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Abstract—As one of the recently proposed algorithms for sparse
system identification, norm constraint Least Mean Square
( -LMS) algorithm modifies the cost function of the traditional
method with a penalty of tap-weight sparsity. The performance of
-LMS is quite attractive compared with its various precursors.

However, there has been no detailed study of its performance. This
paper presents comprehensive theoretical performance analysis of
-LMS for white Gaussian input data based on some reasonable

assumptions, which are reasonable in a large range of parameter
setting. Expressions for steady-state mean square deviation (MSD)
are derived and discussed with respect to algorithm parameters
and system sparsity. The parameter selection rule is established
for achieving the best performance. Approximated with Taylor
series, the instantaneous behavior is also derived. In addition,
the relationship between -LMS and some previous arts and
the sufficient conditions for -LMS to accelerate convergence
are set up. Finally, all of the theoretical results are compared
with simulations and are shown to agree well in a wide range of
parameters.

Index Terms—Adaptive filter, convergence rate, independence
assumption, -LMS, mean square deviation, performance anal-
ysis, steady-state misalignment, sparse system identification, white
Gaussian signal.

I. INTRODUCTION

A DAPTIVE filtering has attractedmuch research interest in
both theoretical and applied issues for a long time [1]–[3].

Due to its good performance, easy implementation, and high ro-
bustness, Least Mean Square (LMS) algorithm [1]–[4] has been
widely used in various applications such as system identifica-
tion, channel equalization, and echo cancelation.
The unknown systems to be identified are sparse in most

physical scenarios, including the echo paths [5] and digital
TV transmission channels [6]. In other words, there are only a
small number of nonzero entries in the long impulse response.
For such systems, the traditional LMS has no particular gain
since it never takes advantage of the prior sparsity knowledge.
In recent years, several new algorithms have been proposed
based on LMS to utilize the feature of sparsity. M-Max
Normalized LMS (MMax-NLMS) [7] and Sequential Partial
Update LMS (S-LMS) [8] decrease the computational cost and
steady-state mean-square error (MSE) by means of updating
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filter tap-weights selectively. Proportionate NLMS (PNLMS)
and its improved version [5], [9] accelerate the convergence by
setting the individual step size in proportional to the respective
filter weights.
Sparsity in adaptive filtering framework has been a long

discussed topic [10], [11]. Inspired by the recently appeared
sparse signal processing branch [12]–[20], especially com-
pressive sampling (or compressive sensing, CS) [21]–[23],
a family of sparse system identification algorithms has been
proposed based on norm constraint. The basic idea of such
algorithms is to exploit the characteristics of unknown impulse
response and to exert sparsity constraint on the cost function
of gradient descent. Especially, ZA-LMS [12] utilizes norm
and draws the zero-point attraction to all tap-weights. -LMS
[13] employs a nonconvex approximation of norm and exerts
respective attractions to zero and nonzero coefficients. The
smoothed algorithm, which is also based on an approxi-
mation of norm, is proposed in [24] and analyzed in [25].
Besides LMS variants, RLS-based sparse algorithms [14], [15]
and Bayesian-based sparse algorithms [26] have also been
proposed.
It is necessary to conduct a theoretical analysis for -LMS

algorithm. Numerical simulations demonstrate that the men-
tioned algorithm has rather good performance compared with
several available sparse system identification algorithms [13],
including both accelerating the convergence and decreasing the
steady-state MSD. -LMS performs zero-point attraction to
small adaptive taps and pulls them toward the origin, which
consequently increases their convergence speed and decreases
their steady-state bias. Because most coefficients of a sparse
system are zero, the overall identification performance is en-
hanced. It is also found that the performance of -LMS is highly
affected by the predefined parameters. Improper parameter set-
ting could not only make the algorithm less efficient, but also
yield steady-state misalignment even larger than the traditional
algorithm. The importance of such analysis should be further
emphasized since adaptive filter framework and -LMS be-
have well in the solution of sparse signal recovery problem in
compressive sensing [27]. Compared with some convex relax-
ation methods and greedy pursuits [28]–[30], it was experimen-
tally demonstrated that -LMS in adaptive filtering framework
shows more robustness against noise, requires fewer measure-
ments for perfect reconstruction, and recovers signal with less
sparsity. Considering its importance as mentioned above, the
steady-state performance and instantaneous behavior of -LMS
are throughout analyzed in this work.

