued
random variable X = (X1, ..., Xn) satisfy the following conditions:

(A1) The components of the random vector X = (X1, ..., Xn) are exchangeable.

(A2) The joint distribution of (X;, X;) has a continuous density function for each pair.
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These assumptions simplify the inverse problem and may be replaced by weaker constraints; see
Wang et al.| (2025) for a discussion and references therein. The exchangeability in simplifies
the exploration measure in Lemma [B.T] It enables the coercivity condition for the inverse problem
to be well-posed, as detailed in Lemma [3.4] and is only used in the upper bound in Theorem [3.1]
The continuity in Assumption ensures that the exploration measure has a continuous density,
which is used in proving the lower minimax rate Theorem [4.4]

We next specify the noise setting. Assumption [2.2]details the constraints we assume for the noise:

Assumption 2.2 (Noise Distribution) The noise n € RY is centered and independent of the ran-
dom array X. Moreover, we assume the following conditions:

(B1) The entries of the noise vector n = (11, . ..,nn) are sub-Gaussian in the sense that for all
i, E[e®: ] < o0 for some ¢ > 0.

(B2) There exists a constant ¢, > 0 such that The density p, of ) satisfies the following:

pn(w) 2 N
u)log ————du < ¢,|v]|*, VveR"™. 2.5)
J;@an( ) gpn(u+1}) UH H

We note that assumptions (B1)|and|(B2)|hold for instance for Gaussian noise 7 ~ N(0, 071 ) with
ey = 1/(207).
2.2 FUNCTION CLASSES AND MODEL/ESTIMATOR ASSUMPTIONS

We introduce the functional classes where g, lies. Our goal is to consider as large a class of functions
as possible while also tracking the properties of the models ¢, that control the rate. For that purpose,
we introduce the Holder class and assume that ¢, satisfies some smoothness order of 3.

Definition 2.2 (Holder classes) For (3, L,a > 0, the Hilder class C°(L,a) on [—a, a] is given by
c?(L,a) = {f [—a,a] = R:[fOx) — fO(y)| < Lz —y[P~, Va,y € [—a, a]}, (2.6)
where f9) denotes the j-th order derivative of functions f and | = |5].

Low-rank Key and Query matrices often play an important role in the attention model. To keep
track of the effects of the rank on the minimax rate, we introduce the following matrix class for the
interaction matrix A,, which is the product of the Key and Query matrices.

Definition 2.3 (Interaction matrix class) For a > 0, the d-dimensional matrix class Aq(r,a) with
rankr € Nand 2 < r < d is given by

Ag(r,a) = {A e R : 2 <rank(A) <7, |Alop < a}. 2.7

Combining both classes, we consider the following function class GZ for all the possible pair-wise
interaction functions.

Definition 2.4 (Target function class) Given L, By,a > 0 and rank r = 2, 8 > 0 define
G7 (L, By,a) = {go.a(2,y) i= 6(a Ay) : 0 € CO(L,a), 9l < By A€ Au(ra)}.  28)

For any g € G = GP(L, By, a), moreover it follows |R,[X];| < Bg. For technical reasons we
requires L < B¢(2d)ﬁ. This holds without loss of generality for any @ > 1 and L < By.

We provide both lower and upper bounds for the possible error rate by the number of samples for
the interaction g(-, -) € G2. We consider the following functional class for our estimator:

Definition 2.5 (Estimator function class) Let s := max(|(],1) and Ky € N. Let ®5 ~denote

the class of piecewise polynomials of degree s, defined on K s equal sub-intervals of [—a,a). The
corresponding estimator model class is

G s = {904 0€ Py, 10l + 10/]0 < By, Ac Aulra)} < 67 @9)
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3 UPPER BOUND

In this section, we provide an upper bound on estimating the token-token interaction. We propose

the following estimator §as (2, y) = ¢((x,y) i) as the empirical risk minimizer over the functional
class

2

gv = argmin Ep(ge,a) i= % 51(\2)(9¢,A) with

96,A€97 K, i=1

| o (3.1)
€3 (90.4) == A7 X VI = Ry u[X™ LI
Here, Ry, ,[X]i = Zj\;l i 96,4(Xi, X;) the forward operator with interaction function

ge,A. Our goal is to prove that the estimator gy, achieves the optimal upper bound. The large
sample limit of s (ge, ) is then

. 1
E(9s,4) = m Enr(gp,4) = FE[IV = Ry, 4 [X]13]-

The i-th error £ (ggp,a) forany 1 <4 < N is defined in the same manner.

The next theorem states that this estimator achieves the nearly optimal rate in estimating the inter-
action function. This rate matches the lower bound in Theorem f.4] up to a logarithmic factor. Its
proof is deferred to Appendix [B.1]

Theorem 3.1 Suppose rd < (M /log M) 5¥1 . Consider the estimator g defined in equation
computed on data M i.i.d. observation satisfying Assumptions[2.1|and[(B1)| Then, for gas defined
in equation it holds that

. 28 o
lim sup sup IE[M%+1 lgar — g*Hiz] < CON.Lag,ss (3.2)
M=% g,eG (L,By.a) !

2/.-\28
where Cn 1,.a.8s = N [Cf L ((;,‘;3 + Cs] for some universal positive constants C1, Co.

Remark 3.2 The symbol < indicates that the upper bound holds up to a logarithmic factor of

(log ]\/[)22%'”'4 max(28.1)  We believe this factor can be improved, as it currently creates a gap
between our upper and lower bounds, representing a limitation of our methods. It is worth noting
that by working with uniformly bounded noise, this factor can be simplified (e.g., see Theorem 22.2
in |Gyorfi et al.| (2000)). In simpler settings, such as standard regression or when the interaction
matrix A is constant (e.g., for Euclidean distances), this logarithmic factor can be removed using
more advanced techniques. This topic is discussed in several works, including |Wang et al.| (2025);
Gyorfi et al.|(2006); |Van der Vaart| (2000) and the references therein. However, in our model, the
optimization depends on both the interaction matrix A and the function ¢, which makes the problem
non-convex. This difficulty makes the aforementioned techniques harder to implement. We therefore
leave this for future work.

Remark 3.3 This theorem demonstrates that the attention-style model is free from the curse of di-
mensionality. In particular, the embedding dimension d can be very large, satisfying the bound

rd < (M/log M)?3+1. This condition becomes looser as 3 decreases, corresponding to rougher
activation functions. When this condition is not satisfied, the error coming from the estimation of
A, dominates. See Corollary[B.2)

The proof extends the technique in |Gyorfi et al.| (2006, Theorem 22.2) originally developed for the
projection pursuit algorithm for multi-index models. Our setup differs from the multi-index setup
in which one estimates Y = Zfil fi(b] X) + n with {f; : R > Randb; € R*}X | from sample
data {(X™,Y™)}M_,  where the data Y depends locally on a projected values of single particle
X. Here, the attention-style model involves averaging multiple values of the pairwise interaction
function, which is a composition of the unknown ¢, and A. This nonlocal dependence, combined
with the mixture of parametric and nonparametric estimations, presents a significant challenge.

We list below the main challenges we address in the proof of Theorem|3.1
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1. Nonlocal dependency. The nonlocal dependence presents a challenge in estimating the interac-
tion function. The forward operator R,[X | depends on the g non-locally through the weighted
sum of multiple values of g of pairwise interaction. Thus, this is a type of inverse problem that
raises significant hurdles in both well-posedness and the construction of estimators to achieve
the minimax rate. To address these challenges, we show first that the inverse problem in the
large sample limit is well-posed for a large class of distributions of X satisfying Assumption
2.1] A crucial condition for well-posedness of this inverse problem is the coercivity condition
studied in|Li & Lu|(2023)); L1 et al.[(2021); |Lu et al.| (2019); [Wang et al.| (2025)):

1
N -1
We prove this condition holds for a general function in our class in Lemma [3.4] Importantly,
differing from these studies where the goal is to estimate the radial interaction kernel, our in-

teraction is not shift-invariant due to the matrix and it is a 2d-dimensional pairwise interaction
function.

