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ABSTRACT

Representation learning methods utilizing the InfoNCE loss have demonstrated
considerable capacity in reducing human annotation effort by training invariant
neural feature extractors. Although different variants of the training objective
adhere to the information maximization principle between the data and learned
features, data selection and augmentation still rely on human hypotheses or engi-
neering, which may be suboptimal. For instance, data augmentation in contrastive
learning primarily focuses on color jittering, aiming to emulate real-world illumi-
nation changes. In this work, we investigate the potential of selecting training data
based on their mutual information computed from real-world distributions, which,
in principle, should endow the learned features with better generalization when ap-
plied in open environments. Specifically, we consider patches attached to scenes
that exhibit high mutual information under natural perturbations, such as color
changes and motion, as positive samples for learning with contrastive loss. We
evaluate the proposed mutual-information-informed data augmentation method on
several benchmarks across multiple state-of-the-art representation learning frame-
works, demonstrating its effectiveness and establishing it as a promising direction
for future research. The data and code will be available for further investigation.

1 INTRODUCTION

Self-supervised learning has witnessed remarkable advancements in various domains in recent years,
including contrastive self-supervised learning(Oord et al., 2018; Ye et al., 2019), generative self-
supervised learning(Kingma & Welling, 2013; Goodfellow et al., 2020; He et al., 2021) and so
on. These approaches leverage different proxy tasks to model unlabeled data, often surpassing
their supervised counterparts in performance. Among these methods, substantial efforts have been
dedicated to the exploration of contrastive learning paradigms, yielding impressive achievements
exemplified by influential models such as SimCLR (Chen et al., 2020) and MoCo (He et al., 2020).

The fundamental essence of contrastive learning is instance discrimination(Wu et al., 2018). Specif-
ically, during the training process, contrastive learning model aims to bring different augmented
views of the same entity closer in the representation space, while pushing apart different entities.
Admittedly, such way of positive sample selection enables good representation learning by encour-
aging the model to be view invariant.

However, upon recalling the human visual learning process, we realize that human’s way to deter-
mine positive samples extends beyond instance patches discrimination. What are positive samples?
By its nature, positive samples could only come either “from same entity” or “cross different en-
tities”. The “from same entity” part is well implemented by traditional contrastive learning via
view-based data augmentation, while the “cross different entities” part is not yet addressed. Based
on this observation, we argue that utilizing mutual information(Shannon, 1948) is one of the most
natural measures to discover cross entities positive pairs, which share high mutual information con-
tent. Imagine a scenario where two birds flying together in the sky and a toy bird randomly walking
on the ground. Although all of them share a same look, we could still correctly discriminate two
birds flying as positive samples, for knowing the position of one real bird reduces the uncertainty of
another, while toy bird won’t tell us with anything about those two real birds.

Driven by this motivation, we propose InfoAug, a mutual information informed data augmentation
technique towards a unified positive sample determination for contrastive learning. Specifically,
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for each patch in the scene, we examine its mutual information with all other patches appearing
in the same scene, and the one that exhibits the highest mutual information are considered to be
its cross-patch positive samples, denoted as each other’s twin patch. By asking where do positive
samples really exist, InfoAug combines the traditional view-level same entity data augmentation
and our novel cross entities mutual information informed data augmentation together, which is a
more unified data augmentation approach for contrastive learning.

For demonstration of our method, we gather certain standard video dataset where we only focus on
the patches in the first frame of each video for learning, the left frames are only used to estimate
mutual information between patches attached to the first frame. We also won’t tap into any temporal
contrastive learning field(Pathak et al., 2017; Wang & Gupta, 2015) so as to control a single variable
to demonstrate its effectiveness. However, we will illustrate how temporal contrastive learning could
be combined towards a ultimately unified contrastive paradigm in the future work section, it is just
not the focus of this work. In short, we split the first frame of each video to several patches, and do
patch-level tracking to obtain their motion trajectories, which we will use to empirically estimate the
mutual information between those patches. The patch that shares highest mutual information with a
given patch, which we denoted as its twin patch, will be treated as its positive pairs while training.
Such method encourage the model to be mutual information aware, which proves to consistently
improve the model capacity.

We will demonstrate the effectiveness of this method through comparisons with seven prominent
baselines in the following sections. We evaluated its performance on downstream classification
tasks using CIFAR-10((Krizhevsky et al., 2009), CIFAR-100 (Krizhevsky et al., 2009), and STL-10
(Coates et al., 2011). The results consistently surpass the original baselines, showcasing varying
degrees of improvement. In summary, our contributions are as follows: 1. We propose a novel
method for determining positive samples that better aligns with real-world models and human visual
learning. 2. We illustrate a very simple yet effective “dual-projection-branch contrastive learning”
pipeline to accommodate our proposed MI-guided positive pair selection.