A. Main Contribution

One contribution of this work is on steady-state performance
analysis. Because of the nonlinearity caused by the sparsity con-
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straint in -LMS, the theoretical analysis is rather difficult. To
tackle this problem and enable mathematical tractability, adap-
tive tap-weights are sorted into different categories and sev-
eral assumptions besides the popular independence assumption
are employed. Then, the stability condition on step size and
steady-state misalignment are derived. After that, the parameter
selection rule for optimal steady-state performance is proposed.
Finally, The steady-state MSD gain is obtained theoretically of
-LMS over the tradition algorithm, with the optimal param-
eter.
Another contribution of this work is on instantaneous be-

havior analysis, which indicates the convergence rate of LMS
type algorithms and also arouses much attention [31]–[33]. For
LMS and most of its linear variants, the convergence process
can be obtained in the same derivation procedure as steady-
state misalignment. However, this no longer holds for -LMS
due to its nonlinearity. In a different way by utilizing the ob-
tained steady-state MSD as foundation, a Taylor expansion is
employed to get an approximated quantitative analysis of the
convergence process. Also, the convergence rates are compared
between -LMS and standard LMS.

B. Relation to Other Works

In order to theoretically characterize the performance and
guide the selection of the optimal algorithm parameters, the
mean square analysis has been conducted for standard LMS
and a lot of its variants. To the best of our knowledge, Widrow
for the first time proposed the LMS algorithm in [34] and
studied its performance in [35]. Later, Horowitz and Senne [36]
established the mathematical framework for mean square
analysis via studying the weight vector covariance matrix and
achieved the closed-form expression of MSE, which was fur-
ther simplified by Feuer and Weinstein [37]. The mean-square
performance of two variants, leaky LMS and deficient length
LMS, were theoretically investigated in similar methodologies
in [31] and [32], respectively. Recently, Dabeer and Masry [33]
put forward a new approach for performance analysis on LMS
without assuming a linear regression model. Moreover, con-
vergence behavior of transform-domain LMS was studied in
[38] with second-order autoregressive process. A summarized
analysis was proposed in [39] on a class of adaptive algorithms,
which performs linear time-invariant operations on the instan-
taneous gradient vector and includes LMS as the simplest case.
Similarly, the analysis of Normalized LMS has also attracted
much attention [40], [41].
However, the methodologies mentioned above, which are ef-

fective in their respective context, could no longer be directly
applied to the analysis of -LMS, considering its high non-
linearity. Admittedly, nonlinearity is a long topic in adaptive
filtering and not unique for -LMS itself. Researchers have
delved into the analysis of many other LMS-based nonlinear
variants [42]–[50]. Nevertheless, the nonlinearity of most above
references comes from nonlinear operations on the estimated
error, rather than the adaptive tap-weights that -LMS mainly
focuses on.
We have noticed that the mean square deviation analysis of

ZA-LMS has been conducted [46]. However, this work is far
different from the reference. First of all, the literature did not
consider the transient performance analysis while in this work

the mean square behavior of both steady-state and conver-
gence process are conducted. Moreover, considering -LMS is
more sophisticated than ZA-LMS, there are more parameters
in -LMS than in ZA-LMS, which enhances the algorithm
performance but increases the difficulty of theoretical analysis.
Last but not least, taking its parameters to a specific limit
setting, -LMS becomes essentially the same as ZA-LMS,
which can apply the theoretical results of this work directly.
A preliminary version of this work has been presented in con-

ference [51], including the convergence condition, derivation of
steady-state MSD, and an expression of the optimal parameter
selection. This work provides not only a detailed derivation for
steady-state results, but also the mean square convergence anal-
ysis. Moreover, both the steady-state MSD and the parameter
selection rule are further simplified and available for analysis.
Finally, more simulations are performed to validate the results
and more discussions are conducted.
This paper is organized as follows. In Section II, a brief re-

view of -LMS and ZA-LMS is presented. Then in Section III,
a few assumptions are introducedwhich are reasonable in a wide
range of situations. Based on these assumptions, Section IV pro-
poses the mean square analysis. Numerical experiments are per-
formed to demonstrate the theoretical derivation in Section V,
and the conclusion is drawn in Section VI.

II. BACKGROUND

A. -LMS Algorithm

The unknown coefficients and input signal at time in-
stant are denoted by and

, respectively, where is
the filter length. The observed output signal is

(1)

where denotes the additive noise. The estimated error be-
tween the output of unknown system and of the adaptive filter
is

(2)

where denotes the adaptive
filter tap-weights.
In order to take the sparsity of the unknown coefficients into

account, -LMS [13] inserts an norm penalty into the cost
function of standard LMS. The new cost function is

where is a factor to balance the estimation error and the
new penalty. Due to the NP hardness of norm optimization,
a continuous function is usually employed to approximate
norm. Taking the popular approximation [52] and making use
of the first order Taylor expansion, the recursion of -LMS is

(3)

where and

elsewhere
(4)