E [[gar — 9.3 | < £ @rr) - £(92).

2. Tail decay noise distribution. The proof in|Gyorfi et al.|(2006) is limited to bounded noise. We
provide a more general statement for any sub-Gaussian noise. This is done by decomposing
the error bound now into three parts.

Exn(Grr) — Ex(gy) < E[T1ar] + E[To.ar] + E[T3 0] (3.3)

The first two terms are a clever form of a bias-variance decomposition applied to a truncated
version of the target. To bound these terms, we use a similar technique as in (Gyorfi et al.
(2006). To control the last term T3 s due to the truncation, we apply a lemma proved in
(Kohler & Mehnert, 2011, Lemma 2).

3. Covering numbers estimates. Since our interaction is of the form 1~ Zjv:1 H(X]TAX;)
instead of working in the space of vectors, we provide a covering estimate for the class of
matrices with rank less than or equal to 7. This is done in Lemma|[B.3]

The next lemma proves the crucial condition for the well-posedness of the inverse problem of esti-
mating the interaction function. This Lemma assumes exchangeability and allows us to extract the
error of the mean interaction and obtain a dimension-free rate for that error. Its proof is based on the
exchangeability of the particle distribution and is postponed to Appendix

Lemma 3.4 (Coercivity) Let g, g. € G?(L, By, a). Under exchangeability of (X;)\., in Assump-
tion|(A1)|, we have

1
~v_7lo- 9*||2Lg < Eu(9) — Exnlgs).

4 LOWER BOUND

This section establishes a lower bound for estimating g, (z,y) := &, (z " A,y) that matches the upper
bound in Theorem [3.T} together, these results determine the minimax rate.

The main challenge lies in the nonlocal dependence of the output Y; on g,., which is determined
through averaging over all particles, as we don’t directly observe any value of g.. Thus, the estima-
tion of g, is a deconvolution-type inverse problem, which is harder than estimating the single index
model Y = f(b" X) + n in Gaiffas & Lecué|(2007). Importantly, the nonlinear joint dependence of
g+ on the unknown ¢, and A, further complicates the problem.

We address the challenge by first reducing the supremum over all g, to the supremum over all ¢,
with a fixed A, € Ay(r, @), building on a technical result in Lemma[4.1] This reduces the problem
to the minimax lower bound of estimating the interaction kernel ¢, only. We derive this lower bound
using the scheme in|Wang et al.|(2025)), a variant of the Fano-Tsybakov method in|Tsybakov|(2008]).

Let A, € A4(r,a) and let

1 N N
Uji= X[ AX;, U~pu(u)i= w0, 2, Pu, W), .1
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where Pu,, denotes the probability density of U;;. Here, the density py,, exists and is continuous
because rank(A.) > 2 and the joint density of (X;, X;) exists by Assumption see Lemma
Hence, the density pys is continuous. Furthermore, since |A,[op < @ and X; € Cq, we have
Ui;| < a and supp(py) < [—a,a]. In particular, when the distribution X is exchangeable, we
have py,; (u) = pu,,(u) = py(u) for all (i, 5), u € [~a,a]. However, our proof below works for
non-exchangeable distributions.

The next lemma allows us to reduce the supremum over all g, (z, y) = ¢.(zT ALy) to all ¢, by
bounding | — g.|%. from below by It — (;S*H for a function 1 determined by § and A,. Its

/7

proof can be found in Section [C|

Lemma 4.1 Suppose Assumption [(A2)|holds. Let A*, Ae Ad(r a). Recall the definitions of U”
and U ~ py (defined according to A,) in equation Let ¢, (b e L2 | and define a function ¢
that is determined by (¢, A, A,) and the distribution of X as

pu’

Bot) = EBOTAX) Uy =], 90 =3 ) N D P @2

1=17=1,j#1 ()

Then, the following inequality holds:
~ “ 2
6=l > | [9(0) = 0u() oo (u)du

The next lemma constructs a finite family of hypothesis functions that are well-separated in LIQ)U,
while their induced distributions remain close with a slowly increasing total Kullback-Leibler di-
vergence, enabling the application of Fano’s method to derive the minimax lower bound. Its proof
follows the scheme in[Wang et al| (2025) and is postponed to Section [C|

Lemma 4.2 For each data set {(X™,Y™) sampled from the model Y = Ry, A, [X]| +n,
where A, € Aq(r,a) sansfymg assumptlons B2 and|(A2)| there exists a set of hypothesis functions
{bo.m =0,01,0m, -+ , K, M} and positive constants Co, C1} independent of M, N, d,r, where

K>258 Wwith K =[co nM#T|, con = CoN7T, 4.3)

such that the following conditions hold:

(D1) Holder continuity: ¢y pr € CP(L,a) and ||k a0 < By foreachk =1,--- | K;

(D2) 2sy, a-separated: || g ar — d’k/,M”LgU = 25N, With sy v = ClcgﬁﬂvM—wﬁﬁ;

(D3) Kullback-Leibler divergence estimate: - Zszl Dk, (Py, Po) < alog(K) with o < 1/8,
where Pi(-) = Py, (- | X*, ..., X™) and py is the density of U defined in equation

The following theorem provides a lower minimax rate for estimating ¢, when A, is given. Its proof
is available in Section[Cl

Theorem 4.3 Suppose Assumptions and ((B2)| hold. Let py be the density of U defined in
equation Then, for any 3 > 0, there exists a constant ¢y > 0 independent of M, d, v and N
such that

283 ~ 28
liminf inf sup Eg, [M2B+1 [Uar — dull2 ] > cgN ™ 25+1 4.4)
M—a0 YmeEL]  ¢,ec’(L,a) v
H¢aHoo<B¢

where vfz M Is estimated based on the observation model with M i.i.d. samples.

Following the above results, we can now provide a lower bound for the convergence rate when
estimating g, over all possible estimators in the worst-case scenario.
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Theorem 4.4 (Minimax lower bound) Suppose Assumptions and hold. Then, for any
B > 0 there exists a constant ¢y > 0 independent of M, d, v and N, such that the following
inequality holds:

28 ~ _ 28
liminfinf  sup M?BHE[Hg—g*H%z] > N~ (4.5)
M=0 g o Gl (L,By.a) ’

where the infimum infy is taken over all §(x,y) = a(a:—rﬁy) with A € Ay(r,a) and ¢ such that
gelL

5 NUMERICAL SIMULATIONS

In this section, we empirically verify the convergence rates predicted by our theory, emphasizing
their independence from the ambient dimension d and their dependence on the activation function’s
smoothness.

