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ABSTRACT

We study the convergence rate of learning pairwise interactions in single-layer
attention-style models, where tokens interact through a weight matrix and a non-
linear activation function. We prove that the minimax rate is M´

2β
2β`1 with M

being the sample size, depending only on the smoothness β of the activation, and
crucially independent of token count, ambient dimension, or rank of the weight
matrix. These results highlight a fundamental dimension-free statistical efficiency
of attention-style nonlocal models, even when the weight matrix and activation are
not separately identifiable and provide a theoretical understanding of the attention
mechanism and its training.

1 INTRODUCTION

The transformer architecture (Vaswani et al., 2017) has achieved remarkable success in natural lan-
guage processing, computer vision, and other AI domains, with its impact most visible in large
language models (LLMs) such as GPT (OpenAI, 2024), LLaMA (Touvron et al., 2023), and BERT
(Devlin et al., 2019). At its core, attention mechanisms model nonlocal dependencies between in-
put tokens through pairwise interactions, creating a function class capable of representing intricate
contextual relationships.

Despite the empirical success, our theoretical understanding remains incomplete. The attention
mechanism computes weighted averages of token representations using pairwise similarities, but
we observe only the aggregated outputs and not the underlying interaction structure that generates
them. This creates a fundamental inverse problem with critical sample complexity questions: can we
recover the interaction function from these aggregated observations, how many samples are needed
to learn token-to-token interactions for a given accuracy level, and how does the convergence rate
depend on embedding dimension, number of tokens, and smoothness of the activation function?
Recent phenomena like extreme attention weights on certain tokens (Sun et al., 2024; Guo et al.,
2024b; Xiao et al., 2024; Wang et al., 2021) further highlight gaps in our understanding of how
transformers process token interactions.

In this paper, we tackle these questions by analyzing an Interacting Particle System (IPS) model for
attention-style mechanisms. Tokens are viewed as “particles,” and the self-attention aggregates pair-
wise interactions between them. The interaction is a composite of an unknown embedding matrix
and an unknown nonlinear activation function, both are learned from data. This makes the problem
challenging as it is fundamentally nonconvex. Our IPS approach provides a natural framework for
understanding how transformers process inputs with a large number of correlated tokens, moving
beyond the restrictive assumption of independent, isotropic token distributions.

We summarize our main contribution below:

‚ We establish a connection between transformers and IPS models, enabling us to address the
challenging inverse problem of inferring nonlinear interactions learned by attention mecha-
nisms. Our analysis extends beyond the standard assumption of independent, isotropic token
distributions to allow for dependent and anisotropic data.
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‚ Inferring the interaction function is an inverse problem. We prove that under a coercivity
condition (Lemma 3.4), this problem is well-posed in the large sample limit. This condition
holds for a large class of input distributions.

‚ We prove that the rate of M´
2β

2β`1 is the optimal (up to logarithmic factors) minimax con-
vergence rate in estimating the 2d-dimensional pairwise interaction function where M is the
sample size and β is the Hölder exponent of the function. Importantly, this rate is independent
of the embedding dimension d and the weight matrix rank. This dimension-free rate stems
from the model’s intrinsic structure of a scalar activation on a bilinear form, which reduces
the sample complexity of the problem from learning a 2d dimensional interaction function to
a scalar function applied to a 1D bilinear form. The rate M´

2β
2β`1 is precisely the optimal rate

for this 1D estimation problem, confirming that the attention-style model evades the curse of
dimensionality.

1.1 RELATED WORKS

Neural networks and IPS. Modeling neural networks as dynamical systems through depth was
introduced in Chen et al. (2018), which framed updates in ResNet architectures as the dynamics
of a state vector. This perspective has been generalized to various architectures, typically treating
skip connections as the evolving state across layers. Following this approach, in Geshkovski et al.
(2023; 2025) they view tokens as interacting particles, analyze the attention as an IPS, and study
clustering phenomena in continuous time (in depth). Similarly, Dutta et al. (2021) leverages a similar
framework to compute attention outputs directly from an initial state evolved over depth, thereby
reducing computational costs. While these works provide valuable insights, they focus exclusively
on the dynamics of tokens through the layers. To our knowledge, no existing work addresses the
learning theory for estimating the pairwise interactions in such particle systems.

Inference in attention models. Many theoretical works have studied the learnability of attention,
focusing on specific regimes. Some consider simplified variants, such as linear or random feature
target attention models (Wang et al., 2020; Lu et al., 2025; Marion et al., 2025; Hron et al., 2020;
Fu et al., 2023), which explore the capability of this model under simple regression tasks. Deora
et al. (2024) analyze logistic-loss optimization and prove a generalization rate under a “good” ini-
tialization. Others consider a more specific architecture, Li et al. (2023) study the training of shallow
vision transformers (ViT) and show that, with suitable initialization and enough stochastic gradient
steps, a transformer with additional ReLU layer can achieve zero error. Several works study soft-
max attention layers with trainable key and query matrices in the limit of high embedding dimension
quadratically proportionate to samples with i.i.d. tokens Troiani et al. (2025); Cui et al. (2024); Cui
(2025); Boncoraglio et al. (2025), which is further expanded in Troiani et al. (2025) for softmax
attention (without the value matrix) with multiple layers. These works mainly focused on the lin-
ear/softmax attention model and do not consider a general interaction function. In addition, most
studies assume the tokens are independent and do not draw the connection to the IPS system.

Inference for systems of interacting particles. There is a large body of work on the inference
of systems of interacting particles; we state a few here. Parametric inference has been studied in
Amorino et al. (2023); Chen (2021); Della Maestra & Hoffmann (2023); Kasonga (1990); Liu &
Qiao (2022); Sharrock et al. (2021) for the operator (drift term) and in Huang et al. (2019) for the
noise variance (diffusion term). Nonparametric inference on estimating the entire operator Rg , but
not the kernel g, has been studied in Della Maestra & Hoffmann (2022); Yao et al. (2022). The
closest to this study are Lu et al. (2021a; 2022; 2019); Wang et al. (2025). A key difference from
these studies is that their goal is to estimate the radial interaction kernel, whereas our 2d-dimensional
pairwise interaction function is not shift-invariant due to the weight matrix. In addition, all these
studies focus on IPS in general, without a clear connection to attention models.

Activation function in transformer layer. Recent work has shown that attention models suf-
fer from the “extreme-token phenomenon”, where certain tokens receive disproportionately high
weights, creating challenges for downstream tasks (Sun et al., 2024; Guo et al., 2024b; Xiao et al.,
2024; Wang et al., 2021). To address this, it was proposed to replace softmax with alternatives, such
as ReLU (Guo et al., 2024a; Zhang et al., 2021), which can "turn off" irrelevant tokens, a capability
that softmax lacks. While linear attention can outperform softmax in regression tasks by avoid-
ing additional error offsets (Von Oswald et al., 2023; Katharopoulos et al., 2020; Yu et al., 2024;
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Han et al., 2024), it may be inferior for classification (Oymak et al., 2023). These findings sug-
gest no universally optimal activation function exists, making the theoretical analysis of a general
interaction function in transformer-type models crucial. As for vision tasks, several Vision Trans-
former (ViT) variants remove the softmax activation while remaining competitive. For example, Lu
et al. (2021b) consider an attention mechanism based on a Gaussian kernel, and Koohpayegani &
Pirsiavash (2024) apply linear attention after normalizing the Key-Query columns. Furthermore,
Ramapuram et al. (2025) examine a sigmoid function as the attention activation, showing it acts
as a universal function approximator and benefits from improved regularity compared to softmax
attention.

Nonparametric and Semiparametric Estimation for Neural Networks Classical nonparametric
estimation provides optimal minimax rates for simple structures. Gaıffas & Lecué (2007) provide
bounds for the single index model fpwJxq of orderM

´2β
2β`1 . For the more general projection pursuit

model fpxq “
řK
j“1 fjpxx, βjyq, Györfi et al. (2006) shows that the minimax rate is the standard

rate up to a log factor. These results directly apply to small single-layer neural networks.

Closer to deep learning, Horowitz & Mammen (2007) analyze generalized additive models with
nested k-times differentiable compositions, showing the rate is M´ 2k

2k`1 . Schmidt-Hieber (2020)
proves that connected deep ReLU networks achieve a near-optimal minimax rate (up to log factors)
over a class of composed functions. In Bhattacharya et al. (2024) they study a nonparametric interac-
tion model in high dimension settings and show sparsity assumptions and associated regularization
are required in order to obtain optimal rates of convergence.

Notation. Throughout the paper, we useC to denote universal constants independent of the sample
size M , particles N and the embedding dimension d, r. The notations Cβ or Cβ,L denote constants
depending on the subscripts. We introduce the L2

ρ inner product as xf, gyL2
ρ

“
ş

fprqgprqρpdrq and
denote the Lpρ norm by }f}

p
Lp

ρ
“

ş

|fprq|pρpdrq for all p ě 1. For vectors a, b P Rd and A P Rdˆd

we write xa, byA :“ aJAb.

2 PROBLEM FORMULATION

In this section, we describe our statistical task and connect it to the attention model.

Model setup and learning task. We consider a model of N interacting particles,

Yi “
1

N ´ 1

N
ÿ

j“1,j‰i

ϕ‹

`

xXi, XjyA‹

˘

` ηi (2.1)

where η P RN is noise as specified in Assumption 2.2, ϕ‹ : R Ñ R is an unknown interaction kernel,
and A‹ P Rdˆd is an unknown interaction matrix. Here, we write xx, yyA :“ xJAy for x, y P Rd
and A P Rdˆd. The input X “ pX1, . . . , XN qJ P CNd :“ pr0, 1sd{

?
dqN Ă RNˆd denotes

the particle positions (or token values), and the output Y “ pY1, . . . , YN q P RNˆ1 represents the
average interactions between the particles.

We observe M i.i.d. samples

DM “ tpXm, Y mquMm“1, Xm P CNd :“ pr0, 1sd{
?
dqN , Y m P RN ,

allowing the N particles and their entries to be dependent. The task is to learn the pairwise interac-
tion function g‹ : Rd ˆ Rd Ñ R,

g‹px, yq :“ ϕ‹

`

xx, yyA‹

˘

, px, yq P Rd ˆ Rd, (2.2)

from the dataset of observations DM . We introduce the vectorized view of the model via the
forward operator Rg for any candidate interaction function g : Rd ˆ Rd Ñ R as RgrXsi :“

1
N´1

řN
j“1,j‰i gpXi, Xjq. Accordingly, our model in equation 2.1 becomes Yi “ Rg‹

rXsi ` ηi.
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Connection to self-attention layer. We view self-attention through the lens of an IPS: tokens are
“particles,” and attention aggregates pairwise interactions between them. A typical self-attention
layer is composed of an attention block with learnable query, key, and value matrices, WQ,WK P

Rdˆdk with dk ď d and WV P Rdˆdv that compute

AttpQ,K, V q “ softmax
´

QKJ

?
dk

¯

V, Q “ XWQ, K “ XWK , V “ XWV . (2.3)

The attention operation is then often followed by an application of a multilayer perceptron (MLP),
which maps the above into some other nonlinear function. The pairwise structure of attention mo-
tivates modeling token interactions via a scalar kernel function applied to a bilinear form of some
score interaction matrix A‹ that can be viewed as the learned projections through 1?

dk
WQW

J
K , i.e.,

softmax
´

QKJ

?
dk

¯

“ softmax
´

XA‹X
J
¯

, XA‹X
J “

`

XJ
i
WQW

J
K?

dk
Xj

˘

1ďi,jďN
.