The last item in (3) is called zero-point attraction [13], [27], be-
cause it reduces the distance between and the origin when
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Fig. 1. Zero-point attraction of (a) -LMS, (b) ZA-LMS, and (c) RZA-LMS.

is small. According to (4) and Fig. 1(a), obviously such
attraction is nonlinear and exerts varied affects on respective
tap-weights. This attraction is effective for the tap-weights in
the interval , which is named attraction range. In
this region, the smaller is, the stronger attraction affects.
B. ZA-LMS and RZA-LMS

ZA-LMS (or Sparse LMS) [12] runs similar as -LMS. The
only difference is that the sparse penalty is changed to norm.
Accordingly the zero-point attraction item of the former is de-
fined as

(5)

which is shown in Fig. 1(b). The recursion of ZA-LMS is

(6)

where is the parameter to control the strength of sparsity
penalty. Comparing the subfigures in Fig. 1, one can readily
accept that exerts the various attraction to respective
tap-weight; therefore, it usually behaves better than .
In the following analysis, one will read that ZA-LMS is a
special case of -LMS, and the result of this work can be easily
extended to the case of ZA-LMS.
As its improvement, Reweighted ZA-LMS (RZA-LMS) is

also proposed in [12], which modifies the zero-point attraction
term to

(7)

where parameter controls the similarity between (7) and
norm. Please refer to Fig. 1(c) for better understanding the be-
havior of (7). In Section V, both ZA-LMS and RZA-LMS are
simulated for the purpose of performance comparison.

C. Previous Results on LMS and ZA-LMS

Denote and as the steady-stateMSD and instan-
taneous MSD after iterations for LMS with zero-mean inde-
pendent Gaussian input, respectively. The steady-stateMSD has
the explicit expression [2] of

(8)

where and denote the power of input signal and addi-
tive noise, respectively, and is a constant defined by (25) in
Appendix A. For the convergence process, the explicit expres-
sion of instantaneous MSD is implied in [36] as

(9)

The next one turns to ZA-LMS; is used to denote the
steady-state MSD with white Gaussian input. Reference [46]
reaches the conclusion that

(10)

where is the solution to

where denotes the number of nonzero unknown coeffi-
cients and is a constant defined by (27).

D. Related Steepest Ascent Algorithms for
Sparse Decomposition

-LMS employs steepest descent recursively and is appli-
cable to solving sparse system identification. More generally,
steepest ascent iterations are used in several algorithms in the
field of sparse signal processing. For example, researchers de-
veloped smoothed method [24] for sparse decomposition,
whose iteration includes a steepest ascent step and a projection
step. The first step is defined as

(11)

where serves as step size and
denotes the negative

derivative to an approximated norm and takes the value

After (11), a projection step is performed which maps
to in the feasible set. It can be seen that (11) performs
steepest ascent, which is similar to zero-point attraction in
-LMS. The iteration details and performance analysis of this
algorithm are presented in [24] and [25], respectively.
Another algorithm, named Iterative Bayesian [26], also en-

joys steepest ascent iteration as

(12)

where denotes the step size and is a log posterior probability
function. Analysis of this algorithm and its application to sparse
component analysis in noisy scenario are presented in [26].

III. PRELIMINARIES

Considering the nonlinearity of zero-point attraction, some
preparations are made to simplify the mean square performance
analysis.
A. Classification of Unknown Coefficients
Because various affects are exerted in -LMS to the filter

tap-weights according to their respective system coefficients,
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it would be helpful to classify the unknown parameters, cor-
respondingly, the filter tap-weights, into several categories
and perform different analysis on each category separately.
According to the attraction range and their strength, all system
coefficients are classified into three categories as

Large coefficients:

Small coefficients:

Zero coefficients:

where . Obviously, and
. In the following text, derivations are firstly carried out

for the three sets separately. Then a synthesis is taken to achieve
the final results.

B. Basic Assumptions

The following assumptions about the system and the prede-
fined parameters are adopted to enable the formulation.
i) Input data is an i.i.d. zero-mean Gaussian signal.
ii) Tap-weights , input vector , and additive noise
are mutually independent.

iii) The parameter is so small that .
Assumption i) commonly holds while ii) is the well-known

independence assumption [3]. Assumption iii) comes from the
experimental observations, i.e., a too large can cause much
bias as well as large steady-state MSD. Therefore, in order to
achieve better performance, should not be too large.
Besides the above items, several regular patterns are sup-

posed during the convergence and the steady state.
iv) All tap-weights, , follow Gaussian distribution.
v) For , the tap-weight is assumed to have
the same sign with the corresponding unknown coeffi-
cient.

vi) The adaptive weight is assumed out of the attraction
range for , while in the attraction range elsewhere.

