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ABSTRACT

We study the problem of posterior sampling in the context of score based generative models. We have
a trained score network for a prior p(x), a measurement model p(y|x), and are tasked with sampling
from the posterior p(x|y). Prior work has shown this to be intractable in KL (in the worst case)
under well-accepted computational hardness assumptions. Despite this, popular algorithms for tasks
such as image super-resolution, stylization, and reconstruction enjoy empirical success. Rather than
establishing distributional assumptions or restricted settings under which exact posterior sampling
is tractable, we view this as a more general “tilting” problem of biasing a distribution towards a
measurement. Under minimal assumptions, we show that one can tractably sample from a distribution
that is simultaneously close to the posterior of a noised prior in KL divergence and the true posterior
in Fisher divergence. Intuitively, this combination ensures that the resulting sample is consistent with
both the measurement and the prior. To the best of our knowledge these are the first formal results for
(approximate) posterior sampling in polynomial time.

1 INTRODUCTION

Score-based generative models (Song & Ermon, 2020) including DALL-E (Ramesh et al., 2021), Stable Diffusion (Rom-
bach et al., 2022), Imagen (Saharia et al., 2022), and Flux (Black Forest Labs, 2024), provide a powerful framework for
sampling from complex data distributions. Given access to samples from a target distribution, these models learn a
family of smoothed score functions, i.e., vector fields that estimate the gradient of the log-density of the data corrupted
with varying levels of noise. Intuitively, these score functions can be used to map an image corrupted with a certain
amount of noise to an image with less noise. Once such a family of score functions is learned, it can be used to
iteratively denoise an image starting from pure noise and generate a sample from the data distribution.

The success of score-based generative models in capturing complex prior distributions has led to their widespread
adoption in downstream tasks such as inpainting (Lugmayr et al., 2022), super-resolution (Kawar et al., 2022; Chung
et al., 2022; Song et al., 2023; Rout et al., 2023; 2024), MRI reconstruction (Song et al., 2022b), and stylization (Hertz
et al., 2024; Rout et al., 2025b;a). In these tasks, we begin with a prior p specified to us through a large number of
samples. We also have a likelihood or a reward model denoted by Ry that indicates our preference at inference time,
which is typically parameterized by a measurement y. The tasks is to obtain a sample from p that is consistent with Ry .

In many practical scenarios, such as those mentioned above, the measurement model is given by y = A(x) + η, where
A is a known measurement operator and η is noise. We seek a sample x from the prior such that y ≈ A(x). This is
often implemented by using Ry = ∥A(x)− y∥2 as a potential function and considering a KL penalty. Formally, this is
equivalent to sampling from the tilted distribution µ0, which is defined as follows:

µ0 = argmin
ν

Eν [Ry(X)] + KL (ν∥p) =⇒ µ0 ∝ pe−Ry (Posterior Sampling)

This paper explores the extent to which score networks trained to model the prior p can be used for sampling the tilted
distribution. We refer to this type of tilting as Posterior Sampling. Indeed, if p is the prior, and e−Ry is a likelihood,
then pe−R/Z is the posterior given the measurement y. This setting differs from traditional conditional generation,
where conditioning variables (e.g., measurements) are fed as input to the score network. In contrast, our focus is on a
training-free setup: given a measurement y at inference time, we aim to sample from p(x|y) using only a score network
trained on the unconditional prior p(x). While such networks are known to enable efficient sampling from p(x) (Chen
et al., 2023), our goal in this paper is to understand their role in sampling from p(x|y).
There has been growing interest in establishing provable guarantees for posterior sampling. In general, we cannot
directly use the score based generative models, because we cannot efficiently compute the posterior smoothed scores
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from the prior smoothed scores. While empirically successful methods often perform well in practice and implicitly
aim to solve the posterior sampling problem, provable polynomial-time guarantees remain elusive. In fact, many of the
efficient algorithms proposed (Chung et al., 2022; Rout et al., 2023) can be proven to be biased. A formal counterpoint
was presented in Gupta et al. (2024), which showed that one could set up a posterior sampling problem to invert a
(hypothesized) cryptographic one-way function, establishing cryptographic hardness. Intuitively, this hardness stems
from the fact that posterior sampling is a composite sampling problem that encourages consistency with both a prior
distribution as well as the measurement likelihood, which is difficult when the regions of highest likelihood have a
small probability under the prior.

In light of this, recent work has focused on identifying sufficient conditions under which provable or asymptotically
correct posterior sampling is possible, while avoiding such lower bounds (Bruna & Han, 2024; Xu & Chi, 2024).
Instead, we take the view that exact posterior sampling might be a more difficult goal than we really need to achieve. In
what sense can we tractably bias a sample from a prior towards a likelihood?

Contributions. We introduce a notion of posterior sampling that is possible in polynomial time, bypassing the hardness
of sampling in KL. We develop guarantees with our method Annealed Langevin Monte Carlo (ALMC, Algorithm 1) in
the general regime where the influences of the prior and the likelihood might be in conflict. We start with a sample
that disregards the prior entirely – emphasizing only consistency with the likelihood. This sample is then annealed
towards the true posterior by drawing its marginal closer to the posteriors of progressively denoised priors. Other than
at polynomially low noise levels, we show that using ALMC we can efficiently transition from the posterior of a noised
prior to a posterior of a slightly less noised prior. This efficiency is captured by bounds on how quickly these posteriors
can change as we vary the level of noising on the priors (Lemmas B.2, C.6), as well as regularity conditions on the
posteriors themselves, being as they were posteriors on priors that are regularized by annealing (Lemmas C.5, C.7).
This brings us to the two main contributions of our work,

a. We show that an early-stopped Annealed Langevin Monte Carlo (ALMC) algorithm can track the posterior of
a slightly noised prior in polynomial time in KL, and thus sample from a distribution close to the posterior for
a noisy prior.

b. Although tracking the above path in KL beyond this point is generally intractable, we show that this early
stopped distribution also has a low Fisher Divergence relative to the true posterior.

Our results require minimal assumptions (Assumptions 4.1) – that the prior should have Lipschitz score, be sub-
Gaussian, and that the measurement operator Ry should be smooth and convex. Our motivation for this pair of results
stems from the phenomenon of “mode collapse”, shown in the context of “unannealed” Langevin Monte Carlo for
convergence in FI (Balasubramanian et al., 2022). Indeed, we show in Sections 2.1 and 4.1 that for a multimodal
distribution (for example, a mixture of Gaussians), Fisher Divergence alone suffices only to guarantee a type of local
convergence, and cannot generally provide any guarantees on the corresponding mode weights (e.g., mixture weights).
Our early stopped KL guarantee for the posterior of a noised prior provides a notion of global correctness in density.
Specifically, in the mixture-of-Gaussian setting, we show that we can explicitly avoid mode collapse (Section 4.1).
Taken together, these results provide a response to the intractability of posterior sampling in KL.

Notation: We use p0 to denote a prior, Ry (or R) to denote a likelihood, and µ0 ∝ p0e
−R to denote a posterior. We use

γ to refer to a standard Gaussian. For time t, pt denotes the Gaussian smoothed prior (or noised prior) with density
pt(x) = etdp0(e

tx) ∗ γ, where d is the ambient dimension (x ∈ Rd), and ∗ is the convolution operator. Similarly, we
define (µ0)t(x) = etdµ0(e

tx) ∗ γ (the noised true posterior) and µt ∝ pte
−R (the posterior of the noised prior). We

have KL (α∥β) = Eα [log α/β], TV(α, β) = sup (α(A)− β(A)) where the supremum is over all measurable sets A.

1.1 RELATED WORKS

Sampling: We refer the reader to Chewi (2023) for an exposition of works on sampling. There are strong connections
between sampling and optimization, explored in various places including Wibisono (2018). Approximately, we can
think of Langevin Monte Carlo (LMC) for sampling as corresponding to Gradient Descent for optimization, and
log-concave distribution correspond to convex functions. More recently, denoising diffusion models (Ho et al., 2020;
Song et al., 2022a; Song & Ermon, 2020; Song et al., 2021) begin with a noisy image and iteratively denoise to get a
sample. This is efficient, but requires a trained score network. Finally, the idea of running LMC towards a changing
target distribution is related to works on annealing and tempering (Marinari & Parisi, 1992; Hajek & Sasaki, 1989).
One can think of DDPM (Ho et al., 2020) as doing this using "heat" in a different way - by Gaussian convolution of the
measures (adding heat to the particles).

Posterior Sampling: This is a very active area of research, with a number of different approaches. Some methods
try to estimate the posterior score ∇ log pt(xt|y) directly (Chung et al., 2022; Rout et al., 2024; Song et al., 2022b);
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we refer the reader to Daras et al. (2024) for a more extensive treatment. The barrier for provable results with these
methods is that getting the scores for the noisy posteriors exactly can be computationally intractable. Others use a
sequence of operations alternatingly aligning the iterate with the measurement and prior (Cordero-Encinar et al., 2025;
Xu & Chi, 2024; Wu et al., 2024; Rout et al., 2025b). These are variants of “Split-Gibbs” sampling, which has a biased
stationary distribution to which there are generally asymptotic convergence results, but no finite time, or even unbiased,
guarantees. An exception is Wu et al. (2024), which gets an “average” Fisher Divergence guarantee. There are also
particle filtering methods (Chung et al., 2022; Dou & Song, 2024), which use Sequential Monte Carlo to estimate
the posterior using a set of particles. Here the guarantees are in the limit as the number of particles grows to infinity.
Indeed, formal guarantees appeared to be elusive, and a result of Gupta et al. (2024) showed that posterior sampling is
intractible in the worse case under the existence of a one way function. More recently Bruna & Han (2024) showed
that posterior sampling can also be reduced to sampling from an ill-conditioned ising model, which is known to be
impossible unless NP = RP.

Fisher Divergence bounds: In the classical (that is, without a trained score network) sampling literature, recently
Balasubramanian et al. (2022); Wibisono (2025) proposed using Fisher Divergence to capture the phenomenon of
metastability, which can be thought of as a type of approximate first order convergence.

2 BACKGROUND

Gradient Flows: Consider a Markov process Xt described by the SDE below. Let ρt denote the law of Xt, and let Bt

denote a Wiener process. The measure ρt can be thought of as evolving according to a vector field vt. This flow can be
expressed using the Fokker-Planck equation as shown to the right below.

dXt = vt(Xt) dt+
√
2dBt ⇐⇒ ∂tρt = −∇ · (ρtvt) + ∆ρt (Fokker-Planck)

An absolutely continuous path t 7→ ρt is generated by vt if the Fokker-Planck equation is satisfied. Also, for any
absolutely continuous path, there is a canonical “minimal” velocity field that generates it. We refer the reader to
Ambrosio & Savaré (2007) for a detailed exposition.