The interaction function in equation 2.2 can be interpreted as either a function induced by the MLP
and softmax function, or as a general activation function with a constant value matrix, see mode
details in Appendix A. As stated in the related work, such a setup for a general activation function
is often desirable due to the extreme-token phenomenon (Sun et al., 2024; Guo et al., 2024b; Xiao
et al., 2024; Wang et al., 2021)

Consequently, the problem of estimating g‹ from the samples described in equation 2.1 is analogous
to the joint estimation of the activation function and weight matrix governing nonlocal token–token
interactions in a single-layer self-attention mechanism.

Goal of this study. Our goal is to characterize the optimal (minimax) convergence rate of estima-
tors of g‹ as the sample size M grows.

To assess the estimation error for the interaction function, we introduce empirical measures over
pairs of particles/tokens px, yq. Termed exploration measures, they quantify the extent to which the
data explores the argument space relevant to the function.

Definition 2.1 (Exploration measure) Let tXm P CduMm“1 be sampled sequence. Define the em-
pirical exploration measure of off-diagonal pairs of particles

ρM pBq :“
1

MNpN ´ 1q

M
ÿ

m“1

N
ÿ

i“1

N
ÿ

j“1,j‰i

1tpXm
i ,X

m
j qPBu

and the population exploration measure as ρpBq :“ limMÑ8 ρM pBq “ ErρM pBqs, for any
Lebesgue measurable set B Ă Rd ˆ Rd.

We aim to provide matching upper and lower bound rates for the L2
ρ error of the estimator pg, so as

to obtain a minimax convergence rate:

E
”

}pg ´ g‹}2L2
ρ

ı

« M´
2β

2β`1 , as M Ñ 8, (2.4)

where β is the Hölder exponent of g‹ (which is determined by the smoothness of ϕ‹). This then
demonstrates that the attention model is not susceptible to the curse of dimensionality. In particular,
we aim to characterize the dependence of the rate on the embedding dimension d, the rank r of the
interaction matrix, and the number of tokens N .

2.1 ASSUMPTIONS ON THE DATA DISTRIBUTION

We now state the assumptions on the distributions of the input and the noise used throughout this
work. We do not assume that the N tokens are independent of each other.

Assumption 2.1 (Data Distribution) We assume the entries of the CNd “ pr0, 1sd{
?
dqN -valued

random variable X “ pX1, . . . , XN q satisfy the following conditions:

pA1q The components of the random vector X “ pX1, . . . , XN q are exchangeable.

pA2q The joint distribution of pXi, Xjq has a continuous density function for each pair.

4
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These assumptions simplify the inverse problem and may be replaced by weaker constraints; see
Wang et al. (2025) for a discussion and references therein. The exchangeability in pA1q simplifies
the exploration measure in Lemma B.1. It enables the coercivity condition for the inverse problem
to be well-posed, as detailed in Lemma 3.4, and is only used in the upper bound in Theorem 3.1.
The continuity in Assumption pA2q ensures that the exploration measure has a continuous density,
which is used in proving the lower minimax rate Theorem 4.4.

We next specify the noise setting. Assumption 2.2 details the constraints we assume for the noise:

Assumption 2.2 (Noise Distribution) The noise η P RN is centered and independent of the ran-
dom array X . Moreover, we assume the following conditions:

pB1q The entries of the noise vector η “ pη1, . . . , ηN q are sub-Gaussian in the sense that for all
i, Erecη

2
i s ă 8 for some c ą 0.

pB2q There exists a constant cη ą 0 such that The density pη of η satisfies the following:
ż

RN

pηpuq log
pηpuq

pηpu` vq
du ď cη}v}2, @v P RN . (2.5)

We note that assumptions pB1q and pB2q hold for instance for Gaussian noise η „ N p0, σ2
ηIN q with

cη “ 1{p2σ2
ηq.

2.2 FUNCTION CLASSES AND MODEL/ESTIMATOR ASSUMPTIONS

We introduce the functional classes where g‹ lies. Our goal is to consider as large a class of functions
as possible while also tracking the properties of the models ϕ‹ that control the rate. For that purpose,
we introduce the Hölder class and assume that ϕ‹ satisfies some smoothness order of β.

Definition 2.2 (Hölder classes) For β, L, ā ą 0, the Hölder class CβpL, āq on r´ā, ās is given by

CβpL, āq “

!

f : r´ā, ās Ñ R : |f plqpxq ´ f plqpyq| ď L|x´ y|β´l,@x, y P r´ā, ās

)

, (2.6)

where f pjq denotes the j-th order derivative of functions f and l “ tβu.

Low-rank Key and Query matrices often play an important role in the attention model. To keep
track of the effects of the rank on the minimax rate, we introduce the following matrix class for the
interaction matrix A‹, which is the product of the Key and Query matrices.

Definition 2.3 (Interaction matrix class) For ā ą 0, the d-dimensional matrix class Adpr, āq with
rank r P N and 2 ď r ď d is given by

Adpr, āq “ tA P Rdˆd : 2 ď rankpAq ď r , }A}op ď āu . (2.7)

Combining both classes, we consider the following function class Gβr for all the possible pair-wise
interaction functions.

Definition 2.4 (Target function class) Given L,Bϕ, ā ą 0 and rank r ě 2, β ą 0 define

Gβr pL,Bϕ, āq “

!

gϕ,Apx, yq :“ ϕpxJAyq : ϕ P CβpL, āq, }ϕ}8 ď Bϕ, A P Adpr, āq

)

. (2.8)

For any g P Gβr “ Gβr pL,Bϕ, āq, moreover it follows |RgrXsi| ď Bϕ. For technical reasons we
requires L ď Bϕp2āqβ . This holds without loss of generality for any ā ě 1 and L ď Bϕ.

We provide both lower and upper bounds for the possible error rate by the number of samples for
the interaction gp¨, ¨q P Gβr . We consider the following functional class for our estimator:

Definition 2.5 (Estimator function class) Let s :“ maxptβu, 1q and KM P N. Let ΦsKM
denote

the class of piecewise polynomials of degree s, defined on KM equal sub-intervals of r´ā, ās. The
corresponding estimator model class is

Gsr,KM
:“

!

gϕ,A : ϕ P ΦsKM
, }ϕ}8 ` }ϕ1}8 ď Bϕ, A P Adpr, āq

)

Ď Gβr . (2.9)
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3 UPPER BOUND

In this section, we provide an upper bound on estimating the token-token interaction. We propose
the following estimator pgM px, yq “ ϕ̂pxx, yyÂq as the empirical risk minimizer over the functional
class 2.5

$

’

’

’

&

’

’

’

%

pgM “ argmin
gϕ,APGs

r,KM

EM pgϕ,Aq :“ 1
N

N
ř

i“1

Epiq
M pgϕ,Aq with

Epiq
M pgϕ,Aq :“ 1

M

M
ř

m“1
}Y mi ´Rgϕ,A

rXmsi}
2.

(3.1)

Here, Rgϕ,A
rXsi “ 1

N´1

řN
j“1,j‰i gϕ,ApXi, Xjq the forward operator with interaction function

gϕ,A. Our goal is to prove that the estimator pgM achieves the optimal upper bound. The large
sample limit of EM pgϕ,Aq is then

E8pgϕ,Aq :“ lim
MÑ8

EM pgϕ,Aq “
1

N
E
“

}Y ´Rgϕ,A
rXs}22

‰

.

The i-th error Epiq
8 pgϕ,Aq for any 1 ď i ď N is defined in the same manner.

The next theorem states that this estimator achieves the nearly optimal rate in estimating the inter-
action function. This rate matches the lower bound in Theorem 4.4 up to a logarithmic factor. Its
proof is deferred to Appendix B.1.

Theorem 3.1 Suppose rd ď pM{ logMq
1

2β`1 . Consider the estimator pgM defined in equation 3.1
computed on data M i.i.d. observation satisfying Assumptions 2.1 and pB1q. Then, for pgM defined
in equation 3.1 it holds that

lim sup
MÑ8

sup
g‹PGβ

r pL,Bϕ,āq

E
”

M
2β

2β`1 }pgM ´ g‹}2L2
ρ

ı

À CN,L,ā,β,s, (3.2)

where CN,L,ā,β,s “ N rCβ1
L2

psāq
2β

ps!q2 ` C2s for some universal positive constants C1, C2.

Remark 3.2 The symbol À indicates that the upper bound holds up to a logarithmic factor of
plogMq

2β
2β`1 `4maxp2β,1q. We believe this factor can be improved, as it currently creates a gap

between our upper and lower bounds, representing a limitation of our methods. It is worth noting
that by working with uniformly bounded noise, this factor can be simplified (e.g., see Theorem 22.2
in Györfi et al. (2006)). In simpler settings, such as standard regression or when the interaction
matrix A is constant (e.g., for Euclidean distances), this logarithmic factor can be removed using
more advanced techniques. This topic is discussed in several works, including Wang et al. (2025);
Györfi et al. (2006); Van der Vaart (2000) and the references therein. However, in our model, the
optimization depends on both the interaction matrix A and the function ϕ, which makes the problem
non-convex. This difficulty makes the aforementioned techniques harder to implement. We therefore
leave this for future work.

Remark 3.3 This theorem demonstrates that the attention-style model is free from the curse of di-
mensionality. In particular, the embedding dimension d can be very large, satisfying the bound
rd ď pM{ logMq

1
2β`1 . This condition becomes looser as β decreases, corresponding to rougher

activation functions. When this condition is not satisfied, the error coming from the estimation of
A‹ dominates. See Corollary B.2.

The proof extends the technique in Györfi et al. (2006, Theorem 22.2) originally developed for the
projection pursuit algorithm for multi-index models. Our setup differs from the multi-index setup
in which one estimates Y “

řK
i“1 fipb

J
i Xq ` η with tfi : R Ñ R and bi P RduKi“1 from sample

data tpXm, Y mquMm“1, where the data Y depends locally on a projected values of single particle
X . Here, the attention-style model involves averaging multiple values of the pairwise interaction
function, which is a composition of the unknown ϕ‹ and A. This nonlocal dependence, combined
with the mixture of parametric and nonparametric estimations, presents a significant challenge.

We list below the main challenges we address in the proof of Theorem 3.1.
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1. Nonlocal dependency. The nonlocal dependence presents a challenge in estimating the interac-
tion function. The forward operatorRgrXs depends on the g non-locally through the weighted
sum of multiple values of g of pairwise interaction. Thus, this is a type of inverse problem that
raises significant hurdles in both well-posedness and the construction of estimators to achieve
the minimax rate. To address these challenges, we show first that the inverse problem in the
large sample limit is well-posed for a large class of distributions of X satisfying Assumption
2.1. A crucial condition for well-posedness of this inverse problem is the coercivity condition
studied in Li & Lu (2023); Li et al. (2021); Lu et al. (2019); Wang et al. (2025):

1

N ´ 1
E
”

}pgM ´ g‹}2L2
ρ

ı

ď E8ppgM q ´ E8pg‹q.

We prove this condition holds for a general function in our class in Lemma 3.4. Importantly,
differing from these studies where the goal is to estimate the radial interaction kernel, our in-
teraction is not shift-invariant due to the matrix and it is a 2d-dimensional pairwise interaction
function.

