

EFFICIENT APPROXIMATE POSTERIOR SAMPLING WITH ANNEALED LANGEVIN MONTE CARLO

Anonymous authors
Paper under double-blind review

ABSTRACT

We study the problem of posterior sampling in the context of score based generative models. We have a trained score network for a prior $p(x)$, a measurement model $p(y|x)$, and are tasked with sampling from the posterior $p(x|y)$. Prior work has shown this to be intractable in KL (in the worst case) under well-accepted computational hardness assumptions. Despite this, popular algorithms for tasks such as image super-resolution, stylization, and reconstruction enjoy empirical success. Rather than establishing distributional assumptions or restricted settings under which exact posterior sampling is tractable, we view this as a more general “tilting” problem of biasing a distribution towards a measurement. Under minimal assumptions, we show that one can tractably sample from a distribution that is *simultaneously* close to the posterior of a *noised prior* in KL divergence and the true posterior in Fisher divergence. Intuitively, this combination ensures that the resulting sample is consistent with both the measurement and the prior. To the best of our knowledge these are the first formal results for (approximate) posterior sampling in polynomial time.

1 INTRODUCTION

Score-based generative models (Song & Ermon, 2020) including DALL-E (Ramesh et al., 2021), Stable Diffusion (Rombach et al., 2022), Imagen (Saharia et al., 2022), and Flux (Black Forest Labs, 2024), provide a powerful framework for sampling from complex data distributions. Given access to samples from a target distribution, these models learn a family of *smoothed score functions*, i.e., vector fields that estimate the gradient of the log-density of the data corrupted with varying levels of noise. Intuitively, these score functions can be used to map an image corrupted with a certain amount of noise to an image with less noise. Once such a family of score functions is learned, it can be used to iteratively denoise an image starting from pure noise and generate a sample from the data distribution.

The success of score-based generative models in capturing complex prior distributions has led to their widespread adoption in downstream tasks such as inpainting (Lugmayr et al., 2022), super-resolution (Kawar et al., 2022; Chung et al., 2022; Song et al., 2023; Rout et al., 2023; 2024), MRI reconstruction (Song et al., 2022b), and stylization (Hertz et al., 2024; Rout et al., 2025b;a). In these tasks, we begin with a prior p specified to us through a large number of samples. We also have a likelihood or a reward model denoted by R_y that indicates our preference at inference time, which is typically parameterized by a measurement y . The tasks is to obtain a sample from p that is consistent with R_y .

In many practical scenarios, such as those mentioned above, the measurement model is given by $y = \mathcal{A}(x) + \eta$, where \mathcal{A} is a known measurement operator and η is noise. We seek a sample x from the prior such that $y \approx \mathcal{A}(x)$. This is often implemented by using $R_y = \|\mathcal{A}(x) - y\|^2$ as a potential function and considering a KL penalty. Formally, this is equivalent to sampling from the tilted distribution μ_0 , which is defined as follows:

$$\mu_0 = \arg \min_{\nu} \mathbb{E}_{\nu}[R_y(X)] + \text{KL}(\nu \| p) \implies \mu_0 \propto p e^{-R_y} \quad (\text{Posterior Sampling})$$

This paper explores the extent to which score networks trained to model the prior p can be used for sampling the tilted distribution. We refer to this type of tilting as Posterior Sampling. Indeed, if p is the prior, and e^{-R_y} is a likelihood, then $p e^{-R_y} / Z$ is the posterior given the measurement y . This setting differs from traditional *conditional generation*, where conditioning variables (e.g., measurements) are fed as input to the score network. In contrast, our focus is on a *training-free* setup: given a measurement y at inference time, we aim to sample from $p(x|y)$ using only a score network trained on the unconditional prior $p(x)$. While such networks are known to enable efficient sampling from $p(x)$ (Chen et al., 2023), our goal in this paper is to understand their role in sampling from $p(x|y)$.

There has been growing interest in establishing provable guarantees for posterior sampling. In general, we cannot directly use the score based generative models, because we cannot efficiently compute the posterior smoothed scores

from the prior smoothed scores. While empirically successful methods often perform well in practice and implicitly aim to solve the posterior sampling problem, provable polynomial-time guarantees remain elusive. In fact, many of the efficient algorithms proposed (Chung et al., 2022; Rout et al., 2023) can be proven to be biased. A formal counterpoint was presented in Gupta et al. (2024), which showed that one could set up a posterior sampling problem to invert a (hypothesized) cryptographic one-way function, establishing cryptographic hardness. Intuitively, this hardness stems from the fact that posterior sampling is a composite sampling problem that encourages consistency with both a prior distribution as well as the measurement likelihood, which is difficult when the regions of highest likelihood have a small probability under the prior.

In light of this, recent work has focused on identifying sufficient conditions under which provable or asymptotically correct posterior sampling is possible, while avoiding such lower bounds (Bruna & Han, 2024; Xu & Chi, 2024). Instead, we take the view that exact posterior sampling might be a more difficult goal than we really need to achieve. In what sense can we tractably bias a sample from a prior towards a likelihood?

Contributions. We introduce a notion of posterior sampling that is possible in polynomial time, bypassing the hardness of sampling in KL. We develop guarantees with our method *Annealed Langevin Monte Carlo* (ALMC, Algorithm 1) in the general regime where the influences of the prior and the likelihood might be in conflict. We start with a sample that disregards the prior entirely – emphasizing only consistency with the likelihood. This sample is then annealed towards the true posterior by drawing its marginal closer to the posteriors of progressively denoised priors. Other than at polynomially low noise levels, we show that using ALMC we can efficiently transition from the posterior of a noised prior to a posterior of a slightly less noised prior. This efficiency is captured by bounds on how quickly these posteriors can change as we vary the level of noising on the priors (Lemmas B.2, C.6), as well as regularity conditions on the posteriors themselves, being as they were posteriors on priors that are regularized by annealing (Lemmas C.5, C.7). This brings us to the two main contributions of our work,

- a. We show that an early-stopped Annealed Langevin Monte Carlo (ALMC) algorithm can track the posterior of a slightly noised prior in polynomial time in KL, and thus sample from a distribution close to the *posterior for a noisy prior*.
- b. Although tracking the above path in KL beyond this point is generally intractable, we show that this early stopped distribution also has a low Fisher Divergence relative to the *true posterior*.

Our results require minimal assumptions (Assumptions 4.1) – that the prior should have Lipschitz score, be sub-Gaussian, and that the measurement operator R_y should be smooth and convex. Our motivation for this pair of results stems from the phenomenon of “mode collapse”, shown in the context of “unannealed” Langevin Monte Carlo for convergence in FI (Balasubramanian et al., 2022). Indeed, we show in Sections 2.1 and 4.1 that for a multimodal distribution (for example, a mixture of Gaussians), Fisher Divergence alone suffices only to guarantee a type of *local* convergence, and cannot generally provide any guarantees on the corresponding mode weights (e.g., mixture weights). Our early stopped KL guarantee for the posterior of a noised prior provides a notion of global correctness in density. Specifically, in the mixture-of-Gaussian setting, we show that we can explicitly avoid mode collapse (Section 4.1). Taken together, these results provide a response to the intractability of posterior sampling in KL.

Notation: We use p_0 to denote a prior, R_y (or R) to denote a likelihood, and $\mu_0 \propto p_0 e^{-R}$ to denote a posterior. We use γ to refer to a standard Gaussian. For time t , p_t denotes the Gaussian smoothed prior (or noised prior) with density $p_t(x) = e^{td} p_0(e^t x) * \gamma$, where d is the ambient dimension ($x \in \mathbb{R}^d$), and $*$ is the convolution operator. Similarly, we define $(\mu_0)_t(x) = e^{td} \mu_0(e^t x) * \gamma$ (the noised true posterior) and $\mu_t \propto p_t e^{-R}$ (the posterior of the noised prior). We have $\text{KL}(\alpha \parallel \beta) = \mathbb{E}_\alpha [\log \alpha / \beta]$, $\text{TV}(\alpha, \beta) = \sup \{|\alpha(A) - \beta(A)|\}$ where the supremum is over all measurable sets A .

1.1 RELATED WORKS

Sampling: We refer the reader to Chewi (2023) for an exposition of works on sampling. There are strong connections between sampling and optimization, explored in various places including Wibisono (2018). Approximately, we can think of Langevin Monte Carlo (LMC) for sampling as corresponding to Gradient Descent for optimization, and log-concave distribution correspond to convex functions. More recently, denoising diffusion models (Ho et al., 2020; Song et al., 2022a; Song & Ermon, 2020; Song et al., 2021) begin with a noisy image and iteratively denoise to get a sample. This is efficient, but requires a trained *score network*. Finally, the idea of running LMC towards a changing target distribution is related to works on annealing and tempering (Marinari & Parisi, 1992; Hajek & Sasaki, 1989). One can think of DDPM (Ho et al., 2020) as doing this using “heat” in a different way - by Gaussian convolution of the measures (adding heat to the particles).

Posterior Sampling: This is a very active area of research, with a number of different approaches. Some methods try to estimate the posterior score $\nabla \log p_t(x_t|y)$ directly (Chung et al., 2022; Rout et al., 2024; Song et al., 2022b);

we refer the reader to Daras et al. (2024) for a more extensive treatment. The barrier for provable results with these methods is that getting the scores for the noisy posteriors exactly can be computationally intractable. Others use a sequence of operations alternatingly aligning the iterate with the measurement and prior (Cordero-Encinar et al., 2025; Xu & Chi, 2024; Wu et al., 2024; Rout et al., 2025b). These are variants of “Split-Gibbs” sampling, which has a biased stationary distribution to which there are generally asymptotic convergence results, but no finite time, or even unbiased, guarantees. An exception is Wu et al. (2024), which gets an “average” Fisher Divergence guarantee. There are also particle filtering methods (Chung et al., 2022; Dou & Song, 2024), which use Sequential Monte Carlo to estimate the posterior using a set of particles. Here the guarantees are in the limit as the number of particles grows to infinity. Indeed, formal guarantees appeared to be elusive, and a result of Gupta et al. (2024) showed that posterior sampling is intractible in the worse case under the existence of a one way function. More recently Bruna & Han (2024) showed that posterior sampling can also be reduced to sampling from an ill-conditioned ising model, which is known to be impossible unless $\text{NP} = \text{RP}$.

Fisher Divergence bounds: In the classical (that is, without a trained score network) sampling literature, recently Balasubramanian et al. (2022); Wibisono (2025) proposed using Fisher Divergence to capture the phenomenon of metastability, which can be thought of as a type of approximate first order convergence.

2 BACKGROUND

Gradient Flows: Consider a Markov process X_t described by the SDE below. Let ρ_t denote the law of X_t , and let B_t denote a Wiener process. The measure ρ_t can be thought of as evolving according to a vector field v_t . This flow can be expressed using the Fokker-Planck equation as shown to the right below.

$$dX_t = v_t(X_t) dt + \sqrt{2} dB_t \iff \partial_t \rho_t = -\nabla \cdot (\rho_t v_t) + \Delta \rho_t \quad (\text{Fokker-Planck})$$

An absolutely continuous path $t \mapsto \rho_t$ is *generated* by v_t if the Fokker-Planck equation is satisfied. Also, for any absolutely continuous path, there is a canonical “minimal” velocity field that generates it. We refer the reader to Ambrosio & Savaré (2007) for a detailed exposition.

Langevin Dynamics: Langevin Dynamics refers to the SDE

$$dX_t = \nabla \log \pi(X_t) dt + \sqrt{2} dB_t \iff \partial_t \rho_t = \nabla \cdot (\rho_t \nabla \log \frac{\rho_t}{\pi}) \quad (\text{Langevin})$$

It was noted in Jordan et al. (1998) that the law of the process is a gradient flow for the KL divergence functional $\text{KL}(\cdot || \pi)$ in the space of probability measures endowed with a Wasserstein metric. Convergence of ρ_t to π is characterized by a log-Sobolev inequality (LSI). Let FI denote the Fisher divergence (defined below), then the LSI states

$$\forall \rho, \text{KL}(\rho || \pi) \leq \frac{1}{\alpha_\pi} \text{FI}(\rho || \pi) \quad \text{FI}(\rho || \pi) = \mathbb{E}_\rho \|\nabla \log \frac{\rho}{\pi}\|^2 \quad (\alpha_\pi\text{-LSI})$$

While log-Sobolev inequalities are usually difficult to establish tightly, one can show that a measure whose negative log-density is $\frac{1}{\alpha_\pi}$ -strongly convex satisfies α_π -LSI (Bakry et al., 2014). If a measure π satisfies a log-Sobolev inequality, one can show that Langevin Dynamics enjoys linear convergence in KL (Vempala & Wibisono, 2022), specifically that

$$\text{KL}(\rho_t || \pi) \leq e^{-2\alpha_\pi t} \text{KL}(\rho_0 || \pi)$$

However, even for “simple” distributions like a mixture of two well-separated Gaussians, the LSI could have a very bad constant (in this case, exponentially small in the separation; see for instance Remark 3 in Chen et al. (2021)). This often prohibits the use of Langevin Monte Carlo in modern applications.

Reversing the Flow: Modern score based generative models sample from a prior distribution π by training a neural network to learn the flow that would *reverse* the forward Gaussian Langevin flow. Langevin Dynamics for a Gaussian is also called the Ornstein–Uhlenbeck (OU) process

$$dX_t = -X_t dt + \sqrt{2} dB_t \iff \partial_t \rho_t = \nabla \cdot (\rho_t (\nabla \log \rho_t + x)) \quad (\text{OU})$$

Sampling $X_0 \sim \pi_0$ and running the above SDE for time t results in $X_t \sim \pi_t$. We note that π_t can explicitly be written as: $\pi_t(x) = e^{td} \pi_0(e^t x) * \gamma$. From classical literature on reversing SDEs (Anderson, 1982), we know the following:

$$\underbrace{dX_t = -X_t dt + \sqrt{2} dB_t}_{\text{forward process}} \iff \underbrace{dX_t^\leftarrow = (X_t^\leftarrow + 2\nabla \log \pi_t(X_t^\leftarrow)) dt + \sqrt{2} dB_t}_{\text{reverse process}}. \quad (1)$$

162 One can begin at $X_0^\leftarrow \sim \pi_T$ and run the reverse process to get $X_t^\leftarrow \sim \pi_{T-t}$ until $X_T^\leftarrow \sim \pi_0$. In fact, the random
 163 variables X_t and X_{T-t}^\leftarrow have the same law. The key to being able to implement this process is the use of the *score*
 164 $\nabla \log \pi_t$. Due to Tweedie's lemma (Robbins, 1956):

$$166 \quad \sqrt{1 - e^{-2t}} \nabla \log \pi_t(x) = e^{-t} x_t - \mathbb{E} \left[x | e^{-t} x + \sqrt{1 - e^{-2t}} \eta = x_t \right] \quad \eta \sim \gamma \quad (\text{Tweedie})$$

167 These can be learned using a simple variational characterization of least squares regression. Consider a family of models
 168 $s_\theta(x, t)$ parameterized by θ . We find

$$170 \quad \theta^* = \arg \min \mathbb{E}_{x, \eta} \|x - s_\theta(x + \sigma_t \eta, t)\|^2 \quad (2)$$

172 From here, we can estimate the score $\nabla \log \pi_t(x)$ as $\nabla \log \pi_t(x) \approx \frac{s_{\theta^*}(x, t) - x}{\sigma_t^2}$.¹

173 **Annealed Langevin:** Rather than using the reverse process specified above, one could use an “*annealed*” Langevin
 174 Dynamics. Unlike traditional Langevin where the drift of the SDE is given by the score of a single density, here the
 175 density evolves over time as follows:

$$177 \quad dX_t = \nabla \log \pi_t(X_t) dt + \sqrt{2} dB_t \quad (\text{Annealed Langevin})$$

178 Unlike the true reverse SDE, this annealed Langevin incurs a bias that stems from the fact that it never quite reaches π_t
 179 by time t . The bias is characterized in Guo et al. (2024), Cordero-Encinar et al. (2025), where it is shown to be related
 180 to the *action* of the path π_t through the space of distributions. Specifically, for the path π_t described above, the action is
 181 bounded in Cordero-Encinar et al. (2025) by a quantity that is independent of any functional inequalities.

182 In fact², any path $t \mapsto \pi^t$ with velocity field v_t can be efficiently sampled from by starting with $X_0 \sim \pi^0$ and running
 183 $\dot{X}_t = v_t(X_t) \implies X_t \sim \pi^t$. However, for an arbitrary path $t \mapsto \pi^t$, it may not be easy to initialize $X_0 \sim \pi^0$, or to
 184 compute the corresponding velocity field v_t . Implementing the ODE also incurs a discretization bias.

185 **Remark 2.1 (Action).** *We can think of the action of a path as giving the run time of sampling along it using annealed
 186 Langevin. Different paths connecting π^0 and π^T coming from different fields v_t give different actions. Some v_t lead to
 187 paths that are fast but difficult to compute, like the optimal transport path, or the constant speed geodesic connecting π^0
 188 to π^T . This path can be shown to have the least action over all paths, but to implement this we would need to compute
 189 the optimal transport map. On the other hand, Annealed Langevin has a large action but could be easier to implement.*

190 **Discretization:** Langevin Monte Carlo is an efficient discretization of Langevin Dynamics, where the drift is fixed over
 191 small intervals of time. Suppose we run our algorithm for time T , and suppose our discretization step size is δ . Let B_t
 192 denote a Wiener Process. We have the following “interpolated” process

$$194 \quad dX_t = \nabla \log \pi(X_{k\delta}) dt + \sqrt{2} dB_t, \quad t \in [k\delta, (k+1)\delta)$$

196 We can integrate this between $k\delta$ and $(k+1)\delta$ to get

$$197 \quad X_{(k+1)\delta} = X_{k\delta} + \delta \nabla \log \pi(X_{k\delta}) + \sqrt{2}(B_{(k+1)\delta} - B_{k\delta}) \quad (\text{LMC})$$

199 We refer to this as running LMC *towards* π . Similarly, Annealed Langevin has the corresponding interpolation
 200 $dX_t = \nabla \log \pi_k(X_{k\delta}) dt + \sqrt{2} dB_t$ for $t \in [k\delta, (k+1)\delta]$, which can be discretized as

$$201 \quad X_{(k+1)\delta} = X_{k\delta} + \nabla \log \pi_{k\delta}(X_{k\delta}) \delta + \sqrt{2\delta} (B_{(k+1)\delta} - B_{k\delta}) \quad (\text{Annealed LMC})$$

203 **Remark 2.2 (Annealing).** *There are two notions of annealing in the context of sampling. The first is temperature
 204 annealing, where the diffusive term of the SDE (Langevin) is modified to be $\sqrt{2/\log(2+t)}$ (Geman & Hwang, 1986).
 205 Second is Gaussian annealing, where the diffusive term is fixed, but the drift term of (Langevin) is modified by using the
 206 score of a smoothed prior. Indeed, the continuous time variant of DDPM (Song & Ermon, 2020) is such an annealing
 207 and Algorithm 1 is an archetype of the latter type of annealing for posterior sampling.*

2.1 LOCAL MIXING AND METASTABILITY

211 Recall the interpretation of Langevin Dynamics as gradient flow in the space of measures towards a minimum of the
 212 functional $\text{KL}(\rho \parallel \pi)$. There is only one global minima corresponding to the correct distribution: $\text{KL}(\rho \parallel \pi) = 0 \implies$
 213 $\rho = \pi$. If we view the relative Fisher information $\text{FI}(\rho \parallel \pi)$ as a gradient norm in this analogy, one can ask whether we

214 ¹There is a line of work analyzing the propagation of score matching errors into the sampling distribution (Chen et al., 2023; Lee
 215 et al., 2023). Because of our interest in the posterior sampling problem, we will assume that we have the exact prior score.