For all experiments, we use B-splines to represent the ground-truth activation ¢,: a degree-p B-
spline is CP~1, so the degree directly controls the smoothness (Lyche et al. [2017). B-splines are
linear in their basis coefficients, allowing us to efficiently compute an optimal coefficient estimator
by least squares. Our estimator for the interaction function § exploits this structure: we first fit
¢« in the B-spline basis by least squares, then approximate the fitted activation with a multi-layer
perceptron to enable backpropagation when estimating A,. This design enables us to control both
the smoothness and the approximation accuracy of g, ensuring that it achieves the minimax rate.
Full simulation and parameter details appear in Appendix

Our experiments confirm the theoretical minimax rates.

e Independence from the ambient dimension d. Figure [I(a) compares convergence across em-
bedding dimensions d € {1, 5, 30}. In the log-log plots, the slopes (which encode the rates) are
nearly parallel and close to the theoretical exponent —23/(2( + 1) for all three dimensions,
indicating that the convergence rate is independent of d.

e Dependence on the activation function’s smoothness. Figure [I(b) reports rates for varying
smoothness exponents (3, controlled by the B-spline degree used to represent ¢.. As the spline
degree (and hence 3) increases, the log-log slope steepens as predicted by theory: for example,
the empirical slopes are ~ —0.81 for degree P = 3 and ~ —0.899 for P = 8§, closely matching
the theoretical values —0.80 and —0.933.

The two plots illustrate that the minimax rate is fully determined by the smoothness S and it is
dimension-free.

6 CONCLUSIONS

We have established dimension-free minimax convergence rates in sample size for estimating the
pairwise interaction functions in self-attention style models. Using a direct connection to interacting
particle systems (IPS), we have proved that under a coercivity condition, one can learn the interaction
function at an optimal rate A/ —2#/(28+1) with § being the smoothness of the function. Notably, this
rate is independent of both the embedding dimension and the number of tokens. Our analysis extends
beyond the standard assumption of independent, isotropic token distributions to allow for correlated
and anisotropic token distributions.

These dimension-free rates illuminate how attention can avoid the curse of dimensionality in high-
dimensional regimes. Viewing attention through the IPS lens suggests a broad research agenda for
understanding the attention models. Promising next steps include extending the theory to multi-head
attention, residual connections and self-attention interactions induced by the value matrix. Advances
in these directions will improve our understanding of learning mechanisms and generalization in
transformers.
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Figure 1: (a) Convergence rates with d € {1,5,30}. Composed test Mean Squared Error (MSE)
vs. sample size M in log scale; dashed lines show the expected rate M —28/(26+1): and the markers
represent the median across seeds. The convergence rates are nearly the same for different values
of d. (b) Convergence rates with varying smoothness exponents, which are controlled by the spline
degree of ¢, and the estimator, with Py = Pey € {3, 8}, corresponding to 8 € {2, 7} and expected
slopes —0.800 and —0.933. The parameters in each simulation are described in Appendix
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A APPENDIX: REDUCTION FROM ATTENTION TO IPS ATTENTION MODEL

In this section, we provide a direct connection between the IPS attention model and the softmax self-
attention layer, which typically includes an additional normalization step. Consider a sequence of
tokens {X;}Y . The output of the softmax self-attention layer is typically composed of an attention
block with learnable query, key, and value matrices, W, Wi € R4 with d), < d and Wy €
R?*4v that compute

Y = Att(Q, K, V) = softmax(%)v, Q=XWo, K=XWg, V=XWy. (Al
As explained in the main text, we denote by A = —=WqWj the score interaction matrix. Using

the definition of the softmax function, the output of the softmax self-attention layer for each particle

can then be written

N BXTAX,
Y = -
L=

= ZilX]
with 8 > 0 being the inverse temperature parameter. When the number of particles is large, the
partition function Z;[ X ] concentrates around its mean-field value with respect to the empirical dis-
tribution of the particles. If we denote by p the continuum limit of the empirical measure, then

Zi| X~ NZ; = NSe*BXiTAyd,u(y) conditioned on the i-th particle.

For the IPS surrogate we consider in this paper, we adopt two standard simplifications
2022} [Geshkovski et all, 2025}, [Bruno et all, 2025): we set d, = 1, and treat Z; as a constant
(independent of X)) that can be absorbed into the nonlinearity, and focus only on the self-interaction
for ¢ # j, and setting V; to be a constant, we get our IPS Attention Model:

N
Vi, Zi[X] =) XA
=1

1
Y, = N Z ¢(X1TAXJ‘)-
j#i
This reduction is similar in spirit to the surrogate model (USA) presented in/Geshkovski et al | (2025).
We note that a possible extension of our model to account for the softmax normalization would be
to learn a function for each particle, ¢;. We suspect it will not change the overall rate. In fact, as
stated in [Geshkovski et al)| (2025)), this reduction seems to capture the essence of the dynamics of
the self-attention (SA) model. Therefore, to simplify the setting, we focus on estimating a single
function.

B APPENDIX: UPPER BOUND PROOFS

We begin by reducing the distribution of the pair-wise particles to the distribution of one pair by
exchangeability. The exchangeability not only simplifies the proof of the upper bound, but also
provides a sufficient condition for the coercivity, which makes the inverse problem well-posed.

Lemma B.1 (Exploration measure under exchangeability) Under Assumption 2.1} the measure
p is the distribution of (X1, X2) € R? x RY and has a continuous density.

Proof. The exchangeability in Assumption implies that the distributions of (X;, X;) and
(X1, X2) are the same for any ¢ # j. Hence, by definition, the exploration measure is the distribution
of the random variables (X7, X5):

o(B) = (X1, Xs) € B)
which has a continuous density by Assumption [2.1] o
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B.1 PROOF OF THE UPPER BOUND IN THEOREM [3.1]

In this section, we provide the proof of the upper bound.

We begin with the proof of the key coercivity lemma, which is crucial in bounding the error of the
interaction function and making the inverse problem well-posed in the large sample limit.

Proof of Lemma 3.4 Recall R,(X); = w5 >.,.; 9(X;, X;). By definition

1
En(9) — Exn(gs) = NE<R979* [X], Rg—g.[X]) = —1) NN 12 Z Z 2 ECAj, Aigr),
i=1j#1 5/ #i
where A = (g — g.)(Xi, Xj)and 35, = Z;’\;l,j;&i' By exchangeability,
T STY S B Ay = L ElA E[Ass | 1))
i=1j#i j'#i
> RPN
N1 ElAel
since E|E[A13 | X1]|? = 0. The statement of the Lemma follows. o

Proof of Theorem 3.1 The proof is divided into five steps.

Step 1: Error decomposition. In this step, we decompose the mean squared error E[|ga; —
gx|32] to two terms. Using Lemma i.e., the coercivity condition and the definition of £, (g) =
A

~E[IY = Ry[X]|?], we have for cyy = 7

E [ [louste) ~ gt y>|2dp<x,y>]

500(§M) - 500(9*)

1 2 1 2
B[ - By, [X)1%] - AE[IY - Ry, [X]1?]
1

N

E[E[|Y — R, (X117 | Dar] |~ B[V ~ Ry [X]P] ®.1)

Let By := ¢ log(M) with some constant ¢; > 0 and Yy, := min(Bjs, max(—Bjs,Y)). Let us
denote

Ty = 2[Em(Gnr) — Enr(gs)] (B.2)
and
1 1
Tonr i= NE[\YM Ry, [ X1 | Du] — —IE[HYM — Ry, [X]|?] = Tu,m (B.3)
1
Tsari= SE[IY = Ry, [X]I* | Dar] - NE [ = Ry, [X]/?] (B.4)

SEIYar — Roy (X1 | Dar] + E[IYar — By, [X]17].