2 RELATED WORK AND PRELIMINARY

2.1 MUTUAL INFORMATION

Mutual information as a correlation measure The mutual information I is normally defined as
the joint distribution of two random variables X and Y :

I(X;Y ) =
∑
y∈Y

∑
x∈X

p(x, y) log

(
p(x, y)

p(x)p(y)

)
where p(x, y) is the joint probability distribution, and p(x), p(y) are marginal probability distribu-
tions. A more intuitive form could be given as:

I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X)

where H() represents entropy, a measure for uncertainty. Compared with linear dependency given
by Covariance/Correlation, mutual information shows a more general form of dependency by mea-
suring conditional uncertainty reduction. Thus, leveraging mutual information serves as a more
appropriate measure for determining relevancy between objects described by random variables, and
further discovering positive samples in contrastive learning.

Empirical Estimation of Mutual Information Estimating mutual information is difficult due to its
association with non-linearity. When we face small-sample-size, high-dimensionality, unbalanced-
sample, this often brings estimation bias to the result (Kraskov et al., 2004; Paninski, 2003). There
are currently three major lines of work with mutual information estimation, namely parametric,
non-parametric and neural estimation paradigm (Walters-Williams & Li, 2009). Their respective
representatives include Maximum-likelihood (Suzuki et al., 2009), K-nearest-neighbour (Kraskov
et al., 2004) and MINE (Mutual-information-neural-estimator) (Belghazi et al., 2018).

In this paper, we choose “3KL” based on K-nearest-neighbour principle proposed by Kraskov et al.
(2004) to estimate mutual information. It is widely known as a good estimator as it strikes a good
balance between inference accuracy and speed with limited sample size. The core idea is to utilize
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K-th distance between samples to approximate original density of the joint distribution so as to
calculate mutual information. A mathematical form of it is as follows:

Î3KL(x; y) = ψ(n)− ψ(k) +
1

n

n∑
i=1

log

(
ϵkX (xi) · ϵkY (yi)(

ϵkP (pi)
)2

)
(1)

where ϵkX (xi), ϵkX (yi), ϵkX (pi) refer to the k-nearest distance of the i-th sample of x, y and their
joint variable denoted as P , and ψ() refers to the Di-gamma function. In our method, we adopt this
approach for mutual information estimation between two random variable describing the position of
two patches of interest.

2.2 CONTRASTIVE LEARNING

The essence of contrastive learning lies in instance discrimination, specifically, it aims to bring vari-
ant of a same entity closer and push different entities farther away in embedding space. Recently,
most works in contrastive learning concentrated on exploiting more different views of an image or a
sequence of images. MoCo (He et al., 2020) leveraged a momentum updated queue to replace costly
memory bank, while maintaining diversity of negative pairs. SimCLR (Chen et al., 2020) focused
on composition of multiple data augmentation operations, which proved to be crucial in discovering
more different views of images. Different from previous works, BYOL (Grill et al., 2020) demon-
strated that with careful design of the framework, positive pairs are enough for contrastive learning,
without participant of negative pairs.

Going beyond 2D images, some works utilize video sequence to bring more different views of a
same scene or object Dave et al. (2022); Pan et al. (2021). Taking advantages of both spatial and
temporal information of video sequence, Qian et al. (2021) managed to boost the performance of
video representation. Other works mainly focus on learning from future prediction and sorting Jing
et al. (2019); Kim et al. (2018); Fernando et al. (2017). Wang et al. (2019) extracted visual features
from the prediction of both motion and appearance statistics along spatial and temporal dimensions.
And Xu et al. (2019) learned the spatiotemporal representation of the video by predicting the order
of shuffled clips from the video.

Utilizing mutual information in describing the learning objective has also attracted people’s eyes
recent years(Torkkola, 2003; Tschannen et al., 2019; Hjelm et al., 2018). Wu et al. (2020) illustrated
that a family of algorithms were maximization of a lower bound on the mutual information between
two or more “views” of an image and proposed their technique which generalized the InfoNCE ob-
jective (Gutmann & Hyvärinen, 2010; Poole et al., 2019). Bachman et al. (2019) proposed a method
to extract multiple views of a local spatial-temporal context by maximizing mutual information.
Klein & Nabi (2023) utilized a mutual information-based contrastive learning framework to learn
sentence embedding which enforced the structural consistency across augmented views for every
sentence.

Our work also take video sequence as input for mutual information estimation and further twin patch
discovery. However, we stay within the non-temporal contrastive learning area since our aim is to
propose an unified data augmentation technique for positive sample determination, and this will be
illustrated later. The frames after the first frame are merely for our twin patch selection technique
InfoAug, and they are not involved in training.

3 METHOD

Overview. In this section, we aim to illustrate the principle that drives InfoAug and detailed tech-
nique. We will first make necessary notations to facilitate further description in 3.1. Then, at the
core of our idea, we’ll illustrate how to utilize mutual information to guide twin patch discovery
in 3.2. Finally, we will show our two-branch training pipeline, which accommodates our InfoAug
towards a more unified contrastive learning paradigm.