216 ²We use a superscript here to emphasize that π^t need not be the marginal of an OU process, like π_t .

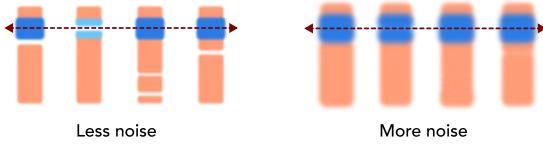


Figure 1: Hardness of posterior sampling: In this instance, the prior is represented by the orange region, we measure a coordinate specified by the red arrow. The posterior is represented by the blue region.

can quickly find a first order *approximately* stationary point ρ satisfying $\text{FI}(\rho\|\pi) < \epsilon$. It is shown in Balasubramanian et al. (2022) that LD achieves $\text{FI}(\bar{\rho}_t\|\pi) < \epsilon$ in polynomial time $\mathcal{O}(d^2/\epsilon^2)$ for the *average* iterate, that is $\bar{\rho} = \frac{1}{T} \int \rho_t dt$. We remark that this convergence is independent of LSI, but describes a weaker type of convergence as discussed below.

There is a sense in which FI convergence ensures local mixing within “modes” of a distribution. Take two distributions γ_1, γ_2 . Let $\gamma_{1|B_\varepsilon(x)}$ (respectively, $\gamma_{2|B_\varepsilon(x)}$) denote the distribution γ_1 conditioned on being within a ball of radius ε around the point x . In Lemma D.1, we show that for small enough ε :

$$\mathbb{E}_{X \sim \gamma_1} \text{KL}(\gamma_{1|B_\varepsilon(X)}\|\gamma_{2|B_\varepsilon(X)}) \lesssim \varepsilon \text{FI}(\gamma_1\|\gamma_2) \quad (\text{Pointwise LSI})$$

In other words, *conditioned on being within a small radius of any point*, the two distributions match in KL, on average³. In a distribution with multiple separated modes, this means that conditioned on any specific mode, the sampler is accurate, even in KL. For intuition, consider a distribution that has multiple modes (e.g., a mixture of Gaussians). The FI convergence implies that if initialized close to one of the modes, LMC will converge quickly to a sample “from this mode”. Notably, however, in this setting, FI convergence is not very sensitive to the *weights* of the modes because the FI involves a gradient operation on the log-density, which makes it insensitive to mode weights. Thus, this is too weak to ensure a global convergence. We further discuss this in Remark 4.1 in the context of posterior sampling.

2.2 POSTERIOR SAMPLING

The discussion thus far has been about the classical sampling problem – we want to sample from π given $\nabla \log \pi$ or $\nabla \log \pi_t$. In the posterior sampling problem, we also have a likelihood R , and we would like to sample from $\mu = \pi e^{-R} / \int \pi e^{-R}$. There is no immediate way to use the prior smoothed scores to get the posterior smoothed scores. Many approaches to posterior sampling (Section 3 of Daras et al. (2024)) proceed by trying to estimate $\nabla \log(\mu_0)_t$, but none establish a complete formal guarantee.

In fact, the *hardness* of sampling from a posterior has been established in recent works. Gupta et al. (2024) describes an instance in which sampling from the prior is tractable yet sampling from a posterior derived from a noisy linear measurement is intractable under a cryptographic hardness assumption (specifically, the existence of a strong one way function). Bruna & Han (2024) reduces the posterior sampling problem to an Ising model in which the prior is a uniform distribution of the hypercube and shows hardness under standard computational hardness results. We will discuss this difficulty intuitively using the Figure 1.

Consider the following posterior sampling instance. The prior consists of a number of modes (in Figure 1, there are four, one corresponding to each of the vertical “bars”). The measurement is the vertical coordinate (one such measurement is represented by the red dotted line). In our case, the leftmost bar and the two to the right are consistent with the measurement, while the second from the left is not. However, we cannot use the scores $\nabla \log \pi_t$ from high noise levels t to tell whether a specific mode is consistent. That is, high noise levels scores cannot distinguish between the true prior and a prior with a different pattern of consistency, say one in which every mode is consistent. For distinguishing this, only the low noise level scores are useful, but usually by the time we are using the low noise level scores in an algorithm, we have already committed to a mode and cannot drift our samples to other modes.

This suggests that we look at posterior sampling at two scales. At a local scale, the low noise level prior scores $\nabla \log \pi_t$ (combined with the gradients of the log-likelihoods $\nabla R(x)$) contain enough information to sample correctly conditioned on any small neighborhood, and the locality of such a task ensures that this can be achieved by an SDE in polynomial time. The difficulty with sampling truly in KL is that these local guarantees cannot be accurately stitched together. We will see that the high noise level scores can be used to “warm-start” the local sampling described above.

3 ANNEALED LANGEVIN MONTE CARLO FOR POSTERIOR SAMPLING

We construct a path $t \mapsto \mu_t$ of posteriors, with $\mu_t \propto p_t e^{-R}$ (that is, posteriors of noised priors). In Figure 3, this curve is represented by the blue curve between $\mu_{T_{ws}}$ and μ_0 . This path is absolutely continuous (see Lemma B.2) and thus

³If the standard LSI: $\text{KL}(\gamma_1\|\gamma_2) \lesssim \text{FI}(\gamma_1\|\gamma_2)$ were to hold, that would be the “global” analog of this result. However, the setting of regions of low density in between high density regions that is typical of multimodal distributions precludes such an LSI.

generated by some velocity field v_t . However, because we do not know v_t , we cannot use this field to traverse the curve. Our results bound the *action* of this path to show that Annealed LMC tracks a discretization of this continuous path. We denote a sample at time t by X_t , and the associated distribution by ρ_t . There are two phases to our algorithm, as below.

- **Warm Start:** We sample our initial point X_0 from a standard Gaussian γ , and run LMC for target $\gamma e^{-R}/Z$ for $\log \frac{1}{\epsilon}$ iterates. Because R is convex, γe^{-R} is strongly log-concave, so efficient convergence to within ϵ in KL follows from prior work (Vempala & Wibisono, 2022). We can think of this warm start as biasing our samples towards the measurement. At this point, we have not aligned our samples at all with the prior.
- **Annealing:** Starting from $\mu_{T_{ws}}$ with $T_{ws} \asymp \frac{1}{\epsilon^2} \log \frac{1}{\epsilon}$, we run Annealed LMC to track the distributions μ_t from T_{ws} to 0. We use a parameter κ to control the rate at which we move along this path. Moving slowly results in better agreement between the law of the iterate and the corresponding target.

Algorithm 1: Annealed Langevin Monte Carlo

Input: $x_T \sim \gamma$, rate $1/\kappa$, Warm Up period T , Warm Start period T_{ws} , step size δ

Output: x_0

- 1: \triangleright Warm Start, sample $X_T \sim \mu_T \approx \mu_\infty$
- 2: **for** $i = 1$ to T **do**
- 3: Sample $\eta_i \sim \gamma$
- 4: $z_i = z_{i-1} - \delta(z_{i-1} + \nabla R(z_{i-1})) + \sqrt{2\delta} \eta_i$
- 5: **end for**
- 6: \triangleright Annealing phase, track distributions $\{\mu_t\}$ from $T_{ws} \rightarrow 0$
- 7: $x_{T_{ws}\kappa/\delta} = z_T$
- 8: **for** $i = T_{ws}\kappa/\delta$ to 0 **do**
- 9: Sample $\eta_i \sim \gamma$
- 10: $x_{i-1} = x_i + \delta(\nabla \log p_{\frac{i\delta}{\kappa}}(x_i) - \nabla R(x_i)) + \sqrt{2\delta} \eta_i$
- 11: **end for**

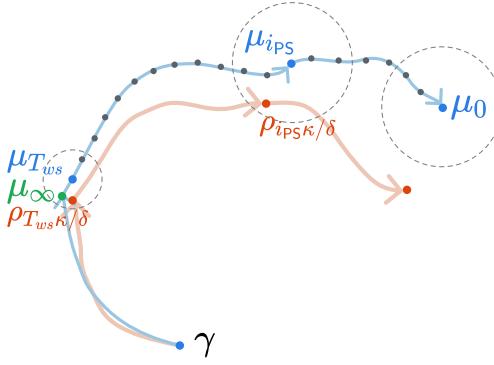


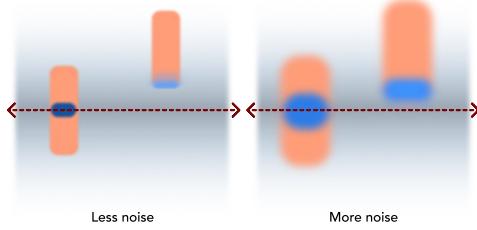
Figure 2: Beginning at γ , we use LMC to sample an initialization close to μ_∞ . We then run the Annealed LMC tracking μ_t . The blue path represents the target distributions, first the Langevin path from $\gamma \rightarrow \mu_\infty$, followed by $\{\mu_t\}$ from μ_∞ to μ_0 (the true posterior). The orange curve indicates the laws of the iterates of LMC towards μ_∞ in the first phase, and the laws of the iterates of Annealed LMC towards $\{\mu_t\}$ for the second phase.

A note on the rate κ : From Lemma 4.3 we know that we can sample from close to $\mu_{T_{ws}}$ in KL for $T_{ws} \asymp \frac{1}{\epsilon^2} \log \frac{1}{\epsilon}$ using LMC for target μ_∞ . Rather than running the annealing backward at the same rate as the forward OU process, we slow it down⁴ by a factor of κ . Concretely, our iterates go from $X_{T_{ws}\kappa/\delta} \rightarrow X_0$, the annealing targets go from $\mu_{T_{ws}} \rightarrow \mu_0$ in the continuous process, but in the discretized algorithm, the iterate X_{i-1} uses target $\mu_{i\delta/\kappa}$. Finally, the law of the iterates $X_i \sim \rho_i$ goes from $\rho_{T_{ws}\kappa/\delta}$ to ρ_0 .

The pathology of $t \mapsto \mu_t$: It is illustrative to contrast the path $t \mapsto \mu_t$ with the path $t \mapsto p_t$ from a recent application of Annealed LMC for sampling from the *prior* (Cordero-Encinar et al., 2025). The path $t \mapsto p_t$ can be followed efficiently because the curve p_t is “continuous” in that the forward process is just an OU process with $W_2(p_t, p_{t+\delta}) \sim \delta$, resulting in an action that can be bounded. However, even when p_t is close to $p_{t+\delta}$ we need not have μ_t close to $\mu_{t+\delta}$. A simple example is that of Figure 3. We have a prior represented in orange, a noisy measurement represented by the red arrow, a likelihood represented by the gray region, and a posterior represented by the blue shaded region. On the right side, the smaller mode is quite likely under the posterior. On the left side for a lower noise level, that mode has all but

⁴This is inspired by a similar rate parameter in (Wu et al., 2024).

324 vanished from the posterior. This results in two distributions μ_t and $\mu_{t+\delta}$ such that δ is small, p_t is close to $p_{t+\delta}$ in
 325 Wasserstein, but μ_t is not close to $\mu_{t+\delta}$. This “discontinuity” is the reason we cannot get a KL bound for μ_0 . However,
 326 the noising process introduces enough regularity that we can get bounds for the Wasserstein derivatives up until small t .
 327 Furthermore, the changes in the scores $\nabla \log \mu_{t+\Delta} - \nabla \log \mu_t$ are better behaved than changes in the log-probabilities
 328 $\log \mu_{t+\Delta} - \log \mu_t$. This allows us to get guarantees in FI rather than KL for μ_0 .
 329



330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377

Figure 3: “Discontinuity” of $\{\mu_t\}$: The prior consists of two vertical orange bars. We obtain a measurement, represented by the dotted line, of the vertical coordinate corrupted by some Gaussian noise. The log-likelihood is represented by the colored gradient, with dark representing regions of higher likelihood. Like the prior, the posterior represented in blue is bimodal, with one mode corresponding to each of the modes of the prior.

4 RESULTS

In this section, we will describe our main results. Most proofs have been deferred to the appendices, where the theorem statements contain the exact polynomial dependencies.

Assumption 4.1. *We make the following assumptions:*

- (i) *The prior p_0 is m -sub-Gaussian, with zero mean.*
- (ii) *the score $\nabla_x \log p_0(x)$ is \mathfrak{L} -Lipschitz.*
- (iii) *The log-likelihood function $R(x)$ is smooth, convex, and bounded below by 0 such that there exists \mathfrak{x} , $\|\mathfrak{x}\| \leq \mathfrak{D}$, $R(\mathfrak{x}) = 0$, and $\nabla^2 R \preceq \mathfrak{R}I$.*

Remark 4.2. *The first assumption is generally satisfied by natural distributions, for instance, by images where each pixel is bounded intensity. The second assumption is standard in the literature (Chen et al., 2023; Lee et al., 2023). The third assumption establishes a regularity for the likelihood. In the case of noisy linear measurements $y = Ax + \sigma\eta$ for $\eta \sim \gamma$, $\mathfrak{R} \leq \|A\|^2/\sigma^2$.*

Warm Start: We begin by getting a sample from (close to) the limiting distribution $\mu_\infty = \lim_{t \rightarrow \infty} \mu_t$. We incur errors because we stop in finite time, and due to discretizations.

Lemma 4.3. *Take $T = \mathcal{O}(\frac{d}{\epsilon^2} \log \frac{\text{KL}(\gamma\|\mu_\infty)}{\epsilon})$ and $T_{ws} = \mathcal{O}(\log \frac{d}{\epsilon})$. The **Warm Start** phase of Algorithm 1 results in a sample X_T satisfying $\text{KL}(\mu_{T_{ws}}\|\text{Law}(X_T)) \leq \epsilon$.*

Proof Sketch. The Warm Start phase is LMC for the target μ_∞ . Because γ is strongly log-concave, R is convex, γe^{-R} is strongly log-concave, so efficient sampling is possible. We can shift the guarantee to $\mu_{T_{ws}}$ because $\mu_\infty \approx \mu_{T_{ws}}$. \square

Annealing Phase: We can now begin our annealing towards the target distribution. If we traverse the annealed path $\mu_t \propto p_t e^{-R}$, the KL divergence between the law of the iterates $\rho_{t\kappa/\delta}$ and μ_t is

$$\text{KL}(\mu_t\|\rho_{t\kappa/\delta}) \lesssim \text{KL}(\mu_{T_{ws}}\|\rho_{T_{ws}\kappa/\delta}) + \mathcal{O}(\int_t^{T_{ws}} \|v_t\|^2 dt/\kappa),$$

where v_t denotes the velocity field that generates the path $\{\mu_t\}$. An important aspect of this phase is the rate $1/\kappa$ which slows traversal of the path $\{\mu_t\}$ allowing the iterates to better track the distribution.

Theorem 4.4. *Suppose we run **Warm Start** phase with $T = \mathcal{O}(d\kappa \log(\kappa \text{KL}(\gamma\|\mu_\infty)))$, $T_{ws} = \log \kappa d$, following which we run the **Annealing Phase** with $\delta = \kappa^{-1/4}$. This results in a $\tau = \kappa^{-3/16}$ satisfying*

$$\text{KL}(\mu_\tau\|\rho_{\tau\kappa/\delta}) \leq \text{poly}(d, 1/\kappa) \tag{3}$$

378 *Proof Sketch.* Important technical tools we use are bounds on the magnitude of the derivatives $\partial_t \log p_t, \partial_t \log \mu_t$
 379 (Lemmas C.5 and C.6). These, together with Lemma B.2, allow us to bound the metric derivative $\|v_t\|_{L_2(\mu_t)}^2 =$
 380 $\lim_{\Delta \rightarrow 0} W_2(\mu_{t+\Delta}, \mu_t)/\Delta$, where v_t is the drift implementing the path μ_t . The dominant term in the KL distance comes
 381 from the action $\int \|v_t\|_{L_2(\mu_t)}^2 dt$. \square
 382

383 Theorem 4.4 shows that we can track the annealed path up until τ defined above for a polynomial run time. Beyond
 384 that, ρ_t does not track $\mu_{t\delta/\kappa}$ closely. We now consider the Fisher Divergence.
 385

386 **Theorem 4.5.** Suppose we run **Warm Start** phase with $T = \mathcal{O}(d^3 \kappa \log(\kappa \text{KL}(\gamma \|\mu_\infty)))$, $T_{ws} = \log \kappa d$, following
 387 which we run the **Annealing Phase** with $\delta = \kappa^{-1/4}$. This results in a $\tau = \kappa^{-3/16}$ satisfying

$$388 \quad \text{FI}(\rho_{\tau\kappa/\delta} \|\mu_0) \leq \mathcal{O}(d^{3/2} \kappa^{-3/32}).$$

391 *Proof Sketch.* Consider $\partial_t \rho_t = \nabla \cdot (\rho_t \nabla \log \frac{\rho_t}{\mu_{i\delta/\kappa}})$. de Bruijn's identity states:

$$393 \quad -\partial_t \text{KL}(\rho_t \|\mu_{i\delta/\kappa}) \geq \text{FI}(\rho_t \|\mu_{i\delta/\kappa})$$

394 Since we are using an annealed LMC, to telescope this as in the LMC analysis we also need to bound
 395

$$396 \quad \text{KL}(\rho_{i\delta} \|\mu_{i\delta/\kappa}) - \text{KL}(\rho_{i\delta} \|\mu_{(i-1)\delta/\kappa}) = -\mathbb{E}_{\rho_{i\delta}}(\log \mu_{i\delta/\kappa} - \log \mu_{(i-1)\delta/\kappa}).$$

397 Because the initialization $\rho_{T_{ws}}$ is sub-Gaussian, we can bound the drifts of our algorithm to show that the resulting ρ_t is
 398 sub-Gaussian. Lemmas C.5 and C.6 again allow us to bound $\log \mu_{i\delta/\kappa} - \log \mu_{(i-1)\delta/\kappa}$, which we show grows at most
 399 polynomially. As a consequence, we have
 400

$$401 \quad \sum_{i=\tau\kappa/\delta}^{T_{ws}\kappa/\delta} \int_{i\delta}^{(i+1)\delta} \text{FI}(\rho_t \|\mu_{i\delta/\kappa}) dt \lesssim \text{KL}(\rho_{T_{ws}} \|\mu_{T_{ws}})$$

405 From here, we finish using a weak triangle inequality for FI to get a guarantee against μ_0 .
 406 \square

408 These results are driven by Lemmas C.5 and C.6, which effectively show that the posteriors μ_t change in a relatively
 409 mild way until some small $t > 0$, allowing us to anneal our samples in polynomial time. Putting these together, we
 410 have the following conclusion, which states that *there is an iterate close to the last iterate that satisfies a simultaneous*
 411 “global” KL guarantee to a posterior for a noised prior and a “local” FI guarantee to the true posterior.