By equation we can decompose the upper bound of the mean squared error as
E (19~ 0133 = 2| [ ar(0.0) — gu(o )Pt
<z (E[TLM] +E[To0] + E[TgM]) . (B.5)

We shall proceed with our proof by bounding {E[T; p/]}?_; in the following Steps 2-4 via approxi-

mation error estimate, covering number estimate, and sub Gaussian property, respectively.
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Step 2: Bounding E[7} 5] via polynomial approximation. Recall that g, is the minimizer of
the empirical error functional £y7(g) over the estimator space 9, k,,- Thus, we have

Envi(Gar) — Enm(gs) < Em(gug.) — Err(9w)s

where g, g: o is a minimizer in G; = attaining inf 952 ., [Ex0(9) — Ex(gx)] (see, (Gyorfi et all
2006, Lemma 11.1)). Therefore,

1]E[TLM] =E[Em(Gnm) — En(g4)]

2
<E [EM (9x.2 ) — 5M(9*)]
= E(90; 4, ) —Elgs) = _Inf [Ex(g) — Eanlgu)] - (B.6)
Note that
1
E(9) = En(94) = 7B [ Ry [XT +nl* — 0]”]
1 Y 1 N ’
=N ;E N_1 j:;#[g - 9+)(Xi, X;) (B.7)

Applying Jensen’s inequality to get

2

1 & 1 ol 1 ol )
NZE N1 > lg—ad(X, X))| | < NV = 1) > E[|[9—g*](XuX])| ]
t=1 j=1,j#i i=1j=1,j%i

and by the exchangeability assumption we have that the expectations are equal and thus

1 , )
SE[Tm] < geégfw lg —g.lz2
- inf ,f\qﬁ«x, yoa) — 6u (o ypa) 2oz, ). (B.9)
ey Alp<a

Next, setting A = A, in equation[B.9] it is clear that

SET < inf [16e0pa) = 6.(C0)a ) Pdp(e.)

cd

Kn
< inf sup  [p(u) — du(u)? }
€%y, | ue[—a,a)

Then, one can choose ¢ following the construction in (Gyorfi et al.l 2006, Lemma 11.1) and that
¢, € CP(L,a) which shows that there exists a piecewise polynomial function f of degree /3 or
less with respect to an equidistant partition of [—a, @] consisting of K, intervals of length 1/K ;.
For any x,y ~ p and any matrix A € R?*? such that u = {(x,y)>4 € [—a, a], we will choose the
dimension K (to be specified later) so that

La?
sup [p(u) — du(u)| < ———.
wel~a,a] 18Iy,
We thus conclude that
2L2a%8

_ (B.10)
(18)2K3y

E[Ty pm] <

16
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Step 3: Bounding E[T% j,] via covering number estimates. We introduce the following nota-
tions to simplify the presentation. Define Aé’l(\j[) (9) := 5](&)( ) — 51(&) (g«)- Also, we denote

AEp), (Gur) = E[Y; — R\, [X1iI" | Dar] ~ ELIY; — Ry, [X][]

depends on the samples Dy = {(X™,Y™)}M_, and write similarly
AE)(g) = E[IY: — Ry[XLi["] ~ E[IY; — Ry, [X1:l’].

forany g € G; . Note that Aggl)w (9) = AES)(Q) for any (deterministic) g € G2

Kt

where gy € G Ku

It is straightforward to observe that E[T5, M] can be expressed as the average error per particle, that
is, E[Tp,0] = & 2N, E[TS),] where T3y, := AES) (Gar) — T, with T, = 2888 (Gas).
To estimate IE[TQ(TJ)M], it suffices to bound the following probability tail for the ¢-th particle

i D) A i) a 1 D o~
P{TLl > o) = P{ael), @) - A6 @) > 311+ A8, @1}
i i 1 i
<P{3f e G, A8, (1) - (D) > g+ Ack, (1)

—P{3f e G, 88D - AP > gle+ AP0} @D

We first observe that the probability tail above depends on the joint distribution of all particles
since the term Aé'](\;) (f) in equation involves all particles. To bound the tail probability of

Tz(ll)\/[, we invoke (Gyorfi et al.| (2006, Theorem 11.4), which is applicable to classes of uniformly
bounded functions. In our setting, this condition translates to the boundedness of the operator 12,.
Specifically, if |g|c < By, then for all ¢ € [N], we have |R,[X];| < By. Recall that By :=
c1log(M) and C4 := ([0, 1]/+/d)?. Applying Theorem 11.4 in|Gyorfi et al.| (2006) to equationm
(with @ = 8 = t/2 and € = 1/2), we get for arbitrary t > 1/M

t M

/ t _
P{T{), >t} <14 s A <,gg KM%M) T
5 {X""GC(]X}%:I SOBM s

1 — tM "
<14 ; M| ——,G : 7221457 512
{Xm:éljg}M 1 ' (803 M G Knr pM) € M ( )

where NV (e, G? Ko P A ) is the empirical covering number with respect to the L1 radius smaller
than ¢ over the function class 9, Ku

Employing the identity E[X So (X > t)dt and the standard integral decomposition So =
§c +§27 with £ to be determmed we get fore > 1/M
. 0 . 0 )
E[T3),] = f P(T3h, > t)dt < e + f P(TS), > t)dt. (B.13)
0 e /
Then, substituting equation [B.12]in equation [B.13|leads to
i © t tM
]E[T2(,I)\/I] < e+ J 14 sup Nl (SOB’ gf,KMapM) 24. 21454 7 dt. (B14)
€ {xmecyyN_, M

Notice that we can bound the covering number by its value at 1/M since ¢ > 1/M inside the integral
in equation [B.14 when ¢ > . It then follows that

. 1 © tM
E[T) 1 <e+ 14 M(——' G, J ~3i214 57 L. B.15
[Q’M] ) {Xmiélfg}m 1 "\ 80BymM Or. s PM e c o ( )
We can now apply the estimate of covering number in equation [B.22}
E[T5,m] ZE
L- __eM
<442 (Ly g M)? (Lo py M) (4142 %e La.1 (B.16)

17
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with LL]W = ].27’5,B¢ - 808, LQ’M = 24GB¢ - 80B), and L3$M = 24-214 - B% Since the
quantity e on the right-hand side of equation[B.T6|is arbitrary, we may tighten the bound by choosing

L
c = ;\ZM . log [42 . (Ll,MM>2Td(L27MM)2K]u(S+1)+2] ,

which yields the desired upper bound:

E[To m] <

M1+ 10g (42) + 2rdlog (L1,)

+2(Kar(s+ 1)+ 1) - log (Laar) + 2(Kar(s + 1) + 1+ rd) - log(M)]
< L3)]\/[(20KM5 + 57"d> log(M)
S M
when M > max(42 - L3y, Lo ).

(B.17)

Step 4: Bounding E[T; /] via sub-Gaussian property. As R, [X]; < By < By and
R;,,[X]i < By < By a.s. We assume that the noise 7 is sub-Gaussian and that R, is bounded for
any g € gf. Thus, using Lemma 2 in|Kohler & Mehnert|(2011) with Y, and Bj; given above, one
can obtain that with

=

@
I
—_

E[[Yiar — By [X:] — E[|Y: - Ry, [X:]?]|

2=

‘E[TS,M]’ <

+
2| =
1=

-
Il
-

[E[1Yinr = Ry [Xi12] = E[IY; - Ry, [Xi] ]|

(B.18)

for some constant ca > 0 independent of M and V.