3.1 NOTATIONS

Given a video Sk sampled from the dataset {Sk}Kk=0, Notice that we focus on the first frame Ik,
while the subsequent frames are used to estimate mutual information only. Then, we split Ik into N
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Figure 1: This figure shows the general pipeline of InfoAug. Through video tracking, we estimate
the pairwise mutual information between patches attached to a same scene, which we base on to
construct a “twin patch” dictionary. While training, besides traditional data augmentation(T1, T2),
we use twin patch dictionary to form another positive pair, thereby injecting mutual information
awareness into the model, towards a more unifed data augmentation paradigm.

patches with equal size, denoted as {Pk,i}Ni=0, where i is the index of the patch in the first frame of
a video. These patches are fundamental elements(data unit) in our experiments, that is, all positive
pairs refers to relationship between two patches.

3.2 MUTUAL INFORMATION GUIDED TWIN PATCH SELECTION

The principle of our work is similar to the notion of wave function in physics: a sequence of obser-
vation of an object’s position is a collection of samples from their own distribution(Aharonov
et al., 1993; Tsutsumi, 1987). That is, by performing patch-level tracking, we are essentially sam-
pling from the real-world distribution of an object covered by that patch. Taking a step forward, if
we simultaneously track two arbitrary patches at the same time, the collection of observations are
undoubtedly drawn from their joint distribution, with which you could make empirical inference on
any statistical measure, including their mutual information. Based on this idea, we will show in the
following subsection: 1. how do we obtain twin patch all the way from patch-level tracking and 2.
how our alignment techniques help to improve the practicability.

3.2.1 FROM TRACKING TO TWIN PATCH SELECTION

As shown in Fig 2(a), traditional contrastive learning mainly focuses on different augmented views
of a same image patch. Whereas in our system, we will not only treat the aforementioned different
views of an image patch as positive samples, but also the patch itself and its twin patch, with whom
it exhibits the highest mutual information. Based on this principle, we dubbed our novel data aug-
mentation technique InfoAug, which serves as an unified way to discover positive samples utilizing
mutual information. To facilitate further notation, we name the patch that share the highest mutual
information content with patch of interest, its twin patch.

Algorithm. Given a video Sk, we first slice the first frame, Ik, evenly to N patches. As shown in
Fig 1, we assign a representative point in the center of each patch, denoted as pk,i. Then, we adopt
an off-the-shelf tracking model like TAPIR (Doersch et al., 2023) to track all representative points
within Ik along the whole sequence and get their trajectories {Trajk,i}. To align 2-D trajectories in
camera reference frame with real world 3-D position, we consider to incorporate depth information
to form the 3-D trajectory. Here, we use MiDaS (Ranftl et al., 2020) to generate depth information
for all frames along the whole sequence. The depth value and 2-D trajectories will be concatenated to
scale {Trajk,i} up to 3-D trajectories. After that, we could empirically estimate mutual information

4



Under review as a conference paper at ICLR 2024

I(Pk,i0 ,Pk,i1) between any two patches i and j as follows:

I(Pk,i,Pk,j) = Î3KL(Trajk,i, T rajk,j), where i, j ∈ {0, 1, 2, . . . , N} (2)

Thus, for any patch, Pk,i, in a first frame of a given video, we choose its twin patch to be patch of
index j who shares highest mutual information with Pk,i as follows:

j = argmax
j ̸=i

I(Pk,i,Pk,j), where j ∈ {1, 2, 3, . . . , N} (3)

By looping through all videos with the above mentioned algorithm, we obtain a twin patch for
all patches in all videos. To be specific, we’d like to say that we essentially hold a “twin patch
dictionary” where the keys are all patches in the dataset and the values are their corresponding twin
patch who empirically showed to share highest mutual information with them.

3.2.2 ALIGNMENT WITH REAL-WORLD MODEL.

In this subsection we share an important engineering technique called “alignment with real-world
model”. As its name suggests, we are motivated by the fact that there exists deviation between real
world position distribution and position samples captured by camera. Consequently, it may lead to
unreasonable twin patch selection. To this end, we will analyze possible reasons of deviation and
share our way to cope with it.

Not enough entropy exhibited. A video containing F frames provides F observations for empirical
mutual information estimation between patches. However, such a small amount of observation may
not be enough for us to correctly determine positive sample for those patches who don’t exhibit
enough entropy. For example, we can’t determine whether two objects are positive samples or not
if they seldom make any movement in real-world, though they may share high mutual information.
In real world, this is not a problem since we have access to observe the world with a very long time
span. However, in a short video, such purification is necessary for reasonable estimation.