412 **Corollary 4.1 (KL + FI).** In algorithm 1, suppose we run **Warm Start** phase with $T = \mathcal{O}(d^3 \kappa \log(\kappa \text{KL}(\gamma \|\mu_\infty)))$,
 413 $T_{ws} = \log \kappa d$, following which we run the **Annealing Phase** with $\delta = \kappa^{1/4}$, then there is $\tau \leq \tilde{\mathcal{O}}(\kappa^{-3/16})$, such that
 414 $\rho_{\tau\kappa/\delta}$ simultaneously satisfies

$$416 \quad \begin{aligned} & \bullet \text{KL}(\mu_\tau \|\rho_{\tau\kappa^{5/4}}) \leq \mathcal{O}(d\kappa^{-1/2}), \text{ which implies } \text{TV}(\rho_{\tau\kappa^{5/4}}, \mu_\tau) \leq \mathcal{O}(\sqrt{d\kappa^{-1/2}}). \\ & \bullet \text{FI}(\rho_{\tau\kappa^{5/4}} \|\mu_0) \leq \mathcal{O}(d\kappa^{-1/16}) \end{aligned}$$

420 For this choice of κ , the algorithm has run time $\tilde{\mathcal{O}}(\kappa^{5/4})$.
 421

4.1 LOCAL AND GLOBAL GUARANTEES - THE IMPLICATIONS OF COROLLARY 4.1

424 It is possible to *just* get convergence in FI, indeed running LMC towards the posterior,

$$425 \quad X_{i+1} = X_i + \delta \nabla \log \mu_0(X_i) + \sqrt{2\delta} \epsilon, \quad \epsilon \sim \mathcal{N}(0, I),$$

427 results in polynomial convergence to μ_0 in FI as in Balasubramanian et al. (2022). However, convergence in FI is
 428 susceptible to the phenomenon of “mode collapse”, where for instance, in a multimodal distribution, the sampler
 429 significantly under-samples a specific mode depending on initialization. This is particularly critical in our setting -
 430 one could interpret posterior sampling for multi-modal priors as equivalent to conditionally sampling from a subset of
 431 modes that is consistent with a measurement. We will illustrate this below for a mixture of two Gaussians, and show
 432 how Theorem 4.4 avoids this failure mode.

432 Let us define a bimodal prior and a likelihood:

$$434 \quad p_0 = \frac{1}{2}\mathcal{N}(\mathbf{0}, I) + \frac{1}{2}\mathcal{N}\left(\lambda \begin{bmatrix} 1 \\ 1 \end{bmatrix}, I_2\right), \quad R(\mathbf{x}) = \frac{1}{2\eta} \|\text{diag}([0, 1])\mathbf{x}\|^2$$

436 Let $\frac{1}{\eta'} = 1 + \frac{1}{\eta}$, and let $A_{\square} = \text{diag}([1, \square])$ for any \square . Then the posterior can be written as

$$438 \quad \mu_0 = \alpha_0 \mathcal{N}(\mathbf{0}, A_{\eta'}) + (1 - \alpha_0) \mathcal{N}\left(\lambda A_{\eta'} \begin{bmatrix} 1 \\ 1 \end{bmatrix}, A_{\eta'}\right), \quad \alpha_0 = \frac{1}{1 + e^{-\frac{\lambda^2}{1+\eta}}}$$

441 However, we see in Lemma D.2 that even the distribution (with equal mode weights)

$$442 \quad \mu'_0 = \frac{1}{2}\mathcal{N}(\mathbf{0}, A_{\eta'}) + \frac{1}{2}\mathcal{N}\left(\lambda A_{\eta'} \begin{bmatrix} 1 \\ 1 \end{bmatrix}, A_{\eta'}\right)$$

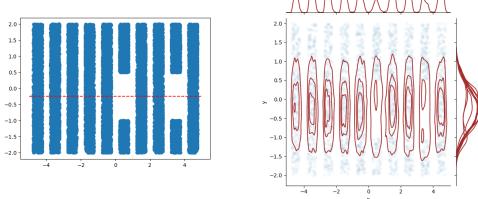
445 satisfies $\text{FI}(\mu_0 \parallel \mu'_0) \leq e^{-\lambda^2(\frac{\eta-15}{8(1+\eta)})}$. So for $\eta > 15$, $\lambda \rightarrow \infty$, FI completely fails to discriminate the distribution with
446 the correct mode weights of $(\alpha_0, 1 - \alpha_0)$ from an incorrect distribution with equal weights $(1/2, 1/2)$. Now consider a
447 *noisy* prior, and the corresponding posterior

$$449 \quad p_t = \frac{1}{2}\mathcal{N}(\mathbf{0}, I) + \frac{1}{2}\mathcal{N}\left(\lambda e^{-t} \begin{bmatrix} 1 \\ 1 \end{bmatrix}, I\right), \quad \mu_t = \alpha_t \mathcal{N}(\mathbf{0}, A_{\eta}) + (1 - \alpha_t) \mathcal{N}(e^{-t} A_{\eta} \mathbf{e}, A_{\eta}), \quad \alpha_t = \frac{1}{1 + e^{-\frac{\lambda^2 e^{-2t}}{1+\eta}}}$$

452 As we saw previously, with the FI guarantee alone, there is no guarantee on the weight α , which could range from $1/2$ to
453 exponentially close to 1 . However the KL (which implies a TV) guarantee shows that the weights can themselves not be
454 off by more $\sqrt{\epsilon}$, which means $\alpha = \alpha_t \pm \sqrt{\epsilon}$.

455 We can now complete the discussion of Section 2.2. We saw in Section 2.1 that a FI guarantee can be interpreted as
456 a type of “local” KL guarantee, and that these local guarantees cannot be stitched to get a KL guarantee. In a multimodal
457 setting, such as this one, however, the weights of the modes themselves fall under the purview of the overall KL bound
458 (Theorem 4.4), which sets them by solving a “simplified” posterior sampling problem.

459 **Remark 4.6.** *Approximating the posterior of a noised prior is in some sense the best we can do tractably. Consider the*
460 *lower bound instance of Gupta et al. (2024). In summary, they use a one way function $f: \{-1, 1\}^d \rightarrow \{-1, 1\}^d$ such*
461 *that $f(x) = y$ is easy to compute, but $f^{-1}(y) = x$ is difficult. They construct a posterior sampling problem, where the*
462 *prior corresponds to a uniform distribution over $\{-1, 1\}^d$, the measurement is a specific $f(x) = y$, and the posterior*
463 *would correspond to distribution concentrated on the true inverse $f^{-1}(y)$. Using the same measurement but noising*
464 *the prior sufficiently results in a distribution for x that is uniform over $\{-1, 1\}^d$. In our notation, this is analogous to*
465 *saying that the posterior μ_t is concentrated on the true $f^{-1}(y)$ only for very small values of t .*



467 Figure 4: Our prior (shown on the left) consists of
468 several vertical bars, two of which have gaps in them.
469 The measurement model encourages the vertical coordinate
470 to be -0.25 , as indicated by the red horizontal line.
471 The distribution of the sampler is depicted with
472 kernel density plots for each of the resulting modes
473 (shown to the right in red overlaid on top of the prior).

474 **Remark 4.7.** Consider a prior consisting of several vertical “bars” in \mathbb{R}^2 , two of which have a gap in them in some
475 range of the vertical coordinate (see Figure 4). Our measurement operator gives us only a noisy measurement of the
476 vertical coordinate (the red dotted line, in this case at $y = -0.25$). In this case, the two bars with gaps in them should be
477 very unlikely under the true posterior. However, the posterior of a noised prior would not notice this gap for some time.
478 The annealed Langevin algorithm we describe results in the sampler shown on the right. A kernel density estimate for
479 each of the resulting modes is plotted in red. Note that each of the modes is discovered, and the two modes that should
480 have a lower weight under the posterior do have a smaller weight (as we can see from the marginals).

482 5 CONCLUSION

483 We study the Annealed Langevin Monte Carlo algorithm to generate samples from an approximation to the true posterior
484 distribution. We show that this algorithm simultaneously satisfies two properties: when initialized with an efficient

486 “warm-start”, an iterate close to the final iterate is (i) close in KL with respect to the posterior with a noisy prior, and (ii)
487 close in FI with respect to the true posterior. To the best of our knowledge, these constitute the first polynomial-time
488 results for a suitable notion of approximate posterior sampling.

489 We believe this type of guarantee is also possible with other popular posterior sampling frameworks like Split-Gibbs
490 sampling, which can be interpreted as a different discrete path through the space of distributions. Furthermore, there
491 may be other paths $\{\mu_t\}$ that allow us to sample from interpretable approximations to the true posterior (such as on that
492 more closely aligns with DDPM, rather than Annealed Langevin); this is an interesting avenue for future work.
493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540 REFERENCES

541 Luigi Ambrosio and Giuseppe Savaré. Chapter 1 - gradient flows of probability measures. volume 3 of *Hand-542 book of Differential Equations: Evolutionary Equations*, pp. 1–136. North-Holland, 2007. doi: [https://doi.org/10.1016/S1874-5717\(07\)80004-1](https://doi.org/10.1016/S1874-5717(07)80004-1). URL <https://www.sciencedirect.com/science/article/pii/S1874571707800041>.

543 Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré. *Gradient Flows in Metric Spaces and in the Space of Probability* 544 *Measures*. Lectures in Mathematics ETH Zürich. Birkhäuser, Basel, 2. ed edition, 2008. ISBN 978-3-7643-8722-8. 545 OCLC: 254181287.

546 Brian D. O. Anderson. Reverse-time diffusion equation models. *Stochastic Processes and their Applications*, 12: 547 313–326, 1982. URL <https://api.semanticscholar.org/CorpusID:3897405>.

548 Dominique Bakry, Ivan Gentil, and Michel Ledoux. *Analysis and Geometry of Markov Diffusion operators*. Grundlehren 549 der mathematischen Wissenschaften, Vol. 348. Springer, January 2014. URL [https://hal.science/550 hal-00929960](https://hal.science/hal-00929960).

551 Krishnakumar Balasubramanian, Sinho Chewi, Murat A. Erdogdu, Adil Salim, and Matthew Zhang. Towards a 552 theory of non-log-concave sampling: First-order stationarity guarantees for langevin monte carlo, 2022. URL 553 <https://arxiv.org/abs/2202.05214>.

554 Black Forest Labs. Black forest labs, 2024. URL <https://blackforestlabs.ai/>. Accessed: September 1, 555 2024.

556 Valentin De Bortoli, Michael Hutchinson, Peter Wirnsberger, and Arnaud Doucet. Target score matching, 2024. URL 557 <https://arxiv.org/abs/2402.08667>.

558 Joan Bruna and Jiequn Han. Posterior sampling with denoising oracles via tilted transport, 2024. URL <https://arxiv.org/abs/2407.00745>.

559 Hong-Bin Chen, Sinho Chewi, and Jonathan Niles-Weed. Dimension-free log-sobolev inequalities for mixture 560 distributions, 2021. URL <https://arxiv.org/abs/2102.11476>.

561 Sitan Chen, Sinho Chewi, Jerry Li, Yuanzhi Li, Adil Salim, and Anru R. Zhang. Sampling is as easy as learning the 562 score: theory for diffusion models with minimal data assumptions, 2023. URL [https://arxiv.org/abs/563 2209.11215](https://arxiv.org/abs/2209.11215).

564 Sinho Chewi. Log-concave sampling. *Book draft available at <https://chewisinho.github.io>*, 9:17–18, 2023.

565 Hyungjin Chung, Jeongsol Kim, Michael T. Mccann, Marc L. Klasky, and Jong Chul Ye. Diffusion posterior sampling 566 for general noisy inverse problems, 2022. URL <https://arxiv.org/abs/2209.14687>.

567 Paula Cordero-Encinar, O Deniz Akyildiz, and Andrew B Duncan. Non-asymptotic analysis of diffusion annealed 568 langevin monte carlo for generative modelling. *arXiv preprint arXiv:2502.09306*, 2025.

569 Giannis Daras, Hyungjin Chung, Chieh-Hsin Lai, Yuki Mitsufuji, Jong Chul Ye, Peyman Milanfar, Alexandros G Di- 570 makis, and Mauricio Delbracio. A survey on diffusion models for inverse problems. *arXiv preprint arXiv:2410.00083*, 571 2024.

572 Zehao Dou and Yang Song. Diffusion posterior sampling for linear inverse problem solving: A filtering perspective. In 573 *The Twelfth International Conference on Learning Representations*, 2024.

574 Stuart Geman and Chii-Ruey Hwang. Diffusions for global optimization. *SIAM Journal on Control and Optimization*, 575 24(5):1031–1043, 1986. doi: 10.1137/0324060.

576 Wei Guo, Molei Tao, and Yongxin Chen. Provable benefit of annealed langevin monte carlo for non-log-concave 577 sampling. *arXiv preprint arXiv:2407.16936*, 2024.

578 Shivam Gupta, Ajil Jalal, Aditya Parulekar, Eric Price, and Zhiyang Xun. Diffusion posterior sampling is computa- 579 tionally intractable. In Ruslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan 580 Scarlett, and Felix Berkenkamp (eds.), *Proceedings of the 41st International Conference on Machine Learning*, 581 volume 235 of *Proceedings of Machine Learning Research*, pp. 17020–17059. PMLR, 21–27 Jul 2024. URL 582 <https://proceedings.mlr.press/v235/gupta24a.html>.

594 Bruce Hajek and Galen Sasaki. Simulated annealing — to cool or not. *Systems and Control Letters*, 12(5):443–447, 1989.
 595 ISSN 0167-6911. doi: [https://doi.org/10.1016/0167-6911\(89\)90081-9](https://doi.org/10.1016/0167-6911(89)90081-9). URL <https://www.sciencedirect.com/science/article/pii/0167691189900819>.

596

597 Amir Hertz, Andrey Voynov, Shlomi Fruchter, and Daniel Cohen-Or. Style aligned image generation via shared
 598 attention. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 4775–4785,
 599 2024.

600

601 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models, 2020. URL <https://arxiv.org/abs/2006.11239>.

602

603

604 Richard Jordan, David Kinderlehrer, and Felix Otto. The variational formulation of the fokker–planck equation.
 605 *SIAM Journal on Mathematical Analysis*, 29(1):1–17, 1998. doi: 10.1137/S0036141096303359. URL <https://doi.org/10.1137/S0036141096303359>.

606

607 Bahjat Kawar, Michael Elad, Stefano Ermon, and Jiaming Song. Denoising diffusion restoration models. *Advances in
 608 Neural Information Processing Systems*, 35:23593–23606, 2022.

609

610 Holden Lee, Jianfeng Lu, and Yixin Tan. Convergence for score-based generative modeling with polynomial complexity,
 611 2023. URL <https://arxiv.org/abs/2206.06227>.

612

613 Andreas Lugmayr, Martin Danelljan, Andres Romero, Fisher Yu, Radu Timofte, and Luc Van Gool. Repaint: Inpainting
 614 using denoising diffusion probabilistic models. In *Proceedings of the IEEE/CVF Conference on Computer Vision
 and Pattern Recognition*, pp. 11461–11471, 2022.

615

616 E Marinari and G Parisi. Simulated tempering: A new monte carlo scheme. *Europhysics Letters (EPL)*, 19(6):451–458,
 617 July 1992. doi: 10.1209/0295-5075/19/6/002. URL <http://dx.doi.org/10.1209/0295-5075/19/6/002>.

618

619 Bernt Øksendal. *Stochastic differential equations*. Springer, 2003.

620

621 F. Otto and C. Villani. Generalization of an inequality by talagrand and links with the logarithmic sobolev inequality.
 622 *Journal of Functional Analysis*, 173(2):361–400, 2000. ISSN 0022-1236. doi: <https://doi.org/10.1006/jfan.1999.3557>.
 623 URL <https://www.sciencedirect.com/science/article/pii/S0022123699935577>.

624

625 Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen, and Ilya Sutskever.
 626 Zero-shot text-to-image generation. In *International Conference on Machine Learning*, pp. 8821–8831. PMLR, 2021.

627

628 H. Robbins. An empirical bayes approach to statistics. *Proc. 3rd Berkeley Symp. Math. Statist. Probab.*, 1956, 1:
 629 157–163, 1956. URL <https://cir.nii.ac.jp/crid/1572824500694511232>.

630

631 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution image
 632 synthesis with latent diffusion models, 2022. URL <https://arxiv.org/abs/2112.10752>.

633

634 Litu Rout, Negin Raoof, Giannis Daras, Constantine Caramanis, Alexandros G Dimakis, and Sanjay Shakkottai. Solving
 635 inverse problems provably via posterior sampling with latent diffusion models. In *Thirty-seventh Conference on
 636 Neural Information Processing Systems*, 2023.

637

638 Litu Rout, Yujia Chen, Abhishek Kumar, Constantine Caramanis, Sanjay Shakkottai, and Wen-Sheng Chu. Beyond
 639 first-order tweedie: Solving inverse problems using latent diffusion. In *IEEE/CVF Conference on Computer Vision
 640 and Pattern Recognition*, pp. 9472–9481, 2024.

641

642 Litu Rout, Yujia Chen, Nataniel Ruiz, Constantine Caramanis, Sanjay Shakkottai, and Wen-Sheng Chu. Semantic image
 643 inversion and editing using rectified stochastic differential equations. In *The Thirteenth International Conference on
 644 Learning Representations*, 2025a.

645

646 Litu Rout, Yujia Chen, Nataniel Ruiz, Abhishek Kumar, Constantine Caramanis, Sanjay Shakkottai, and Wen-Sheng Chu.
 647 RB-modulation: Training-free personalization using stochastic optimal control. In *The Thirteenth International Conference
 648 on Learning Representations*, 2025b. URL <https://openreview.net/forum?id=bnINPG5A32>.

649

650 Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed
 651 Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi, Rapha Gontijo Lopes, et al. Photorealistic text-to-image
 652 diffusion models with deep language understanding. *arXiv preprint arXiv:2205.11487*, 2022.

648 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models, 2022a. URL <https://arxiv.org/abs/2010.02502>.
649
650

651 Jiaming Song, Arash Vahdat, Morteza Mardani, and Jan Kautz. Pseudoinverse-guided diffusion models for inverse
652 problems. In *International Conference on Learning Representations*, 2023.

