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Abstract

Masked Image Modeling (MIM) has emerged as a promising approach for Self-
Supervised Learning (SSL) of visual representations. However, the out-of-the-box
performance of MIMs is typically inferior to competing approaches. Most users
cannot afford fine-tuning due to the need for large amounts of data, high GPU
consumption, and specialized user knowledge. Therefore, the practical use of MIM
representations is limited. In this paper we ask what is the reason for the poor
out-of-the-box performance of MIMs. Is it due to weaker features produced by
MIM models, or is it due to suboptimal usage? Through detailed analysis, we show
that attention in MIMs is spread almost uniformly over many patches, leading to
ineffective aggregation by the [cls] token. Based on this insight, we propose
Selective Aggregation to better capture the rich semantic information retained in
patch tokens, which significantly improves the out-of-the-box performance of MIM
1 2.

1 Introduction

Self-supervised Learning (SSL) [9] has emerged as a powerful paradigm for pre-training visual
representations from unlabeled data. These representations are of high quality and can be used
out-of-the-box for various downstream tasks [29, 16, 38, 4]. There are two dominant SSL paradigms:
Joint Embedding Architectures (JEA), which optimize the goal of producing similar embeddings
from multiple views of the same image [30, 18, 20, 15, 58, 28, 21, 22, 16, 60, 38], and Masked
Image Modeling (MIM), which learns to reconstruct missing pixels (or high-level representations) of
images with occluded fragments [29, 6, 56, 11, 43, 4]. Although MIM is an arguably more generic
pretext task, requiring fewer assumptions about the pretraining data, the resulting representations
often underperform JEAs in high-level perceptual tasks for reasons not fully understood [59, 40, 10].

In this paper, we systematically analyze how masked models form their representations in order to
understand the reasons for their poor quality. We find that MIM representations do not work well with
the two standard ViT feature extraction methods – the [cls] tokens and average patch representations,
which are commonly treated as global image descriptors [25, 16, 29]. This is because, unlike JEAs,
MIM representations are ineffective at aggregating the relevant semantic information (see left and
center in Fig. 1), which contributes to the performance gap between these two approaches.

These findings lead us to propose Selective Aggregation of MIM patch representations as a remedy.
Using a lightweight technique inspired by Multiple-Instance Learning [37], we consistently improve

1The full version of this paper has been previously published at ICCV 2025.
2We release the codebase at github.com/gmum/beyond_cls.
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Figure 1: ViTs trained with Joint-Embedding Architectures (JEA) attend to semantically rich patches
while forming global [cls] representations, which is critical for perception performance. At the
same time, ViTs trained with Masked Image Modeling (MIM) attend more uniformly to all patches,
absorbing both relevant and irrelevant information and achieving an effect similar to naive average
pooling (see left and center). To improve out-of-the-box MIM performance, we propose Selective
Aggregation (see right) – a mechanism that aggregates patch tokens according to their relevance, as
quantified by a lightweight linear regressor ( ).

the quality of representation for a wide range of MIM models without fine-tuning their parameters
The improvements resulting from Selective Aggregation in the well-established [29, 56] and recently
published [4, 24] models support the key finding that the lack of proper aggregation is an inherent
problem in MIMs. With the continued emergence of novel approaches [24], we expect Selective
Aggregation to remain a useful tool for their developers and users.

2 Analysis of information flow in MIM and JEA

The [cls] token in Masked Image Models (MIMs) captures a representation that can, to some degree,
serve as a global image descriptor [29, 56]. However, its out-of-the-box quality is significantly lower
than the [cls] token obtained from Joint-Embedding Architectures (JEAs), limiting the effectiveness
of standard probing techniques. This raises the question: What are the differences in how the [cls]
tokens gather information in these two approaches? Understanding these differences will allow us to
build a deeper understanding of JEA and MIM vision transformers and, in consequence, develop a
principled approach to feature extraction. To this end, we study their self-attention mechanism, as
it is the only means by which the [cls] token acquires information from the image patches. For a
preliminary on vision transformers and MIM, we refer to Appendix B.

Methodology. In self-attention, each token either recycles its representation by attending to itself
or gathers the representations of other tokens by attending to them. In Fig. 2, we analyze these
interactions to understand how information flows between [cls] and patch tokens in publicly
available ViTs pretrained with several popular SSL approaches [16, 22, 60], including the most
popular MIM – the Masked Autoencoder (MAE) [29]. Specifically, we measure: (in Fig. 2a) the
proportion of attention the [cls] token assigns to itself, and (in Fig. 2b) the entropy of [cls]
attention to the patch tokens.