2. Tail decay noise distribution. The proof in Györfi et al. (2006) is limited to bounded noise. We
provide a more general statement for any sub-Gaussian noise. This is done by decomposing
the error bound now into three parts.

E8ppgM q ´ E8pg‹q ď ErT1,M s ` ErT2,M s ` ErT3,M s. (3.3)

The first two terms are a clever form of a bias-variance decomposition applied to a truncated
version of the target. To bound these terms, we use a similar technique as in Györfi et al.
(2006). To control the last term T3,M due to the truncation, we apply a lemma proved in
(Kohler & Mehnert, 2011, Lemma 2).

3. Covering numbers estimates. Since our interaction is of the form 1
N´1

řN
j“1 ϕpXJ

i AXjq

instead of working in the space of vectors, we provide a covering estimate for the class of
matrices with rank less than or equal to r. This is done in Lemma B.3.

The next lemma proves the crucial condition for the well-posedness of the inverse problem of esti-
mating the interaction function. This Lemma assumes exchangeability and allows us to extract the
error of the mean interaction and obtain a dimension-free rate for that error. Its proof is based on the
exchangeability of the particle distribution and is postponed to Appendix B.1.

Lemma 3.4 (Coercivity) Let g, g‹ P Gβr pL,Bϕ, āq. Under exchangeability of pXiq
N
i“1 in Assump-

tion pA1q , we have
1

N ´ 1
}g ´ g‹}2L2

ρ
ď E8pgq ´ E8pg‹q.

4 LOWER BOUND

This section establishes a lower bound for estimating g‹px, yq :“ ϕ‹pxJA‹yq that matches the upper
bound in Theorem 3.1; together, these results determine the minimax rate.

The main challenge lies in the nonlocal dependence of the output Yi on g‹, which is determined
through averaging over all particles, as we don’t directly observe any value of g‹. Thus, the estima-
tion of g‹ is a deconvolution-type inverse problem, which is harder than estimating the single index
model Y “ fpbJXq ` η in Gaıffas & Lecué (2007). Importantly, the nonlinear joint dependence of
g‹ on the unknown ϕ‹ and A‹ further complicates the problem.

We address the challenge by first reducing the supremum over all g‹ to the supremum over all ϕ‹

with a fixed A‹ P Adpr, āq, building on a technical result in Lemma 4.1. This reduces the problem
to the minimax lower bound of estimating the interaction kernel ϕ‹ only. We derive this lower bound
using the scheme in Wang et al. (2025), a variant of the Fano-Tsybakov method in Tsybakov (2008).

Let A‹ P Adpr, āq and let

Uij :“ XJ
i A‹Xj , U „ pU puq :“

1

NpN ´ 1q

N
ÿ

i“1

N
ÿ

j“1,j‰i

p
Uij

puq, (4.1)
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where p
Uij

denotes the probability density of Uij . Here, the density pUij
exists and is continuous

because rankpA‹q ě 2 and the joint density of pXi, Xjq exists by Assumption pA2q, see Lemma
C.1. Hence, the density pU is continuous. Furthermore, since }A‹}op ď ā and Xi P Cd, we have
|Uij | ď ā and suppppU q Ă r´ā, ās. In particular, when the distribution X is exchangeable, we
have pUij

puq “ pU12
puq “ pU puq for all pi, jq, u P r´ā, ās. However, our proof below works for

non-exchangeable distributions.

The next lemma allows us to reduce the supremum over all g‹px, yq “ ϕ‹pxJA‹yq to all ϕ‹ by
bounding }pg ´ g‹}2L2

ρ
from below by } pψ ´ ϕ‹}2L2

pU

for a function pψ determined by pg and A‹. Its
proof can be found in Section C.

Lemma 4.1 Suppose Assumption pA2q holds. Let A‹, Â P Adpr, āq. Recall the definitions of Uij
and U „ pU (defined according to A‹) in equation 4.1. Let ϕ‹, ϕ̂ P L2

pU , and define a function ψ̂
that is determined by pϕ̂, Â, A‹q and the distribution of X as

pψijpuq :“ E
“

pϕpXJ
i ÂXjq

ˇ

ˇUij “ u
‰

, ψ̂puq :“
N
ÿ

i“1

N
ÿ

j“1,j‰i

pUijpuq

NpN ´ 1qpU puq
ψ̂ijpuq. (4.2)

Then, the following inequality holds:

}pg ´ g‹}2L2
ρ

ě

ż ā

´ā

ˇ

ˇψ̂puq ´ ϕ‹puq
ˇ

ˇ

2
pU puqdu.

The next lemma constructs a finite family of hypothesis functions that are well-separated in L2
pU ,

while their induced distributions remain close with a slowly increasing total Kullback-Leibler di-
vergence, enabling the application of Fano’s method to derive the minimax lower bound. Its proof
follows the scheme in Wang et al. (2025) and is postponed to Section C.

Lemma 4.2 For each data set tpXm, Y mquMm“1 sampled from the model Y “ Rϕ‹,A‹
rXs ` η,

whereA‹ P Adpr, āq satisfying assumptions pB2q and pA2q, there exists a set of hypothesis functions
tϕ0,M ” 0, ϕ1,M , ¨ ¨ ¨ , ϕK,Mu and positive constants tC0, C1u independent of M,N, d, r, where

K ě 2K̄{8, with K̄ “ rc0,NM
1

2β`1 s, c0,N “ C0N
1

2β`1 , (4.3)

such that the following conditions hold:

pD1q Holder continuity: ϕk,M P CβpL, āq and }ϕk,M }8 ď Bϕ for each k “ 1, ¨ ¨ ¨ ,K;

pD2q 2sN,M -separated: }ϕk,M ´ ϕk1,M }L2
pU

ě 2sN,M with sN,M “ C1c
´β
0,NM

´
β

2β`1 ;

pD3q Kullback-Leibler divergence estimate: 1
K

řK
k“1DKLpP̄k, P̄0q ď α logpKq with α ă 1{8,

where P̄kp¨q “ Pϕk,M
p¨ | X1, . . . , XM q and pU is the density of U defined in equation 4.1.

The following theorem provides a lower minimax rate for estimating ϕ‹ when A‹ is given. Its proof
is available in Section C.

Theorem 4.3 Suppose Assumptions pA2q and pB2q hold. Let pU be the density of U defined in
equation 4.1. Then, for any β ą 0, there exists a constant c0 ą 0 independent of M , d, r and N
such that

lim inf
MÑ8

inf
ψ̂MPL2

pU

sup
ϕ‹PCβ

pL,āq

}ϕ‹}8ďBϕ

Eϕ‹

”

M
2β

2β`1 }ψ̂M ´ ϕ‹}2L2
pU

ı

ě c0N
´

2β
2β`1 (4.4)

where ψ̂M is estimated based on the observation model with M i.i.d. samples.

Following the above results, we can now provide a lower bound for the convergence rate when
estimating g‹ over all possible estimators in the worst-case scenario.
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Theorem 4.4 (Minimax lower bound) Suppose Assumptions pA2q and pB2q hold. Then, for any
β ą 0 there exists a constant c0 ą 0 independent of M , d, r and N , such that the following
inequality holds:

lim inf
MÑ8

inf
pg

sup
g‹PGβ

r pL,Bϕ,āq

M
2β

2β`1E
”

}pg ´ g‹}2L2
ρ

ı

ě c0N
´

2β
p2β`1q (4.5)

where the infimum inf
pg is taken over all pgpx, yq “ pϕpxJ

pAyq with pA P Adpr, āq and pϕ such that
pg P L2

ρ.

5 NUMERICAL SIMULATIONS

In this section, we empirically verify the convergence rates predicted by our theory, emphasizing
their independence from the ambient dimension d and their dependence on the activation function’s
smoothness.

For all experiments, we use B-splines to represent the ground-truth activation ϕ‹: a degree-p B-
spline is Cp´1, so the degree directly controls the smoothness (Lyche et al., 2017). B-splines are
linear in their basis coefficients, allowing us to efficiently compute an optimal coefficient estimator
by least squares. Our estimator for the interaction function ĝ exploits this structure: we first fit
ϕ‹ in the B-spline basis by least squares, then approximate the fitted activation with a multi-layer
perceptron to enable backpropagation when estimating A‹. This design enables us to control both
the smoothness and the approximation accuracy of ĝ, ensuring that it achieves the minimax rate.
Full simulation and parameter details appear in Appendix D.

Our experiments confirm the theoretical minimax rates.

‚ Independence from the ambient dimension d. Figure 1(a) compares convergence across em-
bedding dimensions d P t1, 5, 30u. In the log-log plots, the slopes (which encode the rates) are
nearly parallel and close to the theoretical exponent ´2β{p2β ` 1q for all three dimensions,
indicating that the convergence rate is independent of d.

‚ Dependence on the activation function’s smoothness. Figure 1(b) reports rates for varying
smoothness exponents β, controlled by the B-spline degree used to represent ϕ‹. As the spline
degree (and hence β) increases, the log-log slope steepens as predicted by theory: for example,
the empirical slopes are « ´0.81 for degree P “ 3 and « ´0.899 for P “ 8, closely matching
the theoretical values ´0.80 and ´0.933.

The two plots illustrate that the minimax rate is fully determined by the smoothness β and it is
dimension-free.

6 CONCLUSIONS

We have established dimension-free minimax convergence rates in sample size for estimating the
pairwise interaction functions in self-attention style models. Using a direct connection to interacting
particle systems (IPS), we have proved that under a coercivity condition, one can learn the interaction
function at an optimal rate M´2β{p2β`1q with β being the smoothness of the function. Notably, this
rate is independent of both the embedding dimension and the number of tokens. Our analysis extends
beyond the standard assumption of independent, isotropic token distributions to allow for correlated
and anisotropic token distributions.

These dimension-free rates illuminate how attention can avoid the curse of dimensionality in high-
dimensional regimes. Viewing attention through the IPS lens suggests a broad research agenda for
understanding the attention models. Promising next steps include extending the theory to multi-head
attention, residual connections and self-attention interactions induced by the value matrix. Advances
in these directions will improve our understanding of learning mechanisms and generalization in
transformers.
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(a) (b)

Figure 1: (a) Convergence rates with d P t1, 5, 30u. Composed test Mean Squared Error (MSE)
vs. sample size M in log scale; dashed lines show the expected rate M´2β{p2β`1q; and the markers
represent the median across seeds. The convergence rates are nearly the same for different values
of d. (b) Convergence rates with varying smoothness exponents, which are controlled by the spline
degree of ϕ‹ and the estimator, with Ptrue “ Pest P t3, 8u, corresponding to β P t2, 7u and expected
slopes ´0.800 and ´0.933. The parameters in each simulation are described in Appendix D.
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A APPENDIX: REDUCTION FROM ATTENTION TO IPS ATTENTION MODEL

In this section, we provide a direct connection between the IPS attention model and the softmax self-
attention layer, which typically includes an additional normalization step. Consider a sequence of
tokens tXiu

N
i“1. The output of the softmax self-attention layer is typically composed of an attention

block with learnable query, key, and value matrices, WQ,WK P Rdˆdk with dk ď d and WV P

Rdˆdv that compute

Y “ AttpQ,K, V q “ softmax
´

QKJ

?
dk

¯

V, Q “ XWQ, K “ XWK , V “ XWV . (A.1)

As explained in the main text, we denote by A “ 1?
dk
WQW

J
K the score interaction matrix. Using

the definition of the softmax function, the output of the softmax self-attention layer for each particle
can then be written

Yi “

N
ÿ

j“1

eβX
J
i AXj

ZirXs
Vj , ZirXs “

N
ÿ

ℓ“1

eβX
J
i AXℓ

with β ą 0 being the inverse temperature parameter. When the number of particles is large, the
partition function ZirXs concentrates around its mean-field value with respect to the empirical dis-
tribution of the particles. If we denote by µ the continuum limit of the empirical measure, then
ZirXs « NZi “ N

ş

eβX
J
i Aydµpyq conditioned on the i-th particle.