Langevin Dynamics: Langevin Dynamics refers to the SDE

dXt = ∇ log π(Xt) dt+
√
2dBt ⇐⇒ ∂tρt = ∇ · (ρt ∇ log

ρt
π
) (Langevin)

It was noted in Jordan et al. (1998) that the law of the process is a gradient flow for the KL divergence functional KL(·||π)
in the space of probability measures endowed with a Wasserstein metric. Convergence of ρt to π is characterized by a
log-Sobolev inequality (LSI). Let FI denote the Fisher divergence (defined below), then the LSI states

∀ ρ, KL(ρ||π) ≤ 1

απ
FI(ρ||π) FI(ρ||π) = Eρ∥∇ log

ρ

π
∥2 (απ-LSI)

While log-Sobolev inequalities are usually difficult to establish tightly, one can show that a measure whose negative
log-density is 1

απ
-strongly convex satisfies απ-LSI (Bakry et al., 2014). If a measure π satisfies a log-Sobolev inequality,

one can show that Langevin Dynamics enjoys linear convergence in KL (Vempala & Wibisono, 2022), specifically that

KL (ρt∥π) ≤ e−2απtKL (ρ0∥π)

However, even for “simple” distributions like a mixture of two well-separated Gaussians, the LSI could have a very bad
constant (in this case, exponentially small in the separation; see for instance Remark 3 in Chen et al. (2021)). This often
prohibits the use of Langevin Monte Carlo in modern applications.

Reversing the Flow: Modern score based generative models sample from a prior distribution π by training a neural
network to learn the flow that would reverse the forward Gaussian Langevin flow. Langevin Dynamics for a Gaussian is
also called the Ornstein–Uhlenbeck (OU) process

dXt = −Xtdt+
√
2dBt ⇐⇒ ∂tρt = ∇ · (ρt(∇ log ρt + x)) (OU)

Sampling X0 ∼ π0 and running the above SDE for time t results in Xt ∼ πt. We note that πt can explicitly be written
as: πt(x) = etdπ0(e

tx) ∗ γ. From classical literature on reversing SDEs (Anderson, 1982), we know the following:

dXt = −Xtdt+
√
2dBt︸ ︷︷ ︸

forward process

⇐⇒ dX←t = (X←t + 2∇ log πt(X
←
t )) dt+

√
2dBt︸ ︷︷ ︸

reverse process

. (1)
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One can begin at X←0 ∼ πT and run the reverse process to get X←t ∼ πT−t until X←T ∼ π0. In fact, the random
variables Xt and X←T−t have the same law. The key to being able to implement this process is the use of the score
∇ log πt. Due to Tweedie’s lemma (Robbins, 1956):√

1− e−2t ∇ log πt(x) = e−txt − E
[
x|e−tx+

√
1− e−2tη = xt

]
η ∼ γ (Tweedie)

These can be learned using a simple variational characterization of least squares regression. Consider a family of models
sθ(x, t) parameterized by θ. We find

θ∗ = argminEx,η∥x− sθ(x+ σtη, t)∥2 (2)

From here, we can estimate the score ∇ log πt(x) as ∇ log πt(x) ≈ sθ∗ (x,t)−x
σ2
t

1.

Annealed Langevin: Rather than using the reverse process specified above, one could use an “annealed” Langevin
Dynamics. Unlike traditional Langevin where the drift of the SDE is given by the score of a single density, here the
density evolves over time as follows:

dXt = ∇ log πt(Xt)dt+
√
2dBt (Annealed Langevin)

Unlike the true reverse SDE, this annealed Langevin incurs a bias that stems from the fact that it never quite reaches πt

by time t. The bias is characterized in Guo et al. (2024), Cordero-Encinar et al. (2025), where it is shown to be related
to the action of the path πt through the space of distributions. Specifically, for the path πt described above, the action is
bounded in Cordero-Encinar et al. (2025) by a quantity that is independent of any functional inequalities.

In fact2, any path t 7→ πt with velocity field vt can be efficiently sampled from by starting with X0 ∼ π0 and running
Ẋt = vt(Xt) =⇒ Xt ∼ πt. However, for an arbitrary path t 7→ πt, it may not be easy to initialize X0 ∼ π0, or to
compute the corresponding velocity field vt. Implementing the ODE also incurs a discretization bias.
Remark 2.1 (Action). We can think of the action of a path as giving the run time of sampling along it using annealed
Langevin. Different paths connecting π0 and πT coming from different fields vt give different actions. Some vt lead to
paths that are fast but difficult to compute, like the optimal transport path, or the constant speed geodesic connecting π0

to πT . This path can be shown to have the least action over all paths, but to implement this we would need to compute
the optimal transport map. On the other hand, Annealed Langevin has a large action but could be easier to implement.

Discretization: Langevin Monte Carlo is an efficient discretization of Langevin Dynamics, where the drift is fixed over
small intervals of time. Suppose we run our algorithm for time T , and suppose our discretization step size is δ. Let Bt

denote a Wiener Process. We have the following “interpolated” process

dXt = ∇ log π(Xkδ) dt+
√
2 dBt, t ∈ [kδ, (k + 1)δ)

We can integrate this between kδ and (k + 1)δ to get

X(k+1)δ = Xkδ + δ∇ log π(Xkδ) +
√
2(B(k+1)δ −Bkδ) (LMC)

We refer to this as running LMC towards π. Similarly, Annealed Langevin has the corresponding interpolation
dXt = ∇ log πk(Xkδ) dt+

√
2 dBt for t ∈ [kδ, (k + 1)δ), which can be discretized as

X(k+1)δ = Xkδ +∇ log πkδ(Xkδ)δ +
√
2δ (B(k+1)δ −Bkδ) (Annealed LMC)

Remark 2.2 (Annealing). There are two notions of annealing in the context of sampling. The first is temperature
annealing, where the diffusive term of the SDE (Langevin) is modified to be

√
2/log(2+t) (Geman & Hwang, 1986).

Second is Gaussian annealing, where the diffusive term is fixed, but the drift term of (Langevin) is modified by using the
score of a smoothed prior. Indeed, the continuous time variant of DDPM (Song & Ermon, 2020) is such an annealing
and Algorithm 1 is an archetype of the latter type of annealing for posterior sampling.

2.1 LOCAL MIXING AND METASTABILITY

Recall the interpretation of Langevin Dynamics as gradient flow in the space of measures towards a minimum of the
functional KL (ρ∥π). There is only one global minima corresponding to the correct distribution: KL (ρ∥π) = 0 =⇒
ρ = π. If we view the relative Fisher information FI (ρ∥π) as a gradient norm in this analogy, one can ask whether we

1There is a line of work analyzing the propagation of score matching errors into the sampling distribution (Chen et al., 2023; Lee
et al., 2023). Because of our interest in the posterior sampling problem, we will assume that we have the exact prior score.

2We use a superscript here to emphasize that πt need not be the marginal of an OU process, like πt.
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Less noise More noise

Figure 1: Hardness of posterior sampling: In this in-
stance, the prior is represented by the orange region,
we measure a coordinate specified by the red arrow.
The posterior is represented by the blue region.

can quickly find a first order approximately stationary point ρ satisfying FI (ρ∥π) < ϵ. It is shown in Balasubramanian
et al. (2022) that LD achieves FI (ρt∥π) < ϵ in polynomial time O(d2/ϵ2) for the average iterate, that is ρ = 1

T

∫
ρtdt.

We remark that this convergence is independent of LSI, but describes a weaker type of convergence as discussed below.

There is a sense in which FI convergence ensures local mixing within “modes” of a distribution. Take two distributions
γ1, γ2. Let γ1|Bε(x) (respectively, γ2|Bε(x)) denote the distribution γ1 conditioned on being within a ball of radius ε
around the point x. In Lemma D.1, we show that for small enough ε:

EX∼γ1
KL
(
γ1|Bε(X)∥γ2|Bε(X)

)
≲ εFI (γ1∥γ2) (Pointwise LSI)

In other words, conditioned on being within a small radius of any point, the two distributions match in KL, on average3.
In a distribution with multiple separated modes, this means that conditioned on any specific mode, the sampler is
accurate, even in KL. For intuition, consider a distribution that has multiple modes (e.g., a mixture of Gaussians). The
FI convergence implies that if initialized close to one of the modes, LMC will converge quickly to a sample “from this
mode”. Notably, however, in this setting, FI convergence is not very sensitive to the weights of the modes because the
FI involves a gradient operation on the log-density, which makes it insensitive to mode weights. Thus, this is too weak
to ensure a global convergence. We further discuss this in Remark 4.1 in the context of posterior sampling.

2.2 POSTERIOR SAMPLING

The discussion thus far has been about the classical sampling problem – we want to sample from π given ∇ log π
or ∇ log πt. In the posterior sampling problem, we also have a likelihood R, and we would like to sample from
µ = πe−R

/
∫
πe−R. There is no immediate way to use the prior smoothed scores to get the posterior smoothed scores.

Many approaches to posterior sampling (Section 3 of Daras et al. (2024)) proceed by trying to estimate ∇ log(µ0)t, but
none establish a complete formal guarantee.

In fact, the hardness of sampling from a posterior has been established in recent works. Gupta et al. (2024) describes
an instance in which sampling from the prior is tractable yet sampling from a posterior derived from a noisy linear
measurement is intractable under a cryptographic hardness assumption (specifically, the existence of a strong one way
function). Bruna & Han (2024) reduces the posterior sampling problem to an Ising model in which the prior is a uniform
distribution of the hypercube and shows hardness under standard computational hardness results. We will discuss this
difficulty intuitively using the Figure 1.

Consider the following posterior sampling instance. The prior consists of a number of modes (in Figure 1, there are four,
one corresponding to each of the vertical “bars”). The measurement is the vertical coordinate (one such measurement
is represented by the red dotted line). In our case, the leftmost bar and the two to the right are consistent with the
measurement, while the second from the left is not. However, we cannot use the scores ∇ log πt from high noise levels
t to tell whether a specific mode is consistent. That is, high noise levels scores cannot distinguish between the true
prior and a prior with a different pattern of consistency, say one in which every mode is consistent. For distinguishing
this, only the low noise level scores are useful, but usually by the time we are using the low noise level scores in an
algorithm, we have already committed to a mode and cannot drift our samples to other modes.

This suggests that we look at posterior sampling at two scales. At a local scale, the low noise level prior scores ∇ log πt

(combined with the gradients of the log-likelihoods ∇R(x)) contain enough information to sample correctly conditioned
on any small neighborhood, and the locality of such a task ensures that this can be achieved by an SDE in polynomial
time. The difficulty with sampling truly in KL is that these local guarantees cannot be accurately stitched together. We
will see that the high noise level scores can be used to "warm-start" the local sampling described above.

3 ANNEALED LANGEVIN MONTE CARLO FOR POSTERIOR SAMPLING

We construct a path t 7→ µt of posteriors, with µt ∝ pte
−R (that is, posteriors of noised priors). In Figure 3, this curve

is represented by the blue curve between µTws
and µ0. This path is absolutely continuous (see Lemma B.2) and thus

3If the standard LSI: KL (γ1∥γ2) ≲ FI (γ1∥γ2) were to hold, that would be the “global” analog of this result. However, the
setting of regions of low density in between high density regions that is typical of multimodal distributions precludes such an LSI.
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generated by some velocity field vt. However, because we do not know vt, we cannot use this field to traverse the curve.
Our results bound the action of this path to show that Annealed LMC tracks a discretization of this continuous path. We
denote a sample at time t by Xt, and the associated distribution by ρt. There are two phases to our algorithm, as below.