To this end, we filter out those points with small entropy and only consider points that exhibit high
entropy. There are multiple ways to do the split, and we conform to “Maximum Gap Algorithm”
(Hoberman et al., 2005). Using this algorithm, we only focus on points with high entropy, to avoid
unreasonable positive patches. We will also show in 4, that incorrectly selected positive sample will
do harm to contrastive learning.

The motion of camera. From above, we know that we should focus on points with actual high
entropy. However, in some videos, the camera may move together with the moving object, which
makes the moving object appear to be static, for instance, a horse racing game recording. This will
reverse the actual “high-entropy” points with “low-entropy” points since the reference frame is no
longer earth-reference-frame.

To tackle this problem, we first determine whether the camera is in motion by comparing the entropy
of patches on the outermost ring of the image with the entropy of other internal patches. If the one
on outermost ring is bigger, then it is most likely that the camera is in motion, then we would select
points with low estimated entropy to perform “twin-patch” selection, and vice-versa.

3.3 TWO BRANCH TRAINING

Motivation. For a given patch, assigning its twin patch as its positive sample encourages the model
to be “mutual information aware”, while the traditional data augmentation encourages the model to
be “view invariant”. To simultaneously accommodate these two objective, we use the “two branch
learning” formulation as illustrated in Fig 2.

Model and Loss. As shown in Fig2, our pipeline consists of two main branch: one for tradi-
tional same-patch-different-view contrastive learning, and another for our twin-patch contrastive
learning. Given a batch of patches p = {Pk0,i0 ,Pk1,i1 , ...,Pkb,ib} and its twin patch p(twin) =

{P(twin)
k0,i0

,P
(twin)
k1,i1

, ...,P
(twin)
kb,ib

}, we will first augment p by two different transformations T1 and

T2 for the first branch propagation, and get p(1) = {P(1)
k0,i0

,P
(1)
k1,i1

, ...,P
(1)
kb,ib

} and p(2) =

{P(2)
k0,i0

,P
(2)
k1,i1

, ...,P
(2)
kb,ib

}. Noted that the transformation T1 and T2 conform to that of the orig-
inal baseline framework, for example, it includes RandomResizedCrop, RandomV erticalF lip,
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Figure 2: This figure shows a two-branch learning formulation adopted by InfoAug, where the
backbone use weight-sharing while the two projection heads is independently updated, which aims
for a decoupling of the two learning objectives: 1.view-invariant and 2.mutual information aware.

ColorJittering and so on if we are comparing with SimCLR. Then, p, p(1), p(2), and ptwin

will all go into a same encoder f(), encoded as h(1) = f(p(1)), h(2) = f(p(2)), h = f(p),
htwin = f(ptwin). After that, h(1) and h(2) will go through projection head 1, which is responsible
for “view invariant” embedding, and h and h(twin) will go through projection head 2, which is re-
sponsible for “mutual information aware” cross patch embedding. Ultimately, we get z1, z2, z and
ztwin.

After that, we calculate the loss by a weighted average of the original contrastive learning adopted,
respectively on

(
z1, z2

)
,
(
z, ztwin

)
:

L = L(z1, z2) + λ ∗ L(z, ztwin) (4)

where L is original contrastive loss(for example, it is NTXentLoss() for SimCLR and NegativeCosi-
neSimilarity() for BYOL), λ is a weighted factor to adjust the balance between the two objectives.

This two branch formulation helps to decouple the two learning objectives into two projection heads
that do not share weight, allowing them to be better tailored for their own task without being influ-
enced by other learning objective.

3.4 IMPLEMENTATION DETAILS

Data. We use DAVIS2018 (Caelles et al., 2018) and GMOT40 (Bai et al., 2021) to build our pre-
training dataset, containing K = 90 videos. And we use N = 40 patches for each frame in the
sequence. We use a batch size of 100 for training. One possible concern is that why the pre-training
is done in such a relatively small video dataset, we have performed experiment on larger dataset and
we will share detailed analysis and potential future work to this problem in 5.1.

Model. We use the standard ResNet-18 (He et al., 2015) as the backbone encoder and we followed
standard implementation in lightly for each baseline’s model neck and model head. Here must not
induce any bias, since for all baseline frameworks, our method(its InfoAug counterpart) use exactly
the same architecture for model training.

Training. We utilize lightly framework(Susmelj et al., 2020) which serves a wrapper for standard
pytorch code for implementations of all the baselines. We followed the baseline’s standard settings
in optimizer,scheduler and data augmentation, fixing the starting learning rate to be 0.02 across all
the models.

4 EXPERIMENTS

In this section, we will evaluate the effectiveness of InfoAug. First we will show the main compar-
ison between all well-known baselines and their InfoAug-counterparts on image classification task
on multiple datasets in 4.1. Then, we will further evaluate the effectiveness of mutual information-
informed augmentation in 4.2. Next, we will illustrate the difference in performance with/without
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dual-branch formulation in 4.3. Lastly, we will give ablation studies on some key hyper-parameters
for further comprehension in 4.4.