Assumption iv) is usually accepted for steady-state behavior
analysis [12], [49]. Assumption v) and vi) are considered suit-
able in this work due to the following two aspects. First, there
are few taps violating these assumptions in a common scenario.
Intuitively, only the nonzero taps with rather small absolute
value may violate Assumption v), while Assumption vi) may
not hold for the taps close to the boundaries of the attraction
range. For other taps which make up the majority, these as-
sumptions are usually reasonable, especially in high SNR cases.
Second, Assumptions v) and vi) are proper for small steady-state
MSD, which is emphasized in this work. The smaller steady-
state MSD is, the less tap-weights differ from unknown coeffi-
cients. Therefore, it is more likely that they share the same sign,
as well as on the same side of the attraction range.
Based on the discussions above, those patterns are regarded

suitable in steady state. For the convergence process, due to
fast convergence of LMS-type algorithms, we may suppose
that most taps will get close to the corresponding unknown
coefficients very quickly, so these patterns are also employed
in common scenarios. As we will see later, some of the above
assumptions cannot always hold in whatever parameter setting
and may restrict the applicability of some analysis below.
However, considering the difficulties of nonlinear algorithm
performance analysis, these assumptions can significantly
enable mathematical tractability and help obtain results shown

to be precious in a large range of parameter setting. Thus, we
consider these assumptions reasonable to be employed in this
work.

IV. PERFORMANCE ANALYSIS

Based on the assumptions above, the mean and mean-square
performances of -LMS are analyzed in this section.

A. Mean Performance

Define the misalignment vector as , combine
(1), (2), and (3), one has

(13)

Taking expectation and using the Assumption ii), one derives

where overline denotes expectation.
• For , utilizing Assumption vi), one has

.
• For , combining Assumptions iii), v) and vi), it can
be derived that

• For , noticing the fact that has the opposite sign
with in interval and using Assumptions iv)
and vi), it can be derived that .

Thus, the bias in steady state is obtained

elsewhere
(14)

In steady state, therefore, the tap-weights are unbiased for large
coefficients and zero coefficients, while they are biased for small
coefficients. The misalignment depends on the predefined pa-
rameters as well as unknown coefficient itself. The smaller
the unknown coefficient is, the larger the bias becomes. This ten-
dency can be directly read from Fig. 1(a). In the attraction range,
the intensity of the zero-point attraction increases as tap-weights
get more closing to zero, which causes heavy bias. Thus, the bias
of small coefficients in steady state is the byproduct of the at-
traction, which accelerates the convergence rate and increases
steady-state MSD.

B. Mean Square Steady-State Performance

The condition on mean square convergence and steady-state
MSD are given by the following theorem.
Theorem 1: In order to guarantee convergence, step-size

should satisfy

(15)

and the final mean square deviation of -LMS is

(16)

where are defined in (36)–(38) in Appendix A, respec-
tively.
The proof of Theorem 1 goes in Appendix B.
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TABLE I
THE STEADY-STATE MSDS OF THREE ALGORITHMS

Remark 1: The steady-state MSD of -LMS is composed of
two parts: the first item in (16) is exactly the steady-state MSD
of standard LMS (8), while the latter two items compose an ad-
ditional part caused by zero-point attraction. When equals
zero, -LMS becomes the traditional LMS, and correspond-
ingly the additional part vanishes. When the additional part is
negative, -LMS has smaller steady-state MSD and thus better
steady-state performance over standard LMS. Consequently, it
can be deduced that the condition on to ensure -LMS out-
performs LMS in steady-state is

Remark 2: According to Theorem 1, the following corollary
on parameter is derived.
Corollary 1: From the perspective of steady-state perfor-

mance, the best choice for is

(17)

and the minimum steady-state MSD is

(18)

The proof of Corollary 1 is presented in Appendix C. Please
notice that in (18), the first item is about standard LMS and
the second one is negative when is less than . Therefore,
the minimum steady-state MSD of -LMS is less than that of
standard LMS as long as the system is not totally nonsparse.
Remark 3: According to the theorem, it can be accepted that

the steady-state MSD is not only controlled by the predefined
parameters, but also dependent on the unknown system in the
following two aspects. First, the sparsity of the system response,
i.e., and , controls the steady-state MSD. Second, signif-
icantly different from standard LMS, the steady-state MSD is
relevant to the small coefficients of the system, considering the
attracting strength appears in and .
Here, we mainly discuss the effect of system sparsity as well

as the distribution of coefficients on the minimum steady-state
MSD. Based on the above results, the following corollary can
be deduced.
Corollary 2: The minimum steady-state MSD of (18) is

monotonic increasing with respect to and attracting strength
.