Step 5: Deriving the upper optimal rate. 'We now combine the bounds from equation[B.10} equa-
tion and equation B.T8] which control the terms E[T},r/], E[T5 5] and E[T5 5], respectively,
to obtain an upper bound on the total error in equation

E[I9ar — 9.3

2L%a%° L 20K 5rd) log(M log(M
<3 ( - 2 o Jlog@D) Og]& ) (B.19)
()2 Ky
[ 2L%a* L3 pm20K 3 8(1 + 5L3 07) log(M) log(M)
< Cy 7028 : i - + Co i
(s1)2 K}y
1
using the assumption of the theorem rd < (lozgwM) “" and setting the value of K, as
1
1 M T
Ku = | |- B.20
M 20L3 08 <logM) ( )

A relatively straightforward choice of K's balances the terms in equation[B-T9]and leads to a desired
upper bound. We note that a careful choice of K, may affect the constants and the power of log (M)

in the upper bound. Putting equatioanack into equation and noticing 07_{1 < N, we get

2L2%(20L log M 2T log M 4T
[gM—g*LQ]\CHl[ (20Ls,pr53) (g > <1+5L3,M>( g )

(s)2 M M
co log(M)
v o8|

212(20s L5 yra)*?
<Nl (205Ls,11) (B.21)

log M e
(sh)? )

+ (1 + 5L3,M) + CQ] ( i

18
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when M > max(42 - LY"{, Ly ar) with Ly ar := 12raBg - 80Bas, Loy := 24eBy - 80Byy.
Recalling that L3 py = 24 - 214 - B3, = 24 - 214 - ¢; - log(M), we get from equation that

202(2024-214 - ¢y - sa)?®  [log(M)] 751+

E (g3 - gul3] < N

(1) Mo
28
log M)ze+1 4
N[L45-24-214 4 ¢y (BMTT
M BT
exfer ) [log (M) -4 a2
(s1)2 ’ M

for some positive constant Cq,Cs. We complete the proof of Theorem |3;f| with Cn 1.a.8,s =
[C“ S5+ Cal.

Finally, to hlghlight the tradeoff between the parametric and the non-parametric part of the error,
we present the following corollary. This corollary is directly derived from equation [B:19]and equa-
T

log M )

tion|[B.20| not using the assumption rd < (

Corollary B.2 Consider the estimator gy defined in equation computed on data M i.i.d. ob-
servation satisfying Assumptions m 2.1land|(B1)| Then, for gns defined in equation it holds that

. L?(sa)?? log(M)] 7551 +4max(26.1) log M)?
(1837 — .12 < [oﬁﬂg +02] . Llog(M1)] + Cyra. Qg2
? (s!) Mzt M
where Cy, Cy and Cs are positive constants (maybe take different values than in the Theorem[3.1).

B.2 AUXILIARY LEMMAS FOR THE UPPER BOUND

Recall that the covering number N (¢, G, d) is defined as the cardinality of the smallest e-cover of G
with respect to the metric d. When d is the Euclidean metric, we omit it from the notation and simply
write A'(g,G). It is also common to take d to be an LP-norm, either with respect to a probability
measure p or its empirical counterpart pps. In these cases, we write

No(€:G,p) = N(&, G, |- p), Np(e:Gopar) := N(e, G, |- g, )-

PM

We next derive an upper bound for Vi (g, Gy ko P M), 1.e., p = 1, by covering the matrix component
and the functional component separately. Our argument combines the covering number estimates
for matrices from |Vershynin| (2018)) with the results of |Gyorfi et al.| (2006)) for function classes.

Lemma B.3 Let G iy be defined in Definition 2.5) Assume that the sampled data {X m}NmM L are
distributed according to Assumption 2.1} Then we have

12raB¢)2Td (246B¢>2KM(S+1)+2

Ni(e, Gy k,rpm) < 3 ( (B.22)

9 S

Proof. Recall the matrix class defined in Definition 2.3t
Ag(r,a) := {A e R : rank(A) <7, ||Afop < @}
Write A = QKT via the truncated SVD, where Q = U,,Ei/2 € R and K = V,Ei/z e RIx7,

with singular values belonging to [0, @], and U,., VT are semi unitary matrices of size d x r, and %,.
is a diagonal matrix of size r x r. Then

QI = Te(S,) <ra,  |K|E <ra
Indeed, let § > 0 the J-covering of the matrix class Q,.q(v/ra) := {Q € R¥>" : |Q|r < +/ra} is

equivalent to the d-covering of B,.4(1/ra), a centered ball with radius +/ra in R"% and (Vershynin),
2018, Corollary 4.2.11) implies that

n = N, Qa(vra), | - |r) = N(e, Bra(vra)) < (

3\/7%)1%.

€

(B.23)
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Notice that for A; = Q1K and Ay = Q2K, with {Q; € Q.q(\/ra), K; € Q.q(\/ra)}?_; such
that Q1 — Q| < 6/(2va), |Kr — Kol < 6/(2/a), we have

[A1 = Asflop = [Q1 KT = Q2K lop < |Qulopl K1 = Kap + Q1 — Q2] pl[K2fop < 0.

Moreover, by Assumption [2.1{that X;, X; lie within the unit unit ball and the assumption that ¢ €
i, » a degree-s piecewise-polynomial approximation with K/ intervals, we get:

0((z,ppa,) — ({2, 9)a,)| < Byl A1 — Azflop < Byd

since |z|[, |y| < 1. This proves that if A;, Ay are within ¢ in operator norm, the corresponding
functions differ by at most Byd. Thus,

N1(2B4 8,6y g\ M) < ZZMM(% 6, {0((x, ) k7) : 0 € P, by o) - (B.24)

On the other hand, (Gyorti et al.| 2006, Theorem. 9.4-9.5) shows the following bound

6€(B¢ + 1) 2K1\4(8+1)+2 _ 3 % QKM(S+1)+2
Byé = §

for the empirical measure p)s in Definition with {X™ € C4}M_,. Putting it back to equa-
tion [B.24] we obtain that

N(By 6, @5, par) < 3 (

6ra2rd [ 12¢ 2K p(s+1)+2
Ni(2B438,G; e,y o0) < 3+ (55) (5) . (B.25)
Now re-parameterize by ¢ = 2B, i.e. § = £/2B,, and absorb constants in equation This
gives our desired estimate in equation[B.22] o

Remark B.4 As a by-product, we show that a %—cover for Q and K induces a d-cover for
Aq(r, @) in operator norm. Taking all pairs Q; K JT and substituting € = ﬁ in equation give
that

67"&)2"d

N(&,A(’r, a)’ ” . Hop) < (T

C APPENDIX: LOWER BOUND PROOFS

Lemma C.1 (Continuous density of the bilinear form.) Let (X,Y) € R2¢ have a joint density
p € LY(D) with D < R?? being a bounded open set. Let A € R¥? have rank r > 1, and define
U=X"AY. Then:

(i) (Existence) For every r = 1, the law of U is absolutely continuous with respect to Lebesgue
measure on R with a density denoted by py;.

(ii) (Continuity) If r > 2, then py € C(R).

Note that r > 2 is sharp for py to be continuous: for » = 1, continuity at 0 may not hold: if X,Y
are independent standard Gaussian in R and A = I, then U = XY has density py (u) = £ Ko(|ul),
where Ko(z) ~ —logz as x | 0, so py is singular at 0.

Proof. The proof consists of three steps: reduction to a canonical quadratic form on R?", existence
of the density, and continuity.

Step 1. Reduction to the canonical quadratic form on R?". Let A = WXV ' be a singular
value decomposition with ¥ = diag(oy,...,0,,0,...,0), where o; > 0 and W,V e R%*? are
orthonormal. Set o := W T X , 3 := VY. Orthonormal changes preserve absolute continuity, so

(a, B) has a joint density p(a, 8) = p(Wa, V) with support D = {(a, 8) = (WLz,V1y) :
(z,y) € D}, which is a bounded subset in R??. Split & = (a(”), o) and g = (3, 31) , where
the superscript () denotes the first  coordinates. Then

U= XTAY = Y 00" 8"

i=1
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Integrating out (at, 3+) yields a marginal density ¢ € L'(R?") for Z := («(™, 3(")) and it has a
bounded support, which we denote by €. Thus it suffices to work in R?” with

)= igiai/@h U=®(Z), Z ~qe LY(Q).