Key findings. Our analysis reveals significant differences in how information is exchanged between
tokens of JEA- and MAE-trained ViTs. The [cls] token in JEA strongly attends to patch tokens,
allowing it to integrate relevant information across ViT blocks. In contrast, the MAE [cls] token
heavily recycles its representation, limiting its ability to aggregate new information. Moreover,
the remaining attention of the MAE’s [cls] token is almost uniformly distributed across all patch
tokens, potentially absorbing redundant or irrelevant information. JEA models exhibit lower entropy,
meaning their [cls] tokens focus on fewer, more important patches. Crucially, fine-tuning MAE
for classification shifts the attention of [cls] and patches closer to that of JEA, highlighting the
importance of selective attention in forming strong representations.

2



v0 v1 . . . vN

o0 . . .

a0,0 a0,1 a0,N

[cls] token Patch tokens

Value
tokens

Output
tokens

Attention

0 2 4 6 8 10 12

0

0.2

0.4

0.6

0.8

ViT-B block

A
tte

nt
io

n
of

th
e

[c
ls

]t
ok

en
to

its
el

f

DINO [16] iBOT [60] MoCo-v3 [22]

MAE [29] MAE (FT) [29]

(a) Attention of the [cls] token to itself is much
higher in MAE, than in the JEA ViTs. As opposed to
JEA, where the [cls] tokens gather a large amount
of information from the patch tokens, the MAE [cls]
tokens primarily recycles its own representation.

v0 v1 . . . vN

o0 . . .

a0,0 a0,1 a0,N. . .

[cls] token Patch tokens

Value
tokens

Output
tokens

Attention

Entropy

0 2 4 6 8 10 12

4.5

5

ViT-B block

E
nt

ro
py

of
at

te
nt

io
n

be
tw

ee
n

th
e
[c

ls
]a

nd
pa

tc
h

to
ke

ns

DINO [16] iBOT [60] MoCo-v3 [22]

MAE [29] MAE (FT) [29]

(b) Entropy of [cls] token attention to patch tokens
reaches almost the maximal possible level in MAE3. In
other models, it decreases in the deeper model blocks,
indicating that the [cls] token attends to different
patches in a more selective manner. Fine-tuning of
MAE decreases this entropy, indicating that selective
attention to patch tokens is crucial for good perception.

Figure 2: Analysis of the self-attention mechanism of the [cls] tokens in ViTs trained via different
SSL techniques. In the graphs in the upper part of the figure, vi denote the value projections, a0,i are
the attention weights between the [cls] and patch tokens, and oi – self-attention outputs.

3 Selective Aggregation of Masked Image Modeling representations

Our analysis showed that masked models do not form structured global representations as effectively
as JEA models because their [cls] tokens do not properly aggregate high-level information from
the relevant patches. This leads us to ask: Can we improve the quality of the MIM representation
simply by modifying its aggregation scheme?

To address this, we propose Selective Aggregation, a mechanism that dynamically assigns importance
to tokens when forming the final representation. Specifically, we define an aggregation function
s : RN×D → [0, 1]N that predicts a score vector s ∈ [0, 1]N+1 weighting patch tokens from the L-th
ViT encoder block zL,1:N ∈ RN×D in a summation-based aggregation mechanism [8]. The weights

of s identify the key tokens and aggregate them into the representation zselect =
N∑
i=0

sizL,i ∈ RD,

which can then be used as a drop-in replacement for the [cls] token or the naively averaged
representation. The existence of a function s that aggregates tokens into a representation better than
the [cls] token would indicate that the MIM patch tokens actually contain high-level information
that has not been captured by [cls], supporting our hypothesis that MIM models do not naturally
form structured global representations.

We implement Selective Aggregation with Attention-based Multiple Instance Learning Pooling
(AbMILP) [37] – an approach that dynamically assigns importance weights to tokens, enabling
structured aggregation while maintaining minimal complexity. Given a set of vectors (in our case,
tokens zL), AbMILP predicts aggregation weights by applying a linear model t : RD → R to each

3The theoretical upper bound of [cls]-patch entropy is 5.27 for a discrete distribution over 196 patches.
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Table 1: Linear probing accuracy on ImageNet-1k [46] for different global image representations.
In Masked Image Models, patch tokens aggregated via Selective Aggregation consistently produce
global representations of higher quality than those obtained from the [cls] and naively averaged
patch tokens.