The validation of Corollary 2 is performed in Appendix D.
The zero-point attractor is utilized in -LMS to draw
tap-weights towards zero. Consequently, the more sparse
the unknown system is, the less steady-state MSD is. Similarly,
small coefficients are biased in steady state and deteriorate

the performance, which explains that steady-state MSD is
increasing with respect to .
Remark 4: According to (15), one knows that -LMS has the

same convergence condition on step size as standard LMS [2]
and ZA-LMS [46]. Consequently, the effect of on steady-state
performance is analyzed. It is indicated in (8) that the stan-
dard LMS enhances steady-state performance by reducing step
size [2]. -LMS has a similar trend. For the seek of simplicity
and practicability, a sparse system of far less than is con-
sidered to demonstrate this property. Utilizing (15) in such sce-
nario, the following corollary is derived.
Corollary 3: For a sparse system that satisfies

and (19)

the minimum steady-state MSD in (18) is further approximately
simplified as

(20)

where and are defined by (20) in Appendix A, and ,
defined by (29), denotes the attracting strength to the zero-point.
Furthermore, the minimum steady-state MSD increases with re-
spect to the step size.
The proof of Corollary 3 is conducted in Appendix E. Due

to the stochastic gradient descent and zero-point attraction, the
tap-weights suffer oscillation, even in steady state, whose inten-
sity is directly relevant to the step size. The larger the step size,
the more intense the vibration. Thus, the steady-state MSD is
monotonic increasing with respect to in the above scenario.
Remark 5: In the scenario where remains a con-

stant while approaches to zero, it can be readily accepted that
(3) becomes totally identical to (6); therefore, -LMS becomes
ZA-LMS in this limit setting of parameters. In Appendix F, it
is shown that the result (10) for steady-state performance [12]
could be regarded as a particular case of Theorem 1. As ap-
proaches to zero in -LMS, the attraction range becomes in-
finity and all nonzero taps belong to small coefficients which
are biased in steady state. Thus, ZA-LMS has larger steady-state
MSD than -LMS, due to bias of all taps caused by uniform
attraction intensity. If is further chosen optimal, the optimal
parameter for ZA-LMS is given by (no-
tice that approaches as tending to zero, as makes
finite), and the minimum steady-state MSD of -LMS (18) con-
verges to that of ZA-LMS. To better compare the three algo-
rithms, the steady-state MSDs of LMS, ZA-LMS, and -LMS
are listed in Table I, where that of ZA-LMS is rewritten and
is defined in (64) in Appendix F. It can be accepted that

the steady-state MSDs of both ZA-LMS and -LMS are in
the form of plus addition items, where denotes
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TABLE II
THE PARAMETERS IN EXPERIMENTS

the steady-state MSD of standard LMS. If the additional items
are negative, ZA-LMS and -LMS exceed LMS in steady-state
performance.
Remark 6: Now the extreme case that all taps in system are

zero, i.e., , is considered. If is set as the optimal, (18)
becomes

(21)

Due to the independence of (21) on , this result also holds
in the scenario of approaching zero; thus, (21) also applies
for the steady-state MSD of ZA-LMS with optimal , in the
extreme case . Thus, it has been shown that -LMS
and ZA-LMS with respective optimal parameters have the same
steady state performance for a system with all coefficients zero.
Although this result seems a little strange at the first sight, it is in
accordance with intuition considering the zero-point attraction
item in -LMS. Since the system only has zero taps, all
only vibrate in a very small region around zero. The zero-point
attraction item is when is very near zero,
thus as long as we set to be constant, the item mentioned
above and the steady state MSD have little dependence on
itself. Thus, when is chosen as optimal and , the steady
state MSD generally does not change with respect to .

C. Mean-Square Convergence Behavior

Based on the results achieved in steady state, the convergence
process can be derived approximately.
Lemma 1: The instantaneous MSD is the solution to the first

order difference equations

(22)

where , vector and constant matrix
are defined in (32) and (31) in Appendix A, respectively. Initial
values are

(23)

The derivation of Lemma 1 goes in Appendix G. Since ,
which is defined by (56), appears in both and , the conver-
gence process is affected by algorithm parameters, the length of
system, the number of nonzero unknown coefficients, and the
strength or distribution of small coefficients. Moreover, deriva-
tion in Appendix H yields the solution to (22) in the following
theorem.
Theorem 2: The closed form of instantaneous MSD is