For the IPS surrogate we consider in this paper, we adopt two standard simplifications (Sander et al.,
2022; Geshkovski et al., 2025; Bruno et al., 2025): we set dv “ 1, and treat Zi as a constant
(independent of X) that can be absorbed into the nonlinearity, and focus only on the self-interaction
for i ‰ j, and setting Vj to be a constant, we get our IPS Attention Model:

Yi “
1

N

ÿ

j‰i

ϕpXJ
i AXjq.

This reduction is similar in spirit to the surrogate model (USA) presented in Geshkovski et al. (2025).
We note that a possible extension of our model to account for the softmax normalization would be
to learn a function for each particle, ϕi. We suspect it will not change the overall rate. In fact, as
stated in Geshkovski et al. (2025), this reduction seems to capture the essence of the dynamics of
the self-attention (SA) model. Therefore, to simplify the setting, we focus on estimating a single
function.

B APPENDIX: UPPER BOUND PROOFS

We begin by reducing the distribution of the pair-wise particles to the distribution of one pair by
exchangeability. The exchangeability not only simplifies the proof of the upper bound, but also
provides a sufficient condition for the coercivity, which makes the inverse problem well-posed.

Lemma B.1 (Exploration measure under exchangeability) Under Assumption 2.1, the measure
ρ is the distribution of pX1, X2q P Rd ˆ Rd and has a continuous density.

Proof. The exchangeability in Assumption 2.1 implies that the distributions of pXi, Xjq and
pX1, X2q are the same for any i ‰ j. Hence, by definition, the exploration measure is the distribution
of the random variables pX1, X2q:

ρpBq “ PppX1, X2q P Bq

which has a continuous density by Assumption 2.1. ˝
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B.1 PROOF OF THE UPPER BOUND IN THEOREM 3.1

In this section, we provide the proof of the upper bound.

We begin with the proof of the key coercivity lemma, which is crucial in bounding the error of the
interaction function and making the inverse problem well-posed in the large sample limit.

Proof of Lemma 3.4 Recall RgpXqi “ 1
N´1

ř

j‰i gpXi, Xjq. By definition

E8pgq ´ E8pg‹q “
1

N
ExRg´g‹

rXs, Rg´g‹
rXsy “

1

NpN ´ 1q2

N
ÿ

i“1

ÿ

j‰i

ÿ

j1‰i

Ex∆ij ,∆ij1 y,

where ∆ij “ pg ´ g‹qpXi, Xjq and
ř

j‰i “
řN
j“1,j‰i. By exchangeability,

1

NpN ´ 1q2

N
ÿ

i“1

ÿ

j‰i

ÿ

j1‰i

Ex∆ij ,∆ij1 y “
1

N ´ 1
E}∆12}2 `

N ´ 2

N ´ 1
Ex∆12,Er∆13 | X1sy

ě
1

N ´ 1
E}∆12}2,

since E}Er∆13 | X1s}2 ě 0. The statement of the Lemma follows. ˝

Proof of Theorem 3.1 The proof is divided into five steps.

Step 1: Error decomposition. In this step, we decompose the mean squared error Er}pgM ´

g‹}2L2
ρ
s to two terms. Using Lemma 3.4, i.e., the coercivity condition and the definition of E8pgq “

1
NE

“

}Y ´RgrXs}2
‰

, we have for cH “ 1
N´1

cHE
„
ż

|pgM px, yq ´ g‹px, yq|2dρpx, yq

ȷ

ď E8ppgM q ´ E8pg‹q

“
1

N
Er}Y ´R

pgM rXs}2s ´
1

N
E
“

}Y ´Rg‹
rXs}2

‰

“
1

N
E
“

E
“

}Y ´R
pgM rXs}2 | DM

‰ ‰

´
1

N
E
“

}Y ´Rg‹
rXs}2

‰

. (B.1)

Let BM :“ c1 logpMq with some constant c1 ą 0 and YM :“ minpBM ,maxp´BM , Y qq. Let us
denote

T1,M :“ 2rEM ppgM q ´ EM pg‹qs (B.2)

and

T2,M :“
1

N
E
“

}YM ´R
pgM rXs}2 | DM

‰

´
1

N
E
“

}YM ´Rg‹
rXs}2

‰

´ T1,M , (B.3)

T3,M :“
1

N
E
“

}Y ´R
pgM rXs}2 | DM

‰

´
1

N
E
“

}Y ´Rg‹
rXs}2

‰

(B.4)

´
1

N
E
“

}YM ´R
pgM rXs}2 | DM

‰

`
1

N
E
“

}YM ´Rg‹
rXs}2

‰

.

By equation B.1, we can decompose the upper bound of the mean squared error as

E
”

}pgM ´ g‹}2L2
ρ

ı

“ E
„
ż

|pgM px, yq ´ g‹px, yq|2dρpx, yq

ȷ

ď c´1
H

´

ErT1,M s ` ErT2,M s ` ErT3,M s

¯

. (B.5)

We shall proceed with our proof by bounding tErTi,M su3i“1 in the following Steps 2-4 via approxi-
mation error estimate, covering number estimate, and sub-Gaussian property, respectively.
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Step 2: Bounding ErT1,M s via polynomial approximation. Recall that pgM is the minimizer of
the empirical error functional EM pgq over the estimator space Gsr,KM

. Thus, we have

EM ppgM q ´ EM pg‹q ď EM pg‹,Gr q ´ EM pg‹q,

where g‹,Gs
r,KM

is a minimizer in Gsr,KM
attaining infgPGs

r,KM
rE8pgq ´ E8pg‹qs (see, (Györfi et al.,

2006, Lemma 11.1)). Therefore,

1

2
ErT1,M s “ E rEM ppgM q ´ EM pg‹qs

ď E
”

EM pg‹,Gs
r,KM

q ´ EM pg‹q

ı

“ E8pg‹,Gs
r,KM

q ´ E8pg‹q “ inf
gPGs

r,KM

rE8pgq ´ E8pg‹qs . (B.6)

Note that

E8pgq ´ E8pg‹q “
1

N
E
“

}Rg‹´grXs ` η}2 ´ }η}2
‰

“
1

N

N
ÿ

i“1

E

»

–

ˇ

ˇ

ˇ

ˇ

ˇ

1

N ´ 1

N
ÿ

j“1,j‰i

rg ´ g‹spXi, Xjq

ˇ

ˇ

ˇ

ˇ

ˇ

2
fi

fl . (B.7)

Applying Jensen’s inequality to get

1

N

N
ÿ

i“1

E

»

–

ˇ

ˇ

ˇ

ˇ

ˇ

1

N ´ 1

N
ÿ

j“1,j‰i

rg ´ g‹spXi, Xjq

ˇ

ˇ

ˇ

ˇ

ˇ

2
fi

fl ď
1

NpN ´ 1q

N
ÿ

i“1

N
ÿ

j“1,j‰i

E
”

|rg ´ g‹spXi, Xjq|
2
ı

(B.8)

and by the exchangeability assumption pA1q, we have that the expectations are equal and thus

1

2
ErT1,M s ď inf

gPGs
r,KM

}g ´ g‹}2L2
ρ

“ inf
ϕPΦs

KM
,}A}opďā

ż

|ϕpxx, yyAq ´ ϕ‹pxx, yyA‹
q|2dρpx, yq . (B.9)

Next, setting A “ A‹ in equation B.9, it is clear that

1

2
ErT1,M s ď inf

ϕPΦs
KM

ż

|ϕpxx, yyA‹
q ´ ϕ‹pxx, yyA‹

q|2dρpx, yq

ď inf
ϕPΦs

KM

#

sup
uPr´ā,ās

|ϕpuq ´ ϕ‹puq|2

+

.

Then, one can choose ϕ following the construction in (Györfi et al., 2006, Lemma 11.1) and that
ϕ‹ P CβpL, āq which shows that there exists a piecewise polynomial function f of degree β or
less with respect to an equidistant partition of r´ā, ās consisting of KM intervals of length 1{KM .
For any x, y „ ρ and any matrix A P Rdˆd such that u “ xx, yyA P r´ā, ās, we will choose the
dimension KM (to be specified later) so that

sup
uPr´ā,ās

|ϕpuq ´ ϕ‹puq| ď
Lāβ

tβu!Kβ
M

.

We thus conclude that

ErT1,M s ď
2L2ā2β

ptβu!q2K2β
M

. (B.10)
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Step 3: Bounding ErT2,M s via covering number estimates. We introduce the following nota-
tions to simplify the presentation. Define ∆Epiq

M pgq :“ Epiq
M pgq ´ Epiq

M pg‹q. Also, we denote

∆Epiq
DM

ppgM q :“ Er|Yi ´R
pgM rXsi|

2
| DM s ´ Er|Yi ´Rg‹

rXsi|
2
s ,

where pgM P Gsr,KM
depends on the samples DM “ tpXm, Y mquMm“1 and write similarly

∆Epiq
8 pgq :“ Er|Yi ´RgrXsi|

2
s ´ Er|Yi ´Rg‹

rXsi|
2
s ,

for any g P Gsr,KM
. Note that ∆Epiq

DM
pgq “ ∆Epiq

8 pgq for any (deterministic) g P Gsr,KM
.

It is straightforward to observe that ErT2,M s can be expressed as the average error per particle, that
is, ErT2,M s “ 1

N

řN
i“1 ErT

piq
2,M s where T piq

2,M :“ ∆Epiq
DM

ppgM q ´ T
piq
1,M with T piq

1,M “ 2∆Epiq
M ppgM q.

To estimate ErT
piq
2,M s, it suffices to bound the following probability tail for the i-th particle

P
!

T
piq
2,M ą t

)

“ P
"

∆Epiq
DM

ppgM q ´ ∆Epiq
M ppgM q ą

1

2
rt` ∆Epiq

DM
ppgM qs

*

ď P
"

Df P Gsr,KM
: ∆Epiq

DM
pfq ´ ∆Epiq

M pfq ą
1

2
rt` ∆Epiq

DM
pfqs

*

“ P
"

Df P Gsr,KM
: ∆Epiq

8 pfq ´ ∆Epiq
M pfq ą

1

2
rt` ∆Epiq

8 pfqs

*

. (B.11)

We first observe that the probability tail above depends on the joint distribution of all particles
since the term ∆Epiq

M pfq in equation B.11 involves all particles. To bound the tail probability of
T

piq
2,M , we invoke Györfi et al. (2006, Theorem 11.4), which is applicable to classes of uniformly

bounded functions. In our setting, this condition translates to the boundedness of the operator Rg .
Specifically, if }g}8 ď Bϕ, then for all i P rN s, we have |RgrXsi| ď Bϕ. Recall that BM :“

c1 logpMq and Cd :“ pr0, 1s{
?
dqd. Applying Theorem 11.4 in Györfi et al. (2006) to equation B.11

(with α “ β “ t{2 and ϵ “ 1{2), we get for arbitrary t ě 1{M

P
!