Encoder Representation aggregation method

Source ViT Avg. pooling [cls] Selective (ours)
of patches token patches + [cls]

M
as

ke
d

Im
ag

e
M

od
el

in
g MAE [29] ViT-S 47.1 47.4 54.4 54.6

MAE [29] ViT-B 65.8 67.8 71.6 71.5
MAE [29] ViT-L 73.0 75.8 77.4 77.4
MAE [29] ViT-H 73.8 77.0 78.1 78.0

SimMIM [56] ViT-B 54.3 51.5 62.8 62.0
MaskFeat [53] ViT-B 56.9 62.9 66.6 65.8
BEIT-v2 [43] ViT-B 78.5 78.9 80.9 81.0

I-JEPA [4] ViT-H 77.7 – 79.2 -
CAPI [24] ViT-L 76.2 – 82.4 -

JE
A

iBOT [60] ViT-B 75.0 77.8 77.9 78.2
DINO-v2 [38] ViT-B 81.9 83.2 83.5 83.5

DINO [16] ViT-B 71.1 76.6 75.2 76.2
MoCo-v3 [22] ViT-B 71.1 75.1 75.1 75.2

MAE (+ FT) [29] ViT-B 76.6 80.0 79.1 79.8

vector, followed by softmax:

sAbMILP
i =

exp(t(zL,i))
N∑
j=0

exp(t(zL,j))

.

Crucially, Selective Aggregation only restructures the existing out-of-the-box ViT representations
without transforming them into a different representation space. This ensures that our evaluation
isolates the impact of aggregation itself, without modifying confounding factors such as the inherent
quality of MIM token representations [10, 2]. From a practical standpoint, this allows for a lightweight
implementation of the aggregation function, requiring only a single linear regressor to assign token
weights. As a result, the additional computational and parameter overhead is negligible compared to
the base ViT.

3.1 Evaluation of Selective Aggregation in high-level perception tasks

We evaluate how Selective Aggregation affects the global representations of vision transformers. We
follow the MAE linear probing protocol [29], described in detail in Appendix C.

We first evaluate the quality of representations formed by the [cls] token, average patch representa-
tion, and Selective Aggregation on the task of ImageNet-1k classification [46]. To understand the
effect of Selective Aggregation, we apply it to a wide selection of prominent MIM and JEA models
in two variants: (i) aggregating only the patch tokens, and (ii) aggregating the patch and the [cls]
tokens4. We report the results in Tab. 1. We observe consistent improvements in a wide variety of
MIMs which were pretrained with both low-level [29, 56, 53]), and high-level [43, 4, 24] prediction
targets. This supports our hypothesis that the lack of such aggregation is an inherent problem in
MIMs, regardless of how they are trained. On the contrary, in JEAs, Selective Aggregation and
the [cls] representations have similar quality, confirming that these models can select the relevant
patches out-of-the-box. Aggregating the [cls] token with patches is insignificant in MIMs, further
confirming its low representation quality.

Having established that Selective Aggregation improves MIM performance, in Tab. 2 we further
evaluate it with several MIM models on the more challenging low-shot, fine-grained, and multilabel
classification tasks. The favorable performance of Selective Aggregation further reinforces its
usefulness.

4I-JEPA [4] and CAPI [24] do not include the [cls] tokens in their architecture.
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Table 2: Evaluation of standard ([cls] for all models, except for I-JEPA [4] and CAPI [24]),
and selectively aggregated MIM representations on low-shot (ImageNet-1% [46]), fine-grained
(CUB [52], Stanford Cars [34], OxfordIIIPets [41], Food-101 [14]), and multilabel (NUS-WIDE [23],
COCO [36]) classification tasks. Selective Aggregation consistently improves or matches MIM
performance on these tasks.