(24)

where and are the eigenvalues of matrix and are
coefficients defined by initial values (23). The expressions of

constants and are listed in (33) and (34) in Appendix A,
respectively. denotes the steady-state MSD.
The two eigenvalues can be easily calculated. Through the

method of undetermined coefficients, and are obtained by
satisfying initial values and , which is acquired by (22)
and (23). Considering the high complexity of their closed form
expressions, they are not included in this paper for the sake of
simplicity.
Next, we discuss the relationship of mean square conver-

gence between -LMS and standard LMS. In the scenario
where -LMS with zero becomes traditional LMS, it can be
shown after some calculation that in (24), which
becomes in accordance with (9). Now we turn to the MSD
convergence rate of these two algorithms. From the perspective
of step size, one has the following corollary.
Corollary 4: A sufficient condition for that -LMS finally

converges more quickly than LMS is ,
where is defined in (15).
The proof is postponed to Appendix I. From Corollary 4, one

knows that for a large step size, the convergence rate of -LMS
is finally faster than that of LMS. However, this condition is not
necessary. In fact, -LMS can also have faster convergence rate
for small step size, as shown in numerical simulations.
On the perspective of the system coefficients distribution, one

has another corollary.
Corollary 5: Another sufficient condition to ensure that
-LMS finally enjoys acceleration is

or equivalently

This corollary is obtained from the fact that equals zero in
this condition, using the similar proof in Appendix I. The full
demonstration is omitted to save space. Therefore, for sparse
systems whose most coefficients are exactly zeros, a large
enough guarantees faster convergence rate finally. Similar
as above, this condition is also not necessary. -LMS can
converge rather fast even if such condition is violated.

V. NUMERICAL EXPERIMENTS

Five experiments are designed to confirm the theoretical
analysis. The nonzero coefficients of the unknown system
are Gaussian variables with zero mean and unit variance and
their locations are randomly selected. Input signal and addi-
tive noise are white zero mean Gaussian series with various
signal-to-noise ratio. Simulation results are the averaged devi-
ation of 100 independent trials. For theoretical calculation, the
expectation of attracting strength in (29) and (30) are employed
to avoid the dependence on priori knowledge of system. The
parameters of these experiments are listed in Table II, where

is calculated by (17).
In the first experiment, the steady-state performance with re-

spect to is considered. Referring to Fig. 2, the theoretical
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Fig. 2. Steady-state MSD of LMS and -LMS (with respect to different ),
where SNR is 40dB and the solid square denotes .

Fig. 3. Steady-state MSD of LMS and -LMS (with respect to different ),
where SNR is 20dB and the solid square denotes .

steady-state MSD of -LMS is in good agreement with the ex-
periment results when SNR is 40 dB. With the growth of from

, the steady-state MSD decreases at first, which means
proper zero-point attraction is helpful for sufficiently reducing
the amplitude of tap-weights in . On the other hand, larger
results in more intensity of zero-point attraction item and in-

creases the bias of small coefficients . Overlarge causes too
much bias, thus deteriorates the overall performance. From (17),

produces the minimized steady-state MSD,
which is marked with a square in Fig. 2. Again, simulation result
tallies with analytical value well. When SNR is 20 dB, referring
to Fig. 3, the theoretical result also predicts the trend of MSD
well. However, since the Assumptions v) and vi) do not hold
well in low SNR case, the theoretical result has perceptible de-
viation from the simulation result.
In the second experiment, the effect of parameter on

steady-state performance is investigated. Please refer to Fig. 4
for results. RZA-LMS is also tested for performance compar-
ison, with its parameter chosen as optimal values which are

Fig. 4. Steady-state MSD of LMS, ZA-LMS, RZA-LMS (with respect to dif-
ferent ), and -LMS (with respect to different ), where equals . Parame-
ters and are chosen as optimal for RZA-LMS and -LMS, respectively.

obtained by experiments. For the sake of simplicity, the param-
eter in (7) is set the same as . Simulation results confirm
the validity of the theoretical analysis. With very small , all
tap-weights are attracted toward zero-point and the steady-state
MSD is nearly independent. As increases, there are a number
of taps fall in the attraction range while the others are out of
it. Consequently, the total bias reduces. Besides, the results
for ZA-LMS are also considered in this experiment, with the
optimal parameter proposed in Remark 5. It is shown that
-LMS always yields superior steady-state performance than
ZA-LMS; moreover, in scenario where approaches 0, the
MSD of -LMS tends to that of ZA-LMS. In the parameter
range of this experiment, -LMS shows better steady-state
performance than RZA-LMS.
The third experiment studies the effect of nonzero coeffi-

cients number on steady-state deviation. Please refer to Fig. 5. It
is readily accepted that -LMS with optimal outperforms tra-
ditional LMS in steady state. The fewer the nonzero unknown
coefficients are, the more effectively -LMS draws tap-weights
towards zero. Therefore, the effectiveness of -LMS increases
with the sparsity of the unknown system. When exactly
equals , its performance with optimal already attains that of
standard LMS, indicating that there is no room for performance
enhancement of -LMS for a totally nonsparse system.
The fourth experiment is designed to investigate convergence