T
piq
2,M ą t

)

ď 14 sup
tXmPCN

d uMm“1

N1

ˆ

t

80BM
,Gsr,KM

, ρM

˙

e
´ tM

24¨214B4
M

ď 14 sup
tXmPCN

d uMm“1

N1

ˆ

1

80BMM
,Gsr,KM

, ρM

˙

e
´ tM

24¨214B4
M (B.12)

where N1pε,Gsr,KM
, ρM q is the empirical covering number with respect to the L1

ρ radius smaller
than ε over the function class Gsr,KM

.

Employing the identity ErXs “
ş8

0
PpX ą tqdt and the standard integral decomposition

ş8

0
“

şε

0
`
ş8

ε
with ε to be determined, we get for ε ě 1{M

ErT
piq
2,M s “

ż 8

0

PpT
piq
2,M ą tqdt ď ε`

ż 8

ε

PpT
piq
2,M ą tqdt. (B.13)

Then, substituting equation B.12 in equation B.13 leads to

ErT
piq
2,M s ď ε`

ż 8

ε

14 sup
tXmPCN

d uMm“1

N1

ˆ

t

80BM
,Gsr,KM

, ρM

˙

e
´ tM

24¨214B4
M dt. (B.14)

Notice that we can bound the covering number by its value at 1{M since ε ě 1{M inside the integral
in equation B.14 when t ě ε. It then follows that

ErT
piq
2,M s ď ε` 14 sup

tXmPCN
d uMm“1

N1

ˆ

1

80BMM
,Gsr,KM

, ρM

˙
ż 8

ε

e´ tM
24¨214¨B4 dt. (B.15)

We can now apply the estimate of covering number in equation B.22:

ErT2,M s “
1

N

N
ÿ

i“1

ErT
piq
2,M s

ď ε` 42 ¨ pL1,MMq2rdpL2,MMq2KM ps`1q`2 ¨
L3,M

M
e

´ εM
L3,M (B.16)
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with L1,M :“ 12rāBϕ ¨ 80BM , L2,M :“ 24eBϕ ¨ 80BM and L3,M :“ 24 ¨ 214 ¨B4
M . Since the

quantity ε on the right-hand side of equation B.16 is arbitrary, we may tighten the bound by choosing

ε “
L3,M

M
¨ log

“

42 ¨ pL1,MMq2rdpL2,MMq2KM ps`1q`2
‰

,

which yields the desired upper bound:

ErT2,M s ď
L3,M

M

”

1 ` log
`

42
˘

` 2rd log
`

L1,M

˘

` 2pKM ps` 1q ` 1q ¨ log
`

L2,M

˘

` 2pKM ps` 1q ` 1 ` rdq ¨ logpMq

ı

ď
L3,M p20KMs` 5rdq logpMq

M
(B.17)

when M ě maxp42 ¨ L2rd
1,M , L2,M q.

Step 4: Bounding ErT3,M s via sub-Gaussian property. As Rg‹
rXsi ď Bϕ ă BM and

R
pgM rXsi ď Bϕ ă BM a.s. We assume that the noise η is sub-Gaussian and that Rg is bounded for

any g P Gβr . Thus, using Lemma 2 in Kohler & Mehnert (2011) with YM and BM given above, one
can obtain that with

ˇ

ˇ

ˇ
ErT3,M s

ˇ

ˇ

ˇ
ď

1

N

N
ÿ

i“1

ˇ

ˇ

ˇ
E
“

|Yi,M ´Rg‹
rXis|

2
‰

´ E
“

|Yi ´Rg‹
rXis|

2
‰

ˇ

ˇ

ˇ

`
1

N

N
ÿ

i“1

ˇ

ˇ

ˇ
E
“

|Yi,M ´R
pgM rXis|

2
‰

´ E
“

|Yi ´R
pgM rXis|

2
‰

ˇ

ˇ

ˇ

ď c2
logpMq

M
, (B.18)

for some constant c2 ą 0 independent of M and N .

Step 5: Deriving the upper optimal rate. We now combine the bounds from equation B.10, equa-
tion B.16 and equation B.18, which control the terms ErT1,M s, ErT2,M s and ErT3,M s, respectively,
to obtain an upper bound on the total error in equation B.5:

E
”

}pgM ´ g‹}2L2
ρ

ı

ď c´1
H

˜

2L2ā2β

ps!q2K2β
M

`
L3,M p20KMs` 5rdq logpMq

M
` c2

logpMq

M

¸

(B.19)

ď c´1
H

˜

2L2ā2β

ps!q2K2β
M

`
L3,M20KMsp1 ` 5L3,M q logpMq

M
` c2

logpMq

M

¸

using the assumption of the theorem rd ď

´

M
logM

¯
1

2β`1

and setting the value of KM as

KM “

Y 1

20L3,Ms

ˆ

M

logM

˙
1

2β`1 ]

. (B.20)

A relatively straightforward choice ofKM balances the terms in equation B.19 and leads to a desired
upper bound. We note that a careful choice ofKM may affect the constants and the power of logpMq

in the upper bound. Putting equation B.20 back into equation B.19 and noticing c´1
H ď N , we get

E
”

}pgM ´ g‹}2L2
ρ

ı

ď c´1
H

„

2L2p20L3,Msāq
2β

ps!q2

ˆ

logM

M

˙

2β
2β`1

` p1 ` 5L3,M q

ˆ

logM

M

˙

2β
2β`1

`
c2 logpMq

M

ȷ

ď N

«

2L2p20sL3,M āq
2β

ps!q2
` p1 ` 5L3,M q ` c2

ff

ˆ

logM

M

˙

2β
2β`1

(B.21)
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when M ě maxp42 ¨ L2rd
1,M , L2,M q with L1,M :“ 12rāBϕ ¨ 80BM , L2,M :“ 24eBϕ ¨ 80BM .

Recalling that L3,M “ 24 ¨ 214 ¨B4
M “ 24 ¨ 214 ¨ c1 ¨ logpMq, we get from equation B.21 that

E
”

}pgM ´ g‹}2L2
ρ

ı

ď N
2L2p2024 ¨ 214 ¨ c1 ¨ sāq

2β

ps!q2
¨

rlogpMqs
2β

2β`1 `8β

M
2β

2β`1

`N r1 ` 5 ¨ 24 ¨ 214 ` c2s ¨
plogMq

2β
2β`1 `4

M
2β

2β`1

ď N

„

Cβ1
L2psāq2β

ps!q2
` C2

ȷ

¨
rlogpMqs

2β
2β`1 `4maxp2β,1q

M
2β

2β`1

for some positive constant C1, C2. We complete the proof of Theorem 3.1 with CN,L,ā,β,s “

N rCβ1
L2

psāq
2β

ps!q2 ` C2s . ˝

Finally, to highlight the tradeoff between the parametric and the non-parametric part of the error,
we present the following corollary. This corollary is directly derived from equation B.19 and equa-

tion B.20 not using the assumption rd ď

´

M
logM

¯
1

2β`1

.

Corollary B.2 Consider the estimator pgM defined in equation 3.1 computed on data M i.i.d. ob-
servation satisfying Assumptions 2.1 and pB1q. Then, for pgM defined in equation 3.1 it holds that

E
”

}pgM ´ g‹}2L2
ρ

ı

ď N

„

Cβ1
L2psāq2β

ps!q2
` C2

ȷ

¨
rlogpMqs

2β
2β`1 `4maxp2β,1q

M
2β

2β`1

` C3rd ¨
plogMq2

M

where C1, C2 and C3 are positive constants (maybe take different values than in the Theorem 3.1).

B.2 AUXILIARY LEMMAS FOR THE UPPER BOUND

Recall that the covering number N pε,G, dq is defined as the cardinality of the smallest ε-cover of G
with respect to the metric d. When d is the Euclidean metric, we omit it from the notation and simply
write N pε,Gq. It is also common to take d to be an Lp-norm, either with respect to a probability
measure ρ or its empirical counterpart ρM . In these cases, we write

Nppε,G, ρq :“ N pε,G, } ¨ }Lp
ρ
q, Nppε,G, ρM q :“ N pε,G, } ¨ }Lp

ρM
q.

We next derive an upper bound for N1pε,Gsr,KM
, ρM q, i.e., p “ 1, by covering the matrix component

and the functional component separately. Our argument combines the covering number estimates
for matrices from Vershynin (2018) with the results of Györfi et al. (2006) for function classes.

Lemma B.3 Let Gsr,KM
be defined in Definition 2.5. Assume that the sampled data tXm

i u
N,M
i,m“1 are

distributed according to Assumption 2.1. Then we have

N1pε,Gsr,KM
, ρM q ď 3 ¨

´12rāBϕ
ε

¯2rd
ˆ

24eBϕ
ε

˙2KM ps`1q`2

. (B.22)

Proof. Recall the matrix class defined in Definition 2.3:

Adpr, āq :“
␣

A P Rdˆd : rankpAq ď r, }A}op ď ā
(

.

Write A “ QKJ via the truncated SVD, where Q “ UrΣ
1{2
r P Rdˆr and K “ VrΣ

1{2
r P Rdˆr,

with singular values belonging to r0, ās, and Ur, V J
r are semi unitary matrices of size dˆ r, and Σr

is a diagonal matrix of size r ˆ r. Then

}Q}2F “ TrpΣrq ď rā, }K}2F ď rā.

Indeed, let δ ą 0 the δ-covering of the matrix class Qrdp
?
rāq :“ tQ P Rdˆr : }Q}F ď

?
rāu is

equivalent to the δ-covering of Brdp
?
rāq, a centered ball with radius

?
rā in Rrd and (Vershynin,

2018, Corollary 4.2.11) implies that

n “ N pϵ,Qrdp
?
rāq, } ¨ }F q “ N pϵ, Brdp

?
rāqq ď

´3
?
rā

ϵ

¯rd

. (B.23)
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Notice that for A1 “ Q1K
J
1 and A2 “ Q2K

J
2 with tQi P Qrdp

?
rāq,Ki P Qrdp

?
rāqu2i“1 such

that }Q1 ´Q2}F ď δ{p2
?
āq, }K1 ´K2}F ď δ{p2

?
āq, we have

}A1 ´A2}op “ }Q1K
J
1 ´Q2K

J
2 }op ď }Q1}op}K1 ´K2}F ` }Q1 ´Q2}F }K2}op ď δ .

