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Abstract

The Polyak stepsize has been proven to be a fundamental stepsize in convex opti-
mization, giving near optimal gradient descent rates across a wide range of assump-
tions. The universality of the Polyak stepsize has also inspired many stochastic
variants, with theoretical guarantees and strong empirical performance. Despite
the many theoretical results, our understanding of the convergence properties and
shortcomings of the Polyak stepsize or its variants is both incomplete and fractured
across different analyses. We propose a new, unified, and simple perspective for
the Polyak stepsize and its variants as gradient descent on a surrogate loss. We
show that each variant is equivalent to minimize a surrogate function with stepsizes
that adapt to a guaranteed local curvature. Our general surrogate loss perspec-
tive is then used to provide a unified analysis of existing variants across different
assumptions. Moreover, we show a number of negative results proving that the
non-convergence results in some of the upper bounds is indeed real.

1 Introduction

The iterative optimization of complex functions forms a cornerstone of modern machine learning,
scientific computing, and engineering. Among the most foundational first-order methods is gradient
descent, which iteratively refines a solution by moving in the direction opposite to the function’s
gradient. A critical aspect of gradient descent is the selection of an appropriate stepsize (or learning
rate), as it dictates both the speed of convergence and the stability of the algorithm. The wrong choice
of the stepsizes can lead to slow convergence or, conversely, to divergence, making the tuning process
a significant practical hurdle.

In this landscape of stepsize selection strategies, the Polyak stepsize, proposed by Polyak [36] stands
out for its theoretical elegance and convergence properties. Starting from an arbitrary x; € R?, the
Polyak stepsize is defined as

flx) — f*

lg.I1?
where 0 # g, € Of(x;) and f* = min, f(x). If g, = 0, then x;; = ;. This update rule
can achieve linear convergence for strongly convex and smooth functions, O(1/T') rate for convex

smooth functions, and O(1/+/T) rate for non-smooth convex ones. This is particularly interesting
because all of these rates are achieved with a unique stepsize and without knowledge of smoothness
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or curvature constants. In other words, this update rule is adaptive to the geometry of the functions to
optimize.

Recently, the Polyak stepsize has seen a resurgence in the machine learning literature, with a plethora
of variants. However, despite the big number of papers on this topic, one essential research question
seems still to be missing: What makes the Polyak stepsize adaptive and when can it fail?

Contributions. This paper aims to provide a novel framework to understand the Polyak stepsize,
providing a clear geometric explanation of its adaptivity. In particular, we show that the adaptivity
is due to a simple but powerful observation: The Polyak stepsize minimizes a surrogate objective
function that is always locally smooth. As for standard smooth functions, we will show that the
knowledge of the local smoothness constant is enough to obtain the correct rates. In addition, the local
smoothness will depend only on the gradient itself, removing the need to estimate it. Furthermore, we
show that minimal curvature of the surrogate is inherited from the original function as well. We also
use this framework to extend its core idea to a family of algorithms. Then, we will show a number of
negative results when f(a*) is not known and for its use in the stochastic case. These negative results
complete our understanding by showing that some non-vanishing terms in existing upper bounds are
necessary.

2 Related Work

In the pionnering work of Ermol’ev [14] stepsizes of the form n; o< 1/|ig,||> were proposed for
non-smooth optimization. Despite the many convergence guarantees enabled by Ermol’ev [14]’s
framework, in Polyak [36] it is noted that linear convergence is not possible with such stepsizes.
As an alternative, Polyak suggests the stepsize (I), which is shown to converge at favourable rates
with non-smooth convex functions, and strongly convex and smooth functions. In fact, contrary
to common belief, Polyak [36] was the first to show linear convergence with a rate comparable
to gradient descent in the smooth and strongly convex case. Furthermore, the case where f* is
estimated was also studied, showing convergence to a level set if f* is overestimated, and best-iterate
convergence to a neighboorhood if it is underestimated. The Polyak stepsize has since been extended
and studied across several applications and domains.