Step 2. Existence by the coarea formula. For any bounded measurable test function ¢ : R — R,

Mﬂ@]:Lw@@M@M& 1)

Note that ® has gradient V®(a, 8) = (0151, ...,0.6r, 0101, ...,0.q,), whichis L1psch1tz contin-
uous on §2. Applying the Coarea formula (i.e., for any f: Q R” — R Lipschitzand g € L] _(R"),
S 9(2) IV f(2)|dz = §, (Sf Ly 9(2) dH Lz )) du, where H"~1(z) denotes the Hausdorff
measure, see, e.g., Evans|(2018)) to f = ® with g(z) = ¢(2) p(®(2))/|VP(z)] gives

_ q(2) r— W) du
Lﬂwm¢QW—L<f R %0¢ud.

Hence, py(u) = {41 ‘vqéf) dH? ~1(z) for u # 0.
Note that under the change of variables z = 4/|u|w , the Hausdorff surface measure scales by

|u|(?r=1)/2 and |V®| by |u|*/2. Then, for u # 0, the above equation can be written as

Py P y = urfl q( ‘u|w) 2r—1 w U m
Ls&(@( ) a(z)d JRI | <L><w)=sign(u) o) AP )) ou)du.  (C2)

Comparing equation [C.T|and equation [C.2] the push-forward measure is absolutely continuous with
density
q(/|u] w)

put) = [ul | i)
P (w)=sign(u) |V(I>(w)|
for all w # 0. This proves (i) for all » > 1.

dH* H (w) (C.3)

Step 3. Continuity. Let {(t) = E[e?"V] = {,, e*®(*) ¢(2) dz be the characteristic function. The

phase t®(2) is a non-degenerate quadratic form with constant Hessian H = ¢ g %) (of full rank

2r ). By the standard stationary phase bound for quadratic phases (see, e.g., (Sogge,|2017, Theorem
1.1.4))

Co@®)] < C+ e
with C depending on ¢ (e.g. if ¢ € C'F° , then C' depends on a finite number of derivatives; and it
extends to general ¢ € L' since C° is dense in L'). Hence, if r > 2, then £y € L'(RR) and Fourier
inversion yields a bounded continuous density py (u) = 5= §, e &y (t) dt. o

Next, we provide the proof of Lemma
Proof of Lemma[d.1l Consider
Uiy = X AX;, Vi =X AX;,

so that §(X;, X;) = &(Vi;) and g*(Xi, X;) = ¢*(Ui;). Recall that pu,, is the density of U;; and
pU = W—U D juinj PU,; - Also, recall that the following functions are defined in equation

~ pUl (u) N

;i =F £ Uz — = J i ()
1/’](“) [d) J ‘ J U ; £ N_l)pU(u)w]( )

Since Zfil Z;\;l i WZ%% = 1, we have, by applying Jensen’s inequality,

N

25 _puy (W)
|w( ) ¢*(U)| - |,§1J:17j¢1’ N(N — 1)pU(u)wU( ) (b*( )|
N N pu,, (1) )
<2 2 NN = Dpo(w) [thsj (1) = b ()] (C4)
i=1j=1,ji



Under review as a conference paper at ICLR 2026

Also, by applying Jensen’s inequality to the conditional expectation, we have
~ 2 ~ 2
E[|6(Vij) — 6+(Uij)["] = E[E[|¢(Vij) — ¢+ (Uij)|"|Uss]]
~ 2 LN 2
> BIIE[3(V3) ~ 6.0 Us]) = | [is0) = 00(a) oo, ()

Averaging over the pairs as in equation[C.4] we have

N

- - 2
T Z E[|6(Vij) — 6+(Uiy)|]
i=1j=1j#i

- a 1 N N R 2 DU, (u) ;
> N 2, 2 [l = ol e i

—a

a
- 2
> | () = ¢u(u)]” pu(u) du,
—a
which is the desired inequality. o

r 71 . e . . . .
Proof of Lemma We construct K = [,y M 28+ | disjoint equidistance intervals.

{Ag = (’I“g—hM,Tg—FhM)}g(:l, with hyy = Li(L’ (C.5)
SnoK

where {r¢}, ng and L are specific values that will be determined below. We will define the intervals
by separating into two cases: one where the density of py; is bounded below by a, > 0 and one
where it is not.
If py(u) = ay > 0, we can simply use the uniform partition of supp(py;) to obtain the desired {A,}.
That is, we set ng = 1, Lo = 4, and 1y = —a + (2¢ — 1)hy;. If py is not bounded away from zero,
we shall build the partition based on its continuity. Since py; is continuous on [—a, @], the constant
ao = SUPge[—g,a] pu () exists, now consider g, < ap A 1. We can construct the K intervals

described in equationwhich satisfy the following | J, Ay = Ag := {u € [—a,a] : pu(u) > ay}.

Let Lo := *0 . Since for all v € Ay, py(u) < ag and for all u € A§, pr(u) < ao, together with
the fact that 1= SA pu(w)du + § 4. pu(u)du, we get:

1 < apLeb(Ap) + ay(2a — Leb(Ap)) = Lo < Leb(Ap) < 2a. (C.6)

Also, note that the set A¢ is open by continuity of pyy. Thus, there exist disjoint intervals (a;, b;)
such that Ay = U;O:1(aj’ b;). Without loss of generality, we assume that these intervals are de-
scendingly ordered according to their length b; — a;. Let
- L
ng = min{n : Z(bj —a;) > 0
Jj=1

(C.7)

One can see that ny > 1. Now, we construct the first n; disjoint intervals {A; = (ry — has,re +
har)}ply < (a1,b1) such that 7y = ay + Lhyy and ny = [bé};jflj. If ny = K, we stop. Otherwise,
we construct additional disjoint intervals {Ay = (r¢ — hag, 7e + har)} 20 "2 | © (g, by) similarly,
and continue to (a;, b;) until obtaining K intervals {A,}.

To show that we w111 at least obtain K such intervals, we show that K, > K, where K, is the

total number of intervals {A,}.,. Since the Lebesgue measure of (a;, b; \Uz 1 Ay is less than

2h s for each j, the Lebesgue measure of the uncovered parts '/ 21 (aj,b; ( U 1 Ag) is at most
2110 hM .

Thus, by equation the intervals {Ay} f:*l must have a total length no less than % —2nghys. And
since each of them is in length of 2h, the total number must satisfy:

L
K, > (70 — 2nohar)/(2har)
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and plugging in the definition of /s from equation|C.5| we get:
K* = QKTL()*TLO 2]’?

Now we construct hypothesis functions satisfying Conditions We first define 25 func-
tions, from which we will select a subset of 2s-separated hypothesis functions,

K
= ZWZ¢Z,M(U>7 w = (wla"' 7(“}]_()6{0’1}K7
=1
where the basis functions are

o (u) _thjm(“ W), we [~a,a] (C.8)

with ¥(u) = e @ 1),/<1/2- Note that the support of 1 r/(u) is Ay, and SA@ [0 a1 (u)]Pdu =

LQh?\?H |+|2. By definition, these hypothesis functions satisfy Condition|(D1)| i.e., they are Holder
continuous and

||anoo < LRy, < Lipu|? < L(2a)~" < By,

since hy; = < Lp < *0 with ag = ||pu | and |pyleo < %

8nK

Then, denoting ¢y () = ¢, (z), we proceed to verify Conditions [(D2)H(D3)l Next, we select a
subset of 25y, s-separated functions {¢y ar 1= ¢,k } 5, satisfying Condition|(D2)} i.e., ¢, —

D) HL?uU > 2sy o forany k # k' € {1,...,K}. Here sy p = Clcg’ﬁ,MWﬂl with C; being a
positive constant to be determined below. Since Ay = supp(¢e, ) S A, are disjoint, we have

60— durlzz, = ( |

- ( 5 e — e? Lé |¢4,M<u>|2pu<u>du) g

{=1

K 2

1
2

— wp)the,nr (u)

pU(U)dU>

Since py (u) = a, over each Ay, we have

L e () 2o () > g L e () P = ag L2R2E+ [ 2.