653 Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution, 2020. URL
654 <https://arxiv.org/abs/1907.05600>.
655

656 Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole. Score-based
657 generative modeling through stochastic differential equations, 2021. URL <https://arxiv.org/abs/2011.13456>.
658

659 Yang Song, Liyue Shen, Lei Xing, and Stefano Ermon. Solving inverse problems in medical imaging with score-based
660 generative models, 2022b. URL <https://arxiv.org/abs/2111.08005>.
661

662 Santosh S. Vempala and Andre Wibisono. Rapid convergence of the unadjusted langevin algorithm: Isoperimetry
663 suffices, 2022. URL <https://arxiv.org/abs/1903.08568>.
664

665 Andre Wibisono. Sampling as optimization in the space of measures: The langevin dynamics as a composite optimization
666 problem, 2018. URL <https://arxiv.org/abs/1802.08089>.
667

668 Andre Wibisono. Mixing time of the proximal sampler in relative fisher information via strong data processing
669 inequality, 2025. URL <https://arxiv.org/abs/2502.05623>.
670

671 Luhuan Wu, Brian L. Trippe, Christian A. Naesseth, David M. Blei, and John P. Cunningham. Practical and asymptoti-
672 cally exact conditional sampling in diffusion models, 2024. URL <https://arxiv.org/abs/2306.17775>.
673

674 Xingyu Xu and Yuejie Chi. Provably robust score-based diffusion posterior sampling for plug-and-play image
675 reconstruction, 2024. URL <https://arxiv.org/abs/2403.17042>.
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702 **A PRELIMINARIES**

703 **A.1 NOTATION AND OVERVIEW**

706 **Notation.** The prior is denoted p . The log-likelihood, or the measurement consistency, is denoted R . We denote by p_t
 707 the distribution p passed through the OU channel, which is to say, if X_t is an OU process with X_0 having law p , then p_t
 708 is the law of X_t . We use μ to denote posteriors, so μ_0 is the posterior $p_0 e^{-R}/Z$, and μ_t is $p_t e^{-R}$. We use \circ to denote
 709 composition, so $(f \circ g)(x) = f(g(x))$

710 We use $C_c^\infty(\mathcal{U})$ to denote the space of all smooth functions on \mathcal{U} with compact support, $\mathcal{P}_2(\mathbb{R}^d)$ to denote the set
 711 of measures on \mathbb{R}^d , and $\mathcal{P}_{2,ac}(\mathbb{R}^d)$ to denote the set of measures that are absolutely continuous with respect to the
 712 Lebesgue measure.

713 **Remark A.1** (Constants greater than one). *For simplicity, we assume that each of the constants defined in Assumption
 714 4.1 is a constant greater than one.*

715 **Overview.** In Section A.2 we review some identities that will be useful. In A.3 we state some prior work with references.
 716 In Appendix B we discuss various aspects of the algorithm discussed in Section 3. In Appendix C we state and prove
 717 some bounds that are useful to Appendix B.

718 **A.2 PRELIMINARIES**

719 **Lemma A.2** (Identities). *We have the following identities, under benign regularity conditions. These are commonly
 720 used in the literature but are repeated here for completeness*

721 1. For $f, g : \mathbb{R}^d \rightarrow \mathbb{R}$, we have $\nabla \cdot (f * g) = (\nabla \cdot f) * g$
 722 2. For $f : \mathbb{R}^d \rightarrow \mathbb{R}^d$, $g : \mathbb{R}^d \rightarrow \mathbb{R}$, we have $\nabla(f * g) = (\nabla f) * g$
 723 3. For $f, g : \mathbb{R}^d \rightarrow \mathbb{R}$, we have $\Delta(f * g) = (\Delta f) * g$
 724 4. For $f : \mathbb{R} \rightarrow \mathbb{R}$, $g : \mathbb{R}^d \rightarrow \mathbb{R}$, $\nabla \cdot (f \nabla g) = \nabla f \cdot \nabla g + f \Delta g$
 725 5. For $f : \mathbb{R} \rightarrow \mathbb{R}$, $f \nabla \log f = \nabla f$

726 *Proof.* Follows from switching the order of the integrals and the derivatives. The principle is that convolution commutes
 727 with linear operators.

728 1.

$$729 \nabla \cdot (f * g) = \sum_i \partial_i \int f(x-y)g(y) dy = \int \sum_i \partial_i (f(x-y)g(y)) dy \\ 730 = \int \sum_i (\partial_i f(x-y)) g(y) dy = (\nabla \cdot f) * g$$

731 2.

$$732 \nabla(f * g) = \nabla_x \int f(x-y)g(y) dy = \int \nabla_x f(x-y)g(y) dy = (\nabla f) * g$$

733 3. Follows from the above two:

$$734 \Delta(f * g) = \nabla \cdot \nabla(f * g) = \nabla \cdot ((\nabla f) * g) = \nabla \cdot (\nabla f) * g = (\Delta f) * g$$

735 The remaining are common calculus manipulations. □

736 **Lemma A.3** (Gaussians). *The following hold for Gaussians $\gamma_{\sigma^2}(x)$*

737 1. $\nabla \gamma_{\sigma^2} = -\frac{x}{\sigma^2} \gamma_{\sigma^2}$
 738 2. $\Delta \gamma_{\sigma^2} = \left(\frac{\|x\|}{\sigma^4} - \frac{d}{\sigma^2} \right) \gamma_{\sigma^2}$
 739 3. $\Delta \log \gamma = -\frac{d}{\sigma^2}$

740 The above also follow from standard calculus rules.

756 A.3 MISCELLANEOUS RESULTS
757758 **Lemma A.4** (Girsanov, (Øksendal, 2003)). Let $X_0 \sim \rho_0$, $X'_0 \sim \rho'_0$, and suppose
759

760
$$\begin{aligned} dX_t &= v_t(X_t) dt + \sqrt{2} dB_t \iff \partial_t \rho_t = -\nabla \cdot (\rho_t v_t) + \Delta \rho_t \\ dX'_t &= v'_t(X'_t) dt + \sqrt{2} dB_t \iff \partial_t \rho'_t = -\nabla \cdot (\rho'_t v'_t) + \Delta \rho'_t \end{aligned} \tag{4}$$

762

763 The KL divergence between ρ_t and ρ'_t can be bounded as
764

765
$$\text{KL}(\rho_t \parallel \rho'_t) \leq \text{KL}(\rho_0 \parallel \rho'_0) + \frac{1}{4} \mathbb{E}_{\{X_t\}} \int_0^T \|v_t(X_t) - v'_t(X_t)\|^2 dt$$

766

767 **Lemma A.5** (LMC convergence under Log-Concavity (Vempala & Wibisono, 2022)). Let $k \in \mathbb{N}$, and let μ_{kh} denote
768 the law of the k -th iterate of the Langevin Monte Carlo (LMC) algorithm with step size $h > 0$. Assume that the target
769 distribution $\pi \propto \exp(-V)$ satisfies a logarithmic Sobolev inequality with constant $C_{LSI}(\pi) \leq \frac{1}{\alpha}$, and that ∇V is
770 β -Lipschitz. Then, for all $h \leq \frac{1}{4\beta}$ and for all $N \in \mathbb{N}$,
771

772
$$\text{KL}(\mu_{Nh} \parallel \pi) \leq \exp(-\alpha Nh) \text{KL}(\mu_0 \parallel \pi) + \mathcal{O}\left(\frac{\beta^2 dh}{\alpha}\right).$$

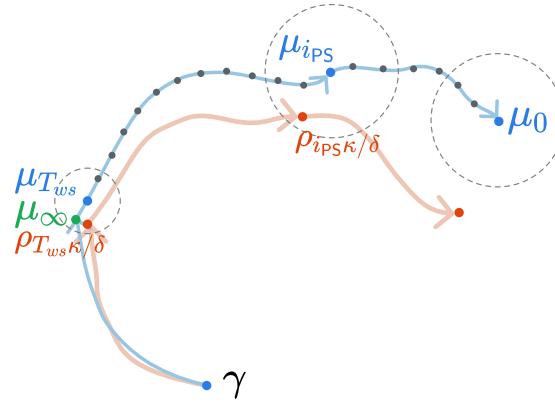
773

774 In particular, letting $\kappa := \frac{\beta}{\alpha}$, for all $\varepsilon \in [0, \kappa\sqrt{d}]$ and for step size $h \asymp \frac{\varepsilon^2}{\beta\kappa d}$, we have $\sqrt{\text{KL}(\mu_{Nh} \parallel \pi)} \leq \epsilon$ after
775 $N = \mathcal{O}\left(\frac{\kappa^2 d}{\epsilon^2} \log \frac{\text{KL}(\mu_0 \parallel \pi)}{\epsilon^2}\right)$ iterations.
776777 **Lemma A.6** (HWI inequality (Otto & Villani, 2000)). Let $\pi \in \mathcal{P}_2(\mathbb{R}^d)$ be a reference measure, and let $\rho \in \mathcal{P}_2(\mathbb{R}^d)$.
778 We have
779

780
$$\text{KL}(\pi \parallel \rho) \leq W_2(\pi, \rho) \sqrt{\text{FI}(\pi \parallel \rho)}$$

781 **Lemma A.7** (Talagrand's transportation inequality (Chewi, 2023)). Let $\pi \in \mathcal{P}_2(\mathbb{R}^d)$ be α -strongly concave. Then we
782 have
783

784
$$\text{KL}(\rho \parallel \pi) \geq \frac{\alpha}{2} W_2^2(\rho, \pi).$$

785 B PROOFS FOR ANNEALED LANGEVIN
786787 In this section, we elaborate on the proofs of section 3. Recall our general strategy for sampling. We begin by showing
788806 Figure 5: (1.) We sample using LMC from $\mu_T \approx \mu_\infty$. (2.) We run Annealed LMC along the path $t \mapsto \mu_t$.
807808 that the limiting distribution exists $\lim_{t \rightarrow \infty} \mu_t = \mu_\infty$.
809810 **Lemma B.1.** Let $\mu_t = p_t e^{-R}/Z$. The sequence μ_t converges weakly to $\mu_\infty = \gamma e^{-R}/Z$.

810 *Proof.* First note that if $p \in C_c^\infty(\mathbb{R})$, then $\lim_{t \rightarrow \infty} e^{td} p(e^t x) = \delta$ in the sense of distributions. We need to show for
 811 every $\phi \in C_c^\infty(\mathbb{R})$ that $\mathbb{E}_{\mu_\infty} \phi = \lim_{t \rightarrow \infty} \mathbb{E}_{\mu_t} \phi$. We have
 812

$$\begin{aligned} 813 \quad \lim_{t \rightarrow \infty} \mathbb{E}_{\mu_t} \phi &= \lim_{t \rightarrow \infty} \frac{\int \phi(x) e^{-R(x)} p_t(x) dx}{\int e^{-R(x)} p_t(x) dx} \\ 814 &= \frac{\lim_{t \rightarrow \infty} \int \phi(x) e^{-R(x)} p_t(x) dx}{\lim_{t \rightarrow \infty} \int e^{-R(x)} p_t(x) dx} \\ 815 &= \frac{\int \lim_{t \rightarrow \infty} \phi(x) e^{-R(x)} p_t(x) dx}{\int \lim_{t \rightarrow \infty} e^{-R(x)} p_t(x) dx} \\ 816 &= \frac{\int \phi(x) e^{-R(x)} \gamma(x) dx}{\int e^{-R(x)} \gamma(x) dx} \\ 817 &= \mathbb{E}_{\mu_\infty} \phi \end{aligned}$$

818 The second equality holds as long as $\lim_{t \rightarrow \infty} \int e^{-R(x)} (\int e^{td} p(e^t(x-y)) \gamma_{1-e^{-2t}}(y) dy) dx \neq 0$. The third requires
 819 dominated convergence for $p_t(x) e^{-R(x)} \phi(x)$ and $p_t(x) e^{-R(x)}$. The fourth requires $\lim_{t \rightarrow \infty} p_t = \gamma$. We will confirm
 820 these below in reverse order. First we have
 821

$$\begin{aligned} 822 \quad \lim_{t \rightarrow \infty} p_t &= \lim_{t \rightarrow \infty} \int e^{td} p(e^t(x-y)) \gamma_{1-e^{-2t}}(y) dy \\ 823 &= \int \lim_{t \rightarrow \infty} (e^{td} p(e^t(x-y)) \gamma_{1-e^{-2t}}(y)) dy \\ 824 &= \int \left(\lim_{t \rightarrow \infty} e^{td} p(e^t(x-y)) \right) \left(\lim_{t \rightarrow \infty} \gamma_{1-e^{-2t}}(y) \right) dy \\ 825 &= \int \delta(x-y) \gamma(y) dy = \gamma \end{aligned}$$

826 From C.4, we know $p_t e^{-R(x)} \phi(x) \leq \frac{1}{(1-e^{-2t})^{d/2}} e^{-R(x)} \phi(x)$ pointwise, and $\int \frac{1}{(1-e^{-2t})^{d/2}} e^{-R(x)} \phi(x) dx =$
 827 $\frac{1}{(1-e^{-2t})^{d/2}} \int e^{-R(x)} \phi(x) dx$. Because e^{-R} and ϕ are both square integrable, $e^{-R} \phi$ is integrable from Cauchy
 828 Schwartz, and we can use the dominated convergence theorem to show that
 829

$$830 \quad \lim_{t \rightarrow \infty} \int e^{-R(x)} p_t(x) \phi(x) dx = \int \lim_{t \rightarrow \infty} e^{-R(x)} p_t(x) \phi(x) dx.$$

831 We can show similarly that
 832

$$833 \quad \lim_{t \rightarrow \infty} \int e^{-R(x)} p_t(x) dx = \int \lim_{t \rightarrow \infty} e^{-R(x)} p_t(x) dx.$$

834 Finally, we have
 835

$$836 \quad \lim_{t \rightarrow \infty} \int e^{-R(x)} p_t(x) dx = \int \lim_{t \rightarrow \infty} e^{-R(x)} p_t(x) dx = \int e^{-R(x)} \gamma(x) dx > 0.$$

837 \square

838 This distribution is log-concave, and we can show that LMC converges quickly to μ_∞ . Let $\text{Law}(X_t)$ denote the law of
 839 X_t when $X_0 \sim \gamma$ and we run LMC towards μ_∞ for time T (Line 4 of Algorithm 1). We show that $\rho_{ws} \approx \mu_\infty \approx \mu_{T_{ws}}$
 840 for sufficiently large T_{ws}, T . The standard results on LMC convergence are usually given in terms of the KL divergence
 841 between the law of the iterate and the target distribution. To apply Girsanov's Theorem A.4 later in 4.4 we need the KL
 842 divergence between the target and the law of the iterate.
 843

844 **Lemma 4.3.** *Take $T = \mathcal{O}(\frac{d}{\epsilon^2} \log \frac{\text{KL}(\gamma \| \mu_\infty)}{\epsilon})$ and $T_{ws} = \mathcal{O}(\log \frac{d}{\epsilon})$. The **Warm Start** phase of Algorithm 1 results in a
 845 sample X_T satisfying $\text{KL}(\mu_{T_{ws}} \| \text{Law}(X_T)) \leq \epsilon$.*
 846

847 *Proof.* We will do this in three steps. First, we will show that standard results in this setting bound $\text{KL}(\text{Law}(X_T) \| \mu_\infty)$.
 848 Then we will bound $\text{KL}(\mu_\infty \| \text{Law}(X_T))$ from $\text{KL}(\text{Law}(X_T) \| \mu_\infty)$. In general, we cannot reverse the order of the
 849 arguments in a KL divergence but we can under some conditions (log-concavity + lipschitzness of the scores +
 850 subgaussian target), and then show that $\text{KL}(\mu_{T_{ws}} \| \text{Law}(X_T))$ is small.
 851

864 **Step 1. Showing that $\text{KL}(\text{Law}(X_T)\|\mu_\infty) < \epsilon$**

865 The drift term

$$867 \nabla \log \mu_\infty = \nabla \log(\gamma e^{-R}/Z) = -x - \nabla R$$

868 satisfies

$$869 \|\nabla(-x - \nabla R)\| \leq \sqrt{d} + \|\nabla^2 R\| \leq \sqrt{d} + \mathfrak{R},$$

870 and also $\|\nabla(x - \nabla R)\| \geq d$ from convexity of R , so μ_∞ is d -log-concave. From Lemma A.5 (which is from
871 Vempala & Wibisono (2022)), we see that we can take $\beta = 1 + \mathfrak{R}$, $\alpha = 1 + \mathfrak{R}$, $\delta \asymp \frac{\epsilon^2}{(1+\mathfrak{R})d}$ and to get that at
872 $T = \mathcal{O}\left(\frac{d}{\epsilon^2} \log \frac{\text{KL}(\gamma\|\mu_\infty)}{\epsilon^2}\right)$ iterations we have $\text{KL}(\text{Law}(X_T)\|\mu_\infty) \leq \epsilon^2$.
873

874 **Step 2. Showing that $\text{KL}(\mu_\infty\|\text{Law}(X_T)) < \epsilon$.**

875 By Lemma A.6 we have

$$877 \text{KL}(\mu_\infty\|\text{Law}(X_T)) \leq W_2(\text{Law}(X_T), \mu_\infty) \sqrt{\text{FI}(\mu_\infty\|\text{Law}(X_T))}.$$

878 The Fisher divergence is bounded by a dimension dependent constant

$$879 \text{FI}(\mu_\infty\|\text{Law}(X_T)) = \mathbb{E}_{\mu_\infty} \|\nabla \log \mu_\infty - \nabla \log \text{Law}(X_T)\|^2 \\ 880 \leq 2\mathbb{E}_{\mu_\infty} \|\nabla \log \mu_\infty\|^2 + 2\mathbb{E}_{\mu_\infty} \|\nabla \log \text{Law}(X_T)\|^2 \\ 881 \leq \text{poly}(\mathfrak{m}, \mathfrak{R}, \mathfrak{L}, d)$$

882 Overall we get $\text{KL}(\mu_\infty\|\text{Law}(X_T)) \leq \text{poly}(\mathfrak{m}, \mathfrak{R}, \mathfrak{L}) W_2(\text{Law}(X_T), \mu_\infty)$.
883

884 Note that μ_∞ is at least 1-strongly log-concave, so we have from Talagrand's transportation inequality A.7
885

$$886 \text{KL}(\mu_\infty\|\text{Law}(X_T)) \leq \text{poly}(\mathfrak{m}, \mathfrak{R}, \mathfrak{L}) W_2(\text{Law}(X_T), \mu_\infty) \\ 887 \leq \text{poly}(\mathfrak{m}, \mathfrak{R}, \mathfrak{L}) \sqrt{\text{KL}(\text{Law}(X_T)\|\mu_\infty)} \leq \text{poly}(\mathfrak{m}, \mathfrak{R}, \mathfrak{L}) \epsilon$$

890 **Step 3. Showing that $\text{KL}(\mu_{T_{ws}}\|\text{Law}(X_T)) < \epsilon$**