Encoder ImageNet-1% [46] CUB [52] Stanford Cars [34] OxfordIIIPets [41] Food-101 [14] NUS-WIDE [23] COCO [36]
Source ViT Standard Selective Standard Selective Standard Selective Standard Selective Standard Selective Standard Selective Standard Selective

MAE [29] ViT-B 39.1 48.3 45.8 65.9 31.8 58.8 82.4 90.8 68.1 78.0 67.2 67.9 61.2 65.3
SimMIM [56] ViT-B 17.3 34.5 17.9 61.8 11.3 23.5 37.9 47.7 54.2 61.9 58.8 60.0 41.5 44.9
BEIT-v2 [43] ViT-B 66.8 69.0 79.2 80.4 72.2 74.9 93.7 93.4 88.2 90.2 69.5 71.9 71.4 76.9

I-JEPA [4] ViT-H 66.4 70.9 51.7 59.9 40.9 42.7 89.9 92.4 81.1 85.1 71.7 72.2 70.7 73.6
CAPI [24] ViT-L 52.7 74.2 25.9 79.7 45.6 76.8 83.8 94.5 85.9 90.5 71.8 73.3 72.3 80.1

4 Conclusion

Masked Image Models (MIMs) are increasingly popular, yet their out-of-the-box usefulness in high-
level perception tasks is suboptimal. This paper presents an in-depth analysis of why that is the case.
We analyze the attention of [cls] token for various SSL approaches and conclude that MIMs attend
more uniformly to all patches when producing global representation. In contrast, better-performing
Joint-Embedding Architectures (JEAs) are more selective and, as a result, accumulate only relevant
information. As a remedy, we propose Selective Aggregation of the patch representations returned
by MIM. We demonstrate that this approach consistently improves the perception performance of
multiple MIM models, regardless of whether their original prediction target was low-level pixels
or high-level latent representations. These results support the hypothesis that a proper aggregation
of the information stored in the patch tokens is crucial for high-quality representations in vision
transformers. We hope that this new perspective on MIM representations will inspire future work on
improving these models, and pave the way for their broader practical applications.
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Appendix
A Related works

Self-supervised learning (SSL) of visual representations has become a cornerstone of modern
computer vision, enabling models to learn without labeled data [1, 9]. Several powerful SSL
paradigms have been developed, including Joint-Embedding Architectures (JEA) [30, 18, 15, 16, 38],
which learn representations by enforcing invariance across augmented image views, leading to
strong out-of-the-box performance on high-level tasks. However, JEA approaches rely on carefully
designed data augmentations [47] and implicitly assume similar distributions between pretraining
and downstream data [5, 38], limiting their adaptability [54, 35, 17, 44, 49, 26]. As an alternative,
Masked Image Modeling (MIM) [50, 51, 6, 29, 56, 24] reconstructs masked image regions or their
representations, leveraging Transformers’ ability to model long-range dependencies [29, 43, 39]. This
paradigm has demonstrated strong fine-tuning performance and scalability [29, 57, 4, 45], motivating
further study into how MIM models structure information and how their representations can be
effectively utilized [59, 40, 10]. Our work investigates this problem by analyzing how MIM models
structure information and identifying a crucial shortcoming in their attention mechanisms.

Differences in representation structure between JEA and MIM have been the subject of several
studies analyzing their attention patterns and feature organization [59, 33, 40, 10]. JEA models are
known to produce compact, global representations, often relying on the [cls] token to aggregate
features [16, 58]. In contrast, prior work has shown that MIM models tend to focus on local
structure [40, 32, 55], leaving open the question of how their learned representations interact across
tokens and how suitable they are for typical probing strategies in downstream tasks. Rather than
directly addressing these differences, recent works propose to probe ViTs with additional attention
layers [19, 12] containing significantly more trainable parameters. However, the reason why such
complex probing is needed remains unexplored. Our work fills this gap by systematically analyzing
the information flow in ViTs pretrained with JEA and MIM, uncovering previously overlooked
fundamental structural differences between both paradigms. Furthermore, we show that these
differences contribute to inefficiencies when using MIMs for high-level perception tasks, highlighting
the need for a lightweight probing approach that accounts for the lack of appropriate representation
structure in MIMs.

B Preliminaries

In this section, we recall the basic Vision Transformer (ViT) architecture [25], and the Masked
Autoencoder (MAE) [29] – the most popular Masked Image Modeling technique.

B.1 Vision transformers (ViT)

Image processing by ViT begins by dividing and flattening an image x ∈ RH×W×C into a
sequence of N non-overlapping patches xp ∈ RN×(P 2·C), where (P, P ) is the resolution of a patch
and N = HW

P 2 . Next, a linear projection layer e : R(P 2·C) → RD transforms each patch into a
D-dimensional embedding to which appropriate positional encoding vectors p ∈ RN×D [25] are
added. We refer to the result of these operations as patch tokens:

zp = e(xp) + p ∈ RN×D. (1)
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We also define a learnable [cls] token xcls ∈ RD, which is prepended to zp
5. The first ViT block

input is defined as:

z0 = [xcls; zp] ∈ R(N+1)×D (2)

The l-th ViT block transforms tokens zl−1 into tokens zl. Each of the L blocks is a sequence of
Multihead Self-Attention (MSA) [48] and MLP layers. For both MSA and MLP, the input is first
normalized with LayerNorm [7], and the output of the layer is summed with the unnormalized input,
forming a residual connection [31].