• Warm Start: We sample our initial point X0 from a standard Gaussian γ, and run LMC for target γe−R/Z
for log 1

ϵ iterates. Because R is convex, γe−R is strongly log-concave, so efficient convergence to within ϵ
in KL follows from prior work (Vempala & Wibisono, 2022). We can think of this warm start as biasing our
samples towards the measurement. At this point, we have not aligned our samples at all with the prior.

• Annealing: Starting from µTws
with Tws ≍ 1

ϵ2 log
1
ϵ , we run Annealed LMC to track the distributions µt

from Tws to 0. We use a parameter κ to control the rate at which we move along this path. Moving slowly
results in better agreement between the law of the iterate and the corresponding target.

Algorithm 1: Annealed Langevin Monte Carlo
Input: xT ∼ γ, rate 1/κ, Warm Up period T , Warm Start period Tws, step size δ
Output: x0

1: ▷ Warm Start, sample XT ∼ µT ≈ µ∞
2: for i = 1 to T do
3: Sample ηi ∼ γ
4: zi = zi−1 − δ(zi−1 +∇R(zi−1)) +

√
2δ ηi

5: end for
6: ▷ Annealing phase, track distributions {µt} from Tws → 0
7: xTwsκ/δ = zT
8: for i = Twsκ/δ to 0 do
9: Sample ηi ∼ γ

10: xi−1 = xi + δ(∇ log p iδ
κ
(xi)−∇R(xi)) +

√
2δ ηi

11: end for

Figure 2: Beginning at γ, we use LMC to sample
an initialization close to µ∞. We then run the
Annealed LMC tracking µt. The blue path rep-
resents the target distributions, first the Langevin
path from γ → µ∞, followed by {µt} from µ∞
to µ0 (the true posterior). The orange curve in-
dicates the laws of the iterates of LMC towards
µ∞ in the first phase, and the laws of the iterates
of Annealed LMC towards {µt} for the second
phase.

A note on the rate κ: From Lemma 4.3 we know that we can sample from close to µTws
in KL for Tws ≍ 1

ϵ2 log
1
ϵ

using LMC for target µ∞. Rather than running the annealing backward at the same rate as the forward OU process,
we slow it down4 by a factor of κ. Concretely, our iterates go from XTwsκ/δ → X0, the annealing targets go from
µTws → µ0 in the continuous process, but in the discretized algorithm, the iterate Xi−1 uses target µiδ/κ. Finally, the
law of the iterates Xi ∼ ρi goes from ρTwsκ/δ to ρ0.

The pathology of t 7→ µt: It is illustrative to contrast the path t 7→ µt with the path t 7→ pt from a recent application of
Annealed LMC for sampling from the prior (Cordero-Encinar et al., 2025). The path t 7→ pt can be followed efficiently
because the curve pt is “continuous” in that the forward process is just an OU process with W2(pt, pt+δ) ∼ δ, resulting
in an action that can be bounded. However, even when pt is close to pt+δ we need not have µt close to µt+δ . A simple
example is that of Figure 3. We have a prior represented in orange, a noisy measurement represented by the red arrow, a
likelihood represented by the gray region, and a posterior represented by the blue shaded region. On the right side,
the smaller mode is quite likely under the posterior. On the left side for a lower noise level, that mode has all but

4This is inspired by a similar rate parameter in (Wu et al., 2024).
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vanished from the posterior. This results in two distributions µt and µt+δ such that δ is small, pt is close to pt+δ in
Wasserstein, but µt is not close to µt+δ . This “discontinuity” is the reason we cannot get a KL bound for µ0. However,
the noising process introduces enough regularity that we can get bounds for the Wasserstein derivatives up until small t.
Furthermore, the changes in the scores ∇ logµt+∆ −∇ logµt are better behaved than changes in the log-probabilities
logµt+∆ − logµt. This allows us to get guarantees in FI rather than KL for µ0.

Less noise More noise

Figure 3: “Discontinuity” of {µt}: The
prior consists of two vertical orange bars.
We obtain a measurement, represented by
the dotted line, of the vertical coordinate
corrupted by some Gaussian noise. The
log-likelihood is represented by the col-
ored gradient, with dark representing re-
gions of higher likelihood. Like the prior,
the posterior represented in blue is bi-
modal, with one mode corresponding to
each of the modes of the prior.

4 RESULTS

In this section, we will describe our main results. Most proofs have been deferred to the appendices, where the theorem
statements contain the exact polynomial dependencies.

Assumption 4.1. We make the following assumptions:

(i) The prior p0 is m-sub-Gaussian, with zero mean.

(ii) the score ∇x log p0(x) is L−Lipschitz.

(iii) The log-likelihood function R(x) is smooth, convex, and bounded below by 0 such that there exists x, ∥x∥≤
D, R(x) = 0, and ∇2R ⪯ RI .

Remark 4.2. The first assumption is generally satisfied by natural distributions, for instance, by images where each
pixel is bounded intensity. The second assumption is standard in the literature (Chen et al., 2023; Lee et al., 2023). The
third assumption establishes a regularity for the likelihood. In the case of noisy linear measurements y = Ax+ ση for
η ∼ γ, R ≤ ∥A∥2/σ2.

Warm Start: We begin by getting a sample from (close to) the limiting distribution µ∞ = limt→∞ µt. We incur errors
because we stop in finite time, and due to discretizations.

Lemma 4.3. Take T = O( d
ϵ2 log

KL(γ∥µ∞)
ϵ ) and Tws = O

(
log d

ϵ

)
. The Warm Start phase of Algorithm 1 results in a

sample XT satisfying KL (µTws∥Law(XT )) ≤ ϵ.

Proof Sketch. The Warm Start phase is LMC for the target µ∞. Because γ is strongly log-concave, R is convex, γe−R
is strongly log-concave, so efficient sampling is possible. We can shift the guarantee to µTws because µ∞ ≈ µTws .

Annealing Phase: We can now begin our annealing towards the target distribution. If we traverse the annealed path
µt ∝ pte

−R, the KL divergence between the law of the iterates ρtκ/δ and µt is

KL
(
µt∥ρtκ/δ

)
⪅ KL

(
µTws

∥ρTwsκ/δ

)
+O

(∫ Tws
t
∥vt∥2 dt/κ

)
,

where vt denotes the velocity field that generates the path {µt}. An important aspect of this phase is the rate 1/κ which
slows traversal of the path {µt} allowing the iterates to better track the distribution.

Theorem 4.4. Suppose we run Warm Start phase with T = O (dκ log(κKL (γ∥µ∞))) , Tws = log κd, following which
we run the Annealing Phase with δ = κ−1/4. This results in a τ = κ−3/16 satisfying

KL
(
µτ∥ρτκ/δ

)
≤ poly(d, 1/κ) (3)

7
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Proof Sketch. Important technical tools we use are bounds on the magnitude of the derivatives ∂t log pt, ∂t logµt

(Lemmas C.5 and C.6). These, together with Lemma B.2, allow us to bound the metric derivative ∥vt∥2L2(µt)
=

lim∆→0 W2(µt+∆, µt)/∆, where vt is the drift implementing the path µt. The dominant term in the KL distance comes
from the action

∫
∥vt∥2L2(µt)

dt.

Theorem 4.4 shows that we can track the annealed path up until τ defined above for a polynomial run time. Beyond
that, ρt does not track µtδ/κ closely. We now consider the Fisher Divergence.

Theorem 4.5. Suppose we run Warm Start phase with T = O
(
d3κ log(κKL (γ∥µ∞))

)
, Tws = log κd, following

which we run the Annealing Phase with δ = κ−1/4. This results in a τ = κ−3/16 satisfying

FI
(
ρτκ/δ∥µ0

)
≤ O

(
d3/2κ−3/32

)
.

Proof Sketch. Consider ∂tρt = ∇ · (ρt∇ log ρt

µiδ/κ
). de Bruijn’s identity states:

−∂tKL
(
ρt∥µiδ/κ

)
≥ FI

(
ρt∥µiδ/κ

)
Since we are using an annealed LMC, to telescope this as in the LMC analysis we also need to bound

KL
(
ρiδ∥µiδ/κ

)
− KL

(
ρiδ∥µ(i−1)δ/κ

)
= −Eρiδ

(logµiδ/κ − logµ(i−1)δ/κ).

Because the initialization ρTws
is sub-Gaussian, we can bound the drifts of our algorithm to show that the resulting ρt is

sub-Gaussian. Lemmas C.5 and C.6 again allow us to bound logµiδ/κ − logµ(i−1)δ/κ, which we show grows at most
polynomially. As a consequence, we have

Twsκ/δ∑
i=τκ/δ

∫ (i+1)δ

iδ

FI
(
ρt∥µiδ/κ

)
dt ⪅ KL (ρTws

∥µTws
)

From here, we finish using a weak triangle inequality for FI to get a guarantee against µ0.

These results are driven by Lemmas C.5 and C.6, which effectively show that the posteriors µt change in a relatively
mild way until some small t > 0, allowing us to anneal our samples in polynomial time. Putting these together, we
have the following conclusion, which states that there is an iterate close to the last iterate that satisfies a simultaneous

“global” KL guarantee to a posterior for a noised prior and a “local” FI guarantee to the true posterior.

Corollary 4.1 (KL + FI). In algorithm 1, suppose we run Warm Start phase with T = O
(
d3κ log(κKL (γ∥µ∞))

)
,

Tws = log κd, following which we run the Annealing Phase with δ = κ1/4, then there is τ ≤ Õ(κ−3/16), such that
ρτκ/δ simultaneously satisfies

• KL
(
µτ∥ρτκ5/4

)
≤ O(dκ−1/2), which implies TV

(
ρτκ5/4 , µτ

)
≤ O(

√
dκ−1/2.

• FI
(
ρτκ5/4∥µ0

)
≤ O(dκ−1/16)

For this choice of κ, the algorithm has run time Õ(κ5/4).