process with respect to . Also, the learning curve of the stan-
dard LMS is simulated. When SNR is 40 dB, the results in
Fig. 6 demonstrate that our theoretical analysis of convergence
process is generally in good accordance with simulation. It can
be observed that different results in differences in both steady-
state MSD and the convergence rate. Due to more intense zero-
attraction force, larger results in higher convergence rate; but
too large can have bad steady-state performance for too much
bias of small coefficients. Moreover, -LMS outperforms stan-
dard LMS in convergence rate for all parameters we run, and
also surpasses it in steady-state performance when is not too
large. When SNR is 20 dB, Fig. 7 also shows similar trend about
how influences the convergence process; however, since the
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Fig. 5. Steady-state MSD of LMS and -LMS (with respect to different total
nonzeros taps ), where is chosen as optimal.

Fig. 6. MSD convergence of LMS and -LMS (with respect to different ),
where SNR is 40 dB.

low SNR scenario breaks Assumptions v) and vi), the theoret-
ical results and experimental results differ to some extent.
The fifth experiment demonstrates convergence process for

various step sizes, with the comparison of LMS and -LMS.
Please refer to Fig. 8. Similar to traditional LMS, smaller step
size yields slower convergence rate and less steady-state MSD.
Therefore, the choice of step size should seek a balance between
convergence rate and steady-state performance. Furthermore,
the convergence rate of -LMS is faster than that of LMS when
their step sizes are identical.

VI. CONCLUSION

The comprehensive mean square performance analysis of
-LMS algorithm is presented in this paper, including both
steady-state and convergence process. The adaptive filtering
taps are first classified into three categories based on the
zero-point attraction item and are then analyzed separately.
With the help of some assumptions which are reasonable in a
wide range, the steady-state MSD is finally deduced and the
convergence of instantaneous MSD is approximately predicted.

Fig. 7. MSD convergence of LMS and -LMS (with respect to different ),
where SNR is 20 dB.

Fig. 8. MSD convergence of LMS and -LMS with respect to different step
sizes , where is chosen as optimal for -LMS.

Moreover, a parameter selection rule is put forward to mini-
mize the steady-state MSD, and theoretically it is shown that
-LMS with optimal parameters is superior than traditional
LMS for sparse system identification. The all-round theoretical
results are verified in a large range of parameter setting through
numerical simulations.

APPENDIX A
EXPRESSIONS OF CONSTANTS

In order to make the main body simple and focused, the
explicit expressions of some constants used in derivations are
listed here.
All through this work, four constants of

(25)

(26)

(27)

(28)

are used to simplify the expressions.
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To evaluate the zero-point attracting strength, with respect to
the sparsity of the unknown system coefficients, two kinds of
strengths are defined as

(29)

(30)

which are utilized everywhere in this work. Considering the at-
traction range, it can be readily accepted that these strengthes
are only related to the small coefficients, other than the large
ones and the zeros.
In Lemma 1, is defined as

(31)

and

(32)

where

where is the solution to (56).
In Theorem 2, the constants and are

(33)

(34)

In Corollary 1, the constants are

(35)

(36)

(37)

(38)

In Appendixes E and D, the constants are

(39)

(40)

(41)

(42)

APPENDIX B
PROOF OF THEOREM 1

Proof: Denote to be MSD at iteration , and to be
the second moment matrix of , respectively,

(43)

(44)

Substituting (13) into (44), and expanding the term
into three second moments using the

Gaussian moment factoring theorem [36], one knows

(45)

Using the fact that , one has

Consequently, the condition needed to ensure convergence is
and (15) is derived directly, which is the

same as standard LMS and similar with the conclusion in [27].
Next the steady-state MSD will be derived. Using (45) and

considering the th diagonal element, one knows

(46)

To develop , one should first investigate two items, namely

and in (46). For , from As-
sumption vi) one knows , thus

(47)

For small coefficients, considering Assumptions v) and vi), for-
mula (4) implies is a locally linear function with slope

, which results in

Thus, it can be shown

(48)

(49)

where is derived in (14).
Then, turning to , it is readily known that
in this case. Thus, from Assumptions iv) and vi), the fol-

lowing results can be derived from the property of Gaussian dis-
tribution:

(50)

(51)
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Combining Assumption iii), (14) and (47)–(49), one can know
the equivalency between (46) and following equations for in

, and , respectively:

(52)

(53)

(54)

where denotes for simplicity. Summing (52)
and (53) for all , and noticing that

it could be derived that

(55)

where is introduced in (29). Combining (55) and (54), it
can be reached that is defined by the following equation:

(56)

Finally, (16) is achieved after solving the quadratic equation
above and a series of formula transformation on (55). Thus, the
proof of Theorem 1 is completed.