Moreover, by Assumption 2.1 that Xi, Xj lie within the unit unit ball and the assumption that ϕ P

ΦsKM
, a degree-s piecewise-polynomial approximation with KM intervals, we get:

ˇ

ˇϕpxx, yyA1q ´ ϕpxx, yyA2q
ˇ

ˇ ď Bϕ}A1 ´A2}op ď Bϕδ

since }x}, }y} ď 1. This proves that if A1, A2 are within δ in operator norm, the corresponding
functions differ by at most Bϕδ. Thus,

N1p2Bϕ δ,Gsr,KM
, ρM q ď

ÿn

i,j‰i
N1pBϕ δ, tϕpxx, yyQiKJ

j
q : ϕ P ΦsKM

u, ρM q . (B.24)

On the other hand, (Györfi et al., 2006, Theorem. 9.4–9.5) shows the following bound

N1pBϕ δ,Φ
s
KM

, ρM q ď 3

ˆ

6epBϕ ` 1q

Bϕ δ

˙2KM ps`1q`2

ď 3

ˆ

12e

δ

˙2KM ps`1q`2

for the empirical measure ρM in Definition 2.1 with tXm P CduMm“1. Putting it back to equa-
tion B.24, we obtain that

N1p2Bϕ δ,Gsr,KM
, ρM q ď 3 ¨

´6rā

δ

¯2rd
ˆ

12e

δ

˙2KM ps`1q`2

. (B.25)

Now re-parameterize by ε “ 2Bϕδ, i.e. δ “ ε{2Bϕ, and absorb constants in equation B.25. This
gives our desired estimate in equation B.22. ˝

Remark B.4 As a by-product, we show that a δ
2

?
rā

-cover for Q and K induces a δ-cover for

Adpr, āq in operator norm. Taking all pairs QiKJ
j and substituting ϵ “ δ

2
?
rā

in equation B.23 give
that

N pδ,Apr, āq, } ¨ }opq ď

´6rā

δ

¯2rd

.

C APPENDIX: LOWER BOUND PROOFS

Lemma C.1 (Continuous density of the bilinear form.) Let pX,Y q P R2d have a joint density
p P L1pDq with D Ă R2d being a bounded open set. Let A P Rdˆd have rank r ě 1 , and define
U “ XJAY . Then:

(i) (Existence) For every r ě 1, the law of U is absolutely continuous with respect to Lebesgue
measure on R with a density denoted by pU .

(ii) (Continuity) If r ě 2, then pU P CpRq.

Note that r ě 2 is sharp for pU to be continuous: for r “ 1, continuity at 0 may not hold: if X,Y
are independent standard Gaussian in R and A “ I , then U “ XY has density pU puq “ 1

πK0p|u|q,
where K0pxq „ ´ log x as x Ó 0, so pU is singular at 0.

Proof. The proof consists of three steps: reduction to a canonical quadratic form on R2r, existence
of the density, and continuity.

Step 1. Reduction to the canonical quadratic form on R2r. Let A “ WΣV J be a singular
value decomposition with Σ “ diagpσ1, . . . , σr, 0, . . . , 0q, where σi ą 0 and W,V P Rdˆd are
orthonormal. Set α :“ WJX , β :“ V JY . Orthonormal changes preserve absolute continuity, so
pα, βq has a joint density rppα, βq “ ppWα,V βq with support rD “ tpα, βq “ pW´1x, V ´1yq :
px, yq P Du, which is a bounded subset in R2d. Split α “ pαprq, αKq and β “ pβprq, βKq , where
the superscript prq denotes the first r coordinates. Then

U “ XJAY “

r
ÿ

i“1

σi α
prq

i β
prq

i .
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Integrating out pαK, βKq yields a marginal density q P L1pR2rq for Z :“ pαprq, βprqq and it has a
bounded support, which we denote by Ω. Thus it suffices to work in R2r with

Φpα, βq :“
r
ÿ

i“1

σiαiβi, U “ ΦpZq, Z „ q P L1pΩq.

Step 2. Existence by the coarea formula. For any bounded measurable test function φ : R Ñ R ,

ErφpUqs “

ż

Ω

φpΦpzqq qpzq dz. (C.1)

Note that Φ has gradient ∇Φpα, βq “ pσ1β1, . . . , σrβr, σ1α1, . . . , σrαrq, which is Lipschitz contin-
uous on Ω. Applying the Coarea formula (i.e., for any f : Ω Ă Rn Ñ R Lipschitz and g P L1

locpRnq,
ş

Rn gpzq |∇fpzq| dz “
ş

R

´

ş

f´1puq
gpzq dHn´1pzq

¯

du, where Hn´1pzq denotes the Hausdorff
measure, see, e.g., Evans (2018)) to f “ Φ with gpzq “ qpzqφpΦpzqq{|∇Φpzq| gives

ż

Ω

φpΦpzqq qpzq dz “

ż

R

˜

ż

Φ´1puq

qpzq

|∇Φpzq|
dH2r´1pzq

¸

φpuq du.

Hence, pU puq “
ş

Φ´1puq

qpzq

|∇Φpzq|
dH2r´1pzq for u ‰ 0.

Note that under the change of variables z “
a

|u|w , the Hausdorff surface measure scales by
|u|p2r´1q{2 and |∇Φ| by |u|1{2. Then, for u ‰ 0, the above equation can be written as

ż

Ω

φpΦpzqq qpzq dz “

ż

R
|u|r´1

˜

ż

Φpwq“signpuq

qp
a

|u|wq

|∇Φpwq|
dH2r´1pwq

¸

φpuq du. (C.2)

Comparing equation C.1 and equation C.2, the push-forward measure is absolutely continuous with
density

pU puq “ |u|r´1

ż

Φpwq“signpuq

qp
a

|u|wq

|∇Φpwq|
dH2r´1pwq (C.3)

for all u ‰ 0. This proves (i) for all r ě 1.

Step 3. Continuity. Let ξU ptq “ EreitU s “
ş

R2r e
itΦpzq qpzq dz be the characteristic function. The

phase tΦpzq is a non-degenerate quadratic form with constant HessianH “ t

ˆ

0 Σ
Σ 0

˙

(of full rank

2r ). By the standard stationary phase bound for quadratic phases (see, e.g., (Sogge, 2017, Theorem
1.1.4))

|ξU ptq| ď C p1 ` |t|q´r,
with C depending on q (e.g. if q P C8

c , then C depends on a finite number of derivatives; and it
extends to general q P L1 since C8

c is dense in L1). Hence, if r ě 2 , then ξU P L1pRq and Fourier
inversion yields a bounded continuous density pU puq “ 1

2π

ş

R e
´ituξU ptq dt. ˝

Next, we provide the proof of Lemma 4.1.

Proof of Lemma 4.1. Consider
Uij “ XJ

i A‹Xj , Vij “ XJ
i ÂXj ,

so that ĝpXi, Xjq “ ϕ̂pVijq and g‹pXi, Xjq “ ϕ‹pUijq. Recall that pUij is the density of Uij and
pU “ 1

NpN´1q

ř

i,j:i‰j pUij
. Also, recall that the following functions are defined in equation 4.2:

pψijpuq :“ E
“

pϕpVijq
ˇ

ˇUij “ u
‰

, ψ̂puq :“
N
ÿ

i“1

N
ÿ

j“1,j‰i

pUijpuq

NpN ´ 1qpU puq
ψ̂ijpuq.

Since
řN
i“1

řN
j“1,j‰i

pUij
puq

NpN´1qpU puq
“ 1, we have, by applying Jensen’s inequality,

ˇ

ˇψ̂puq ´ ϕ‹puq
ˇ

ˇ

2
“
ˇ

ˇ

N
ÿ

i“1

N
ÿ

j“1,j‰i

pUij puq

NpN ´ 1qpU puq
pψijpuq ´ ϕ‹puq

ˇ

ˇ

2

ď

N
ÿ

i“1

N
ÿ

j“1,j‰i

pUij
puq

NpN ´ 1qpU puq

ˇ

ˇ pψijpuq ´ ϕ‹puq
ˇ

ˇ

2
. (C.4)
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Also, by applying Jensen’s inequality to the conditional expectation, we have

E
“ˇ

ˇpϕpVijq ´ ϕ‹pUijq
ˇ

ˇ

2‰
“ ErE

“
ˇ

ˇpϕpVijq ´ ϕ‹pUijq
ˇ

ˇ

2
|Uij

‰

s

ě Er
ˇ

ˇE
“

pϕpVijq ´ ϕ‹pUijq|Uij
‰
ˇ

ˇ

2
s “

ż ā

´ā

ˇ

ˇ pψijpuq ´ ϕ‹puq
ˇ

ˇ

2
pUij puqdu.

Averaging over the pairs as in equation C.4, we have

1

NpN ´ 1q

N
ÿ

i“1

N
ÿ

j“1,j‰i

E
“
ˇ

ˇpϕpVijq ´ ϕ‹pUijq
ˇ

ˇ

2‰

ě

ż ā

´ā

1

NpN ´ 1q

N
ÿ

i“1

N
ÿ

j“1,j‰i

ˇ

ˇ pψijpuq ´ ϕ‹puq
ˇ

ˇ

2 pUij
puq

pU puq
pU puqdu

ě

ż ā

´ā

ˇ

ˇψ̂puq ´ ϕ‹puq
ˇ

ˇ

2
pU puq du,

which is the desired inequality. ˝

Proof of Lemma 4.2 We construct K̄ “ rc0,NM
1

2β`1 s disjoint equidistance intervals.

t∆ℓ “ prℓ ´ hM , rℓ ` hM quK̄ℓ“1, with hM “
L0

8n0K̄
, (C.5)

where trℓu, n0 and L0 are specific values that will be determined below. We will define the intervals
by separating into two cases: one where the density of pU is bounded below by a0 ą 0 and one
where it is not.
If pU puq ě a0 ą 0, we can simply use the uniform partition of suppppU q to obtain the desired t∆ℓu.
That is, we set n0 “ 1, L0 “ 4, and rℓ “ ´ā` p2ℓ´ 1qhM . If pU is not bounded away from zero,
we shall build the partition based on its continuity. Since pU is continuous on r´ā, ās, the constant
a0 “ supxPr´ā,ās pU pxq exists, now consider a0 ă a0 ^ 1. We can construct the K̄ intervals
described in equation C.5 which satisfy the following

Ť

ℓ∆ℓ Ă A0 :“ tu P r´ā, ās : pU puq ą a0u.

Let L0 :“
1´2a0
a0´a0

. Since for all u P A0, pU puq ď a0 and for all u P Ac0, pU puq ď a0, together with
the fact that 1 “

ş

A0
pU puqdu`

ş

Ac
0
pU puqdu, we get:

1 ď a0LebpA0q ` a0p2ā´ LebpA0qq ñ L0 ď LebpA0q ď 2ā. (C.6)

Also, note that the set A0 is open by continuity of pU . Thus, there exist disjoint intervals paj , bjq
such that A0 “

Ť8

j“1paj , bjq. Without loss of generality, we assume that these intervals are de-
scendingly ordered according to their length bj ´ aj . Let

n0 “ mintn :
n
ÿ

j“1

pbj ´ ajq ą
L0

2
u. (C.7)

One can see that n0 ą 1. Now, we construct the first n1 disjoint intervals t∆ℓ “ prℓ ´ hM , rℓ `

hM qu
n1

ℓ“1 Ă pa1, b1q such that rℓ “ a1 ` ℓhM and n1 “ t b1´a1
2hM

u. If n1 ě K̄, we stop. Otherwise,
we construct additional disjoint intervals t∆ℓ “ prℓ ´ hM , rℓ ` hM qu

n1`n2

ℓ“n1`1 Ă pa2, b2q similarly,
and continue to paj , bjq until obtaining K̄ intervals t∆ℓu.
To show that we will at least obtain K̄ such intervals, we show that K‹ ě K̄, where K‹ is the
total number of intervals t∆ℓu

K‹

ℓ“1. Since the Lebesgue measure of paj , bjqz
ŤK‹

ℓ“1 ∆ℓ is less than
2hM for each j, the Lebesgue measure of the uncovered parts

Ťn0

j“1paj , bjqz
`
ŤK‹

ℓ“1 ∆ℓ

˘

is at most
2n0hM .
Thus, by equation C.7 the intervals t∆ℓu

K‹

ℓ“1 must have a total length no less than L0

2 ´2n0hM . And
since each of them is in length of 2hM the total number must satisfy:

K‹ ě p
L0

2
´ 2n0hM q{p2hM q
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and plugging in the definition of hM from equation C.5 we get:

K‹ ě 2K̄n0 ´ n0 ě K̄.