4.1 LOCAL AND GLOBAL GUARANTEES - THE IMPLICATIONS OF COROLLARY 4.1

It is possible to just get convergence in FI, indeed running LMC towards the posterior,

Xi+1 = Xi + δ∇ logµ0(Xi) +
√
2δϵ, ϵ ∼ N (0, I),

results in polynomial convergence to µ0 in FI as in Balasubramanian et al. (2022). However, convergence in FI is
susceptible to the phenomenon of “mode collapse”, where for instance, in a multimodal distribution, the sampler
significantly under-samples a specific mode depending on initialization. This is particularly critical in our setting -
one could interpret posterior sampling for multi-modal priors as equivalent to conditionally sampling from a subset of
modes that is consistent with a measurement. We will illustrate this below for a mixture of two Gaussians, and show
how Theorem 4.4 avoids this failure mode.
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Let us define a bimodal prior and a likelihood:

p0 =
1

2
N (0, I) +

1

2
N
(
λ

[
1
1

]
, I2

)
, R(x) =

1

2η
∥diag([0, 1])x∥2

Let 1
η′ = 1 + 1

η , and let A□ = diag([1,□]) for any □. Then the posterior can be written as

µ0 = α0N (0, Aη′) + (1− α0)N
(
λAη′

[
1
1

]
, Aη′

)
, α0 =

1

1 + e−
λ2

1+η

However, we see in Lemma D.2 that even the distribution (with equal mode weights)

µ′0 =
1

2
N (0, Aη′) +

1

2
N
(
λAη′

[
1
1

]
, Aη′

)
satisfies FI (µ0∥µ′0) ≤ e−λ

2( η−15
8(1+η) ). So for η > 15, λ → ∞, FI completely fails to discriminate the distribution with

the correct mode weights of (α0, 1− α0) from an incorrect distribution with equal weights (1/2, 1/2). Now consider a
noisy prior, and the corresponding posterior

pt =
1

2
N (0, I) +

1

2
N
(
λe−t

[
1
1

]
, I

)
, µt = αtN (0, Aη) + (1− αt)N

(
e−tAηe, Aη

)
, αt =

1

1 + e−
λ2e−2t

1+η

As we saw previously, with the FI guarantee alone, there is no guarantee on the weight α, which could range from 1/2 to
exponentially close to 1. However the KL (which implies a TV) guarantee shows that the weights can themselves not be
off by more

√
ϵ, which means α = αt ±

√
ϵ.

We can now complete the discussion of Section 2.2. We saw in Section 2.1 that a FI gurarantee can be be interpreted as
a type of “local” KL guarantee, and that these local guarantees cannot be stitched to get a KL guarantee. In a multimodal
setting, such as this one, however, the weights of the modes themselves fall under the purview of the overall KL bound
(Theorem 4.4), which sets them by solving a "simplified" posterior sampling problem.
Remark 4.6. Approximating the posterior of a noised prior is in some sense the best we can do tractably. Consider the
lower bound instance of Gupta et al. (2024). In summary, they use a one way function f : {−1, 1}d → {−1, 1}d such
that f(x) = y is easy to compute, but f−1(y) = x is difficult. They construct a posterior sampling problem, where the
prior corresponds to a uniform distribution over {−1, 1}d, the measurement is a specific f(x) = y, and the posterior
would correspond to distribution concentrated on the true inverse f−1(y). Using the same measurement but noising
the prior sufficiently results in a distribution for x that is uniform over {−1, 1}d. In our notation, this is analogous to
saying that the posterior µt is concentrated on the true f−1(y) only for very small values of t.

Prior Posterior

Figure 4: Our prior (shown on the left) consists of
several vertical bars, two of which have gaps in them.
The measurement model encourages the vertical coor-
dinate to be −0.25, as indicated by the red horizontal
line. The distribution of the sampler is depicted with
kernel density plots for each of the resulting modes
(shown to the right in red overlaid on top of the prior).

Remark 4.7. Consider a prior consisting of several vertical “bars” in R2, two of which have a gap in them in some
range of the vertical coordinate (see Figure 4). Our measurement operator gives us only a noisy measurement of the
vertical coordinate (the red dotted line, in this case at y = −.25). In this case, the two bars with gaps in them should be
very unlikely under the true posterior. However, the posterior of a noised prior would not notice this gap for some time.
The annealed Langevin algorithm we describe results in the sampler shown on the right. A kernel density estimate for
each of the resulting modes is plotted in red. Note that each of the modes is discovered, and the two modes that should
have a lower weight under the posterior do have a smaller weight (as we can see from the marginals).

5 CONCLUSION

We study the Annealed Langevin Monte Carlo algorithm to generate samples from an approximation to the true posterior
distribution. We show that this algorithm simultaneously satisfies two properties: when initialized with an efficient
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“warm-start”, an iterate close to the final iterate is (i) close in KL with respect to the posterior with a noisy prior, and (ii)
close in FI with respect to the true posterior. To the best of our knowledge, these constitute the first polynomial-time
results for a suitable notion of approximate posterior sampling.

We believe this type of guarantee is also possible with other popular posterior sampling frameworks like Split-Gibbs
sampling, which can be interpreted as a different discrete path through the space of distributions. Furthermore, there
may be other paths {µt} that allow us to sample from interpretable approximations to the true posterior (such as on that
more closely aligns with DDPM, rather than Annealed Langevin); this is an interesting avenue for future work.
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A PRELIMINARIES

A.1 NOTATION AND OVERVIEW

Notation.The prior is denoted p. The log-likelihood, or the measurement consistency, is denoted R. We denote by pt
the distribution p passed through the OU channel, which is to say, if Xt is an OU process with X0 having law p, then pt
is the law of Xt. We use µ to denote posteriors, so µ0 is the posterior p0e−R/Z, and µt is pte−R. We use ◦ to denote
composition, so (f ◦ g)(x) = f(g(x))

We use C∞c (U) to denote the space of all smooth functions on U with compact support, P2(Rd) to denote the set
of measures on Rd, and P2,ac(Rd) to denote the set of measures that are absolutely continuous with respect to the
Lebesgue measure.
Remark A.1 (Constants greater than one). For simplicity, we assume that each of the constants defined in Assumption
4.1 is a constant greater than one.

Overview. In Section A.2 we review some identities that will be useful. In A.3 we state some prior work with references.
In Appendix B we discuss various aspects of the algorithm discussed in Section 3. In Appendix C we state and prove
some bounds that are useful to Appendix B.

A.2 PRELIMINARIES

Lemma A.2 (Identities). We have the following identities, under benign regularity conditions. These are commonly
used in the literature but are repeated here for completeness

1. For f, g : Rd → R, we have ∇ · (f ∗ g) = (∇ · f) ∗ g

2. For f : Rd → Rd, g : Rd → R, we have ∇(f ∗ g) = (∇f) ∗ g

3. For f, g : Rd → R, we have ∆(f ∗ g) = (∆f) ∗ g

4. For f : R → R, g : Rd → R, ∇ · (f∇g) = ∇f · ∇g + f∆g

5. For f : R → R, f∇ log f = ∇f

Proof. Follows from switching the order of the integrals and the derivatives. The principle is that convolution commutes
with linear operators.

1.

∇ · (f ∗ g) =
∑
i

∂i

∫
f(x− y)g(y) dy =

∫ ∑
i

∂i (f(x− y)g(y)) dy

=

∫ ∑
i

(∂if(x− y)) g(y)dy = (∇ · f) ∗ g

2.

∇(f ∗ g) = ∇x

∫
f(x− y)g(y) dy =

∫
∇xf(x− y)g(y)dy = (∇f) ∗ g

3. Follows from the above two:
∆(f ∗ g) = ∇ · ∇(f ∗ g) = ∇ · ((∇f) ∗ g) = ∇ · (∇f) ∗ g = (∆f) ∗ g

The remaining are common calculus manipulations.

Lemma A.3 (Gaussians). The following hold for Gaussians γσ2(x)

1. ∇γσ2 = − x
σ2 γσ2

2. ∆γσ2 =
(
∥x∥
σ4 − d

σ2

)
γσ2

3. ∆ log γ = − d
σ2

The above also follow from standard calculus rules.
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A.3 MISCELLENEOUS RESULTS

Lemma A.4 (Girsanov, (Øksendal, 2003)). Let X0 ∼ ρ0, X
′
0 ∼ ρ′0, and suppose

dXt = vt(Xt) dt+
√
2 dBt ⇐⇒ ∂tρt = −∇ · (ρtvt) + ∆ρt

dX ′t = v′t(X
′
t) dt+

√
2 dBt ⇐⇒ ∂tρ

′
t = −∇ · (ρ′tv′t) + ∆ρ′t

(4)

The KL divergence between ρt and ρ′t can be bounded as

KL (ρt∥ρ′t) ≤ KL (ρ0∥ρ′0) +
1

4
E{Xt}

∫ T

0

∥vt(Xt)− v′t(Xt)∥2 dt

Lemma A.5 (LMC convergence under Log-Concavity (Vempala & Wibisono, 2022)). Let k ∈ N, and let µkh denote
the law of the k-th iterate of the Langevin Monte Carlo (LMC) algorithm with step size h > 0. Assume that the target
distribution π ∝ exp(−V ) satisfies a logarithmic Sobolev inequality with constant CLSI(π) ≤ 1

α , and that ∇V is
β-Lipschitz. Then, for all h ≤ 1

4β and for all N ∈ N,

KL(µNh ∥π) ≤ exp(−αNh)KL(µ0 ∥π) +O
(
β2dh

α

)
.

In particular, letting κ := β
α , for all ε ∈ [0, κ

√
d] and for step size h ≍ ε2

βκd , we have
√
KL(µNh ∥π) ≤ ϵ after

N = O
(

κ2d
ϵ2 log KL(µ0 ∥π)

ϵ2

)
iterations.

Lemma A.6 (HWI inequality (Otto & Villani, 2000)). Let π ∈ P2(Rd) be a reference measure, and let ρ ∈ P2(Rd).
We have

KL (π∥ρ) ≤ W2(π, ρ)
√
FI (π∥ρ)

Lemma A.7 (Talagrands transportation inequality (Chewi, 2023)). Let π ∈ P2(Rd) be α−strongly concave. Then we
have

KL (ρ∥π) ≥ α

2
W 2

2 (ρ, π).

B PROOFS FOR ANNEALED LANGEVIN

In this section, we elaborate on the proofs of section 3. Recall our general strategy for sampling. We begin by showing

Figure 5: (1.) We sample using LMC from µT ≈ µ∞. (2.) We run Annealed LMC along the path t 7→ µt.

that the limiting distribution exists limt→∞ µt = µ∞.