Non-smooth convex. In non-smooth convex optimization, several schemes have been developed to
estimate f* on the fly [[7,16, (16 41} [31, 27]]. In the finite-sum case with interpolation, and variants
have been studied as an incremental subgradient method [31} 27].

Non-expansive operators. In the context of non-expansive operators, the update (I) has also
been studied as a special case of the subgradient projector [2, [8, [10]; where it can be shown that
subgradient descent with 1, = (f(z)=¢)+/||g,||? is a quasi-firmly non-expansive operato if fis
convex and ¢ > f*, and * — «* if f is continuous [2]. Moreover, in the finite-sum setting,
interpolation can also be viewed as iterating different quasi-firmly non-expansive operators with a
common fixed point. For example, applying a subgradient projector sequentially (i.e., cycling through
the different component functions) in a way such that each function eventually gets visited guarantees
that x; — {f(y) < c} [8l Example 5.9.7]. For a survey on this topic see Censor [9].

Deterministic. In modern optimization, (I)) has been shown to achieve similar rates to gradient
descent in various common assumptions (e.g., Lipschitz, smoothness and strong convexity) [22]],
and more recently with other assumptions such as weakly convex functions [12]], (Lo, L1 )-smooth
functions [42,[17], and directional smoothness [30]].

Stochastic. The Polyak stepsize has also been extended to the stochastic case with emphasis on
applications to machine learning [39, |5, 29, [38]]. The ALI-G method [3] and SPSax [29] use
stochastic estimates via the sampled function f(x, &) and its gradient V f (¢, £) to perform a Polyak-
like stepsize. SPSyax in addition uses inf, f(x, &) as an estimate to f*, and is shown to converge
at fast rates without a neighbourhood under interpolation. Folowing SPS,,,x many variants have
been proposed for SGD: StoPS [24]], DECSPS and SPanaX [35], SPS, [15]. Beyond SGD, other
extensions include: mirror descent [[13]], with preconditioning [[1]], with line-search [25], and with

momentum [43} 40, [33]].

'An operator T is quasi-firmly non-expansive if for all fixed points =*, ||T(x) — =*||*> < ||z — =*||* —
|7 (x) — «||*. Note that a quasi-firmly non-expansive operators are also referred to as cutters.




Neighbourhood of Convergence. For SPS,,,,«, Loizou et al. [29] proved that the suboptimality gap
is only guaranteed to shrink up to a factor that depends on the loss themselves. As we will explain in
Section[5.T] this is equivalent to the guarantees in online learning where the regret is proportional to
the cumulative loss of the competitor, typically denoted by L*. Hence, these kind of guarantees are
usually called in online learning L* bounds [see, e.g.,[34] Section 4.2].

Surrogates. Gower et al. [19] show that the Polyak stepsize is equivalent to online gradient descent
with fixed stepsize on a sequence of adversarially chosen self-bounded surrogate losses. Differently
from our framework, the adversarial nature of their losses does not allow to show that the algorithm is
minimizing a fixed function. In comparison, our surrogate approach considers a fixed surrogate loss
with local smoothness, where the Polyak stepsize is chosen to be the inverse of the local smoothness.

Surprisingly enough, despite the adaptivity of the Polyak stepsize across various assumptions without
modification, in previous literature there is no clear explanation why this is the case.

3 Definitions and Notation

We will use the following notation and definitions. All the norms in this paper are L2 norms and
will be denoted by || - ||. For a function f : R? — R, we define a subgradient of f in x € R?
as a vector g € R? that satisfies f(y) > f(x) + (g,y — =), Vy € R% We denote the set of
subgradients of f in « by 0f(x). For a differentiable function we have that 0f(x) = {V f(x)}.
A function f : V — R, differentiable in an open set containing V, is L-smooth w.r.t. || - || if

fly) < f@) +(Vf(z),y —z) + ||z —y|* forallz,y € V.
Definition 1. We say that a function f has a s-sharp minimum in x* if

f(®) = f(a") = sz — 2.