APPENDIX C
PROOF OF COROLLARY 1

Proof: By defining , (16) becomes

(57)

where is defined as

Next, we want to find , which minimizes .
Forcing the derivative of with respect to to be zero, it
can be obtained that

Combining and substituting in (57),
Corollary 1 can be finally achieved.

APPENDIX D
PROOF OF COROLLARY 3

Proof: From (8), (18), (36), (37), and (39), it can be ob-
tained that

(58)

Note neither the defined in (8) nor defined in (39) is de-
pendent on or ; thus, the focus of the proof is the denom-
inator in (58). In the following, we will analyze the two items
in the denominator separately and obtain their monotonicity.
The first item in the denominator is

(59)

From (59), it has already shown that is increasing
with respect to and .
Next, we consider the second item. It can be obtained before-

hand that and equal and ,
respectively. Thus, one has

(60)

Further notice that

it can be proved that all of the three items in the square root of
(60) are increasing with respect to and ; thus the second
item in the denominator is monotonic increasing with respect to
and . Until now, the monotonicity of with respect

to and has been proved.
Last, in the special scenario where exactly equals , it can

be obtained that is identical to ; thus, is larger
than the minimum steady-state MSD of the scenario where is
less than . In sum, Corollary 2 is proved.

APPENDIX E
PROOF OF COROLLARY 2

Proof: For a sparse system in accordance with (19),
defined in Appendix A are approximated by

Substituting in of (58), with the approximated expres-
sions above, (20) is finally derived after calculation.
Next, we show in (20) is monotonic increasing with

respect to . Since (20) is equivalent with

(61)
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it can be directly observed from (42) that larger results in
larger numerator as well as smaller denominator in (61), which
both contribute to the fact that is monotonic increasing
with respect to . Thus, the proof of Corollary 3 is arrived.

APPENDIX F
RELATIONSHIP WITH ZA-LMS

When remains a constant while approaches zero,
from (3), (4), and (5), it is obvious that the recursion of -LMS
becomes that of ZA-LMS. Furthermore, one can see that
equals . From the definition, it can be shown is
an empty set when approaching zero. Consequently,

(62)

Combine (55), (56), and (62), then after quite a series of calcu-
lation, the explicit expression of steady-state MSD becomes

(63)

where is the discriminant of quadratic equation (56),

(64)

Through a series of calculation, it can be proved that (63) is
equivalent with (10) obtained in [46]. Thus, the steady-state
MSD in ZA-LMS could be regarded as a particular case of that
in -LMS.

APPENDIX G
PROOF OF LEMMA 1

Proof: From (45), the update formula is

(65)

Since LMS algorithm has fast convergence rate, it is reason-
able to suppose most filter tap-weights will get close to the cor-
responding system coefficient very quickly; thus, the classifica-
tion of coefficients could help in the derivation of the con-
vergence situation of .
For , from Assumption vi), (65) takes the form

(66)

For the mean convergence is firstly derived and then the
mean square convergence is deduced. Take expectation in (13),
and combine Assumptions iii), v), and vi), one knows

Since , one can finally get

(67)

Combining (65), (67) and employing Assumption iii), it can be
achieved

(68)

Next turn to . From Assumption iv), the following
formula can be attained employing the steady-state result and
first-order Taylor expansion:

where , which is the solution to (56).
Finally, with Assumption iii), we have

(69)

Considering , and combine (66), (67), (68),
and (69), one can obtain (22) after a series of derivation. As for
the initial value, since , by definition we have

and . Thus, Lemma 1 is reached.

APPENDIX H
PROOF OF THEOREM 2

Proof: The vector in (32) could be denoted as

(70)

where is defined in (33) and are constants. Taking
the -transform for (22), it can be derived that

where . Then, combining the definition of in
Theorem 2 and the above results, it is further derived

where and are constants. Taking the inverse
-transform and noticing the definition of , it finally yields

Thus, we have completed the proof of (24). By forcing the
equivalence between (24) and Lemma 1, the expression of
could be solved as (34).
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APPENDIX I
PROOF OF COROLLARY 4

Proof: Define function

then the roots of are eigenvalues of matrix . From (31),
it can be shown

and

where denote the entries of . Thus, we know
and , which indicates that one root of quadratic
function is within the interval . Similarly, an-
other root of is in . Thus, it can be concluded
that the eigenvalues of are both in and satisfy

(71)

For the large step-size scenario of , (33)
and (71) yield

Through comparison between (24) and (9), one can know for
large , all the three transient items in MSD convergence of
-LMS has faster attenuation rate than LMS, leading to accel-
eration of the convergence rate.
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