Multihead Self-attention (MSA) [48] is a key component of ViT, which allows for exchanging
image information between tokens. It consists of h self-attention heads, each of which separately
transforms the sequence of (N + 1) input tokens into a sequence of output tokens of the same length.
A self-attention head creates three linear projections of the input, {q,k,v} ∈ R(N+1)×(D/h) and
computes the self-attention map a ∈ [0, 1](N+1)×(N+1):

a = softmax(
qkT√
D/h

), (3)

Output tokens o ∈ R(N+1)×(D/h) are calculated as o = av, i.e. the sums of v weighted by
subsequent rows of a. Next, the output tokens of each self-attention head are concatenated along their
token dimension and projected through a linear layer to form the final output of the MSA.

Final vision transformer representation zL consists of (N + 1) tokens of shape D. In high-level
perception tasks such as image classification, the most common strategy is to use only the [cls]
token output of the final ViT block (zL,0) as the representation of the entire image which serves
as an input to the classifier [25, 16, 59]. The same approach is used in JEA pretraining, where the
invariance objective is imposed on the [cls] representations (typically followed by a projector
network [18, 13]), while patch tokens are discarded [16, 22]. An alternative strategy is to summarize
the image representation as the average value of patch tokens, i.e.

∑N
i=1

zL,i

N , sometimes even
removing the [cls] token from the model [29, 3]. However, this typically leads to representations of
worse quality [25].

B.2 Masked Image Modeling

Masked Image Modeling (MIM) [50, 51] is a paradigm of learning representations through the task
of image inpainting (masking random contents of images and training a model to reconstruct them).
This approach is straightforward to apply in vision transformers because masking can be implemented
by randomly removing a subset of patch tokens. Among the various MIM implementations [56, 6],
the Masked Autoencoder (MAE) [29] has emerged as one of the most popular frameworks.

Masked Autoencoder (MAE) consists of two ViTs – an encoder f and decoder g. During MAE
pretraining, we divide the image into patch tokens zp, remove a random subset of tokens, and then
process the remaining ones through the encoder. The tokens to be removed are selected by a random
binary mask m ∈ {0, 1}N , where 0 is drawn with the probability of ρ (mask ratio) and denotes the
dropped tokens. In consequence, the input and output sequences of f consist of (1 +N · (1− ρ))
tokens (the [cls] token and N · (1− ρ) patch tokens).

Before processing the output of f through the decoder6 g, we complement it with N · ρ identical
mask tokens zmsk ∈ D, such that the placement of mask tokens reflects the placement of tokens
removed by mask m. The decoder adds an appropriate positional embedding to both, encoded and
mask tokens. After obtaining the output sequence of g, we discard the [cls] token and project the
N patch tokens into the sequence x̂p ∈ RN×(P 2·C), i.e. of the same size as the image patches xp.

5For convenience of notation, the [cls] token will have the index of 0, and patch tokens will have the
indices ∈ 1...N .

6For simplicity of notation, we assume that the encoder and decoder have equal embedding sizes and numbers
of layers, denoted by D and L, respectively. In practice, if the embedding sizes are not equal, we prepend the
decoder with an appropriate linear projection.
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The objective function of MAE is defined as the mean squared error between the image pixels and
predicted pixels, calculated at the patches that were randomly dropped by mask m:

LMAE = Ex||xp[1−m]− x̂p[1−m]||2. (4)

Numerous works propose to replace the MAE prediction target with higher-level representations
of patches. Such targets can be formed from low-variance image components [53, 10], or latent
representations of an image encoder [11, 43, 57, 4, 24]. However, the reconstruction objective
is typically applied to the mask tokens, whereas the [cls] representation does not optimize any
objective. This raises the question of what representation is formed by [cls] token, and whether it is
the optimal choice for a global descriptor in high-level perception tasks.

C Detailed experimental setup

In this section, we describe our experimental methodology: our choice of pretrained models, the
details and hyperparameters of evaluating their representations, as well as the codebase used for the
experiments.

C.1 Overview of the analyzed vision transformers

Our study aims to verify whether Selective Aggregation of patch token representations with AbMILP
can yield form better representations than those of the [cls] tokens.