Lemma B.1. Let µt = pte
−R/Z. The sequence µt converges weakly to µ∞ = γe−R/Z.
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Proof. First note that if p ∈ C∞c (R), then limt→∞ etdp(etx) = δ in the sense of distributions. We need to show for
every ϕ ∈ C∞c (R) that Eµ∞ϕ = limt→∞ Eµtϕ. We have

lim
t→∞

Eµt
ϕ = lim

t→∞

∫
ϕ(x)e−R(x)pt(x) dx∫
e−R(x)pt(x) dx

=
limt→∞

∫
ϕ(x)e−R(x)pt(x) dx

limt→∞
∫
e−R(x)pt(x) dx

=

∫
limt→∞ ϕ(x)e−R(x)pt(x) dx∫
limt→∞ e−R(x)pt(x) dx

=

∫
ϕ(x)e−R(x)γ(x) dx∫
e−R(x)γ(x) dx

= Eµ∞ϕ

The second equality holds as long as limt→∞
∫
e−R(x)

(∫
etdp(et(x− y))γ1−e−2t(y) dy

)
dx ̸= 0. The third requires

dominated convergence for pt(x)e−R(x)ϕ(x) and pt(x)e
−R(x). The fourth requires limt→∞ pt = γ. We will confirm

these below in reverse order. First we have

lim
t→∞

pt = lim
t→∞

∫
etdp(et(x− y))γ1−e−2t(y) dy

=

∫
lim
t→∞

(
etdp(et(x− y))γ1−e−2t(y)

)
dy

=

∫ (
lim
t→∞

etdp(et(x− y))
)(

lim
t→∞

γ1−e−2t(y)
)

dy

=

∫
δ(x− y)γ(y) dy = γ

From C.4, we know pte
−R(x)ϕ(x) ≤ 1

(1−e−2t)d/2
e−R(x)ϕ(x) pointwise, and

∫
1

(1−e−2t)d/2
e−R(x)ϕ(x) dx =

1
(1−e−2t)d/2

∫
e−R(x)ϕ(x) dx. Because e−R and ϕ are both square integrable, e−Rϕ is integrable from Cauchy

Schwartz, and we can use the dominated convergence theorem to show that

lim
t→∞

∫
e−R(x)pt(x)ϕ(x) dx =

∫
lim
t→∞

e−R(x)pt(x)ϕ(x) dx.

We can show similarly that

lim
t→∞

∫
e−R(x)pt(x) dx =

∫
lim
t→∞

e−R(x)pt(x) dx.

Finally, we have

lim
t→∞

∫
e−R(x)pt(x) dx =

∫
lim
t→∞

e−R(x)pt(x) dx =

∫
e−R(x)γ(x) dx > 0.

This distribution is log-concave, and we can show that LMC converges quickly to µ∞. Let Law(Xt) denote the law of
Xt when X0 ∼ γ and we run LMC towards µ∞ for time T (Line 4 of Algorithm 1). We show that ρws ≈ µ∞ ≈ µTws

for sufficiently large Tws, T . The standard results on LMC convergence are usually given in terms of the KL divergence
between the law of the iterate and the target distribution. To apply Girsanov’s Theorem A.4 later in 4.4 we need the KL
divergence between the target and the law of the iterate.

Lemma 4.3. Take T = O( d
ϵ2 log

KL(γ∥µ∞)
ϵ ) and Tws = O

(
log d

ϵ

)
. The Warm Start phase of Algorithm 1 results in a

sample XT satisfying KL (µTws
∥Law(XT )) ≤ ϵ.

Proof. We will do this in three steps. First, we will show that standard results in this setting bound KL (Law(XT )∥µ∞).
Then we will bound KL (µ∞∥Law(XT )) from KL (Law(XT )∥µ∞). In general, we cannot reverse the order of the
arguments in a KL divergence but we can under some conditions (log-concavity + lipschitzness of the scores +
subgaussian target), and then show that KL (µTws

∥Law(XT )) is small.
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Step 1. Showing that KL (Law(XT )∥µ∞) < ϵ

The drift term
∇ logµ∞ = ∇ log

(
γe−R/Z

)
= −x−∇R

satisfies
∥∇(−x−∇R)∥≤

√
d+ ∥∇2R∥≤

√
d+R,

and also ∥∇(x − ∇R)∥≥ d from convexity of R, so µ∞ is d−log-concave. From Lemma A.5 (which is from
Vempala & Wibisono (2022)), we see that we can take β = 1 + R, α = 1 + R, δ ≍ ϵ2

(1+R)d and to get that at

T = O
(

d
ϵ2 log

KL(γ∥µ∞)
ϵ2

)
iterations we have KL (Law(XT )∥µ∞) ≤ ϵ2.

Step 2. Showing that KL (µ∞∥Law(XT )) < ϵ.

By Lemma A.6 we have

KL (µ∞∥Law(XT )) ≤ W2(Law(XT ), µ∞)
√
FI (µ∞∥Law(XT )).

The Fisher divergence is bounded by a dimension dependent constant
FI (µ∞∥Law(XT )) = Eµ∞∥∇ logµ∞ −∇ log Law(XT )∥2

≤ 2Eµ∞∥∇ logµ∞∥2+2Eµ∞∥∇ log Law(XT )∥2

≤ poly(m,R,L, d)

Overall we get KL (µ∞∥Law(XT )) ≤ poly(m,R,L)W2(Law(XT ), µ∞).

Note that µ∞ is at least 1−strongly log-concave, so we have from Talagrands transportation inequality A.7
KL (µ∞∥Law(XT )) ≤ poly(m,R,L)W2(Law(XT ), µ∞)

≤ poly(m,R,L)
√
KL (Law(XT )∥µ∞) ≤ poly(m,R,L) ϵ

Step 3. Showing that KL (µTws
∥Law(XT )) < ϵ

We can now also show that KL (ρTws∥µTws) is small
KL (µTws∥Law(XT )) = EµTws

logµTws
− log Law(XT )

= EµTws
logµTws

− logµ∞ + logµ∞ − log Law(XT )

= KL (µTws∥µ∞) + EµTws
(logµ∞ − log Law(XT ))

= Eµ∞ (logµ∞ − log Law(XT ))
µTws

µ∞

≤ Eµ∞ [(logµ∞ − log Law(XT ))] sup
x

µTws(x)

µ∞(x)

= KL (µ∞∥Law(XT )) sup
x

µTws
(x)

µ∞(x)

= KL (µ∞∥Law(XT )) e
supx|log µTws−log µ∞|

We have from Lemma C.7

esupx|log µTws−log µ∞| ≤ e
e−2Tws

1−e−2Tws
poly(m,L,R,d)

So if we set Tws = O(log d
ϵ ), we get KL (Law(XT )∥µTws

) < poly(m,R,L)ϵ.

A map t 7→ πt from [0, T ] → P2(Rd) is absolutely continuous if for all t,

|µ̇(t)|:= lim
δ→0

W2(µt, µt+δ)

δ
< ∞.

Consider the continuity equation ∂πt = −∇·(πtvt). Any choice of vt results in a curve t 7→ πt, but, conversely if t 7→ πt

is an absolutely continuous curve, there exists a choice of vt, such that ∂tπt = −∇ · (πtvt) and ∥vt∥L2(πt)≤ |µ̇(t)|. We
refer the reader to Chewi (2023) or Ambrosio et al. (2008) for a more elaborate exposition. In order to use Girsanov’s
Theorem to bound the KL distance for the drift between the target and the law of the iterate during annealed LMC, we
will need to bound this derivative |µ̇(t)|.
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Lemma B.2. The path t 7→ µt is an absolutely continuous curve. There exists a velocity field vt satisfying ∂tµt =
−∇ · (µtvt), and

∥vt∥L2(µt)≤
de−t

(1− e−2t)4
poly(m,R,L).

Proof. We have W1(µ, ν) = inf(X,Y )∼π,πX=µ,πY =ν

∫
|X − Y | dπ. From duality we get the following equivalent

characterization

W1(µ, ν) = sup

{∫
f d (µ− ν)

∣∣∣ Lip(f) ≤ 1

}
(5)

To tie this to W2, recall that for all m−subgaussian µ, ν, we have W2(µ, ν) ≤
√
mW1(µ, ν). Without loss of generality

we can assume f ≥ 0, because for any constant c, in particular for inf f , we have
∫
f d (µ− ν) =

∫
(f − c) d (µ− ν).

So we have

W1(µ, ν) = sup

{∫
f d (µ− ν)

∣∣∣ Lip(f) ≤ 1

}
= sup

{∫
f d (µ− ν)−

∫
inf f d(µ− ν)

∣∣∣ Lip(f) ≤ 1

}
= sup

{∫
f d (µ− ν)

∣∣∣ Lip(f) ≤ 1, f ≥ 0

}

Take any specific f . From Lip(f) ≤ 1, we have f ≤ ∥x∥, and from Lemma C.6 we have |∂t logµt|≤
e−t

(1−e−2t)4

∑2
i=0 ai∥x∥i for ai = d poly(m,L,R). Putting these together we have

f |∂t logµt|≤
e−t

(1− e−2t)4

2∑
i=0

ai∥x∥i.

From Lemmas C.1 and C.3 we have Eµtf |∂t logµt|≤ e−td
(1−e−2t)4 poly(m,R,L).

From this, we have for all Lipschitz f∫
f dµt − dµt+δ =

∫ t+δ

t

∫
f∂t logµt dµt ≤

e−td

(1− e−2t)4
poly(m,R,L)δ.

Since this is true for all f , this shows uniform convergence of
∫
f dµt+δ to

∫
f dµt. In particular, this means it is also

true of the supremum

lim
δ→0

W2(µt, µt+δ) ≤
√
m lim

δ→0

sup
∫
f d (µt − µt−δ)

δ
=

sup
∫
f(∂t lnµt)µt dx

δ
≤ e−td

(1− e−2t)4
poly(m,R,L).

Theorem 4.5. Suppose we run Warm Start phase with T = O
(
d3κ log(κKL (γ∥µ∞))

)
, Tws = log κd, following

which we run the Annealing Phase with δ = κ−1/4. This results in a τ = κ−3/16 satisfying

FI
(
ρτκ/δ∥µ0

)
≤ O

(
d3/2κ−3/32

)
.

Proof. We use the following from Appendix C of Balasubramanian et al. (2022). We have that ∇ logµiδ/κ is L Lipshitz

KL
(
ρiδ+δ∥µiδ/κ

)
− KL

(
ρiδ∥µiδ/κ

)
≥ 1

2

∫ iδ+δ

iδ

FI
(
ρiδ+δ∥µiδ/κ

)
− 4L2dδ2

and

KL
(
ρiδ∥µ(i−1)δ/κ

)
− KL

(
ρiδ∥µiδ/κ

)
= Eρiδ

log
ρiδ

µ(i−1)δ/κ
− Eρiδ

log
ρiδ
µiδ/κ

= Eρiδ
log

µiδ/κ

µ(i−1)δ/κ
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Putting these together we have

KL
(
ρ(iδ+δ∥µiδ/κ

)
− KL

(
ρiδ∥µ(i−1)δ/κ

)
+ Eρiδ

log
µiδ/κ

µ(i−1)δ/κ
≥ 1

2

∫ iδ+δ

iδ

FI
(
ρt∥µiδ/κ

)
dt− 4L2dδ2

We can telescope this:
Twsκ/δ∑
i=i∗

(
KL
(
ρiδ+δ∥µiδ/κ

)
− KL

(
ρiδ∥µ(i−1)δ/κ

)
+ Eρiδ

log
µiδ/κ

µ(i−1)δ/κ

)

≥
Twsκ/δ∑
i=i∗

1

2

(∫ iδ+δ

iδ

FI
(
ρt∥µiδ/κ

)
dt− 4L2dδ2

)