Now we construct hypothesis functions satisfying Conditions pD1q–pD3q. We first define 2K̄ func-
tions, from which we will select a subset of 2s-separated hypothesis functions,

ϕωpuq “

K̄
ÿ

ℓ“1

ωℓψℓ,M puq, ω “ pω1, ¨ ¨ ¨ , ωK̄q P t0, 1uK̄ ,

where the basis functions are

ψℓ,M puq :“ LhβMψ
´

u´rℓ
hM

¯

, u P r´ā, ās (C.8)

with ψpuq “ e
´ 1

1´p2uq2 1|u|ď1{2. Note that the support of ψℓ,M puq is ∆ℓ, and
ş

∆ℓ
|ψℓ,M puq|2du “

L2h2β`1
M }ψ}22. By definition, these hypothesis functions satisfy Condition pD1q, i.e., they are Holder

continuous and
}ψℓ,M }8 ď LhβM ď L}pU }´β

8 ď Lp2āq´β ď Bϕ

since hM “ L0

8n0K̄
ă L0 ď 1

a0
with a0 “ }pU }8 and }pU }8 ď 1

2ā .

Then, denoting ϕkpxq “ ϕωpkq pxq, we proceed to verify Conditions pD2q–pD3q. Next, we select a
subset of 2sN,M -separated functions tϕk,M :“ ϕωpkq uKk“1 satisfying Condition pD2q, i.e., }ϕωpkq ´

ϕωpk1q }L2
pU

ě 2sN,M for any k ‰ k1 P t1, . . . ,Ku. Here sN,M “ C1c
´β
0,NM

´
β

2β`1 with C1 being a
positive constant to be determined below. Since ∆ℓ “ supppψℓ,M q Ď ∆ℓ are disjoint, we have

}ϕω ´ ϕω1 }L2
pU

“

ˆ
ż

R

ˇ

ˇ

ˇ

ˇ

K̄
ÿ

ℓ“1

pωℓ ´ ω1
ℓqψℓ,M puq

ˇ

ˇ

ˇ

ˇ

2

pU puqdu

˙
1
2

“

ˆ K̄
ÿ

ℓ“1

pωℓ ´ ω1
ℓq

2

ż

∆ℓ

|ψℓ,M puq|2pU puqdu

˙
1
2

.

Since pU puq ě a0 over each ∆ℓ, we have
ż

∆ℓ

|ψℓ,M puq|2pU puqdu ě a0

ż

∆ℓ

|ψℓ,M puq|2du “ a0L
2h2β`1
M }ψ}22.

Applying the Varshamov-Gilbert bound (Tsybakov, 2008, Lemma 2.9), one can obtain a subset
tωpkquKk“1 with K ě 2K̄{8 such that

řK̄
ℓ pω

pkq

ℓ ´ ω
pk1

q

ℓ q2 ě K̄
8 for any k ‰ k1 P t1, . . . ,Ku. Thus,

}ϕω ´ ϕω1 }L2
pU

ě
?
a0L}ψ}2

c

K̄

8

ˆ

L0

8n0K̄

˙β`1{2

“
?
a0L}ψ}2

K̄1{2

2
?
2

ˆ

L0

8n0

˙β`1{2

K̄´pβ`1{2q

“

˜?
a0L}ψ}2

2
?
2

ˆ

L0

8n0

˙β`1{2
¸

K̄´β “ sN,M

where sN,M “ C1c
´β
0,NM

´
β

2β`1 with

C1 :“

?
a0L}ψ}2

4
?
2

ˆ

L0

8n0

˙β`1{2

.

To verify condition pD3q for each fixed dataset tXmuMm“1, we first compute the Kullback-Leibler
(KL) divergence. Define umij :“ pXm

i qJAXm
j . Then for each m,

RϕrXmsi “
1

N ´ 1

ÿ

j‰i

ϕ
`

umij
˘

.
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Under the hypothesis ϕk,M , the density of the outputs tY muMm“1 is

pk
`

y1, . . . , yM
˘

“

M
ź

m“1

pη

´

ym ´Rϕk,M
rXms

¯

,

where ym P Rd represents the observed output Y m. By definition of KL divergence and the i.i.d.
noise assumption,

DKL

`

P̄k, P̄0

˘

“

ż

¨ ¨ ¨

ż

log
M
ź

m“1

pη
`

ym
˘

pη

´

ym `Rϕk,M
rXms

¯

M
ź

m“1

pηpymqdym.

This simplifies to

DKL

`

P̄k, P̄0

˘

“

M
ÿ

m“1

ż

Rd

log
”

pηpymq

pη

`

ym`Rϕk,M
rXms

˘

ı

pηpymqdym.

Finally, by the noise smoothness assumption 2.2, for each m,
ż

pηpyq log
”

pηpyq

pηpy`vq

ı

dy ď cη}v}2,

where v “ Rϕk,M
rXms. Summing over m “ 1, . . . ,M yields

DKL

`

Pk,P0

˘

ď cη

M
ÿ

m“1

›

›Rϕk,M
rXms

›

›

2
, (C.9)

Employing Jensen’s inequality, we have

}Rϕk,M
rXms}2 “

N
ÿ

i“1

´

1
N´1

ÿ

j‰i

ϕk,M pumij q

¯2

ď

N
ÿ

i“1

1
N´1

ÿ

j‰i

ˇ

ˇϕk,M pumij q
ˇ

ˇ

2
“ 1

N´1

N
ÿ

i“1

ÿ

j‰i

ˇ

ˇϕk,M pumij q
ˇ

ˇ

2
.

(C.10)

Recalling that ϕk,M pumij q “
řK̄
ℓ“1 ω

pkq

ℓ ψℓ,M pumij q, where supppψℓ,M q Ď ∆ℓ are disjoint and

|ψℓ,M pumij q| “ LhβMψ

ˆ

um
ij´rℓ
hM

˙

ď LhβM }ψ}81tum
ijP∆ℓu, we have

|ϕk,M pumij q|2 “

K̄
ÿ

ℓ“1

ω
pkq

ℓ

ˇ

ˇψℓ,M pumij q
ˇ

ˇ

2
ď L2h2βM }ψ}28

K̄
ÿ

ℓ“1

1tum
ijP∆ℓu, (C.11)

where we have used the fact that 0 ď ω
pkq

ℓ ď 1. By plugging in both equation C.10 and equa-
tion C.11 into equation C.9, we obtain

DKLpP̄k, P̄0q ď
cη

N ´ 1

M
ÿ

m“1

N
ÿ

i“1

ÿ

j‰i

˜

L2h2βM }ψ}28

K̄
ÿ

ℓ“1

1tum
ijP∆ℓu

¸

ď
cηL

2}ψ}28h
2β
M

N ´ 1

ÿ

i,j,m

˜

K̄
ÿ

ℓ“1

1tum
ijP∆ℓu

¸

.

Since the intervals t∆ℓu are disjoint, the inner sum is at most 1. The total sum over i, j,m is
therefore bounded by N2M , which gives:

DKLpP̄k, P̄0q ď cηL
2}ψ}28NMh2βM .

Hence, by assigning hM “ L0

8n0K̄
from equation C.5 and K̄ “ rc0,NM

1
2β`1 s, we obtain

1

K

K
ÿ

k“1

DKLpP̄k, P̄0q ď

˜

cηL
2}ψ}28

ˆ

L0

8n0

˙2β
¸

N

ˆ

K̄

c0,N

˙2β`1

K̄´2β

“

˜

cηL
2}ψ}28N

c2β`1
0,N

ˆ

L0

8n0

˙2β
¸

K̄ ď α logK
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with α “

ˆ

cηL
2

}ψ}
2
8N

c2β`1
0,N

´

L0

8n0

¯2β
˙

8
log 2 since K ě 2K̄{8. Thus, for condition pD3q to hold, i.e.,

α ă 1{8, we need

c2β`1
0,N ě 64cηL

2}ψ}28N

ˆ

L0

8n0

˙2β

.

Following c0,N “ C0N
1

2β`1 , it suffices to set C0 to be

C0 :“ p32cηL
2}ψ}28

ˆ

L0

8n0

˙2β

q
1

2β`1 .

˝

To prove the lower bound minimax rate, we will use the following lower bound for hypothesis test
error, see e.g., Proposition 2.3 Tsybakov (2008) or Lemma 4.3 in Wang et al. (2025).

Lemma C.2 (Lower bound for hypothesis test error ) Let Θ “ tθkuKk“0 with K ě 2 be a set of
2s-separated hypotheses, i.e., dpθk, θk1 q ě 2s ą 0 for all 0 ď k ă k1 ď K, for a given metric d on
Θ. Denote Pk “ Pθk and suppose they satisfy Pk ! P0 for each k ě 1 and

1

K ` 1

K
ÿ

k“1

DKLpPk,P0q ď α logpKq, with 0 ă α ă 1{8. (C.12)

Then, the average probability of the hypothesis testing error has a lower bound:

inf
ktest

1

K ` 1

K
ÿ

k“0

Pk
`

ktest ‰ k
˘

ě
logpK ` 1q ´ logp2q

logpKq
´ α, (C.13)

where infktest denotes the infimum over all tests.

Proof of Theorem 4.3 We aim to apply Tsybakov’s method to simplify probability bounds by con-
sidering a finite set of hypothesis functions. Reducing the supremum over CβpL, āq to the finite set
of hypothesis functions, and applying the Markov inequality, we obtain

sup
ϕ‹PCβ

pL,āq

}ϕ‹}8ďBϕ

Eϕ‹

”

}pϕM ´ ϕ‹}2L2
pU

ı

ě max
ϕk,MPtϕ0,M ....ϕK,Mu

Eϕk,M

”

}pϕM ´ ϕk,M }2L2
pU

ı

ě max
ϕk,MPtϕ0,M ....ϕK,Mu

s2N,MPϕk,M

”

}pϕM ´ ϕk,M }L2
pU

ą sN,M

ı

ěs2N,M
1

K ` 1

K
ÿ

k“0

EX1,...,XM

”

Pϕk,M

´

}pϕM ´ ϕk,M }L2
pU

ą sN,M

ˇ

ˇ

ˇ
X1, . . . , XM

¯ı

, (C.14)

where the last inequality follows since the maximal value over the functions is no less than the
average and since PpAq “ Er1As “ EZrEr1A|Zss “ ErPpA|Zqs.

Next, we transform to bounds in the average probability of testing error of the 2sN,M -separated
hypothesis functions. Define ktest as the minimum distance test:

ktest “ argmin
k“0,...,K

}pϕM ´ ϕk,M }L2
pU
.