Note that if f has a sharp minimum then it is not differentiable at * [37] and if the function is also
convex and G-Lipschitz we immediately have G > s.

Definition 2. We say that a function f : R? — R is L-self-bounded if
lgll* < 2L(f(x) — inf f(x)), Vg € 0f(x) .

It is known that L-smooth functions are L-self-bounded [see, e.g., Lemma 4 in 28], but this definition
is strictly weaker because it does not assume differentiability.

4 Polyak Stepsize is Gradient Descent on a Surrogate Function

Let f be convex and * € argmin,, f(x). Consider the following function:
() = 5 (@) — f(a")” . )

Instead of viewing the Polyak stepsize (I)) with respect to f we propose to view it equivalently as
a subgradient method with respect to ¢. By the chain rule of subgradients [2][Corollary 16.72],
subgradient descent with the Polyak stepsize (I} is equivalent to subgradient descent on ¢ with

stepsize 1 = m. This perspective may seem superfluous, howerever, we will show that —— is

[EAR
strongly related to a certain notion of local curvature of ¢, local star upper curvature.

Definition 3 (Local star upper curvature (LSUC)). We say that a function f with minimizer x* has
Ay-local star upper curvature (LSUC) around y if there exists Ay > 0 such that

F(@*) = f@) ~ (g — ) > 5 Nlg, I3 Vo, € 05(y)
Y

Note that if the function is LSUC everywhere, then it must be convex since we assume the existence
of a subgradientf| It is also immediate to show that convex L-smooth functions are also L-LSUC.
Indeed, for convex L-smooth functions we have that [32, Theorem 2.1.5]

f(@)~ fy) ~ (V) —v) 2 5[V ()~ Vi), Va,y € RY.

21f g, is not a subgradient but a directional derivative then f would be guaranteed to be star-convex [26].
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Figure 1: The function f(z) = |z + 2| + % is non-smooth but is 2-LSUC as demonstrated by the blue curve,

f(z*) — (g, z* — =) — 1/4||g||?, being larger than f(z) for all z and g € Of(z). Similarly, f is self-bounded
but with the larger constant L = 9.

So, it is enough to set © = x* to obtain the above definition. However, the inclusion is strict, because
there exist functions that are not smooth and still satisfy the above definition. For example, as shown

in Figure one can easily verify that f(z) = |z + 2| + ‘”—22 is 2-LSUC and 9-self-bounded but not
differentiable x = —2, hence it is not smooth.

Finally, if the star-upper-curvature holds globally, i.e., there exists 0 < A < Ay for all y, then we can
show that this condition is equivalent to the upper quadratic growth condition in Guille-Escuret et al.
[21] This observation was first made by Goujaud et al. [18, Theorem 2.6], we include the precise
statement and proof in the Appendix

The key observation in the next Theorem is that ¢ is always locally star upper curved, regardless of
the curvature (or lack of it) of the function f. Moreover, it will inherit additional curvature from f.
The proof can be found in Appendix [A]

Theorem 1 (Curvature of the Polyak surrogate). Let f(z) be convex and define * € argmin,, f(x).
Define ¢(x) = L(f(x) — f(x*))2 Then, we have

* ¢ is ||g, |I*-LSUC around any y for any g,, € Of (y).

o If f is s-sharp, then ¢ has s*-quadratic growth.
» If f has p-quadratic growth and L-self bounded, then ¢ satisfies a local quadratic growth:

1plgl? |2

$(x) 2 5=~z —2*|%, Vg € 9f(x) .
This theorem tells us that, regardless of the curvature of f, we can always construct the function ¢
that is locally curved. It is well-known that for L-smooth functions one can use the stepsize n = %
and achieve a rate between O(1/T') and a linear one, depending on the presence of strong convexity.
Here, we show a similar result: GD can use stepsizes that depend on the local star upper curvature
in all cases. Note however, unlike GD with a constant stepsize and smoothness, we do not have
a descent lemma with ¢. Indeed this is not possible as it would guarantee a O(1/T') rate for the
last iterate which was shown to be impossible by Goujaud et al. [18] for QG + (L) functions (i.e.,
L-LUSC functions).