Experiment settings We evaluate the capability of the backbone encoder trained with seven well-
known SOTA frameworks: SimCLR, BYOL, SimSiam (Chen & He, 2020), MoCo, NNCLR
(Dwibedi et al., 2021), VICReg (Bardes et al., 2022) and TiCo (Zhu et al., 2022) and their InfoAug-
counterparts, on three datasets: CIFAR-10, CIFAR-100, and STL-100, for image classification task.
We will not evaluate it on larger dataset like ImageNet, because our pre-training dataset is relatively
small due to some practical reason with in-the-wild video dataset (will be discussed in 5). We ex-
tract the pre-trained backbone and add it with a three-layer classification head to do linear probing
on the training split of these dataset and evaluate on their test split, we will show detailed results in
4.1.

4.1 MAIN COMPARISON

In this section, we will show the performance of seven state-of-the-art frameworks on downstream
classification task and their InfoAug-counterparts with standard settings(λ = 1; all models trained
with 200 epochs). We will further perform ablation studies on these hyper-parameters later.

Table 1: Evaluation on image classification with linear probing on CIFAR-10, STL-10 and CIFAR-
100, between seven strong baseline frameworks and its InfoAug counterparts.

CIFAR-10 STL-10 CIFAR-100
Frameworks Original with InfoAug Original with InfoAug Original with InfoAug
SimCLR 66.44 67.48 58.38 60.18 37.02 37.10
BYOL 60.52 61.88 54.16 54.83 30.31 32.40
SimSiam 54.22 56.69 48.46 51.37 24.38 26.03
MoCo 61.67 62.24 53.25 54.33 30.78 31.40
NNCLR 62.97 63.57 57.07 57.12 32.31 32.97
VICReg 68.87 70.03 60.66 60.77 40.51 42.70
TiCo 62.14 63.35 53.63 57.36 33.47 35.37

The result demonstrates a consistent improvement on the encoder’s capability since it shows a boost
in performance for every baseline-benchmark combination. The results well proves that InfoAug is
a framework-invariant technique that applies to any sort of training pipeline as long as it follows a
general contrastive paradigm. Indeed, the improvement varies across different frameworks, which
shall be reasonable since different methods differs in their way of performing data augmentations
and also calculating loss based on the joint-embeddings, which all influence their compatibility with
InfoAug.

4.2 EFFECTIVENESS OF MUTUAL INFORMATION BASED SELECTION

To demonstrate the effectiveness of mutual information informed postive sample selection, it is
necessary to compare the mutual-information selecting algorithm for determining “twin patch”, with
randomly selecting patch as “twin patch” to train the encoder. Indeed, the boost in performance
may merely come from the fact that InfoAug get access to additional patches from the same image
when optimizing the model. We argue that although such observation(additional patch from same
scene raises performance), if true, is also of value, our aim is to rigorously prove the effectiveness
of InfoAug so as to drive attention to this natural relationship between mutual information and
contrastive learning.

Indeed, access to additional patch from same scene sometimes helps with model performance but the
results show that it is rather a random perturbation than a consistent improvement. The experiment
demonstrates that the effectiveness of mutual information informed data augmentation technique,
which supports the principle that mutual information should be examined as the key factor for posi-
tive sample determination.
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Table 2: Evaluation on image classification with linear probing on CIFAR-10, STL-10 and CIFAR-
100, between seven strong baselines and our pipeline formulation, but with randomly selected “twin-
patch”(“Random” for random twin patch), i.e. no mutual information measure involved.

CIFAR-10 STL-10 CIFAR-100
Frameworks Original Random Original Random Original Random
SimCLR 66.44 67.40 58.38 58.18 37.02 36.69
BYOL 60.52 61.12 54.16 56.66 30.31 32.27
SimSiam 54.22 55.44 48.46 50.22 24.38 26.53
MoCo 61.67 60.30 53.25 53.02 30.78 30.68
NNCLR 62.97 63.04 57.07 57.88 32.31 32.99
VICReg 68.87 68.55 60.66 59.33 40.51 40.28
TiCo 62.14 62.09 53.63 56.11 33.47 34.27

4.3 COMPATIBILITY OF DUAL-BRANCH FORMULATION WITH VARIOUS FRAMEWORKS

Although dual-branch formulation heuristically fits with InfoAug since it both perform “view-
invariant” and “mutual information aware” encoding, we here test the compatibility of this for-
mulation with different frameworks to facilitate further research.

Table 3: Evaluation on image classification with linear probing on CIFAR-10, STL-10 and CIFAR-
100, between InfoAug without dual-branch formulation and InfoAug with dual-branch formulation.