=⇒ KL (ρT ∥µT−δ)− KL
(
ρδ∥µi∗δ/κ

)
+

Twsκ/δ∑
i=i∗

Eρiδ
log

µiδ/κ

µ(i−1)δ/κ

≥
Twsκ/δ∑
i=i∗

1

2

∫ (i+1)δ

iδ

FI
(
ρt∥µiδ/κ

)
dt− 4L2dδTwsκ

We need to bound
∑

Eρiδ
log

µiδ/κ

µ(i−1)δ/κ
. Because ρiδ is m−subgaussian, we have∑

Eρiδ
log

µiδ/κ

µ(i−1)δ/κ
≤
∑

Eρiδ
log

µiδ/κ

µ(i−1)δ/κ

=
∑

Eρiδ

∫ iδ

(i−1)δ/κ
∂t logµt dt ≤

∑∫ iδ

(i−1)δ
Eρiδ

|∂t logµt| dt

≤
∑∫ iδ/κ

(i−1)δ/κ

de−t

(1− e−2t)4
poly(m,R,L) dt

=
de−(Twsκ/δ)

αδ/κ

(1− e−2(Twsκ/δ)αδ/κ)4
poly(m,R,L)

so if (Twsκ/δ)
αδ/κ < 1:

KL (ρT ∥µT−δ) +
d poly(m,R,L)

16T 4α
ws (δ/κ)

4−4α + 4L2dδTwsκ

≥
Twsκ/δ∑

i=(Twsκ/δ)α

1

2

∫ (i+1)δ

iδ

FI
(
ρt∥µiδ/κ

)
dt

In LD, each of the FI are computed with respect to the target distribution, and an average iterate guarantee can be
derived using the convexity of FI in its first argument. In our case, the second argument is changing over the course of
the integral, so we need a “triangle inequality” to change the second argument to µ0. We have

FI (ρt∥µ0) = Eρt
∥∇ log ρt −∇ logµ0∥2

≤ 2Eρt
∥∇ log ρt −∇ logµt∥2 + 2Eρt

∥∇ logµt −∇ logµ0∥2

≤ 2FI (ρt∥µt) + 2Eρt
∥∇ log pt −∇ log p0∥2

≤ 2FI (ρt∥µt) + poly(m,L, d)t2

We will use the bound
Twsκ/δ∑

i=(Twsκ/δ)α

1

2

∫ (i+1)δ

iδ

FI
(
ρt∥µiδ/κ

)
dt ≥ (Twsκ/δ)

α min
i∈[(Twsκ/δ)α,2(Twsκ/δ)α]

1

2

∫ (i+1)δ

iδ

FI
(
ρt∥µiδ/κ

)
dt

≥ (Twsκ/δ)
α min

i∈[(Twsκ/δ)α,2(Twsκ/δ)α]
min

t∈[iδ,iδ+δ]

δ

2
FI
(
ρt∥µiδ/κ

)
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to get that there exists τ ∈ [(Twsκ/δ)
α, 2(Twsκ/δ)

α] such that

FI
(
ρτ∥µiδ/κ

)
≤

KL (ρTwsκ∥µTws
) +

poly(m,R,L)
T 4α
ws (δ/κ)

4−4α + 4L2dδTwsκ

δ(Twsκ/δ)α

From our approximate triangle inequality for FI, we have that there exists τ ∈ [δ(Twsκ/δ)
α, 2δ(Twsκ/δ)

α] such that
FI (ρτ∥µ0) ≤ 2FI

(
ρτ∥µiδ/κ

)
+ dpoly(m,L)(Twsκ/δ)

2αδ2/κ2

Suppose the warm start phase is run such that KL (µTws
∥Law(XT )) ≤ ϵws (recall that this takes time poly(1/ϵws)).

FI (ρτ∥µ0) ≤
ϵws

Tα
wsκ

αδ1−α
+

dκ4−5α

T 5α
wsδ

5−5α poly(m,R,L) + dδαT 1−α
ws κ1−α poly(m,R,L)

+ dpoly(m,L) T 2α
wsκ

2α−2δ2−2α

If we take κ = δ−4, we have

FI (ρτ∥µ0) ≤
ϵws

Tα
wsκ

5α−1
4

+ d

(
κ

21−25α
4

T 5α
ws

+ T 1−α
ws κ

4−5α
4 + T 2α

wsκ
5α−5

2

)
poly(m,R,L)

Finally, setting α = 17/20, we have

FIρτµ0 ≤ ϵws

Tα
wsκ

5α−1
4

+ d

(
κ

21−25α
4

T 5α
ws

+ T 1−α
ws κ

4−5α
4 + T 2α

wsκ
5α−5

2

)
poly(m,R,L)

≤ ϵws

T
17/20
ws κ13/16

+
dκ−1/16

T
17/4
ws

+ dT
3/20κ−1/16

ws

For our choice of T, Tws, we have ϵws ≤ 1
κ . Overall the bound is

FI (ρτ∥µ0) ≤ dT
3/20
ws κ−

1/16poly(m,L,R)

Theorem 4.4. Suppose we run Warm Start phase with T = O (dκ log(κKL (γ∥µ∞))) , Tws = log κd, following which
we run the Annealing Phase with δ = κ−1/4. This results in a τ = κ−3/16 satisfying

KL
(
µτ∥ρτκ/δ

)
≤ poly(d, 1/κ) (3)

Proof. From Lemma 4.3 using T = O(d3κ log(κKL (γ∥µ∞))), we know that KL (µTws∥Law(XTws)) ≤ 1
κ . Because

limt→∞ µt is strongly log-concave, as shown in 4.3 for large Tws we can sample from µTws efficiently. From
Lemma B.2 we have ∫ Tws

t

∥vt∥2L2(µt)
dt ≤

∫
d2e−2t

(1− e−2t)8
poly(m,R,L) dt

≤ d2e−2t poly(m,R,L)

(1− e−2t)8

From here, we adapt the discretization analysis of Guo et al. (2024). We will repeat some of it below to highlight just
the differences.

First note that ∇ logµt inherits Lipschitzness from ∇ log pt and ∇R, following Lemma C.9:
∥∇ logµt(x)−∇ logµt(y)∥ ≤ ∥∇ log pt(x)−∇ log pt(y) +∇R(y)−∇R(x)∥

≤ (1 + Le−t +R)∥x− y∥
By the corollary of Girsanov’s Theorem referenced above, Lemma A.4, we see that

KL (µt∥ρt) = KL (µTws
∥Law(XTws

)) +
1

4

∫ Tws

t

E{µt} ∥(∇ lnµt(Xt)−∇ lnµkδ(Xkδ))− vt(Xt)∥2 dt

≤ KL (µTws
∥Law(XTws

)) +

∫ Tws

t

E{µt} ∥∇ lnµt(Xt)−∇ lnµkδ(Xkδ)∥2 dt+
∫ Tws

t

E{µt}∥vt(Xt)∥2 dt

≤ KL (µTws
∥Law(XTws

)) +

∫ Tws

t

poly(R,L)E{µt} ∥Xt −Xkδ∥2 dt+
∫ Tws

t

E{µt}∥vt(Xt)∥2 dt
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We bound Xt −Xkδ by

∥Xt −Xkδ∥2 = E{µt}∥
∫ t

kδ

(∇ lnµt + vt)(Xt) dt+
√
2(t− kδ)η∥2, η ∼ γ

≤
∫ t

kδ

E{µt}∥∇ lnµt∥2+
∫ t

kδ

E{µt}∥vt(Xt)∥2 dt+ dδ

We can bound E{µt}∥∇ lnµt∥2.

E{µt}∥∇ logµt∥2 ≤ Eµt∥∇ log pt +∇R∥2

≤ Eµt
∥∇ log pt∥2+Eµt

∥∇R∥2≤ poly(m,L,R).

Putting these together, we have

KL (µt∥ρt) ≤ KL (µTws
∥Law(XTws

)) + (1 + poly(R,L)))

∫ Tws

t

E{µt}∥vt(Xt)∥2 dt+ dδ2poly(R,L)

+ δTws poly(R,L)

An important observation here is that because vt itself is a Wasserstein gradient, the quantity
∫ Tws

t
E{µt}∥vt(Xt)∥2 dt

depends inversely on the scale that we use for time. Suppose we reparameterize time to go from 0 to Twsκ, rather
than 0 to T . Let At2

t1 denote the integral
∫ t2
t1

E{µt}∥vt(Xt)∥ dt. Consider the change of variable s = κt, so s

goes from 0 to κT . Of course, we have the change of variables ds = κ dt, but also vs = 1
κvt. Then we have∫ t2κ

t1κ
E{µs}∥vs(Xs)∥2 ds = 1

κ

∫ t2
t1

E{µt}∥vt(Xt)∥2 dt. Over all, we have from lemma B.2

KL
(
µt∥ρtκ/δ

)
≤ KL (µTws

∥Law(XTws
)) +

(1 + δpoly(R,L)))

κ

∫ Tws

t

E{µt}∥vt(Xt)∥2 dt+

dδ2poly(m,R,L) + δ poly(R,L)

≤ KL (µTws
∥Law(XTws

)) +
(1 + δ poly(m,R,L)))

Twsκ

d2

(1− e−2t)3

+ dδ2 poly(m,R,L) + δ poly(R,L)

≤ KL (µTws∥Law(XTws)) +
d2(1 + δ) poly(m,R,L)

κt8
+O

(
dδ2 + δ

)
We will take iPS = (Twsκ/δ)

αδ/κ, δ ≍ κ−1/4. Then we have

KL
(
µiPS∥ρiPSκ/δ

)
≤ KL (µTws∥Law(XTws)) +

d2

T 8α
wsκ

10α−9 +O(dκ−
1
2 + κ−

1
4 )

Finally setting, T = d3κ2 log κKL (γ∥µ∞), Tws = log κd, we have ϵws =
1
κ and choosing α = 17

20 , we have

KL
(
µiPS∥ρiPSκ/δ

)
≤ O(d2κ−1/2)

Corollary 4.1 (KL + FI). In algorithm 1, suppose we run Warm Start phase with T = O
(
d3κ log(κKL (γ∥µ∞))

)
,

Tws = log κd, following which we run the Annealing Phase with δ = κ1/4, then there is τ ≤ Õ(κ−3/16), such that
ρτκ/δ simultaneously satisfies

• KL
(
µτ∥ρτκ5/4

)
≤ O(dκ−1/2), which implies TV

(
ρτκ5/4 , µτ

)
≤ O(

√
dκ−1/2.

• FI
(
ρτκ5/4∥µ0

)
≤ O(dκ−1/16)

For this choice of κ, the algorithm has run time Õ(κ5/4).

Proof. All that is left to prove is that the run time is polynomial in κ. Note that we run the warm start phase for
logKL (γ∥µ∞) /ϵ iterations. Because γ and µ∞ are log-concave, we get KL (γ∥µ∞) ≤ LSI(µ∞)FI (γ∥µ∞) = O(d).
The annealing phase lasts Twsκ/δ = O(κ5/4) time, since Tws = O(log d/ϵ).
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C MISCELLANEOUS BOUNDS

The role of this section is to establish bounds on various quantities. The main one is the global bound on |∂t logµt| for
t > 0, which we use in a couple of places.