For this purpose, we analyze various vision transformer architectures that were pretrained with several
MIM and JEA approaches, using the parameters shared by the authors of the respective methods.
This has two advantages:

• Using the existing parameters significantly reduces the computational resources required for
our study.

• Our study provides insights about the very same sets of parameters that are described in
their respective literature and used by the wider research community.

For a fair evaluation, we use the parameters of the models that were pretrained on the ImageNet-1k
dataset [46]. All of the explored model parameters are compatible with the implementations of the
MAE [29] or SimMIM [56] vision transformers. Following the MAE and DINO implementations,
when using ViT-S and ViT-B, we split the image into a 14× 14 grid of patches of size 16× 16. When
using ViT-H, the we split the image into 16× 16 patches of size 14× 14.

The only analyzed models that are not publicly available but were trained by us are the ViT-S
pretrained with the MAE and the fine-tuned ViT-S/B/L variants of the MAE. To prepare these models,
we used the MAE pretraining and fine-tuning codebase and hyperparameters [29]. Before fine-tuning,
we initialize the model with the pretrained MAE parameters as shared by the authors and use the
[cls] token representation as input to the classifier.

C.2 Representation evaluation details

In our evaluation of ViT representations in terms of classification accuracy on ImageNet-1k, we
follow the MAE linear probing protocol [29]: we augment the images only by random cropping,
use the batch size of 16,384, and train the classifier head for 90 epochs (50 in the case of ViT-Large
and Huge) with the LARS optimizer [27], the base learning rate of 0.1 with cosine decay and 10
epochs of warmup, optimizer momentum of 0.9, and no weight decay. For CUB and ImageNet-1%,
we follow a similar linear probing setup but train using SGD with a batch size of 1024. We report the
results averaged over 3 random seeds. When using the AbMILP Selective Aggregation, we train it
alongside the classifier head.

These evaluations are performed on a single node equipped with 4 NVIDIA-GH200 GPUs. Due to
the memory constraints of this setup, we obtain the effective batch size of 16,384 by aggregating
gradients from two forward passes with half of that batch size.
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Table 3: Comparison of AbMILP [37] and Attentive Probing (AP) [19] aggregation schemes. AbMILP
and the single-head cross-attention AP perform comparably.

Encoder Aggregation method
Initialization ViT type AbMILP AP (1 head) AP (12 heads)

MAE [29] ViT-S 54.4 53.6 63.9
MAE [29] ViT-B 71.6 71.4 75.4
MAE [29] ViT-L 77.4 77.6 79.7
MAE [29] ViT-H 78.1 78.3 80.0

BEIT-v2 [43] ViT-B 80.9 81.0 81.8
I-JEPA [4] ViT-H 79.2 79.5 79.7
CAPI [24] ViT-L 82.4 81.6 82.7

C.3 Codebase

Our code is based on the official MAE codebase [29], written in PyTorch [42], and available at
github.com/gmum/beyond_cls. We include scripts required for the analysis of the attention
mechanism in ViTs, as well as linear evaluation of their representations extended with AbMILP [37].

D Selective Aggregation and Attentive Probing

Attentive Probing (AP) [19] has been proposed as an alternative to naive feature aggregation in ViTs.
Similarly to our Selective Aggregation, AP learns to emphasize the most relevant patch tokens while
keeping the encoder parameters frozen. However, AP differs from our approach in a key way: it does
not only learn to aggregate tokens, but also transforms them with a cross-attention layer into a new
representation space. potentially more suitable for the downstream task [10]. In contrast, AbMILP is
designed to isolate the aggregation process while preserving the original ViT representations.

We compare AP and AbMILP across multiple MIM models in terms of ImageNet-1k classification
and report the results in Tab. 3. Since AP typically uses a 12-head self-attention mechanism, we
additionally evaluate a reduced variant with a single attention head (without reducing the represen-
tation dimensionality) to better compare with the capacity of AbMILP (which predicts a single set
of representation aggregation weights). As expected, the full AP model achieves the best results,
benefiting from its greater expressive power. However, despite AP’s significantly higher parameter
and compute cost, reducing it to a single head brings its performance in line with AbMILP. This
result is somewhat surprising and suggests that AP’s strength may come from ensembling multiple
Selective Aggregation patterns rather than from the learned transformation. Exploring this insight to
develop more efficient Selective Aggregation strategies is a promising direction for future work.
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