CIFAR-10 STL-10 CIFAR-100
Frameworks Single Dual Single Dual Single Dual
SimCLR 67.17 67.48 59.92 60.18 37.08 37.10
BYOL 61.55 61.88 55.86 54.83 32.33 32.40
SimSiam 56.67 56.69 51.11 51.37 27.62 26.03
MoCo 62.61 62.24 55.25 54.33 33.16 31.40
NNCLR 63.86 63.57 57.06 57.12 32.87 32.97
VICReg 69.09 70.03 60.03 60.77 41.29 42.70
TiCo 63.01 63.35 56.00 57.36 33.34 35.37

From the experiment results, most frameworks do benefit from the dual-branch formulation. An
exception here is MoCo, who turns out to always perform better with single branch InfoAug pipeline.
We argue it might be the reason that the effect of traditional projection head and InfoAug projection
head become unified when faced with a large dynamic dictionary. In summary, decoupling the two
learning objective into two projection head helps with model learning, but is up to users’ choice for
further application

4.4 ABLATION STUDY

Ablation on λλλ. We visualize the model performance across the seven baseline frame-
work on CIFAR-10 when the weighted factor are set to [0, 0.5, 1.0, 1.5, 2.0] in Fig 3.

Figure 3: Ablation study on the weighted factor

Each line represent the performance related to a
single weighted factor. We could see that the
model perform the worst when λ is set to 0, which
correspond to the baseline method without In-
foAug. We also learn from the ablation that set-
ting the value too high can also harm the model.
We argue that this is also reasonable due to the
same reason as when λ = 0, which break the bal-
ance between the two above mentioned learning
objective. The point is further proved by the fact

that the model yields the best performance when λ is set to 1, which strikes a good balance for model
to simultaneously be view invariant and mutual information aware.
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We also performed ablation study on training epoch and different size of training samples to demon-
strate the effectiveness of the method. For the limitation of space in main text, we conserve the
illustration of these studies to A.

5 DISCUSSION

5.1 CURRENT LIMITATIONS ON IN-THE-WILD LARGE DATASET

Insufficient observation. For some in-the-wild large scale video datasets like TrackingNet(Muller
et al., 2018), GOT10K(Huang et al., 2019) and TAP-kinectics(Doersch et al., 2023), the number
of frames in a video sequence varies a lot from video to video. This may result in insufficient
information for mutual information estimation and the determination of appropriate “twin patch”,
due to nearly zero observed entropy or biased observation within too short period.

Camera jittering. Short term camera jittering may reduce the discrepancy between real-world
position and estimated position in camera reference frame. This will inevitably lead to false positive
sample with direct mutual information selection, which we argue is what offsets the advantage of
InfoAug in the evaluation on those large scale datasets.

5.2 FUTURE WORKS

More points to represent a patch. A plausible way to mitigate the bias caused by insufficient
observation and camera jittering could be assigning more points to a patch and using the concate-
nation of all points positions as the overall random variable for mutual information calculation.
However, one problem of this solution lies in the current “3KL” estimation method(Kraskov et al.,
2004), which may not be suffice for the increase of dimension. It requires us to turn to method like
MINE(Belghazi et al., 2018), which will definitely take more time to finish.

Incorporate temporal information towards a unified contrastive learning paradigm. The path
towards an ultimately unified approach to contrastive learning would be to combine our method
with temporal contrastive learningPathak et al., 2017. Here, our work shows how to determine
positive samples within a time frame, that is, without time dimension, while Wang & Gupta (2015)
proposed a method on how to determine positive samples across the time dimension by tracking the
objects. These two methods could be naturally combined with only one tracking and make fully use
of the whole video sequence. We argue that it is the key step towards a generally unified contrastive
learning paradigm.

6 CONCLUSION

In this paper, we investigate the problem of positive sample selection which is the key of self-
supervised contrastive learning. We notice that traditional contrastive learning only answers the
“within entity” part of the question but haven’t deal with the “cross entity” part of it. Leverag-
ing the natural bond between Mutual Information and cross entity positive samples, we proposed
InfoAug, an more unified method which combines traditional view-based augmentation and our
mutual-information-aware cross patch augmentation, based on empirical cross patch mutual infor-
mation estimation. We test our method on extensive state-of-the-art baseline framework on multi-
ple datasets, the result shows a consistent improvement on every baseline-benchmark combination,
yielding various degree of progress.

We believe that InfoAug provides a playground for future work to explore on with mutual informa-
tion based contrastive augmentation. More concretely, InfoAug’s work on a more unified method on
spatial level could be naturally fused with existing temporal contrastive method, which we believe
is important towards a ultimately unified scene understanding framework.
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Ethics Statement: We have read the ICLR Code of Ethics and ensures that this work follows it.
All data and pre-trained models used in our experiments are publically available and has no ethical
concerns.