• We use it to bound the Wasserstein derivative of the annealed path in Lemma B.2, and this is used with
Girsanov’s Theorem to bound the KL drift between the annealed LMC and the targets in Theorem 4.4.

• We also use it to bound the logµt − logµ∞ for large t (Lemma C.7), which is used to show that we can
transfer FI bounds from logµt to logµ∞ in Theorems 4.3, 4.5.

We will begin with a statement about the sub-gaussianity of posteriors from sub-gaussian priors.

Lemma C.1. Let µ denote the probability distribution of a sub-gaussian random variable with sub-gaussian parameter
σ. Let R ≥ 0 denote a smooth convex function with minima x satisfying R(x) = 0 and ∇2R ⪯ RI . Let ν ∝ µe−R

denote the posterior, and let Y ∼ ν. Then we have

1. ν is sub-gaussian with parameter 3σ(σ + x/2)
√
R.

2. ∥EνY ∥2≤ 3Rσ2.

3. Eν∥Y ∥2≤ 9Rσ2(σ + x/2)2d+ 3Rσ2.

Proof. 1. Let X ∼ µ. One of the characterizations of a σ−sub-gaussian random variable is decay of the tail

probabilities Pr
[
X⊤α > t

]
≤ 2e−

t2

σ2 . Let Y ∼ ν. We have

Pr
[
Y ⊤α > t

]
=

∫ ∞
t

∫
x⊤α=s

µ(x)e−R(x)∫
µ(x)e−R(x) dx

ds.

The partition function can be lower bounded as∫
µ(x)e−R(x) dx ≥

∫
∥x∥<2m+x

µ(x)e−R(x) dx

≥
(

min
∥x∥≤2m+x

e−R(x)

)∫
∥x∥<2m+x

µ(x) dx

= e−max∥x∥≤2m+x R(x) Pr[X < 2m+ x] ≥ e−2(m+x/2)2R/2

The tail can now be upper bounded as

Pr
[
Y ⊤α > t

]
≤
∫ ∞
t

∫
x⊤α=s

µ(x)e−R(x)∫
µ(x)e−R(x) dx

ds

≤ 2e2(m+x/2)2R

∫ ∞
t

∫
x⊤α=s

µ(x) ds

≤ 2e2(m+x/2)2R Pr
[
X⊤α > t

]
≤ 4e2(m+x/2)2R− t2

m2 .

Of course this bound is vacuous until 4e2(m+x/2)2R− t2

m2 < 1, which happens when

2(m+ x/2)2R− t2

m2
< − log 4 =⇒ t >

√
m2((m+ x/2)2R+ log 4).

When t >
√
m2((m+ x/2)2R+ log 4), we have 2(m+ x/2)2R− t2

m2 < − t2

m2(2(m+x/2)2R+2) . Overall, this

shows that ν is a sub-gaussian distribution with parameter m
√

2(m+ x/2)2R+ 2) ≤ 3m(m+ x/2)
√
R.
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2. From Donsker-Varadhan, we have EµtX ≤ KL (µt∥pt) + logEpte
X . From sub-gaussianity we have

logEpt
eX ≤ em

2/2. The KL can be bounded as

KL (µt∥pt) = −EµtR− logEpte
−R

≤ − logEpt
e−R · · ·R > 0

= − log

∫
e−R(x)pt(x) dx

≤ − log

∫
∥x∥≤m2

e−R(x)pt(x) dx

≤ − log e−R1m
2

(1− 2e−1)

≤ 2 +Rm2 ≤ 3Rm2

Here the last inequality follows because R(x) ≤ m2R in the region ∥x∥≤ m2, and Prpt(X > m2) ≤ 2e−1

from sub-gaussianity.

3. For simplicity we will consider the zero-mean case, the general, full second moment will be the sum of the
centered second moment and the square of the mean. We have Var(Y ⊤α) ≤ 9Rσ2(σ + x/2)2 for all α. Now
consider an orthonormal basis {αi}, summing the above relation for each of them we have∑

i

Var(Y ⊤αi) =
∑
i

Eν(Y
⊤αi)

2 = Eν

∑
i

(Y ⊤αi)
2

= Eν

∑
i

(Y ⊤αiα
⊤
i Y ) = Eν

∑
i

(Y ⊤αiα
⊤
i Y )

= Eν(Y
⊤

(∑
i

αiα
⊤
i

)
Y ) = Eν∥Y ∥2

Finally, if EνY ̸= 0, we write

Eν∥Y ∥2= Eν∥Y − EνY ∥2+∥EνY ∥2= 9Rσ2(σ + x/2)2d+ 3Rσ2.

Lemma C.2. Let p0 by m-subgaussian. The law of the OU process pt is subgaussian with norm me−t + (1− e−2t).

We also need the following, about moments of subgaussian random variables.

Lemma C.3. Let ν denote a m−subgaussian distribution. For any f satisfying f(x) ≤
∑k

i=1 ai∥x∥k, we have

Eνf(x) ≤
k∑

i=1

(2m)iii/2ai.

Proof. Follows from standard results of subgaussian random variables.

Lemma C.4. The density pt is upper bounded by

pt ≤
1

(2π(1− e−2t))d/2

Proof. We have

pt(x) =

∫
p(ety)γ1−e−2t(x− y)dy ≤ sup

y
γ1−e−2t(y)

∫
p(ety)dy =

1

(2π(1− e−2t))d/2

Note: Of course, the density can blow up at t = 0 (that is, for unsmoothed distributions), but once we add heat the
density is bounded.
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Lemma C.5. Let pt denote the law of Xt, where X0 ∼ p0 and Xt satisfies OU. Then we have

|∂t log pt| ≤
e−t

(1− e−2t)4

2∑
i=0

ai∥x∥i.

For ai = poly(m,R,L).

Proof. We will directly compute ∂t log pt

∂t log pt = ∂t log pt =
∂tpt
pt

Lemma A.2(5)

=
−∇ · (pt∇ log pt

γ )

pt
Fokker-Planck

=
−∇pt · ∇ log pt

γ − pt∆ log pt

γ

pt
Lemma A.2(4)

= −∇ log pt · ∇ log
pt
γ

−∆ log
pt
γ

Lemma A.2(5)

= ∇ log pt · ∇ log γ −
(
∆ log

pt
γ

+ ∥∇ log pt∥2
)

We have

∆ log
pt
γ

= ∆ log pt −∆ log γ = d+∇ · (∇pt
pt

) Lemma A.3(3)

= d− ∥∇pt∥2

p2t
+

∆pt
pt

Lemma A.2(4)

= d+
(p ◦ et) ∗∆γ1−e−2t

(p ◦ et) ∗ γ1−e−2t

− ∥∇ log pt∥2 Lemma A.2(3, 5)

= d+

∫
(p ◦ et)(x− y)

(
∥y∥2

(1−e−2t)2 − d
1−e−2t

)
γ1−e−2t(y) dy∫

(p ◦ et)(x− y)γ1−e−2t(y) dy
− ∥∇ log pt∥2 Lemma A.3(2)

=
e−2t

e−2t − 1
d+

∫
(p ◦ et)(x− y) ∥y∥2

(1−e−2t)2 γ1−e−2t(y) dy∫
(p ◦ et)(x− y)γ1−e−2t(y) dy

− ∥∇ log pt∥2

Note that ◦ refers to composition. As a shorthand, we will write cx(y) =
(p◦et)(x−y)γ1−e−2t (y)∫
(p◦et)(x−y)γ1−e−2t (y) dy

. Note that cx(y)

can be interpreted as a posterior. Let τx denote the isometry τx(y) = x− y, then we can interpret 1
edt

p ◦ et ◦ τx as a
prior, and γ is a likelihood. At this stage, the following identity about the gradient will be useful

∇ log pt =
∇pt
pt

Lemma A.2(5)

=
(p ◦ et) ∗ ∇γ1−e−2t

(p ◦ et) ∗ γ1−e−2t

Lemma A.2(2)

=
(p ◦ et) ∗ y

1−e−2t γ1−e−2t

(p ◦ et) ∗ γ1−e−2t

Lemma A.3(1)

=

∫
(p(et(x− y)) y

1−e−2t γ1−e−2t(y) dy∫
p(et(x− y))γ1−e−2t(y) dy

=
1

1− e−2t

∫
y cx(y) dy (6)
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We have

∆ log
pt
γ

+ ∥∇ log pt∥2−∇ log pt · ∇ log γ

=
e−2t

e−2t − 1
d+

1

(1− e−2t)2

∫
∥y∥2cx(y) dy −∇ log pt · ∇ log γ

=
e−2t

e−2t − 1
d+

∫ (
∥y∥2

(1− e−2t)2
− y · x

1− e−2t

)
cx(y) dy

=
e−2t

e−2t − 1
d+

1

(1− e−2t)2

∫ (
∥x− y∥2−x · (y − x) + e−2ty · x

)
cx(y) dy

Lets consider the terms in the integral.∫
∥x− y∥2cx(y) dy

≤
∫ (

∥Ey∼cx(·)y − y∥2+∥x− Ey∼cx(·)y∥
2
)
cx(y) dy

=

∫
∥Ey∼cx(·)y − y∥2cx(y) dy + ∥x− Ey∼cx(·)y∥

2

We will now use Lemma C.1 to bound these terms.

The first is just the variance of the posterior cx. Note that in the application of the lemma, the prior is pt ◦ et ◦ τx, which
has mean x (since pt has zero mean) and subgaussian parameter me−t, and the likelihood is γ1−e−2t , which has minima
at x = x, and Hessian bounded by R = 1

1−e−2t . By Lemma C.1 (3) we have∫
∥Ey∼cx(·)y − y∥2cx(y) dy ≤ 9

1− e−2t
e−2tm2(me−t +

∥x∥
2

)2d+
3

1− e−2t
m2e−2t.

The second is controlled by Lemma C.1 (2), since EX∼pt◦et◦τxX = x. We have that

∥x− EY∼cxY ∥2≤ 9m4 e−4t

(1− e−2t)2
.

For readability we will assume m, d > 1. Then we have∫
∥x− y∥2cx(y) dy ≤ 1

(1− e−2t)2
9m2de−2t

(
3m2 + ∥x∥2

)
.