891 We can now also show that $\text{KL}(\rho_{T_{ws}}\|\mu_{T_{ws}})$ is small

$$892 \text{KL}(\mu_{T_{ws}}\|\text{Law}(X_T)) = \mathbb{E}_{\mu_{T_{ws}}} \log \mu_{T_{ws}} - \log \text{Law}(X_T) \\ 893 = \mathbb{E}_{\mu_{T_{ws}}} \log \mu_{T_{ws}} - \log \mu_\infty + \log \mu_\infty - \log \text{Law}(X_T) \\ 894 = \text{KL}(\mu_{T_{ws}}\|\mu_\infty) + \mathbb{E}_{\mu_{T_{ws}}} (\log \mu_\infty - \log \text{Law}(X_T)) \\ 895 = \mathbb{E}_{\mu_\infty} (\log \mu_\infty - \log \text{Law}(X_T)) \frac{\mu_{T_{ws}}}{\mu_\infty} \\ 896 \leq \mathbb{E}_{\mu_\infty} [(\log \mu_\infty - \log \text{Law}(X_T))] \sup_x \frac{\mu_{T_{ws}}(x)}{\mu_\infty(x)} \\ 897 = \text{KL}(\mu_\infty\|\text{Law}(X_T)) \sup_x \frac{\mu_{T_{ws}}(x)}{\mu_\infty(x)} \\ 898 = \text{KL}(\mu_\infty\|\text{Law}(X_T)) e^{\sup_x |\log \mu_{T_{ws}} - \log \mu_\infty|}$$

899 We have from Lemma C.7
900

$$901 e^{\sup_x |\log \mu_{T_{ws}} - \log \mu_\infty|} \leq e^{\frac{e^{-2T_{ws}}}{1-e^{-2T_{ws}}} \text{poly}(\mathfrak{m}, \mathfrak{L}, \mathfrak{R}, d)}$$

902 So if we set $T_{ws} = \mathcal{O}(\log \frac{d}{\epsilon})$, we get $\text{KL}(\text{Law}(X_T)\|\mu_{T_{ws}}) < \text{poly}(\mathfrak{m}, \mathfrak{R}, \mathfrak{L}) \epsilon$. □
903

904 A map $t \mapsto \pi_t$ from $[0, T] \rightarrow \mathcal{P}_2(\mathbb{R}^d)$ is *absolutely continuous* if for all t ,
905

$$906 |\dot{\mu}(t)| := \lim_{\delta \rightarrow 0} \frac{W_2(\mu_t, \mu_{t+\delta})}{\delta} < \infty.$$

907 Consider the continuity equation $\partial_t \pi_t = -\nabla \cdot (\pi_t v_t)$. Any choice of v_t results in a curve $t \mapsto \pi_t$, but, conversely if $t \mapsto \pi_t$
908 is an absolutely continuous curve, there exists a choice of v_t , such that $\partial_t \pi_t = -\nabla \cdot (\pi_t v_t)$ and $\|v_t\|_{L_2(\pi_t)} \leq |\dot{\mu}(t)|$. We
909 refer the reader to Chewi (2023) or Ambrosio et al. (2008) for a more elaborate exposition. In order to use Girsanov's
910 Theorem to bound the KL distance for the drift between the target and the law of the iterate during annealed LMC, we
911 will need to bound this derivative $|\dot{\mu}(t)|$.
912

918 **Lemma B.2.** *The path $t \mapsto \mu_t$ is an absolutely continuous curve. There exists a velocity field v_t satisfying $\partial_t \mu_t =$
 919 $-\nabla \cdot (\mu_t v_t)$, and*

$$920 \quad 921 \quad \|v_t\|_{L_2(\mu_t)} \leq \frac{de^{-t}}{(1 - e^{-2t})^4} \text{poly}(\mathfrak{m}, \mathfrak{R}, \mathfrak{L}).$$

923 *Proof.* We have $W_1(\mu, \nu) = \inf_{(X, Y) \sim \pi, \pi_X = \mu, \pi_Y = \nu} \int |X - Y| d\pi$. From duality we get the following equivalent
 924 characterization

$$925 \quad 926 \quad W_1(\mu, \nu) = \sup \left\{ \int f d(\mu - \nu) \mid \text{Lip}(f) \leq 1 \right\} \quad (5)$$

928 To tie this to W_2 , recall that for all \mathfrak{m} -subgaussian μ, ν , we have $W_2(\mu, \nu) \leq \sqrt{\mathfrak{m}} W_1(\mu, \nu)$. Without loss of generality
 929 we can assume $f \geq 0$, because for any constant c , in particular for $\inf f$, we have $\int f d(\mu - \nu) = \int (f - c) d(\mu - \nu)$.

930 So we have

$$931 \quad 932 \quad W_1(\mu, \nu) = \sup \left\{ \int f d(\mu - \nu) \mid \text{Lip}(f) \leq 1 \right\} \\ 933 \quad 934 \quad = \sup \left\{ \int f d(\mu - \nu) - \int \inf f d(\mu - \nu) \mid \text{Lip}(f) \leq 1 \right\} \\ 935 \quad 936 \quad = \sup \left\{ \int f d(\mu - \nu) \mid \text{Lip}(f) \leq 1, f \geq 0 \right\}$$

939 *Take any specific f . From $\text{Lip}(f) \leq 1$, we have $f \leq \|x\|$, and from Lemma C.6 we have $|\partial_t \log \mu_t| \leq$
 940 $\frac{e^{-t}}{(1 - e^{-2t})^4} \sum_{i=0}^2 a_i \|x\|^i$ for $a_i = d \text{poly}(\mathfrak{m}, \mathfrak{L}, \mathfrak{R})$. Putting these together we have*

$$941 \quad 942 \quad f |\partial_t \log \mu_t| \leq \frac{e^{-t}}{(1 - e^{-2t})^4} \sum_{i=0}^2 a_i \|x\|^i.$$

943 From Lemmas C.1 and C.3 we have $\mathbb{E}_{\mu_t} f |\partial_t \log \mu_t| \leq \frac{e^{-t} d}{(1 - e^{-2t})^4} \text{poly}(\mathfrak{m}, \mathfrak{R}, \mathfrak{L})$.

944 From this, we have for all Lipschitz f

$$945 \quad 946 \quad \int f d\mu_t - d\mu_{t+\delta} = \int_t^{t+\delta} \int f \partial_t \log \mu_t d\mu_t \leq \frac{e^{-t} d}{(1 - e^{-2t})^4} \text{poly}(\mathfrak{m}, \mathfrak{R}, \mathfrak{L}) \delta.$$

947 Since this is true for all f , this shows uniform convergence of $\int f d\mu_{t+\delta}$ to $\int f d\mu_t$. In particular, this means it is also
 948 true of the supremum

$$949 \quad 950 \quad \lim_{\delta \rightarrow 0} W_2(\mu_t, \mu_{t+\delta}) \leq \sqrt{\mathfrak{m}} \lim_{\delta \rightarrow 0} \frac{\sup \int f d(\mu_t - \mu_{t-\delta})}{\delta} = \frac{\sup \int f (\partial_t \ln \mu_t) \mu_t dx}{\delta} \leq \frac{e^{-t} d}{(1 - e^{-2t})^4} \text{poly}(\mathfrak{m}, \mathfrak{R}, \mathfrak{L}).$$

951 \square

952 **Theorem 4.5.** *Suppose we run **Warm Start** phase with $T = \mathcal{O}(d^3 \kappa \log(\kappa \text{KL}(\gamma \| \mu_\infty)))$, $T_{ws} = \log \kappa d$, following
 953 which we run the **Annealing Phase** with $\delta = \kappa^{-1/4}$. This results in a $\tau = \kappa^{-3/16}$ satisfying*

$$954 \quad 955 \quad \text{FI}(\rho_{\tau \kappa / \delta} \| \mu_0) \leq \mathcal{O}(d^{3/2} \kappa^{-3/32}).$$

956 We use the following from Appendix C of Balasubramanian et al. (2022). We have that $\nabla \log \mu_{i\delta/\kappa}$ is \mathfrak{L} Lipschitz

$$957 \quad 958 \quad \text{KL}(\rho_{i\delta+\delta} \| \mu_{i\delta/\kappa}) - \text{KL}(\rho_{i\delta} \| \mu_{i\delta/\kappa}) \geq \frac{1}{2} \int_{i\delta}^{i\delta+\delta} \text{FI}(\rho_{i\delta+\delta} \| \mu_{i\delta/\kappa}) - 4\mathfrak{L}^2 d\delta^2$$

959 and

$$960 \quad 961 \quad \text{KL}(\rho_{i\delta} \| \mu_{(i-1)\delta/\kappa}) - \text{KL}(\rho_{i\delta} \| \mu_{i\delta/\kappa}) \\ 962 \quad 963 \quad = \mathbb{E}_{\rho_{i\delta}} \log \frac{\rho_{i\delta}}{\mu_{(i-1)\delta/\kappa}} - \mathbb{E}_{\rho_{i\delta}} \log \frac{\rho_{i\delta}}{\mu_{i\delta/\kappa}} = \mathbb{E}_{\rho_{i\delta}} \log \frac{\mu_{i\delta/\kappa}}{\mu_{(i-1)\delta/\kappa}}$$

Putting these together we have

$$\text{KL}(\rho_{(i\delta+\delta)}\|\mu_{i\delta/\kappa}) - \text{KL}(\rho_{i\delta}\|\mu_{(i-1)\delta/\kappa}) + \mathbb{E}_{\rho_{i\delta}} \log \frac{\mu_{i\delta/\kappa}}{\mu_{(i-1)\delta/\kappa}} \geq \frac{1}{2} \int_{i\delta}^{i\delta+\delta} \text{FI}(\rho_t\|\mu_{i\delta/\kappa}) dt - 4\mathcal{L}^2 d\delta^2$$

We can telescope this:

$$\begin{aligned}
& \sum_{i=i_*}^{T_{ws}\kappa/\delta} \left(\mathsf{KL}(\rho_{i\delta+\delta} \| \mu_{i\delta/\kappa}) - \mathsf{KL}(\rho_{i\delta} \| \mu_{(i-1)\delta/\kappa}) + \mathbb{E}_{\rho_{i\delta}} \log \frac{\mu_{i\delta/\kappa}}{\mu_{(i-1)\delta/\kappa}} \right) \\
& \geq \sum_{i=i_*}^{T_{ws}\kappa/\delta} \frac{1}{2} \left(\int_{i\delta}^{i\delta+\delta} \mathsf{FI}(\rho_t \| \mu_{i\delta/\kappa}) dt - 4\mathfrak{L}^2 d\delta^2 \right) \\
\implies & \mathsf{KL}(\rho_T \| \mu_{T-\delta}) - \mathsf{KL}(\rho_\delta \| \mu_{i_*\delta/\kappa}) + \sum_{i=i_*}^{T_{ws}\kappa/\delta} \mathbb{E}_{\rho_{i\delta}} \log \frac{\mu_{i\delta/\kappa}}{\mu_{(i-1)\delta/\kappa}} \\
& \geq \sum_{i=i_*}^{T_{ws}\kappa/\delta} \frac{1}{2} \int_{i\delta}^{(i+1)\delta} \mathsf{FI}(\rho_t \| \mu_{i\delta/\kappa}) dt - 4\mathfrak{L}^2 d\delta T_{ws}\kappa
\end{aligned}$$

We need to bound $\sum \mathbb{E}_{\rho_{i\delta}} \log \frac{\mu_{i\delta/\kappa}}{\mu_{(i-1)\delta/\kappa}}$. Because $\rho_{i\delta}$ is \mathfrak{m} -subgaussian, we have

$$\begin{aligned}
\sum \mathbb{E}_{\rho_{i\delta}} \log \frac{\mu_{i\delta/\kappa}}{\mu_{(i-1)\delta/\kappa}} &\leq \sum \mathbb{E}_{\rho_{i\delta}} \log \frac{\mu_{i\delta/\kappa}}{\mu_{(i-1)\delta/\kappa}} \\
&= \sum \mathbb{E}_{\rho_{i\delta}} \int_{(i-1)\delta/\kappa}^{i\delta} \partial_t \log \mu_t \, dt \leq \sum \int_{(i-1)\delta}^{i\delta} \mathbb{E}_{\rho_{i\delta}} |\partial_t \log \mu_t| \, dt \\
&\leq \sum \int_{(i-1)\delta/\kappa}^{i\delta/\kappa} \frac{de^{-t}}{(1 - e^{-2t})^4} \text{poly}(\mathfrak{m}, \mathfrak{R}, \mathfrak{L}) \, dt \\
&= \frac{de^{-(T_{ws}\kappa/\delta)^\alpha \delta/\kappa}}{(1 - e^{-2(T_{ws}\kappa/\delta)^\alpha \delta/\kappa})^4} \text{poly}(\mathfrak{m}, \mathfrak{R}, \mathfrak{L})
\end{aligned}$$

so if $(T_{ws}\kappa/\delta)^\alpha \delta/\kappa < 1$:

$$\begin{aligned} \mathsf{KL}(\rho_T \| \mu_{T-\delta}) &+ \frac{d \mathsf{poly}(\mathfrak{m}, \mathfrak{R}, \mathfrak{L})}{16 T_{ws}^{4\alpha} (\delta/\kappa)^{4-4\alpha}} + 4L^2 d \delta T_{ws} \kappa \\ &\geq \sum_{i=(T_{ws} \kappa/\delta)^\alpha}^{T_{ws} \kappa/\delta} \frac{1}{2} \int_{i\delta}^{(i+1)\delta} \mathsf{FI}(\rho_t \| \mu_{i\delta/\kappa}) \ dt \end{aligned}$$

In LD, each of the FI are computed with respect to the target distribution, and an average iterate guarantee can be derived using the convexity of FI in its first argument. In our case, the second argument is changing over the course of the integral, so we need a “triangle inequality” to change the second argument to μ_0 . We have

$$\begin{aligned}
\mathsf{FI}(\rho_t\|\mu_0) &= \mathbb{E}_{\rho_t} \|\nabla \log \rho_t - \nabla \log \mu_0\|^2 \\
&\leq 2\mathbb{E}_{\rho_t} \|\nabla \log \rho_t - \nabla \log \mu_t\|^2 + 2\mathbb{E}_{\rho_t} \|\nabla \log \mu_t - \nabla \log \mu_0\|^2 \\
&\leq 2\mathsf{FI}(\rho_t\|\mu_t) + 2\mathbb{E}_{\rho_t} \|\nabla \log p_t - \nabla \log p_0\|^2 \\
&\leq 2\mathsf{FI}(\rho_t\|\mu_t) + \text{poly}(\mathfrak{m}, \mathfrak{L}, d)t^2
\end{aligned}$$

We will use the bound

$$\begin{aligned} \sum_{i=(T_{ws}\kappa/\delta)^\alpha}^{T_{ws}\kappa/\delta} \frac{1}{2} \int_{i\delta}^{(i+1)\delta} \mathsf{FI}(\rho_t \|\mu_{i\delta/\kappa}) dt &\geq (T_{ws}\kappa/\delta)^\alpha \min_{i \in [(T_{ws}\kappa/\delta)^\alpha, 2(T_{ws}\kappa/\delta)^\alpha]} \frac{1}{2} \int_{i\delta}^{(i+1)\delta} \mathsf{FI}(\rho_t \|\mu_{i\delta/\kappa}) dt \\ &\geq (T_{ws}\kappa/\delta)^\alpha \min_{i \in [(T_{ws}\kappa/\delta)^\alpha, 2(T_{ws}\kappa/\delta)^\alpha]} \min_{t \in [i\delta, i\delta + \delta]} \frac{\delta}{2} \mathsf{FI}(\rho_t \|\mu_{i\delta/\kappa}) \end{aligned}$$

1026 to get that there exists $\tau \in [(T_{ws}\kappa/\delta)^\alpha, 2(T_{ws}\kappa/\delta)^\alpha]$ such that
 1027

$$1028 \text{FI}(\rho_\tau \|\mu_{i\delta/\kappa}) \leq \frac{\text{KL}(\rho_{T_{ws}\kappa} \|\mu_{T_{ws}}) + \text{poly}(\mathfrak{m}, \mathfrak{R}, \mathfrak{L})}{\delta(T_{ws}\kappa/\delta)^\alpha}$$

1029 From our approximate triangle inequality for FI , we have that there exists $\tau \in [\delta(T_{ws}\kappa/\delta)^\alpha, 2\delta(T_{ws}\kappa/\delta)^\alpha]$ such that
 1030

$$1031 \text{FI}(\rho_\tau \|\mu_0) \leq 2\text{FI}(\rho_\tau \|\mu_{i\delta/\kappa}) + d\text{poly}(\mathfrak{m}, \mathfrak{L})(T_{ws}\kappa/\delta)^{2\alpha}\delta^2/\kappa^2$$

1032 Suppose the warm start phase is run such that $\text{KL}(\mu_{T_{ws}} \|\text{Law}(X_T)) \leq \epsilon_{ws}$ (recall that this takes time $\text{poly}(1/\epsilon_{ws})$).
 1033

$$1034 \text{FI}(\rho_\tau \|\mu_0) \leq \frac{\epsilon_{ws}}{T_{ws}^\alpha \kappa^\alpha \delta^{1-\alpha}} + \frac{d\kappa^{4-5\alpha}}{T_{ws}^{5\alpha} \delta^{5-5\alpha}} \text{poly}(\mathfrak{m}, \mathfrak{R}, \mathfrak{L}) + d\delta^\alpha T_{ws}^{1-\alpha} \kappa^{1-\alpha} \text{poly}(\mathfrak{m}, \mathfrak{R}, \mathfrak{L})$$

$$1035 + d\text{poly}(\mathfrak{m}, \mathfrak{L}) T_{ws}^{2\alpha} \kappa^{2\alpha-2} \delta^{2-2\alpha}$$

1036 If we take $\kappa = \delta^{-4}$, we have
 1037

$$1038 \text{FI}(\rho_\tau \|\mu_0) \leq \frac{\epsilon_{ws}}{T_{ws}^\alpha \kappa^{\frac{5\alpha-1}{4}}} + d \left(\frac{\kappa^{\frac{21-25\alpha}{4}}}{T_{ws}^{5\alpha}} + T_{ws}^{1-\alpha} \kappa^{\frac{4-5\alpha}{4}} + T_{ws}^{2\alpha} \kappa^{\frac{5\alpha-5}{2}} \right) \text{poly}(\mathfrak{m}, \mathfrak{R}, \mathfrak{L})$$

1039 Finally, setting $\alpha = 17/20$, we have
 1040

$$1041 \text{FI}(\rho_\tau \|\mu_0) \leq \frac{\epsilon_{ws}}{T_{ws}^\alpha \kappa^{\frac{5\alpha-1}{4}}} + d \left(\frac{\kappa^{\frac{21-25\alpha}{4}}}{T_{ws}^{5\alpha}} + T_{ws}^{1-\alpha} \kappa^{\frac{4-5\alpha}{4}} + T_{ws}^{2\alpha} \kappa^{\frac{5\alpha-5}{2}} \right) \text{poly}(\mathfrak{m}, \mathfrak{R}, \mathfrak{L})$$

$$1042 \leq \frac{\epsilon_{ws}}{T_{ws}^{17/20} \kappa^{13/16}} + \frac{d\kappa^{-1/16}}{T_{ws}^{17/4}} + dT_{ws}^{3/20} \kappa^{-1/16}$$