Reproducibility Statement: To help readers reproduce our experiments, we provided detailed
preliminary of our mutual information estimation algorithm in Section A.1, a breakdown of our
proposed method in Section A.2, and extensive ablation study on related hyper-parameter in Section
A.3. Since our work proposes an novel method working in slightly different experiment settings, we
also provide all relative details in Section 3.4. Lastly, We also plan to release the source codes to
ensure the reproducibility of this paper.
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Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Mohammad Ghesh-
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A APPENDIX

A.1 MORE ON “3KL” MUTUAL INFORMATION ESTIMATION ALGORITHM

In this section we give a more detailed explanation on the principle behind the method “3KL” that
we deployed to estimate mutual information. Also, we illustrate how to structure the input to before
feeding it the “3KL”.

Kraskov et al. (2004) proposed a novel approach to estimate (joint) entropies using nearest neighbors
in a given dataset. Instead of directly estimating the density of the distribution, they leveraged the
distance to the k-th nearest neighbor as an approximation, as shown in Fig 5. A more intuitive
explanation is, the density should be higher for the area where the k-nearest neighbour is closer.

By separately estimating the three entropies, namely the entropy of X, denoted as H(X), and the
entropy of Y, denoted as H(Y ) and the joint entropy, denoted as H(X;Y ), the method calculate
the mutual information in the following way:

I(X;Y ) = H(X) +H(Y )−H(X;Y )

where H(X) is estimated by:

Ĥ(X) = ψ(n)− ψ(k) + log
(
2d
)
+
d

n

n∑
i=1

log
(
ϵkQ (qi)

)

Figure 4: This is the figure from Vollmer et al. (2018) which gives a clear definition of how “3KL”
estimate density based on the k-th distance with L∞ − norm

Remarkably, their method was found to consistently estimate entropy, regardless of the specific
value chosen for k. This means that as the sample size grows, their approach reliably captures the
underlying entropy, showcasing its robustness and applicability.

A.2 DETAILED ALGORITHM BREAKDOWN FOR MUTUAL INFORMATION INFORMED TWIN
PATCH SELECTION.

Step 1: Initialization. We slice the first frame, Ik, of a video evenly to N patches, {Pk,i}Ni=0,
where the number of patch is a hyper-parameter that could be adjusted so that a patch could best
cover an/an complete part of an object. For every patch, we assign a point in the center of the patch,
denoted as pk,i, to allow the position of this point to represent the position of the patch, which we
call it the “representative point” of a patch.

Step 2: Tracking to get sequence of 2-D positions. For all these representative points pk,i for any
given video, we adopt an off-the-shelf tracking model to track those points throughout the video,
obtaining a sequence of position in the camera reference frame. For our setting, we choose TAPIR
model for tracking. To double check, for a video with length of F frames, we should obtain a
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vector of shape (N,F, 2), where N implies there are N representative points and every point has F
observation of a 2-D vector representing their (x, y) coordinate in a specific frame.

Step 3: Incorporating Depth Information to transform to 3-D position sequence Driven by the
principle to best align with real world motion, we consider to turn the observation of 2-D positions
given by the tracking model into 3-D position by incorporating depth information. The idea is
straightforward: we utilize an off-the-shelf depth estimation model to generate depth for all video
frames and then extract the depth value in the position of all representative points for all frames, then
we could simply concatenate the depth value into the 2-D position to approximate the real-world 3-
D position. After this, the fore-mentioned (N,F, 2) vector becomes of shape (N,F, 3) where the
last dimension represent (x, y, z) information. We use MiDaS model to generate depth information.

Step 4: Mutual information estimation. For a given video, after we have obtained the (N,F, 3)
position vector by going through the above three steps, we could perform mutual information estima-
tion between any two representative points by equation (1). Specifically, for any two representative
points, pk,i, pk,j in video Sk, we utilize their corresponding (F, 3) position sequence to empirically
estimate the mutual information between them.

For a given video Sk, we could obtain a matrix Ik that contains the mutual information between any
two patches like below:

Ik[i, j] = Î3KL(pk,i,pk,j), for i ∈ {0, 1, 2, . . . , N}, and j ∈ {0, 1, 2, . . . , N} (5)

Step 5: Twin patch determination. We define the “twin patch” for any given patch pk,i to be one
whose representative point share the highest mutual information with the point of patch of interest.
Specifically, the index of twin patch for pk,i, which we denote as itwin

k,i is given as:

itwin
k,i = argmax

j ̸=k
Ik[i, j], for i ∈ {1, 2, 3, . . . , N} (6)

By far we illustrate the complete algorithm for determining the twin patch for any given patch in a
video. An more concrete way of thinking this is, we hold a dictionary for the whole dataset where
the key is any patch and the value is its twin patch who empirically showed to share high mutual
information with it.