Similarly ∫
∥x− y∥cx(y) dy ≤

(∫
∥x− y∥2cx(y) dy

)1/2

≤ 1

1− e−2t
3me−t

√
d (3m2 + ∥x∥2)

So we have∣∣∣∣∆ log
pt
γ

+ ∥∇ log pt∥2−∇ log pt · ∇ log γ

∣∣∣∣
=

∣∣∣∣ e−2t

e−2t − 1
d+

1

(1− e−2t)2

∫ (
∥x− y∥2−x · (y − x) + e−2ty · x

)
cx(y) dy

∣∣∣∣
≤ e−2t

1− e−2t
d+

1

(1− e−2t)4

∣∣∣∣12m2de−t
(
3m2 + ∥x∥2

)
+

∫
e−2ty · xcx(y) dy

∣∣∣∣
≤ e−2t

1− e−2t
d+

12m2de−t
(
3m2 + ∥x∥2

)
(1− e−2t)4

+

∣∣∣∣ e−2t

(1− e−2t)
∇ log pt · x

∣∣∣∣ from Equation (6)

≤
12m2de−t

(
3m2 + ∥x∥2

)
(1− e−2t)4

+
e−2t

(1− e−2t)
(d+ L∥x∥+L∥x∥2)

We can write this as |∂t log pt|≤ e−t

(1−e−2t)4

∑2
i=0 ai∥x∥i for ai = dpoly(m,L,R).
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Lemma C.6. We have |∂t logµt| ≤ e−t

(1−e2t)4
∑2

i=0 ai∥x∥i for ai = dpoly(m2,L,R).

Proof. We have

∂t logµt = ∂t log
pte
−R∫

pte−R
= ∂t log pt − ∂tR− ∂t log

∫
pte
−R

= ∂t log pt −
∂t
∫
pte
−R∫

pte−R
= ∂t log pt −

∫
pt∂t log pte

−R∫
pte−R

≤ ∂t log pt + Eµt
∂t log pt ≤ ∂t log pt + Eµt

|∂t log pt|

≤ e−t

(1− e2t)4

2∑
i=0

ai∥x∥i C.5, C.3.

For ai = dpoly(m2,L,R)

Lemma C.7. Let µt ∝ pte
−R. For T > 1, we have

|logµT (x)− logµ∞(x)|≤ e−T

(1− e−2T )4

2∑
i=0

ai∥x∥i.

Where ai = poly(m,L,R, d).

Proof.

|logµT − logµ∞| =
∣∣∣∣∫ ∞

T

∂t logµt dt

∣∣∣∣ ≤ ∫ ∞
T

|∂t logµt| dt

≤
∫ ∞
T

e−t

(1− e−2t)4

2∑
i=0

ai∥x∥i dt

≤ e−T

(1− e−2T )4

2∑
i=0

ai∥x∥i

Lemma C.8. Let pt→0(x|xt) = Pr{e−tx+
√
1− e−2tη = xt, η ∼ γ} be the posterior of the OU process conditioned

on a future iterate. We have
∇ log pt(x) = EX∼pt→0(·|x)∇ log p0(X)

Proof. Please see Proposition 2.1 of (Bortoli et al., 2024).

Lemma C.9. Let X0 ∼ p0 with ∇ log p0 being L−Lipshitz for L > 1, and let Xt denote the OU process run for time t,
with law Xt ∼ pt. Then ∇ log pt is L-Lipshitz.

D FI IS NOT SUFFICIENT

Lemma D.1. Take two distributions γ1, γ2. Let γ1|Bε(x) (respectively, γ2|Bε(x)) denote the distribution γ1 conditioned
on being within a ball of radius ϵ around the point x. Then we have

EX∼γ1KL
(
γ1|Bε(X)∥γ2|Bε(X)

)
≲ εFI (γ1∥γ2) .

Proof. For γ smooth around x, γ(y) = γ(x) + (y − x)⊤γ(x) +O(∥y − x∥2), so∫
y∈Bϵ(x)

γ(y) dy =
(
γ(x) +O(ϵ2)

)
vol(Bϵ(x))

and

γ|Bε(x)(x) =
γ(x)∫

y∈Bε(x)
γ(y) dy

=
γ(x)

(γ(x) + Θ(ϵ2)) vol(Bϵ)
=ϵ

1

vol(Bϵ)
.
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Let ∇af |b denote the gradient with respect to a evaluated at b, then we also have

∇z log γ|Bε(x)(z) |z=x= ∇z log γ(z) |z=x −∇z log

∫
y∈Bε(x)

γ(y) dy |z=x= ∇ log γ(x),

so we have:

EX∼γ1
KL
(
γ1|Bε(X)∥γ2|Bε(X)

)
= EX∼γ1EY∼γ1|Bε(X)

[log γ1|Bε(X)(Y )− log γ2|Bε(X)(Y )]

= EX∼γ1EY∼γ1|Bε(X)
[log γ1|Bε(X)(X + (Y −X))− log γ2|Bε(X)(X + (Y −X))]

= EX∼γ1
EY∼γ1|Bε(X)

[log γ1|Bε(X)(X)− log γ2|Bε(X)(X) + (Y −X)⊤(∇ log γ1|Bε(X)(X)−∇ log γ2|Bε(X)(X))]

≈ EX∼γ1
EY∼γ1|Bε(X)

[(Y −X)⊤(∇ log γ1|Bε(X)(Y )−∇ log γ2|Bε(X)(Y ))]

≤ εEX∼γ1
EY∼γ1|Bε(X)

[∥∇ log γ1|Bε(X)(X)−∇ log γ2|Bε(X)(X)∥]
= ε EX∼γ1 [∥∇ log γ1(X)−∇ log γ2(X)∥] = εFI (γ1∥γ2)

Lemma D.2. Let

p0 =
1

2
N (0, I) +

1

2
N
(
λ

[
1
1

]
, I2

)
, R(x) =

1

2η
∥diag([0, 1])x∥2

Let 1
η′ = 1 + 1

η , and let A□ = diag([1,□]) for any □. Then the posterior can be written as

µ0 = α0N (0, Aη′) + (1− α0)N
(
λAη′

[
1
1

]
, Aη′

)
with α0 = 1

1+e
− λ2

1+η

, and the distribution

µ′0 =
1

2
N (0, Aη′) +

1

2
N
(
λAη′

[
1
1

]
, Aη′

)
satisfies

FI (µ1∥µ2) ≤ λe2λ
2/(1+η)−λ2/8

Proof. Take the marginals of µ0, µ
′
0 onto the two coordinates (denoted "x" and "y").

µ′0,x =
1

2
N (0, 1) +

1

2
N (λ, 1) µ0,x = α0N (0, 1) + (1− α0)N (λ, 1)

µ′0,y =
1

2
N (0, η′) +

1

2
N (

λη

1 + η
, η′) µ0,x = α0N (0, η′) + (1− α0)N (

λη

1 + η
, η′)

We have FI (µ′0∥µ0) ≤ FI
(
µ′0,x∥µ0,x

)
+FI

(
µ′0,y∥µ0,y

)
. We can apply Lemma D.3 to each of these marginals seperately

to get

FI (µ′0∥µ0) ≤
λ

(1− α0)2
e−

λ2/8 ≤ λe2λ
2/(1+η)−λ2/8.

Lemma D.3. Consider two mixtures of scalar Gaussians

µ1 = α1N (0, σ) + (1− α1)N (β, σ)

µ2 = α2N (0, σ) + (1− α2)N (β, σ)

with α2 > α1 > 1
2 . We have

FI (µ1∥µ2) ≤
(1− α1)

2

(1− α2)2
β

σ
e−

β2/8σ2
.
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Proof. For convenience, we write γ1 = N (0, σ), π2 = N (β, σ). Note that ∇ log π1 = −x/σ,∇ log π2 = −(x−β)/σ.
We upper bound the FI (µ1∥µ2) as follows (this follows the argument in Balasubramanian et al. (2022) very closely,
just with modified parameters)

∇ log µ1/µ2 =
1

µ1µ2
(µ2 (α1∇π1 + (1− α1)∇π2)− µ1 (α2∇π1 + (1− α2)∇π2))

=
(α2 − α1)

µ1µ2
(π1∇π2 − π2∇π1)

= (α2 − α1)
π1π2

µ1µ2
(∇ log π2 −∇ log π1) = (α2 − α1)

π1π2

µ1µ2

β

σ

so we have

FI (µ1∥µ2) = E[(∇ log µ1/µ2)
2]

= (α2 − α1)
2 β

2

σ2

∫
π2
1π

2
2

µ2
1µ

2
2

dµ1

= (α2 − α1)
2 β

2

σ2

∫
π2
1π

2
2

µ1µ2
2

dx

= (α2 − α1)
2 β

2

σ2

∫
π2
1π

2
2

(α1π1 + (1− α1)π2)(α2π1 + (1− α2)π2)2
dx

≤ (α2 − α1)
2 β

2

σ2

(
1

(1− α1)α2(1− α2)

∫
x≤β/2

π2
2

π1
dx+

1

(1− α1)(1− α2)2

∫
x≥β/2

π2
1

π2
dx

)

≤ (α2 − α1)
2

(1− α1)(1− α2)2
β2

σ2

(∫
x≤β/2

π2
2

π1
dx+

∫
x≥β/2

π2
1

π2
dx

)

Finally ∫
x≤β/2

π2
2/π1 =

1√
2πσ

∫
x≤β/2

e−(x−β)
2+ 1

2x
2

=
eβ

2

√
2πσ

∫
x≤β/2

e−
1
2 (x−2β)

2

≤ 1√
2πσβ

e−
9β2/8.

This also holds for the other term
∫
x≥β/2

π2
1

π2
. Overall we have FI (µ1∥µ2) ≤ (α2−α1)

2

(1−α1)(1−α2)2
β
σ e
−β2/8σ2 .
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E SYNTHETIC SIMULATIONS

We have include some synthetic simulations of our method below. We use three priors for illustration (Figure 6),
a mixture of gaussians with 5 components, a set of vertical bars, some of which have gaps in them (similar to the
discussion in Remark 4.7), and a pair of "moons". We illustrate the posterior sampling algorithm with two choices of

measurement models, y = Ax+ η for A =

(
1 0
0 0

)
(Figure 7) and also simply y = x+ η for η ∼ N (0, 1

R ) (Figure

9). The sampler of Algorithm 1, with κ = 400 and Tws/δ = 200 total noising levels is shown in Figures 8 and 10.

Figure 6: Three priors used in our experiments. A Mixture-of-Gaussians prior on the left, a "Vertical Bars" prior in the
center (similar to Remark 4.7), and a "moons" prior on the right.

Figure 7: Likelihood functions used to define the posterior. R(x) = R∥Ax∥2 where A =

(
1 0
0 0

)
. Essentially these

are "noisy projections", somewhat analogous to an inpainting problem (one coordinate is seen, the other is not).

Figure 8: Resulting sampler, run with κ = 400. Shown are hex-jointplots of 10000 samples each.
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Figure 9: Likelihood functions used to define the posterior, corresponding to a noisy gaussian measurement R(x) =
R∥x∥2.

Figure 10: Resulting sampler, run with κ = 400, with 200 levels of noising (so a total of 80000 iterations). Shown are
hex-jointplots of 10000 samples each.

We see that each of the modes are discovered (avoiding the mode collapse phenomemon associated with FI).

Figure 11: Here we demonstrate the consequences of changing the variance of the noise used in the measurement
(which is related to R as we see in 4.2). For large values of R, the gap in the second and fourth vertical bars is much
less stark, but the mass dedicated to these bars does not vanish.
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