Applying the Varshamov-Gilbert bounq (Tsybakov, 2008, Lemma 2.9), one can obtain a subset
{(w®}E | with K > 25/8 such that 35 (0™ — w{F))2 > K forany k # k' € {1,..., K}. Thus,

% B+1/2
K (Lo
w — Gl = /agL - _
Iéw = durllzz, > vaoLlvl2y/ 3 <8nOK>

KY2 [ L, B+1/2
= JaL - (=2 K- (B+1/2)
Valvhg 7 ()

(VL (1o s
2\/§ 8’1’LO N.M

_ __B .
where sy v = Clic %M 25+1 with

o VLY ( Lo )ﬂ“/?
L 4\/§ 8710 )

To verify condition [(D3)| m for each fixed dataset {X™}M_,, we first compute the Kullback-Leibler
(KL) divergence. Define u]} := (X] m)TAX ™. Then for each m,

Ry[X™]; = _1Z¢> )

J#i
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Under the hypothesis ¢ 1/, the density of the outputs {Y™}M_, is
M

pr(y', ™) = T pa (ym — Ry s [X"‘]),

m=1

where y™ € R? represents the observed output Y. By definition of KL divergence and the i.i.d.
noise assumption,

Py (y™ a
DKL Pk’PO J- Jlog 1 ) n pn

m= 1p77 m+R¢ m=1

This simplifies to

Dxr (Br, o) Pn(y™) dy™.
KL ks 0 ZJ :Dn ym +R¢kM[Xm])]pn(y )dy

Finally, by the noise smoothness assumption 2.2} for each m,

| patutog] ;225 Jay < ol

where v = Ry, ,,[X™]. Summing over m = 1,..., M yields

Dxr, (P, Po) < ¢ Z R, o[ \ , (C.9)

Employing Jensen’s inequality, we have

N N
2
R X7 = 3 (w5 2 onne@))) Z w1 Blonaipl = vk 3 Do)l
i=1 i i i=1j#i
(C.10)
Recalling that ¢y a(uf}) = Zle wék)w,M(uﬁ), where supp(ve,vr) S A, are disjoint and
|1/1¢7M(u§’;)\ = thv[w(uiéMrz) < Lh@HqﬁHOOl{uz’;EAe}’ we have
K
|Grear (uf] Zwe e e (W)* < 20371012 Y. Tupeans (C.11)

(=1

where we have used the fact that 0 < ék) < 1. By plugging in both equation and equa-
tion[C.11]into equation[C.9] we obtain

Dk (P, Po) <

<L2 26“’9/)Hoc Z 1{’U.UEA£}>
m=14=1j#1¢
C7L2 ¢ 2
B 5 (Z WEM}).
(=1

4,5,m

Since the intervals {A,} are disjoint, the inner sum is at most 1. The total sum over i, j, m is
therefore bounded by N2 M, which gives:

Dxr(Py, Bo) < ¢, L2 9|2 NMR3S.
OR from equation and K = [co M Tlﬂ], we obtain

1 & o Lo K\
T 2 Dre(Pr, o) < (c LIl (no> ) N( ) K=
k=1

Co,N
L2I2 N / Lo \ 22\ _
= (C”Q‘;ﬂ <°> K <alogK
con 8ng

24

Hence, by assigning iy = 3
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201,112 28 _
with o = % (@) ) Topz Since K > 2K/8  Thus, for condition |(D3)|to hold, i.e.,

8n
0N 0

a < 1/8, we need

Lo \**
268+1
Btz ote, Py ()

. 1
Following co, ny = CoN 2551, it suffices to set Cj to be

Lo \*’
Co = @2 2012 (2 ) ).
8’/10

o

To prove the lower bound minimax rate, we will use the following lower bound for hypothesis test
error, see e.g., Proposition 2.3 [Tsybakov| (2008)) or Lemma 4.3 in Wang et al.| (2025).

Lemma C.2 (Lower bound for hypothesis test error ) Let © = {Hk}kK:O with K > 2 be a set of
2s-separated hypotheses, i.e., d(0,0k) = 2s > 0forall 0 < k < k' < K, for a given metric d on
O. Denote Py, = Py, and suppose they satisfy P, < Py for each k > 1 and

1
K+1

K
> Dkw(Pr,Po) < alog(K), with0 < a < 1/8. (C.12)
k=1

Then, the average probability of the hypothesis testing error has a lower bound:

K
. log(K + 1) — log(2)
£ P, (kg # k) = _a C.13
L&KH;O k(b # ) log(K) “ €13

where infy,  denotes the infimum over all tests.

Proof of Theorem 4.3 We aim to apply Tsybakov’s method to simplify probability bounds by con-
sidering a finite set of hypothesis functions. Reducing the supremum over C?(L, @) to the finite set
of hypothesis functions, and applying the Markov inequality, we obtain

swp By [|0u - 0ul3; |
$.€CP(L,a) ru
H¢*Hoo<Bd>

> max Ey, [A — o l? ]
St €{ont o bra} bk, M HQSM ¢k7MHLgU

> max S P ns [H¢M — ¢kmlrz, > SN,M]

Ok, mE{Po, M- PK M}

K
25?\/71\4](7“ Z Exl7.__7xM I:quk’M <||¢1\4 — ¢k7MHL%’U > SN,M‘XI, . ,XM)] , (C14)
k=0

where the last inequality follows since the maximal value over the functions is no less than the
average and since P(A) = E[14] = Ez[E[14|Z]] = E[P(4]2)].
Next, we transform to bounds in the average probability of testing error of the 2sy pr-separated

hypothesis functions. Define ks as the minimum distance test:

.....

Since ¢, s is the closest one, we have that |/¢y; — Pre MLz, < lérs — brons |z, for all

k # kiest. Using the fact that the function ¢y, ps are built as 25y s separated functions and using the
triangle inequality we have:

25N.M < bkt — OhnrllLz < oy — Oreentlez, + 100 — Genrlrz < 2|dn — drnrlrz

sosy,m < |om — ¢k71\/[HLIZ’U for all k # k.. Hence,

Po (103 = Srrlzz, = snar| X2, XM) 2 P (et # KXo XM) . (€15)

25
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Consequently,
K
SN M | X ,XM)
K
Zinf %Pm,M(kmsr#k\Xlr“ (XM) = inf ; dbea 2 K) (€10

where Py.(-) = Py, ,, (- | X1, ..., XM).
The Kullback divergence estimate in equation [(D3)| from Lemm holds with 0 < o < 1/8, and

by Lemma and the fact that K = 2[<0.~M 2711y equation 4.3 increases exponentially in M,
we have:

log(K + 1) — log(2) 1
—a> =

log(K) 2

if M is large. Note that the above lower bound of infy, rem Zszo Py, (ktest # k) is independent

of the dataset {X™}M_,. Using equation ,equation and equation |C.14] we obtain with
1 —B8712
Co = 5[0100 ] N

inf
k(CS(

\%

1 &
: D Pi (ke # k) = (C.17)
k=0

2

~ s
sup By, [quM SR ] > M _ N e (C.18)