Since ϕktest,M is the closest one, we have that }pϕM ´ ϕktest,M }L2
pU

ď }pϕM ´ ϕk,M }L2
pU

for all
k ‰ ktest. Using the fact that the function ϕk,M are built as 2sN,M separated functions and using the
triangle inequality we have:

2sN,M ď }ϕk,M ´ ϕktest,M }L2
pU

ď }pϕM ´ ϕktest,M }L2
pU

` }pϕM ´ ϕk,M }L2
pU

ď 2}pϕM ´ ϕk,M }L2
pU
,

so sN,M ď }pϕM ´ ϕk,M }L2
pU

for all k ‰ ktest. Hence,

Pϕk,M

´

}pϕM ´ ϕk,M }L2
pU

ě sN,M

ˇ

ˇ

ˇ
X1, ¨ ¨ ¨ , XM

¯

ě P
`

ktest ‰ k
ˇ

ˇX1, ¨ ¨ ¨ , XM
˘

. (C.15)

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Consequently,

1

K ` 1

K
ÿ

k“0

Pϕk,M

`

}pϕM ´ ϕk,M }L2
pU

ě sN,M | X1, ¨ ¨ ¨ , XM
˘

ě inf
ktest

1

K ` 1

K
ÿ

k“0

Pϕk,M

`

ktest ‰ k | X1, ¨ ¨ ¨ , XM
˘

“ inf
ktest

1

K ` 1

K
ÿ

k“0

P̄k
`

ktest ‰ k
˘

(C.16)

where P̄kp¨q “ Pϕk,M
p¨ | X1, . . . , XM q.

The Kullback divergence estimate in equation pD3q from Lemma 4.2 holds with 0 ă α ă 1{8, and

by Lemma C.2 and the fact that K “ 2rc0,NM
1

2β`1 s in equation 4.3 increases exponentially in M ,
we have:

inf
ktest

1

K ` 1

K
ÿ

k“0

P̄k
`

ktest ‰ k
˘

ě
logpK ` 1q ´ logp2q

logpKq
´ α ě

1

2
(C.17)

if M is large. Note that the above lower bound of infktest
1

K`1

řK
k“0 P̄k

`

ktest ‰ k
˘

is independent
of the dataset tXmuMm“1. Using equation C.17 ,equation C.16 and equation C.14, we obtain with
c0 “ 1

2 rC1C
´β
0 s2,

sup
ϕ‹PCspL,āq

Eϕ‹

”

}pϕM ´ ϕ‹}2L2
pU

ı

ě
s2N,M
2

“ c0N
´

2β
2β`1M´

2β
2β`1 (C.18)

for any estimator. Hence, the lower bound equation 4.3 holds. ˝

Proof of Theorem 4.4 First, we reduce the supremum over allA‹ to a single one. LetA1 P Adpr, āq

with rankpA1q ě 2. Since

GA1 :“
!

gϕ,A1px, yq “ ϕpxJA1yq : ϕ P CβpL, āq, }ϕ}8 ď Bϕ

)

Ď Gβr pL,Bϕ, āq,

we have for any pg,
sup

g‹PGβ
r pL,Bϕ,āq

E}pg ´ g‹}2L2
ρ

ě sup
g‹PGA1

E}pg ´ g‹}2L2
ρ
. (C.19)

Thus, to prove equation 4.5, it suffices to prove it with g‹ P GA1 .

Let U1 be the random variable defined in (4.1) with A‹ “ A1. Then, Lemma 4.1 implies that

}pg ´ g‹}2L2
ρ

ě }ψ̂ ´ ϕ‹}2L2
p
U1

for any pgpx, yq :“ pϕpxJ
pAyq with pϕ P L2

pU1
and pA P Adpr, āq and any g‹ P GA1 . Here, ψ̂, defined

in equation 4.2, varies according to pg since both A‹ and the distribution of X are fixed. Taking first
the expectation over pg, then taking the supremum over g‹ P GA1 followed by the infimum over pA

and pϕ, we obtain
inf

pAPAdpr,āq

pϕPL2
p
U1

sup
g‹PGA1

E}pg ´ g‹}2L2
ρ

ě inf
ψ̂PL2

p
U1

sup
ϕ‹PCβ

pL,āq

}ϕ‹}8ďBϕ

E}ψ̂ ´ ϕ‹}2L2
p
U1
. (C.20)

Meanwhile, Theorem 4.3 gives a lower bound

lim inf
MÑ8

inf
ψ̂PL2

p
U1

sup
ϕ‹PCβ

pL,āq

}ϕ‹}8ďBϕ

M
2β

2β`1E
›

›ψ̂ ´ ϕ‹

›

›

2

L2
p
U1

ě c0N
´

2β
2β`1 (C.21)

with c0 ą 0.

Combining (C.19)–(C.21), we then obtain:

lim inf
MÑ8

inf
pg

sup
g‹PGβ

r pL,Bϕ,āq

M
2β

2β`1E
”

}pg ´ g‹}2L2
ρ

ı

ě lim inf
MÑ8

inf
pg

sup
g‹PGA1

M
2β

2β`1E
”

}pg ´ g‹}2L2
ρ

ı

ě lim inf
MÑ8

inf
ψ̂PL2

p
U1

sup
ϕ‹PCβ

pL,āq

}ϕ‹}8ďBϕ

M
2β

2β`1E
›

›ψ̂ ´ ϕ‹

›

›

2

L2
p
U1

ě c0N
´

2β
2β`1 ,

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

which gives the desired result in equation 4.5. ˝

D NUMERICAL SIMULATIONS CONFIGURATION

This section provides a detailed description of the simulations presented in Section 5.

D.1 DATA GENERATION

For each sample size M , we run a Monte Carlo simulation over different seeds as follows. We draw
token arrays Xpmq “ pX

pmq

1 , . . . , X
pmq

N q P CNd i.i.d. with Xpmq

i „ Unifr0, 1sd{
?
d sampled i.i.d

and construct the pX
pmq

i qJA‹X
pmq

j terms, evaluate the interaction via ϕ‹ (the sampling method of

ϕ‹ and A‹ is detailed below, and aggregate and add i.i.d. noise ηpmq

i „ N p0, σ2q as described in
equation 2.1 to generate Y pmq

i .

For each simulation, we sample the ground truth interaction g‹px, yq “ ϕ‹pxJA‹yq by drawing
random ϕ‹ and choosing A‹. We represent ϕ‹ as a B-spline of degree P‹ defined on an open
uniform knots with K basis functions on r´1, 1s.

ϕ‹puq “

K‹
ÿ

k“1

θk‹Bkpuq.

For each seed, we draw θ‹ „ N p0, IK‹
q and then normalize it for }θ‹} “

?
K‹.

D.2 ESTIMATOR

If A‹ was known, the estimator can be computed by setting Â “ A‹ and setting ϕ̂puq “
řK
k“1 θ̂kBkpuq with degree Pest and θ̂ chosen according to the ridge regression formula:

θ̂ “
`

UJU ` λθI
˘´1

UJy, (D.1)

where U “
`

Upm,iq,k

˘

P RMNˆK with

Upm,iq,k :“
1

N ´ 1

ÿ

j‰i

Bk
`

pX
pmq

i qJAX
pmq

j

˘

(D.2)

and y “
`

Y
pmq

i

˘

P RMNˆ1.

However, since A‹ is unknown, the joint estimation of pA, ϕq is non-convex due to the composition
ϕpxJAyq. To mitigate local minima, we use a hot start and an alternating scheme. We perform the
hot start by setting Ap0q “ A‹ ` ∆A with ∆A being a perturbation specified in Table 1 and setting
the initial θp0q as the matching ridge solution D.1. In the PyTorch implementation, the scheme
includes a description of the function ϕ̂ as a neural network. This is because representing it as
B-splines directly would require differentiating through the B-spline basis, which is cumbersome
for automatic differentiation. To address this, we introduce a neural-network surrogate Φnet that
approximates the spline and can be used as a differentiable link in the A-step.

Alternating Optimization for ϕ̂, Â

1. Hot start: set Ap0q “ A‹ ` ∆A and compute θp0q “
`

UJU ` λθI
˘´1

UJy with U

computed according to Ap0q in equation D.2

2. For t “ 1, . . . , T :

(a) Approximate the current spline using a multilayer perceptron (MLP). Fit an MLP
Φ

pt´1q
net on a grid tuℓu to minimize

ř

ℓ |Φ
pt´1q
net puℓq ´ ϕ̃pt´1qpuℓq|2
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(b) A-step through optimization. Update A by minimizing the empirical loss with ϕ̂ “

Φ
pt´1q
net held fixed using the Adam optimizer

min
A

1

MN

M
ÿ

m“1

N
ÿ

i“1

´

ÿ

j‰i

ĝ
A,Φ

pt´1q
net

pX
pmq

i , X
pmq

j q ´ Y
pmq

i

¯2

`
λA
2

}A}2F . (D.3)

(c) θ-step through closed form. With A fixed at Aptq, compute θptq by ridge regression:
stack y P RMN from Y

pmq

i , and build U P RMNˆK with

Upm,iq,k “
1

N ´ 1

ÿ

j‰i

Bk
`

pX
pmq

i qJAptqX
pmq

j

˘

and compute
θptq “

`

UJU ` λθI
˘´1

UJy.

Choice of Kest and λθ. We set the number of spline coefficients by the bias variance trade-off for
a β-Hölder smoothness as done in equation B.20

Kest “ round
´

KscalepM{ logMq1{p2β`1q
¯

where Kscale is a chosen constant. For the ridge regularization constant λθ we follow the standard
scaling for least squares models with MN responses and K coefficients, the variance of θ̂ should
scale like K{pMNq, so we take

λθ “ λscale
Kest

MpN ´ 1q
,

D.3 ERROR ESTIMATE

We measure accuracy via the estimator test MSE, sampling never seen inputs Xpmq „

Unifr0, 1sd{
?
d and evaluating:

MSEg “
1

Ntest

Ntest
ÿ

m“1

1

NpN ´ 1q

N
ÿ

i“1

ˇ

ˇ

ÿ

j‰i

ĝÂ,ϕ̂pX
pmq

i , X
pmq

j q ´ g‹pX
pmq

i , X
pmq

j q
ˇ

ˇ

2
.

D.4 SIMULATION PARAMETERS

The following table details the parameters used for the simulations described in Section 5.
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Table 1: Chosen parameters for the simulation

Parameter Value

Seeds 300
A‹ Diagonal matrix with i.i.d. entries A11 “ 1, @i ą 1 Aii „ Unifr´1, 1s

Sample sizes M [20000, 27355, 37416, 51177, 70000]
N 3
Gaussian noise std ση 0.07 (Gaussian)
Estimator degree Pest “ P‹

K‹ 16
Kscale [(a) and (b) for P‹ “ 3]: 16

[(b) for P‹ “ 8]: 30
Basis size Kest [(a) and (b) for P‹ “ 3]: t73, 78, 82, 87, 92u (matching the M grid)

[(b) for P‹ “ 8]: t50, 51, 52, 53, 54u (matching the M grid)
λA 10´5

λscale 2
λθ [(a) and (b) for P‹ “ 3] 10´3

ˆ t6.85, 5.30, 4.12, 3.19, 2.46u

[(b) for P‹ “ 8]t2.50, 1.86, 1.39, 1.04, 0.77u

(matching the M grid)
∆A Entry wise Gaussian noise with an std of 5{d ˆ 10´7

T 4
A-step optimizer Adam, lr “ 10´8, 20 epochs.
Φ

ptq
net architecture 1-hidden layer of width 32 (GELU activation)

Φ
ptq
net optimization 1000 epochs (Adam) lr = 0.01

Test set 2000 samples
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