1043 For our choice of T, T_{ws} , we have $\epsilon_{ws} \leq \frac{1}{\kappa}$. Overall the bound is
 1044

$$1045 \text{FI}(\rho_\tau \|\mu_0) \leq dT_{ws}^{3/20} \kappa^{-1/16} \text{poly}(\mathfrak{m}, \mathfrak{L}, \mathfrak{R})$$

1046 \square

1047 **Theorem 4.4.** Suppose we run **Warm Start** phase with $T = \mathcal{O}(d\kappa \log(\kappa \text{KL}(\gamma \|\mu_\infty)))$, $T_{ws} = \log \kappa d$, following which
 1048 we run the **Annealing Phase** with $\delta = \kappa^{-1/4}$. This results in a $\tau = \kappa^{-3/16}$ satisfying
 1049

$$1050 \text{KL}(\mu_\tau \|\rho_{\tau\kappa/\delta}) \leq \text{poly}(d, 1/\kappa) \quad (3)$$

1051 *Proof.* From Lemma 4.3 using $T = \mathcal{O}(d^3 \kappa \log(\kappa \text{KL}(\gamma \|\mu_\infty)))$, we know that $\text{KL}(\mu_{T_{ws}} \|\text{Law}(X_{T_{ws}})) \leq \frac{1}{\kappa}$. Because
 1052 $\lim_{t \rightarrow \infty} \mu_t$ is strongly log-concave, as shown in 4.3 for large T_{ws} we can sample from $\mu_{T_{ws}}$ efficiently. From
 1053 Lemma B.2 we have

$$1054 \int_t^{T_{ws}} \|v_t\|_{L_2(\mu_t)}^2 dt \leq \int \frac{d^2 e^{-2t}}{(1 - e^{-2t})^8} \text{poly}(\mathfrak{m}, \mathfrak{R}, \mathfrak{L}) dt$$

$$1055 \leq \frac{d^2 e^{-2t} \text{poly}(\mathfrak{m}, \mathfrak{R}, \mathfrak{L})}{(1 - e^{-2t})^8}$$

1056 From here, we adapt the discretization analysis of Guo et al. (2024). We will repeat some of it below to highlight just
 1057 the differences.
 1058

1059 First note that $\nabla \log \mu_t$ inherits Lipschitzness from $\nabla \log p_t$ and ∇R , following Lemma C.9:
 1060

$$1061 \|\nabla \log \mu_t(x) - \nabla \log \mu_t(y)\| \leq \|\nabla \log p_t(x) - \nabla \log p_t(y) + \nabla R(y) - \nabla R(x)\|$$

$$1062 \leq (1 + \mathfrak{L}e^{-t} + \mathfrak{R})\|x - y\|$$

1063 By the corollary of Girsanov's Theorem referenced above, Lemma A.4, we see that
 1064

$$1065 \text{KL}(\mu_t \|\rho_t) = \text{KL}(\mu_{T_{ws}} \|\text{Law}(X_{T_{ws}})) + \frac{1}{4} \int_t^{T_{ws}} \mathbb{E}_{\{\mu_t\}} \|(\nabla \ln \mu_t(X_t) - \nabla \ln \mu_{k\delta}(X_{k\delta})) - v_t(X_t)\|^2 dt$$

$$1066 \leq \text{KL}(\mu_{T_{ws}} \|\text{Law}(X_{T_{ws}})) + \int_t^{T_{ws}} \mathbb{E}_{\{\mu_t\}} \|\nabla \ln \mu_t(X_t) - \nabla \ln \mu_{k\delta}(X_{k\delta})\|^2 dt + \int_t^{T_{ws}} \mathbb{E}_{\{\mu_t\}} \|v_t(X_t)\|^2 dt$$

$$1067 \leq \text{KL}(\mu_{T_{ws}} \|\text{Law}(X_{T_{ws}})) + \int_t^{T_{ws}} \text{poly}(\mathfrak{R}, \mathfrak{L}) \mathbb{E}_{\{\mu_t\}} \|X_t - X_{k\delta}\|^2 dt + \int_t^{T_{ws}} \mathbb{E}_{\{\mu_t\}} \|v_t(X_t)\|^2 dt$$

1080 We bound $X_t - X_{k\delta}$ by
 1081

$$\begin{aligned} 1082 \|X_t - X_{k\delta}\|^2 &= \mathbb{E}_{\{\mu_t\}} \left\| \int_{k\delta}^t (\nabla \ln \mu_t + v_t)(X_t) dt + \sqrt{2(t-k\delta)}\eta \right\|^2, & \eta \sim \gamma \\ 1083 &\leq \int_{k\delta}^t \mathbb{E}_{\{\mu_t\}} \|\nabla \ln \mu_t\|^2 + \int_{k\delta}^t \mathbb{E}_{\{\mu_t\}} \|v_t(X_t)\|^2 dt + d\delta \end{aligned}$$

1087 We can bound $\mathbb{E}_{\{\mu_t\}} \|\nabla \ln \mu_t\|^2$.

$$\begin{aligned} 1088 \mathbb{E}_{\{\mu_t\}} \|\nabla \log \mu_t\|^2 &\leq \mathbb{E}_{\mu_t} \|\nabla \log p_t + \nabla R\|^2 \\ 1089 &\leq \mathbb{E}_{\mu_t} \|\nabla \log p_t\|^2 + \mathbb{E}_{\mu_t} \|\nabla R\|^2 \leq \text{poly}(\mathfrak{m}, \mathfrak{L}, \mathfrak{R}). \end{aligned}$$

1091 Putting these together, we have
 1092

$$\begin{aligned} 1093 \text{KL}(\mu_t \|\rho_t) &\leq \text{KL}(\mu_{T_{ws}} \|\text{Law}(X_{T_{ws}})) + (1 + \text{poly}(\mathfrak{R}, \mathfrak{L})) \int_t^{T_{ws}} \mathbb{E}_{\{\mu_t\}} \|v_t(X_t)\|^2 dt + d\delta^2 \text{poly}(\mathfrak{R}, \mathfrak{L}) \\ 1094 &\quad + \delta T_{ws} \text{poly}(\mathfrak{R}, \mathfrak{L}) \end{aligned}$$

1097 An important observation here is that because v_t itself is a Wasserstein gradient, the quantity $\int_t^{T_{ws}} \mathbb{E}_{\{\mu_t\}} \|v_t(X_t)\|^2 dt$
 1098 depends inversely on the scale that we use for time. Suppose we reparameterize time to go from 0 to $T_{ws}\kappa$, rather
 1099 than 0 to T . Let $\mathcal{A}_{t_1}^{t_2}$ denote the integral $\int_{t_1}^{t_2} \mathbb{E}_{\{\mu_t\}} \|v_t(X_t)\| dt$. Consider the change of variable $s = \kappa t$, so s
 1100 goes from 0 to κT . Of course, we have the change of variables $ds = \kappa dt$, but also $v_s = \frac{1}{\kappa} v_t$. Then we have
 1101 $\int_{t_1\kappa}^{t_2\kappa} \mathbb{E}_{\{\mu_s\}} \|v_s(X_s)\|^2 ds = \frac{1}{\kappa} \int_{t_1}^{t_2} \mathbb{E}_{\{\mu_t\}} \|v_t(X_t)\|^2 dt$. Over all, we have from lemma B.2
 1102

$$\begin{aligned} 1103 \text{KL}(\mu_t \|\rho_{t\kappa/\delta}) &\leq \text{KL}(\mu_{T_{ws}} \|\text{Law}(X_{T_{ws}})) + \frac{(1 + \delta \text{poly}(\mathfrak{R}, \mathfrak{L}))}{\kappa} \int_t^{T_{ws}} \mathbb{E}_{\{\mu_t\}} \|v_t(X_t)\|^2 dt + \\ 1104 &\quad d\delta^2 \text{poly}(\mathfrak{m}, \mathfrak{R}, \mathfrak{L}) + \delta \text{poly}(\mathfrak{R}, \mathfrak{L}) \\ 1105 &\leq \text{KL}(\mu_{T_{ws}} \|\text{Law}(X_{T_{ws}})) + \frac{(1 + \delta \text{poly}(\mathfrak{m}, \mathfrak{R}, \mathfrak{L}))}{T_{ws}\kappa} \frac{d^2}{(1 - e^{-2t})^3} \\ 1106 &\quad + d\delta^2 \text{poly}(\mathfrak{m}, \mathfrak{R}, \mathfrak{L}) + \delta \text{poly}(\mathfrak{R}, \mathfrak{L}) \\ 1107 &\leq \text{KL}(\mu_{T_{ws}} \|\text{Law}(X_{T_{ws}})) + \frac{d^2(1 + \delta) \text{poly}(\mathfrak{m}, \mathfrak{R}, \mathfrak{L})}{\kappa t^8} + \mathcal{O}(d\delta^2 + \delta) \end{aligned}$$

1113 We will take $i_{\text{PS}} = (T_{ws}\kappa/\delta)^\alpha \delta/\kappa, \delta \asymp \kappa^{-1/4}$. Then we have
 1114

$$1115 \text{KL}(\mu_{i_{\text{PS}}} \|\rho_{i_{\text{PS}}\kappa/\delta}) \leq \text{KL}(\mu_{T_{ws}} \|\text{Law}(X_{T_{ws}})) + \frac{d^2}{T_{ws}^{8\alpha} \kappa^{10\alpha-9}} + \mathcal{O}(d\kappa^{-\frac{1}{2}} + \kappa^{-\frac{1}{4}})$$

1117 Finally setting, $T = d^3 \kappa^2 \log \kappa \text{KL}(\gamma \|\mu_\infty)$, $T_{ws} = \log \kappa d$, we have $\epsilon_{ws} = \frac{1}{\kappa}$ and choosing $\alpha = \frac{17}{20}$, we have
 1118

$$1119 \text{KL}(\mu_{i_{\text{PS}}} \|\rho_{i_{\text{PS}}\kappa/\delta}) \leq \mathcal{O}(d^2 \kappa^{-1/2})$$

1121 \square

1122 **Corollary 4.1 (KL + FI).** In algorithm 1, suppose we run **Warm Start** phase with $T = \mathcal{O}(d^3 \kappa \log(\kappa \text{KL}(\gamma \|\mu_\infty)))$,
 1123 $T_{ws} = \log \kappa d$, following which we run the **Annealing Phase** with $\delta = \kappa^{1/4}$, then there is $\tau \leq \tilde{\mathcal{O}}(\kappa^{-3/16})$, such that
 1124 $\rho_{\tau\kappa/\delta}$ simultaneously satisfies

- 1126 • $\text{KL}(\mu_\tau \|\rho_{\tau\kappa^{5/4}}) \leq \mathcal{O}(d\kappa^{-1/2})$, which implies $\text{TV}(\rho_{\tau\kappa^{5/4}}, \mu_\tau) \leq \mathcal{O}(\sqrt{d\kappa^{-1/2}})$.
- 1127 • $\text{FI}(\rho_{\tau\kappa^{5/4}} \|\mu_0) \leq \mathcal{O}(d\kappa^{-1/16})$

1129 For this choice of κ , the algorithm has run time $\tilde{\mathcal{O}}(\kappa^{5/4})$.
 1130

1132 *Proof.* All that is left to prove is that the run time is polynomial in κ . Note that we run the warm start phase for
 1133 $\log \text{KL}(\gamma \|\mu_\infty) / \epsilon$ iterations. Because γ and μ_∞ are log-concave, we get $\text{KL}(\gamma \|\mu_\infty) \leq \text{LSI}(\mu_\infty) \text{FI}(\gamma \|\mu_\infty) = \mathcal{O}(d)$.
 The annealing phase lasts $T_{ws}\kappa/\delta = \mathcal{O}(\kappa^{5/4})$ time, since $T_{ws} = \mathcal{O}(\log d/\epsilon)$.
 1133 \square

1134

C MISCELLANEOUS BOUNDS

1135

1136 The role of this section is to establish bounds on various quantities. The main one is the global bound on $|\partial_t \log \mu_t|$ for
1137 $t > 0$, which we use in a couple of places.
1138

1139

1140 - We use it to bound the Wasserstein derivative of the annealed path in Lemma B.2, and this is used with
1141 Girsanov's Theorem to bound the KL drift between the annealed LMC and the targets in Theorem 4.4.
1142 - We also use it to bound the $\log \mu_t - \log \mu_\infty$ for large t (Lemma C.7), which is used to show that we can
1143 transfer FI bounds from $\log \mu_t$ to $\log \mu_\infty$ in Theorems 4.3, 4.5.

1144

1145 We will begin with a statement about the sub-gaussianity of posteriors from sub-gaussian priors.
1146

1147 **Lemma C.1.** *Let μ denote the probability distribution of a sub-gaussian random variable with sub-gaussian parameter
1148 σ . Let $R \geq 0$ denote a smooth convex function with minima \mathfrak{x} satisfying $R(\mathfrak{x}) = 0$ and $\nabla^2 R \preceq \mathfrak{R}I$. Let $\nu \propto \mu e^{-R}$
1149 denote the posterior, and let $Y \sim \nu$. Then we have*

1150

1151 1. ν is sub-gaussian with parameter $3\sigma(\sigma + \mathfrak{x}/2)\sqrt{\mathfrak{R}}$.
1152 2. $\|\mathbb{E}_\nu Y\|^2 \leq 3\mathfrak{R}\sigma^2$.
1153 3. $\mathbb{E}_\nu \|Y\|^2 \leq 9\mathfrak{R}\sigma^2(\sigma + \mathfrak{x}/2)^2 d + 3\mathfrak{R}\sigma^2$.

1154

1155
1156
1157 *Proof.* 1. Let $X \sim \mu$. One of the characterizations of a σ -sub-gaussian random variable is decay of the tail
1158 probabilities $\Pr[X^\top \alpha > t] \leq 2e^{-\frac{t^2}{\sigma^2}}$. Let $Y \sim \nu$. We have
1159

1160
$$\Pr[Y^\top \alpha > t] = \int_t^\infty \frac{\int_{x^\top \alpha = s} \mu(x) e^{-R(x)} dx}{\int \mu(x) e^{-R(x)} dx} ds.$$
1161
1162

1163 The partition function can be lower bounded as
1164

1165
$$\begin{aligned} \int \mu(x) e^{-R(x)} dx &\geq \int_{\|x\| < 2\mathfrak{m} + \mathfrak{x}} \mu(x) e^{-R(x)} dx \\ 1166 &\geq \left(\min_{\|x\| \leq 2\mathfrak{m} + \mathfrak{x}} e^{-R(x)} \right) \int_{\|x\| < 2\mathfrak{m} + \mathfrak{x}} \mu(x) dx \\ 1167 &= e^{-\max_{\|x\| \leq 2\mathfrak{m} + \mathfrak{x}} R(x)} \Pr[X < 2\mathfrak{m} + \mathfrak{x}] \geq e^{-2(\mathfrak{m} + \mathfrak{x}/2)^2 \mathfrak{R}}/2. \end{aligned}$$
1168
1169
1170
1171

1172 The tail can now be upper bounded as
1173

1174
$$\begin{aligned} \Pr[Y^\top \alpha > t] &\leq \int_t^\infty \frac{\int_{x^\top \alpha = s} \mu(x) e^{-R(x)} dx}{\int \mu(x) e^{-R(x)} dx} ds \\ 1175 &\leq 2e^{2(\mathfrak{m} + \mathfrak{x}/2)^2 \mathfrak{R}} \int_t^\infty \int_{x^\top \alpha = s} \mu(x) ds \\ 1176 &\leq 2e^{2(\mathfrak{m} + \mathfrak{x}/2)^2 \mathfrak{R}} \Pr[X^\top \alpha > t] \leq 4e^{2(\mathfrak{m} + \mathfrak{x}/2)^2 \mathfrak{R} - \frac{t^2}{\mathfrak{m}^2}}. \end{aligned}$$
1177
1178
1179
1180

1181 Of course this bound is vacuous until $4e^{2(\mathfrak{m} + \mathfrak{x}/2)^2 \mathfrak{R} - \frac{t^2}{\mathfrak{m}^2}} < 1$, which happens when
1182

1183
$$2(\mathfrak{m} + \mathfrak{x}/2)^2 \mathfrak{R} - \frac{t^2}{\mathfrak{m}^2} < -\log 4 \implies t > \sqrt{\mathfrak{m}^2((\mathfrak{m} + \mathfrak{x}/2)^2 \mathfrak{R} + \log 4)}.$$
1184
1185

1186 When $t > \sqrt{\mathfrak{m}^2((\mathfrak{m} + \mathfrak{x}/2)^2 \mathfrak{R} + \log 4)}$, we have $2(\mathfrak{m} + \mathfrak{x}/2)^2 \mathfrak{R} - \frac{t^2}{\mathfrak{m}^2} < -\frac{t^2}{\mathfrak{m}^2(2(\mathfrak{m} + \mathfrak{x}/2)^2 \mathfrak{R} + 2)}$. Overall, this
1187 shows that ν is a sub-gaussian distribution with parameter $\mathfrak{m} \sqrt{2(\mathfrak{m} + \mathfrak{x}/2)^2 \mathfrak{R} + 2} \leq 3\mathfrak{m}(\mathfrak{m} + \mathfrak{x}/2)\sqrt{\mathfrak{R}}$.