A.3 MORE ABLATION STUDIES

Ablation on number of training samples. We conducted an ablation study on training datasets of
varying sizes to assess the efficacy of our proposed approach. Our investigation encompassed a com-
parative analysis against seven distinct baseline frameworks. The findings unequivocally demon-
strate that regardless of the scale of the training dataset, our method consistently outperforms the
corresponding baselines.

Table 4: The ablation study on number of samples for training. We seperately use 1000, 2000 and
our complete dataset to perform the pre-training and test the performance on CIDAR-10.

N = 1000 N = 2000 Complete Dataset
Frameworks Without InfoAug With InfoAug Without InfoAug With InfoAug Without InfoAug With InfoAug

SimCLR 58.97 61.30 63.97 65.37 66.64 67.48
BYOL 49.91 51.47 55.92 56.99 60.52 61.88
SimSiam 49.94 50.13 51.86 54.14 54.22 56.69
MoCo 53.08 54.10 57.65 58.90 61.67 62.44
NNCLR 56.33 57.62 59.59 61.54 62.97 63.57
VICReg 62.28 64.41 67.87 67.83 68.87 70.03
TiCo 50.57 55.77 58.40 61.69 62.14 63.35

Through this evaluation, we explored the impact of dataset size on the performance of our approach.
Our findings indicate that the our method transcends the limitations imposed by varying training set
sizes. Notably, our results consistently reveal the effectiveness of our approach, showcasing its ro-
bustness and generalizability across different data scales. This proves that InfoAug is an independent
technique of the data size towards more unified approach of contrastive learning.

Ablation on numbers of training epoch. To evaluate the impact of training epochs on model
performance, we conducted an ablation study by training our models for different epoch counts:
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100, 150, 200, and 250 epochs, respectively. In order to assess the effectiveness of our approach, we
compared it against seven different baseline frameworks.

Table 5: The ablation study on training epoch performed on CIFAR-10. We performed on three
settings: 150, 200, 250 epochs respectively.

100 Epochs 150 Epochs 200 Epochs 250 Epochs
Frameworks Baseline InfoAug Baseline InfoAug Baseline InfoAug Baseline InfoAug

SimCLR 62.58 63.12 67.69 70.02 66.44 67.48 67.25 68.2
BYOL 63.75 56.39 57.81 60.36 60.52 61.88 61.55 63.77
SimSiam 54.77 57.39 55.61 57.77 54.22 56.69 56.07 59.01
MoCo 57.55 58.02 61.27 60.73 61.67 62.24 62.33 62.34
NNCLR 59.67 61.02 62.44 65.00 62.97 63.57 63.66 65.65
VICReg 68.45 68.52 69.74 69.83 68.87 70.03 70.08 69.09
TiCo 61.65 63.12 63.55 64.41 62.14 63.35 64.22 64.75

The results almost consistently demonstrate that our method outperforms the corresponding base-
lines across various training epochs except 2 entries out of 28 entries. These findings underscore
the robustness and efficacy of our approach. It is fair t say that our method showcases superior
performance irrespective of the specific number of training epochs employed. This highlights the
versatility and generalizability of our approach, suggesting its potential for achieving superior results
across diverse training durations and iterations.

Ablation on 2-layers standard projection head. In our main comparison experiment and other
comparative study, 3-layers projection head was adopted. Now, we also experiment on a standard
setting using 2-layers standard projection head as adopted by SimCLR, MOCOv2, BYOL and other
SOTA models.

Table 5: The ablation study on a 2-layers projection head on CIFAR10, CIFAR100 and STL10.

CIFAR10 CIFAR100 STL10
Frameworks Baseline InfoAug Baseline InfoAug Baseline InfoAug

SimCLR 66.30 66.99 37.15 37.37 59.21 61.45
BYOL 59.70 61.00 29.69 32.26 54.06 55.65
SimSiam 53.78 55.77 24.46 25.93 49.21 52.00
MoCo 60.71 61.28 30.44 32.85 55.03 55.68
NNCLR 62.30 62.63 33.13 37.42 58.07 57.63
VICReg 70.01 70.15 41.13 40.43 62.82 61.75
TiCo 60.91 62.73 33.23 35.03 54.16 57.91

A.4 COMPUTATIONAL OVERHEAD WITH MUTUAL INFORMATION ESTIMATION

Figure 5: The mutual information empirical estimation time with “3KL” methodology on different
numbers of observation

Above gives an diagram on the time cost of mutual information estimation with the “3KL” method-
ology, with independent variable being the number of observation obtained. The estimation time
is measured on a single core of CPU(without any multi-threading). The recent method on mutual
information estimation could raise the speed by an order of magnitude and we could also optimized
the algorithm by GPU accelerator. For the case of InfoAug, for 50 frames extracted from a video,
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we could perform pair-wise mutual information estimation with 40 objects of interest, for less than
2 seconds. It can be concluded that the computational side of InfoAug is rather light-weighted and
can be scaled up easily.
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