$veC(L,a) U 2
for any estimator. Hence, the lower bound equation 4.3 holds. o

Proof of TheoremFirst, we reduce the supremum over all A, to a single one. Let A € Ay(r,a)
with rank(A!) > 2. Since

Gar 1= {go,0(0,y) = (a7 A'y) 6. C7(La), 6] < By} = G7 (L, By, ),

we have for any g,

sup  E[g—g.]i; > sup E[7 - gz (C.19)
9+€G2 (L, By,a) " geGm

Thus, to prove equation &3] it suffices to prove it with g, € G41.
Let U* be the random variable defined in with A, = A'. Then, Lemma-lmphes that
5 - g*HLg > 1 - 0.2 |

for any g(z,y) := qb( TAy) with (;5 € Lp , and Ae Aq(r,a) and any g, € G41. Here, v, defined
in equation[£.2] varies according to g since both A, and the distribution of X are fixed. Taking first
the expectation over g, then taking the supremum over g, € G 41 followed by the infimum over A
and q’b\, we obtain

inf  sup E[g—g.|7,> inf sup El¢ — ¢. 2. . (C.20)

Ae.Ad(r @) g«€G 41 pel? Ul $eeC? (L a) Put
2
ber? I¢alloo<
Meanwhile, Theorem [4.3] gives a lower bound
B4 a s
liminf inf  sup MTFE[)— g2, >N Th (C21)
M= jeL? | ¢,ec?(L,a) "yt
U
[é«llco<Bg

with ¢g > 0.

Combining (C.19)—(C.21])), we then obtain:

28 .
lim inf inf sup M 25+T E[Hg - 9*||2L2]
M=o g o eGP (L,By.a) !

>liminfinf sup M%E[Hﬁ—g*“%g]

M- g 9+€G 41

28 5 2
>liminf inf sup MzE+3 ]EM) — Ou HLz
M—w w€L2U1 (‘T*Eﬁ (L, a) Pyl
¢* L)C

_ 28
> cgN T,

26
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which gives the desired result in equation {.5] o

D NUMERICAL SIMULATIONS CONFIGURATION

This section provides a detailed description of the simulations presented in Section [5}

D.1 DATA GENERATION

For each sample size M, we run a Monte Carlo simulation over different seeds as follows. We draw
token arrays X(™ = (X(™ . x(™) e ¢V iid. with X\™ ~ Unif[0,1]¢/+/d sampled i.i.d
and construct the (X"™)TA, X ;m) terms, evaluate the interaction via ¢, (the sampling method of
¢, and A, is detailed below, and aggregate and add i.i.d. noise n§’") ~ N(0,0?) as described in
equation [2.1|to generate Yi(m).

For each simulation, we sample the ground truth interaction g,(x,y) = ¢.(x' A,y) by drawing
random ¢, and choosing A,. We represent ¢, as a B-spline of degree P, defined on an open
uniform knots with K basis functions on [—1, 1].

K,
$u(u) = > 0% By (u).
k=1
For each seed, we draw 0, ~ N(0, I, ) and then normalize it for ||, | = /K.

D.2 ESTIMATOR

If A, was known, the estimator can be computed by setting A = A, and setting qg(u) =
Zszl 0. By (u) with degree P.y and 6 chosen according to the ridge regression formula:

6= (UTU + 1) ' UTy, (D.1)

where U = (U(m’i)’k) e RMNXK with

Uiy = 37— B ((X™)TAX ™) (D.2)
J#i

and y = (Y;(m)) c RMNx1

However, since A, is unknown, the joint estimation of (A, ¢) is non-convex due to the composition
#(xT Ay). To mitigate local minima, we use a hot start and an alternating scheme. We perform the
hot start by setting A(®Y) = A, + A4 with A4 being a perturbation specified in Table E] and setting
the initial (°) as the matching ridge solution In the PyTorch implementation, the scheme

includes a description of the function ¢ as a neural network. This is because representing it as
B-splines directly would require differentiating through the B-spline basis, which is cumbersome
for automatic differentiation. To address this, we introduce a neural-network surrogate @, that
approximates the spline and can be used as a differentiable link in the A-step.

Alternating Optimization for q}, A
1. Hot start: set A® = A, + A, and compute (0 = (UTU + AgI)flUTy with U
computed according to A(?) in equation

2. Fort=1,...,T:

(a) Approximate the current spline using a multilayer perceptron (MLP). Fit an MLP

@git_l) on a grid {u,} to minimize ), |<I>I(,;_1)(W) — o= ())2

27
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(b) A-step through optimization. Update A by minimizing the empirical loss with ¢ =
3!~V held fixed using the Adam optimizer

net

M N

1 . (m) y(m) m\? | Aay 42

min —— > )] (Z,gmééi”(xi XM =y M) AR ©3)
m=1i=1 j#1i

(c) O-step through closed form. With A fixed at A®), compute #®) by ridge regression:

stack y € RMY from Y;"™, and build U € RMN*K with

1 (m)yT (m)
U(m,i),k = N -1 Z Bk((Xz ) A(t)X] )
J#i
and compute

1

08 = (UTU + D) UTy.

Choice of K¢ and \g. We set the number of spline coefficients by the bias variance trade-off for
a 3-Holder smoothness as done in equation [B.20]

Koy = round (Kscale(M/ log M)l/(2ﬁ+1))

where Kgcae is a chosen constant. For the ridge regularization constant Ag we follow the standard

scaling for least squares models with M N responses and K coefficients, the variance of 6 should

scale like K /(M N), so we take
Kesl

Ao = )\scae AN 1\
o °*M(N - 1)

D.3 ERROR ESTIMATE

We measure accuracy via the estimator test MSE, sampling never seen inputs X (™ ~
Unif[0, 1]¢/+/d and evaluating:

Niee

1 test 1 N (m) (m) (m) (m)y |2

= i (XX —g.(X™ X )
Niwt & N(N - 1) 2o 12504,06™, X5™) = 0. (X, X7

m= =1 j#i

N
MSE,

D.4 SIMULATION PARAMETERS

The following table details the parameters used for the simulations described in Section 5]

28
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Table 1: Chosen parameters for the simulation

Parameter Value
Seeds 300
A, Diagonal matrix with i.i.d. entries A11 = 1, Vi > 1 A;; ~ Unif[—1,1]
Sample sizes M [20000, 27355, 37416, 51177, 70000]
N 3
Gaussian noise std 0;,  0.07 (Gaussian)
Estimator degree Py = P
K. 16

Kscale
Basis size Ko

Aa
Ascale
Y

Aa

T

A-step optimizer
‘IJEQ architecture
@,222 optimization
Test set

[(a) and (b) for P, = 3]: 16

[(b) for P, = 8]: 30

[(2) and (b) for P, = 3]: {73, 78,82,87,92} (matching the M grid)
[(b) for P, = 8]: {50, 51,52, 53,54} (matching the M grid)
107°

2

[(a) and (b) for P, = 3] 1072 x {6.85,5.30,4.12, 3.19,2.46}
[(b) for P. = 8]{2.50,1.86,1.39,1.04,0.77}

(matching the M grid)

Entry wise Gaussian noise with an std of 5/d x 107"

4

Adam, Ir = 1078, 20 epochs.

1-hidden layer of width 32 (GELU activation)

1000 epochs (Adam) Ir = 0.01

2000 samples
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