1188 2. From Donsker-Varadhan, we have $\mathbb{E}_{\mu_t} X \leq \text{KL}(\mu_t \| p_t) + \log \mathbb{E}_{p_t} e^X$. From sub-gaussianity we have
 1189 $\log \mathbb{E}_{p_t} e^X \leq e^{\mathfrak{m}^2/2}$. The KL can be bounded as
 1190

$$\begin{aligned} \text{KL}(\mu_t \| p_t) &= -\mathbb{E}_{\mu_t} R - \log \mathbb{E}_{p_t} e^{-R} \\ &\leq -\log \mathbb{E}_{p_t} e^{-R} && \cdots R > 0 \\ &= -\log \int e^{-R(x)} p_t(x) dx \\ &\leq -\log \int_{\|x\| \leq \mathfrak{m}_2} e^{-R(x)} p_t(x) dx \\ &\leq -\log e^{-R_1 \mathfrak{m}^2} (1 - 2e^{-1}) \\ &\leq 2 + \mathfrak{R} \mathfrak{m}^2 \leq 3 \mathfrak{R} \mathfrak{m}^2 \end{aligned}$$

1201 Here the last inequality follows because $R(x) \leq \mathfrak{m}^2 \mathfrak{R}$ in the region $\|x\| \leq \mathfrak{m}_2$, and $\Pr_{p_t}(X > \mathfrak{m}_2) \leq 2e^{-1}$
 1202 from sub-gaussianity.
 1203

1204 3. For simplicity we will consider the zero-mean case, the general, full second moment will be the sum of the
 1205 centered second moment and the square of the mean. We have $\text{Var}(Y^\top \alpha) \leq 9 \mathfrak{R} \sigma^2 (\sigma + \mathfrak{x}/2)^2$ for all α . Now
 1206 consider an orthonormal basis $\{\alpha_i\}$, summing the above relation for each of them we have

$$\begin{aligned} \sum_i \text{Var}(Y^\top \alpha_i) &= \sum_i \mathbb{E}_\nu (Y^\top \alpha_i)^2 = \mathbb{E}_\nu \sum_i (Y^\top \alpha_i)^2 \\ &= \mathbb{E}_\nu \sum_i (Y^\top \alpha_i \alpha_i^\top Y) = \mathbb{E}_\nu \sum_i (Y^\top \alpha_i \alpha_i^\top Y) \\ &= \mathbb{E}_\nu (Y^\top \left(\sum_i \alpha_i \alpha_i^\top \right) Y) = \mathbb{E}_\nu \|Y\|^2 \end{aligned}$$

1215 Finally, if $\mathbb{E}_\nu Y \neq 0$, we write
 1216

$$\mathbb{E}_\nu \|Y\|^2 = \mathbb{E}_\nu \|Y - \mathbb{E}_\nu Y\|^2 + \|\mathbb{E}_\nu Y\|^2 = 9 \mathfrak{R} \sigma^2 (\sigma + \mathfrak{x}/2)^2 d + 3 \mathfrak{R} \sigma^2.$$

□

1220 **Lemma C.2.** Let p_0 by \mathfrak{m} -subgaussian. The law of the OU process p_t is subgaussian with norm $\mathfrak{m} e^{-t} + (1 - e^{-2t})$.
 1221

1222 We also need the following, about moments of subgaussian random variables.
 1223

1224 **Lemma C.3.** Let ν denote a \mathfrak{m} -subgaussian distribution. For any f satisfying $f(x) \leq \sum_{i=1}^k a_i \|x\|^i$, we have
 1225

$$\mathbb{E}_\nu f(x) \leq \sum_{i=1}^k (2\mathfrak{m})^i i^{i/2} a_i.$$

1228 *Proof.* Follows from standard results of subgaussian random variables. □
 1229

1230 **Lemma C.4.** The density p_t is upper bounded by
 1231

$$p_t \leq \frac{1}{(2\pi(1 - e^{-2t}))^{d/2}}$$

1234 *Proof.* We have
 1235

$$p_t(x) = \int p(e^t y) \gamma_{1-e^{-2t}}(x - y) dy \leq \sup_y \gamma_{1-e^{-2t}}(y) \int p(e^t y) dy = \frac{1}{(2\pi(1 - e^{-2t}))^{d/2}}$$

□

1236 1237 1238 1239 1240 **Note:** Of course, the density can blow up at $t = 0$ (that is, for unsmoothed distributions), but once we add heat the
 1241 density is bounded.

1242 **Lemma C.5.** Let p_t denote the law of X_t , where $X_0 \sim p_0$ and X_t satisfies OU. Then we have
 1243

1244
$$|\partial_t \log p_t| \leq \frac{e^{-t}}{(1 - e^{-2t})^4} \sum_{i=0}^2 a_i \|x\|^i.$$

 1245
 1246

1247 For $a_i = \text{poly}(\mathfrak{m}, \mathfrak{R}, \mathfrak{L})$.
 1248

1249
 1250 *Proof.* We will directly compute $\partial_t \log p_t$
 1251

1252
$$\begin{aligned} \partial_t \log p_t &= \partial_t \log p_t = \frac{\partial_t p_t}{p_t} && \text{Lemma A.2(5)} \\ 1253 &= \frac{-\nabla \cdot (p_t \nabla \log \frac{p_t}{\gamma})}{p_t} && \text{Fokker-Planck} \\ 1254 &= \frac{-\nabla p_t \cdot \nabla \log \frac{p_t}{\gamma} - p_t \Delta \log \frac{p_t}{\gamma}}{p_t} && \text{Lemma A.2(4)} \\ 1255 &= -\nabla \log p_t \cdot \nabla \log \frac{p_t}{\gamma} - \Delta \log \frac{p_t}{\gamma} && \text{Lemma A.2(5)} \\ 1256 &= \nabla \log p_t \cdot \nabla \log \gamma - \left(\Delta \log \frac{p_t}{\gamma} + \|\nabla \log p_t\|^2 \right) \end{aligned}$$

 1257
 1258
 1259
 1260
 1261
 1262
 1263

1264 We have
 1265

1266
$$\begin{aligned} \Delta \log \frac{p_t}{\gamma} &= \Delta \log p_t - \Delta \log \gamma = d + \nabla \cdot \left(\frac{\nabla p_t}{p_t} \right) && \text{Lemma A.3(3)} \\ 1267 &= d - \frac{\|\nabla p_t\|^2}{p_t^2} + \frac{\Delta p_t}{p_t} && \text{Lemma A.2(4)} \\ 1268 &= d + \frac{(p \circ e^t) * \Delta \gamma_{1-e^{-2t}}}{(p \circ e^t) * \gamma_{1-e^{-2t}}} - \|\nabla \log p_t\|^2 && \text{Lemma A.2(3, 5)} \\ 1269 &= d + \frac{\int (p \circ e^t)(x-y) \left(\frac{\|y\|^2}{(1-e^{-2t})^2} - \frac{d}{1-e^{-2t}} \right) \gamma_{1-e^{-2t}}(y) dy}{\int (p \circ e^t)(x-y) \gamma_{1-e^{-2t}}(y) dy} - \|\nabla \log p_t\|^2 && \text{Lemma A.3(2)} \\ 1270 &= \frac{e^{-2t}}{e^{-2t}-1} d + \frac{\int (p \circ e^t)(x-y) \frac{\|y\|^2}{(1-e^{-2t})^2} \gamma_{1-e^{-2t}}(y) dy}{\int (p \circ e^t)(x-y) \gamma_{1-e^{-2t}}(y) dy} - \|\nabla \log p_t\|^2 \end{aligned}$$

 1271
 1272
 1273
 1274
 1275
 1276
 1277
 1278
 1279
 1280

1281 Note that \circ refers to composition. As a shorthand, we will write $c_x(y) = \frac{(p \circ e^t)(x-y) \gamma_{1-e^{-2t}}(y)}{\int (p \circ e^t)(x-y) \gamma_{1-e^{-2t}}(y) dy}$. Note that $c_x(y)$
 1282 can be interpreted as a posterior. Let τ_x denote the isometry $\tau_x(y) = x - y$, then we can interpret $\frac{1}{e^{at}} p \circ e^t \circ \tau_x$ as a
 1283 prior, and γ is a likelihood. At this stage, the following identity about the gradient will be useful
 1284

1285
$$\begin{aligned} \nabla \log p_t &= \frac{\nabla p_t}{p_t} && \text{Lemma A.2(5)} \\ 1286 &= \frac{(p \circ e^t) * \nabla \gamma_{1-e^{-2t}}}{(p \circ e^t) * \gamma_{1-e^{-2t}}} && \text{Lemma A.2(2)} \\ 1287 &= \frac{(p \circ e^t) * \frac{y}{1-e^{-2t}} \gamma_{1-e^{-2t}}}{(p \circ e^t) * \gamma_{1-e^{-2t}}} && \text{Lemma A.3(1)} \\ 1288 &= \frac{\int (p(e^t(x-y)) \frac{y}{1-e^{-2t}} \gamma_{1-e^{-2t}}(y) dy}{\int p(e^t(x-y)) \gamma_{1-e^{-2t}}(y) dy} \\ 1289 &= \frac{1}{1-e^{-2t}} \int y c_x(y) dy \end{aligned} \tag{6}$$

 1290
 1291
 1292
 1293
 1294
 1295

1296 We have
 1297
$$\Delta \log \frac{p_t}{\gamma} + \|\nabla \log p_t\|^2 - \nabla \log p_t \cdot \nabla \log \gamma$$

 1298
$$= \frac{e^{-2t}}{e^{-2t} - 1} d + \frac{1}{(1 - e^{-2t})^2} \int \|y\|^2 c_x(y) dy - \nabla \log p_t \cdot \nabla \log \gamma$$

 1299
$$= \frac{e^{-2t}}{e^{-2t} - 1} d + \int \left(\frac{\|y\|^2}{(1 - e^{-2t})^2} - \frac{y \cdot x}{1 - e^{-2t}} \right) c_x(y) dy$$

 1300
$$= \frac{e^{-2t}}{e^{-2t} - 1} d + \frac{1}{(1 - e^{-2t})^2} \int (\|x - y\|^2 - x \cdot (y - x) + e^{-2t} y \cdot x) c_x(y) dy$$

 1301
 1302
 1303
 1304
 1305
 1306

Lets consider the terms in the integral.

$$\begin{aligned} & \int \|x - y\|^2 c_x(y) dy \\ & \leq \int (\|\mathbb{E}_{y \sim c_x(\cdot)} y - y\|^2 + \|x - \mathbb{E}_{y \sim c_x(\cdot)} y\|^2) c_x(y) dy \\ & = \int \|\mathbb{E}_{y \sim c_x(\cdot)} y - y\|^2 c_x(y) dy + \|x - \mathbb{E}_{y \sim c_x(\cdot)} y\|^2 \end{aligned}$$

1314 We will now use Lemma C.1 to bound these terms.
 1315

1316 The first is just the variance of the posterior c_x . Note that in the application of the lemma, the prior is $p_t \circ e^t \circ \tau_x$, which
 1317 has mean x (since p_t has zero mean) and subgaussian parameter $\mathbf{m}e^{-t}$, and the likelihood is $\gamma_{1-e^{-2t}}$, which has minima
 1318 at $y = x$, and Hessian bounded by $\mathfrak{R} = \frac{1}{1-e^{-2t}}$. By Lemma C.1 (3) we have

$$\int \|\mathbb{E}_{y \sim c_x(\cdot)} y - y\|^2 c_x(y) dy \leq \frac{9}{1 - e^{-2t}} e^{-2t} \mathbf{m}^2 (\mathbf{m}e^{-t} + \frac{\|x\|}{2})^2 d + \frac{3}{1 - e^{-2t}} \mathbf{m}^2 e^{-2t}.$$

1322 The second is controlled by Lemma C.1 (2), since $\mathbb{E}_{X \sim p_t \circ e^t \circ \tau_x} X = x$. We have that
 1323

$$\|x - \mathbb{E}_{Y \sim c_x} Y\|^2 \leq 9\mathbf{m}^4 \frac{e^{-4t}}{(1 - e^{-2t})^2}.$$

1326 For readability we will assume $\mathbf{m}, d > 1$. Then we have
 1327

$$\int \|x - y\|^2 c_x(y) dy \leq \frac{1}{(1 - e^{-2t})^2} 9\mathbf{m}^2 d e^{-2t} (3\mathbf{m}^2 + \|x\|^2).$$

1330 Similarly
 1331

$$\begin{aligned} \int \|x - y\| c_x(y) dy & \leq \left(\int \|x - y\|^2 c_x(y) dy \right)^{1/2} \\ & \leq \frac{1}{1 - e^{-2t}} 3\mathbf{m} e^{-t} \sqrt{d(3\mathbf{m}^2 + \|x\|^2)} \end{aligned}$$

1336 So we have
 1337

$$\begin{aligned} & \left| \Delta \log \frac{p_t}{\gamma} + \|\nabla \log p_t\|^2 - \nabla \log p_t \cdot \nabla \log \gamma \right| \\ & = \left| \frac{e^{-2t}}{e^{-2t} - 1} d + \frac{1}{(1 - e^{-2t})^2} \int (\|x - y\|^2 - x \cdot (y - x) + e^{-2t} y \cdot x) c_x(y) dy \right| \\ & \leq \frac{e^{-2t}}{1 - e^{-2t}} d + \frac{1}{(1 - e^{-2t})^4} \left| 12\mathbf{m}^2 d e^{-t} (3\mathbf{m}^2 + \|x\|^2) + \int e^{-2t} y \cdot x c_x(y) dy \right| \\ & \leq \frac{e^{-2t}}{1 - e^{-2t}} d + \frac{12\mathbf{m}^2 d e^{-t} (3\mathbf{m}^2 + \|x\|^2)}{(1 - e^{-2t})^4} + \left| \frac{e^{-2t}}{(1 - e^{-2t})} \nabla \log p_t \cdot x \right| \quad \text{from Equation (6)} \\ & \leq \frac{12\mathbf{m}^2 d e^{-t} (3\mathbf{m}^2 + \|x\|^2)}{(1 - e^{-2t})^4} + \frac{e^{-2t}}{(1 - e^{-2t})} (d + \mathfrak{L} \|x\| + \mathfrak{L} \|x\|^2) \end{aligned}$$

1349 We can write this as $|\partial_t \log p_t| \leq \frac{e^{-t}}{(1 - e^{-2t})^4} \sum_{i=0}^2 a_i \|x\|^i$ for $a_i = d \text{poly}(\mathbf{m}, \mathfrak{L}, \mathfrak{R})$. \square

1350 **Lemma C.6.** We have $|\partial_t \log \mu_t| \leq \frac{e^{-t}}{(1-e^{2t})^4} \sum_{i=0}^2 a_i \|x\|^i$ for $a_i = d\text{poly}(\mathfrak{m}_2, \mathfrak{L}, \mathfrak{R})$.

1351 *Proof.* We have

$$\begin{aligned} \partial_t \log \mu_t &= \partial_t \log \frac{p_t e^{-R}}{\int p_t e^{-R}} = \partial_t \log p_t - \partial_t R - \partial_t \log \int p_t e^{-R} \\ &= \partial_t \log p_t - \frac{\partial_t \int p_t e^{-R}}{\int p_t e^{-R}} = \partial_t \log p_t - \frac{\int p_t \partial_t \log p_t e^{-R}}{\int p_t e^{-R}} \\ &\leq \partial_t \log p_t + \mathbb{E}_{\mu_t} \partial_t \log p_t \leq \partial_t \log p_t + \mathbb{E}_{\mu_t} |\partial_t \log p_t| \\ &\leq \frac{e^{-t}}{(1-e^{2t})^4} \sum_{i=0}^2 a_i \|x\|^i \end{aligned} \quad C.5, C.3.$$

1363 For $a_i = d\text{poly}(\mathfrak{m}_2, \mathfrak{L}, \mathfrak{R})$ □

1364 **Lemma C.7.** Let $\mu_t \propto p_t e^{-R}$. For $T > 1$, we have

$$1366 |\log \mu_T(x) - \log \mu_\infty(x)| \leq \frac{e^{-T}}{(1-e^{-2T})^4} \sum_{i=0}^2 a_i \|x\|^i.$$

1369 Where $a_i = \text{poly}(\mathfrak{m}, \mathfrak{L}, \mathfrak{R}, d)$. □

1371 *Proof.*

$$\begin{aligned} 1373 |\log \mu_T - \log \mu_\infty| &= \left| \int_T^\infty \partial_t \log \mu_t dt \right| \leq \int_T^\infty |\partial_t \log \mu_t| dt \\ 1374 &\leq \int_T^\infty \frac{e^{-t}}{(1-e^{-2t})^4} \sum_{i=0}^2 a_i \|x\|^i dt \\ 1375 &\leq \frac{e^{-T}}{(1-e^{-2T})^4} \sum_{i=0}^2 a_i \|x\|^i \end{aligned}$$

1381 □

1382 **Lemma C.8.** Let $p_{t \rightarrow 0}(x|x_t) = \Pr\{e^{-t}x + \sqrt{1-e^{-2t}}\eta = x_t, \eta \sim \gamma\}$ be the posterior of the OU process conditioned on a future iterate. We have

$$1385 \nabla \log p_t(x) = \mathbb{E}_{X \sim p_{t \rightarrow 0}(\cdot|x)} \nabla \log p_0(X)$$

1386 *Proof.* Please see Proposition 2.1 of (Bortoli et al., 2024). □

1388 **Lemma C.9.** Let $X_0 \sim p_0$ with $\nabla \log p_0$ being \mathfrak{L} -Lipshitz for $\mathfrak{L} > 1$, and let X_t denote the OU process run for time t , with law $X_t \sim p_t$. Then $\nabla \log p_t$ is \mathfrak{L} -Lipshitz.

1391 D FI IS NOT SUFFICIENT

1393 **Lemma D.1.** Take two distributions γ_1, γ_2 . Let $\gamma_{1|B_\epsilon(x)}$ (respectively, $\gamma_{2|B_\epsilon(x)}$) denote the distribution γ_1 conditioned on being within a ball of radius ϵ around the point x . Then we have

$$1395 \mathbb{E}_{X \sim \gamma_1} \text{KL}(\gamma_{1|B_\epsilon(x)} \| \gamma_{2|B_\epsilon(x)}) \lesssim \epsilon \text{FI}(\gamma_1 \| \gamma_2).$$

1398 *Proof.* For γ smooth around x , $\gamma(y) = \gamma(x) + (y-x)^\top \gamma(x) + \mathcal{O}(\|y-x\|^2)$, so

$$1399 \int_{y \in B_\epsilon(x)} \gamma(y) dy = (\gamma(x) + O(\epsilon^2)) \text{vol}(B_\epsilon(x))$$

1400 and

$$1403 \gamma|_{B_\epsilon(x)}(x) = \frac{\gamma(x)}{\int_{y \in B_\epsilon(x)} \gamma(y) dy} = \frac{\gamma(x)}{(\gamma(x) + \Theta(\epsilon^2)) \text{vol}(B_\epsilon)} =_\epsilon \frac{1}{\text{vol}(B_\epsilon)}.$$

1404 Let $\nabla_a f|_b$ denote the gradient with respect to a evaluated at b , then we also have
 1405

$$1406 \nabla_z \log \gamma|_{\mathcal{B}_\varepsilon(x)}(z)|_{z=x} = \nabla_z \log \gamma(z)|_{z=x} - \nabla_z \log \int_{y \in \mathcal{B}_\varepsilon(x)} \gamma(y) dy|_{z=x} = \nabla \log \gamma(x),$$

1407

1408 so we have:

$$\begin{aligned} 1409 \mathbb{E}_{X \sim \gamma_1} \text{KL}(\gamma_1|_{\mathcal{B}_\varepsilon(X)} \| \gamma_2|_{\mathcal{B}_\varepsilon(X)}) \\ 1410 &= \mathbb{E}_{X \sim \gamma_1} \mathbb{E}_{Y \sim \gamma_1|_{\mathcal{B}_\varepsilon(X)}} [\log \gamma_1|_{\mathcal{B}_\varepsilon(X)}(Y) - \log \gamma_2|_{\mathcal{B}_\varepsilon(X)}(Y)] \\ 1411 &= \mathbb{E}_{X \sim \gamma_1} \mathbb{E}_{Y \sim \gamma_1|_{\mathcal{B}_\varepsilon(X)}} [\log \gamma_1|_{\mathcal{B}_\varepsilon(X)}(X + (Y - X)) - \log \gamma_2|_{\mathcal{B}_\varepsilon(X)}(X + (Y - X))] \\ 1412 &= \mathbb{E}_{X \sim \gamma_1} \mathbb{E}_{Y \sim \gamma_1|_{\mathcal{B}_\varepsilon(X)}} [\log \gamma_1|_{\mathcal{B}_\varepsilon(X)}(X) - \log \gamma_2|_{\mathcal{B}_\varepsilon(X)}(X) + (Y - X)^\top (\nabla \log \gamma_1|_{\mathcal{B}_\varepsilon(X)}(X) - \nabla \log \gamma_2|_{\mathcal{B}_\varepsilon(X)}(X))] \\ 1413 &\approx \mathbb{E}_{X \sim \gamma_1} \mathbb{E}_{Y \sim \gamma_1|_{\mathcal{B}_\varepsilon(X)}} [(Y - X)^\top (\nabla \log \gamma_1|_{\mathcal{B}_\varepsilon(X)}(Y) - \nabla \log \gamma_2|_{\mathcal{B}_\varepsilon(X)}(Y))] \\ 1414 &\leq \varepsilon \mathbb{E}_{X \sim \gamma_1} \mathbb{E}_{Y \sim \gamma_1|_{\mathcal{B}_\varepsilon(X)}} [\|\nabla \log \gamma_1|_{\mathcal{B}_\varepsilon(X)}(X) - \nabla \log \gamma_2|_{\mathcal{B}_\varepsilon(X)}(X)\|] \\ 1415 &= \varepsilon \mathbb{E}_{X \sim \gamma_1} [\|\nabla \log \gamma_1(X) - \nabla \log \gamma_2(X)\|] = \varepsilon \text{FI}(\gamma_1 \| \gamma_2) \end{aligned}$$

1419 \square

1420 **Lemma D.2.** *Let*

$$1422 p_0 = \frac{1}{2} \mathcal{N}(\mathbf{0}, I) + \frac{1}{2} \mathcal{N}\left(\lambda \begin{bmatrix} 1 \\ 1 \end{bmatrix}, I_2\right), \quad R(\mathbf{x}) = \frac{1}{2\eta} \|\text{diag}([0, 1])\mathbf{x}\|^2$$

1423

1424 Let $\frac{1}{\eta'} = 1 + \frac{1}{\eta}$, and let $A_\square = \text{diag}([1, \square])$ for any \square . Then the posterior can be written as
 1425

$$1426 \mu_0 = \alpha_0 \mathcal{N}(\mathbf{0}, A_{\eta'}) + (1 - \alpha_0) \mathcal{N}\left(\lambda A_{\eta'} \begin{bmatrix} 1 \\ 1 \end{bmatrix}, A_{\eta'}\right)$$

1427

1428 with $\alpha_0 = \frac{1}{1 + e^{-\frac{\lambda^2}{1+\eta}}}$, and the distribution
 1429

$$1431 \mu'_0 = \frac{1}{2} \mathcal{N}(\mathbf{0}, A_{\eta'}) + \frac{1}{2} \mathcal{N}\left(\lambda A_{\eta'} \begin{bmatrix} 1 \\ 1 \end{bmatrix}, A_{\eta'}\right)$$

1432

1433 satisfies

$$1434 \text{FI}(\mu_1 \| \mu_2) \leq \lambda e^{2\lambda^2/(1+\eta) - \lambda^2/8}$$

1435

1436 *Proof.* Take the marginals of μ_0, μ'_0 onto the two coordinates (denoted "x" and "y").
 1437

$$\begin{aligned} 1439 \mu'_{0,x} &= \frac{1}{2} \mathcal{N}(0, 1) + \frac{1}{2} \mathcal{N}(\lambda, 1) & \mu_{0,x} &= \alpha_0 \mathcal{N}(0, 1) + (1 - \alpha_0) \mathcal{N}(\lambda, 1) \\ 1440 \mu'_{0,y} &= \frac{1}{2} \mathcal{N}(0, \eta') + \frac{1}{2} \mathcal{N}\left(\frac{\lambda\eta}{1+\eta}, \eta'\right) & \mu_{0,y} &= \alpha_0 \mathcal{N}(0, \eta') + (1 - \alpha_0) \mathcal{N}\left(\frac{\lambda\eta}{1+\eta}, \eta'\right) \end{aligned}$$

1441

1442 We have $\text{FI}(\mu'_0 \| \mu_0) \leq \text{FI}(\mu'_{0,x} \| \mu_{0,x}) + \text{FI}(\mu'_{0,y} \| \mu_{0,y})$. We can apply Lemma D.3 to each of these marginals separately
 1443 to get

$$1444 \text{FI}(\mu'_0 \| \mu_0) \leq \frac{\lambda}{(1 - \alpha_0)^2} e^{-\lambda^2/8} \leq \lambda e^{2\lambda^2/(1+\eta) - \lambda^2/8}.$$

1445 \square

1446 **Lemma D.3.** *Consider two mixtures of scalar Gaussians*

$$\begin{aligned} 1447 \mu_1 &= \alpha_1 \mathcal{N}(0, \sigma) + (1 - \alpha_1) \mathcal{N}(\beta, \sigma) \\ 1448 \mu_2 &= \alpha_2 \mathcal{N}(0, \sigma) + (1 - \alpha_2) \mathcal{N}(\beta, \sigma) \end{aligned}$$

1449

1450 with $\alpha_2 > \alpha_1 > \frac{1}{2}$. We have
 1451

$$1452 \text{FI}(\mu_1 \| \mu_2) \leq \frac{(1 - \alpha_1)^2}{(1 - \alpha_2)^2} \frac{\beta}{\sigma} e^{-\beta^2/8\sigma^2}.$$

1453

1458 *Proof.* For convenience, we write $\gamma_1 = \mathcal{N}(0, \sigma)$, $\pi_2 = \mathcal{N}(\beta, \sigma)$. Note that $\nabla \log \pi_1 = -x/\sigma$, $\nabla \log \pi_2 = -(x-\beta)/\sigma$.
 1459 We upper bound the $\text{FI}(\mu_1\|\mu_2)$ as follows (this follows the argument in Balasubramanian et al. (2022) very closely,
 1460 just with modified parameters)

$$\begin{aligned} \nabla \log \mu_1/\mu_2 &= \frac{1}{\mu_1 \mu_2} (\mu_2 (\alpha_1 \nabla \pi_1 + (1 - \alpha_1) \nabla \pi_2) - \mu_1 (\alpha_2 \nabla \pi_1 + (1 - \alpha_2) \nabla \pi_2)) \\ &= \frac{(\alpha_2 - \alpha_1)}{\mu_1 \mu_2} (\pi_1 \nabla \pi_2 - \pi_2 \nabla \pi_1) \\ &= (\alpha_2 - \alpha_1) \frac{\pi_1 \pi_2}{\mu_1 \mu_2} (\nabla \log \pi_2 - \nabla \log \pi_1) = (\alpha_2 - \alpha_1) \frac{\pi_1 \pi_2}{\mu_1 \mu_2} \frac{\beta}{\sigma} \end{aligned}$$

1469 so we have

$$\begin{aligned} \text{FI}(\mu_1\|\mu_2) &= \mathbb{E}[(\nabla \log \mu_1/\mu_2)^2] \\ &= (\alpha_2 - \alpha_1)^2 \frac{\beta^2}{\sigma^2} \int \frac{\pi_1^2 \pi_2^2}{\mu_1^2 \mu_2^2} d\mu_1 \\ &= (\alpha_2 - \alpha_1)^2 \frac{\beta^2}{\sigma^2} \int \frac{\pi_1^2 \pi_2^2}{\mu_1 \mu_2^2} dx \\ &= (\alpha_2 - \alpha_1)^2 \frac{\beta^2}{\sigma^2} \int \frac{\pi_1^2 \pi_2^2}{(\alpha_1 \pi_1 + (1 - \alpha_1) \pi_2)(\alpha_2 \pi_1 + (1 - \alpha_2) \pi_2)^2} dx \\ &\leq (\alpha_2 - \alpha_1)^2 \frac{\beta^2}{\sigma^2} \left(\frac{1}{(1 - \alpha_1)\alpha_2(1 - \alpha_2)} \int_{x \leq \beta/2} \frac{\pi_2^2}{\pi_1} dx + \frac{1}{(1 - \alpha_1)(1 - \alpha_2)^2} \int_{x \geq \beta/2} \frac{\pi_1^2}{\pi_2} dx \right) \\ &\leq \frac{(\alpha_2 - \alpha_1)^2}{(1 - \alpha_1)(1 - \alpha_2)^2} \frac{\beta^2}{\sigma^2} \left(\int_{x \leq \beta/2} \frac{\pi_2^2}{\pi_1} dx + \int_{x \geq \beta/2} \frac{\pi_1^2}{\pi_2} dx \right) \end{aligned}$$

1486 Finally

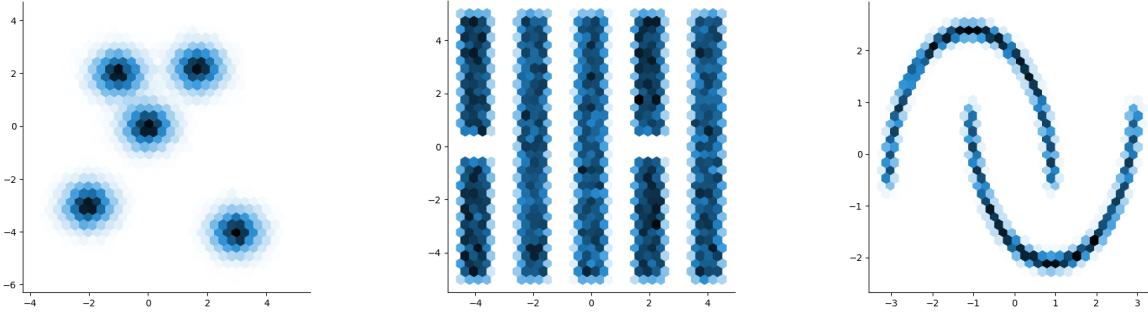
$$\int_{x \leq \beta/2} \frac{\pi_2^2}{\pi_1} = \frac{1}{\sqrt{2\pi}\sigma} \int_{x \leq \beta/2} e^{-(x-\beta)^2 + \frac{1}{2}x^2} = \frac{e^{\beta^2}}{\sqrt{2\pi}\sigma} \int_{x \leq \beta/2} e^{-\frac{1}{2}(x-2\beta)^2} \leq \frac{1}{\sqrt{2\pi}\sigma\beta} e^{-9\beta^2/8}.$$

1491 This also holds for the other term $\int_{x \geq \beta/2} \frac{\pi_1^2}{\pi_2}$. Overall we have $\text{FI}(\mu_1\|\mu_2) \leq \frac{(\alpha_2 - \alpha_1)^2}{(1 - \alpha_1)(1 - \alpha_2)^2} \frac{\beta}{\sigma} e^{-\beta^2/8\sigma^2}$. \square

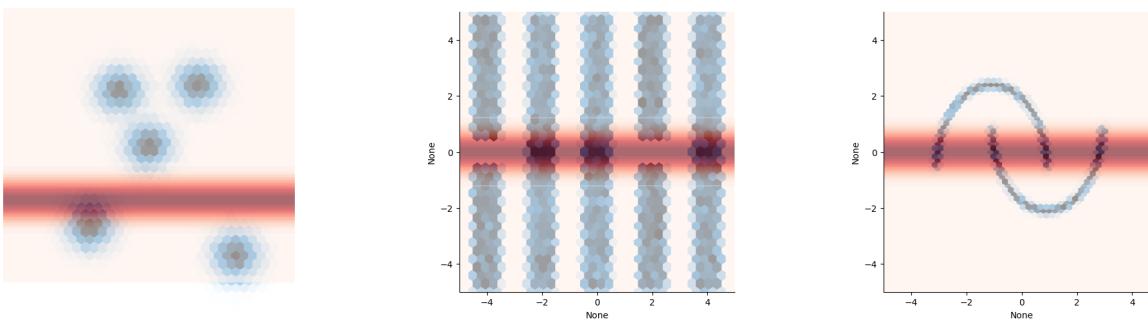
1512
1513

E SYNTHETIC SIMULATIONS

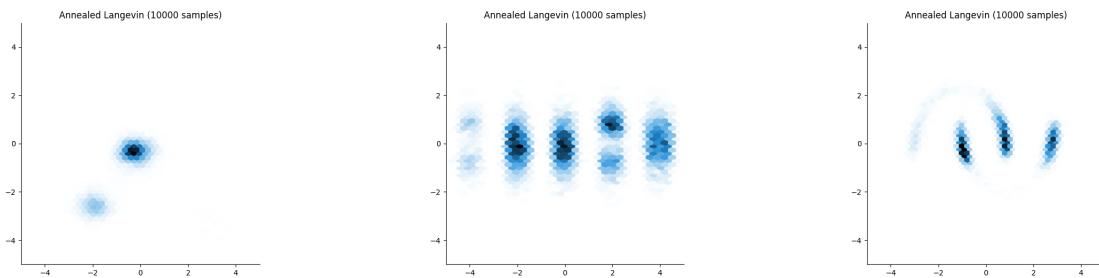
1514 We have include some synthetic simulations of our method below. We use three priors for illustration (Figure 6),
 1515 a mixture of gaussians with 5 components, a set of vertical bars, some of which have gaps in them (similar to the
 1516 discussion in Remark 4.7), and a pair of "moons". We illustrate the posterior sampling algorithm with two choices of
 1517 measurement models, $y = Ax + \eta$ for $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ (Figure 7) and also simply $y = x + \eta$ for $\eta \sim \mathcal{N}(0, \frac{1}{\mathfrak{R}})$ (Figure
 1518 9). The sampler of Algorithm 1, with $\kappa = 400$ and $T_{ws}/\delta = 200$ total noising levels is shown in Figures 8 and 10.
 1519



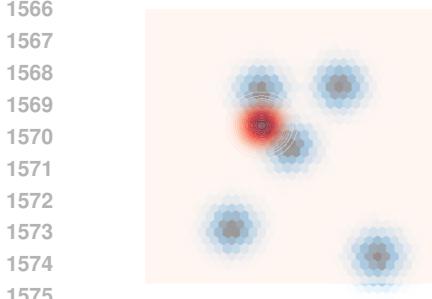
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532 Figure 6: Three priors used in our experiments. A Mixture-of-Gaussians prior on the left, a "Vertical Bars" prior in the
1533 center (similar to Remark 4.7), and a "moons" prior on the right.
1534



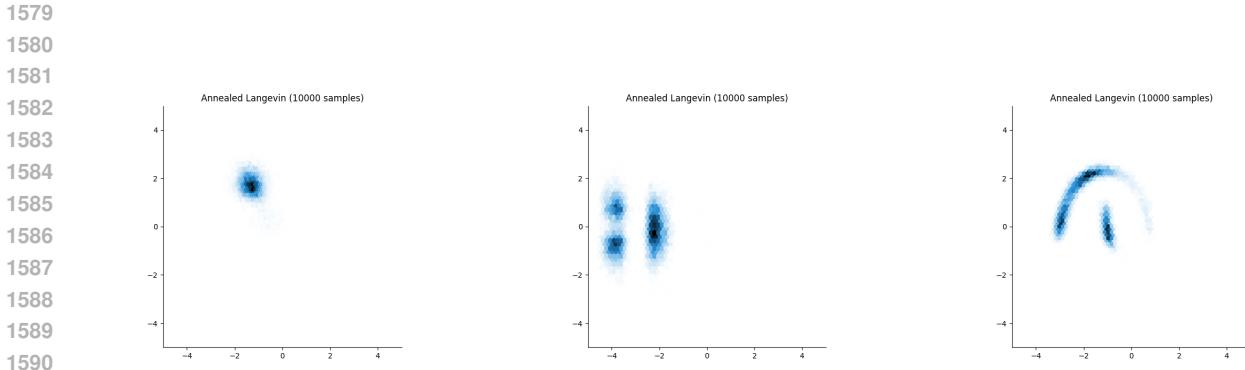
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547 Figure 7: Likelihood functions used to define the posterior. $R(x) = \mathfrak{R}\|Ax\|^2$ where $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$. Essentially these
1548 are "noisy projections", somewhat analogous to an inpainting problem (one coordinate is seen, the other is not).
1549



1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565 Figure 8: Resulting sampler, run with $\kappa = 400$. Shown are hex-jointplots of 10000 samples each.

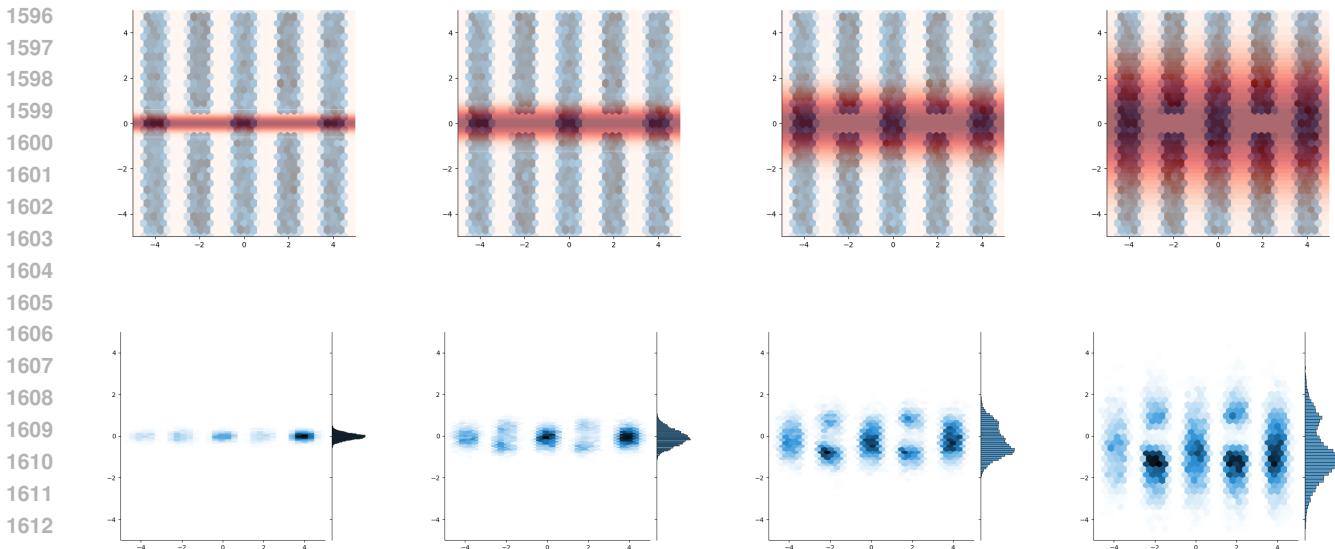


1577 Figure 9: Likelihood functions used to define the posterior, corresponding to a noisy gaussian measurement $R(x) =$
1578 $\Re \|x\|^2$.



1591 Figure 10: Resulting sampler, run with $\kappa = 400$, with 200 levels of noising (so a total of 80000 iterations). Shown are
1592 hex-jointplots of 10000 samples each.

1593
1594 We see that each of the modes are discovered (avoiding the mode collapse phenomemon associated with Fl).
1595



1614 Figure 11: Here we demonstrate the consequences of changing the variance of the noise used in the measurement
1615 (which is related to \Re as we see in 4.2). For large values of \Re , the gap in the second and fourth vertical bars is much
1616 less stark, but the mass dedicated to these bars does not vanish.

1617
1618
1619