Lemma 1. Let ¢ convex and define x* € argmin,, ¢(x). Assume ¢ to be \,-LSUC around any
point x. Then, using subgradient descent with stepsizes n; = % guarantees
£33

1 1
e (d(@) — ¢(@") < Slle — 2" |* = S —2*|* ©)
Summing this inequality over time, we also have

1 _w*H2

T T
¢(m)§m§§m¢(mt>g'w R “)

3A function f satisfies the p-quadratic growth condition if f(a) — f(a*) > #/2||x — =*||°.



where xp = ;nwt orxr = argmlnme{mh T} P(x).
t=1

Proof. From the classic one-step analysis of GD [see, e.g.,[34], we have

* 1 * |12 1 * |12 77152 2
ne(gy, T —x*) = 5”-’% -z~ §||-’Bt+1 -z J'_?”gtH

for any g, € 0p(x;). Now, we use the fact that ¢ is LSUC and the definition of 7; we obtain the
stated bound. Summing from ¢ = 1 to T" and discarding the negative term on the right hand side
concludes the proof. O

The above discussion can be summarized in the following theorem.

Theorem 2. The Polyak stepsize in (1) is equivalent to subgradient descent on the function ¢ in @),
when using stepsizes 1n; equal to the inverse of the local-star-upper curvature of ¢ in x;.

This theorem and Lemma [T] do not give us a rate, however we can immediately observe that if
> mt = +oo we also have ¢(x;) — 0, implying convergence of the last iterate (see Remark@for
more details).

To obtain known rates for the Polyak stepsize, we can use additional assumptions on f. However,
we want to stress that, differently from prior results, we explicitly get a convergence rate for the
surrogate function ¢, the function actually minimized by (T). The rates on the original function f are
immediate by just taking the square root.

If f is G-Lipschitz, then Zthl n > T/G?. Hence, the final rate is ¢(Z1) < %le —x*||. So,
the surrogate loss converges as O(1/T), as expected by a loss with upper curvature.

Now, instead let’s assume that the function f is L-self-bounded. Using inequalities between harmonic
and arithmetic means, we have

T
B ST Z 901" 1 §~8L20(z) _SLEL, s
AR P b g P = T2 2= g = T2 2 ’
where in the last inequality we use (@). This implies
_ 1 1 N 412 N
o(@r) < e —2*|* = & — 2" < 5 @ — 2"

22 =1 2511 o

Similarly, it is equally easy to obtain rates for Holder-smooth functions, see Theorem 7| for more
details.

We can also assume that f is s-sharp and G-Lipschitz. So, from (3) and the fact that ¢ has s?
quadratic growth from Theorem|I] then by Lemma[] we have

521
G?22
Using the fact that &> < 1, this immediately gives a linear convergence rate.

* ]' * * ]' * 1 *
Sl —a*|* < sQTlrllwt = < m(glm) = o)) < gllw = @ = S llw -2

5 Generalizing the Polyak Stepsize: More Surrogates and Stochastic Setting

We have shown how the Polyak stepsize is just GD on a particular function with stepsizes adapted to
the local curvature of the function. In this section, we show that we can construct an entire family of
surrogate losses with similar guarantees, while also preparing ourselves for the stochastic setting.

Instead of the function (2)), we consider more generally the surrogate

U(a) = (@),

where h : RY — R0 is convex. As a special case we can recover (2) with h(z) = f(x) — f*,
however, in general we do not need to know f*. For example we can take h = (f(x) — a)4 for any
a. Intuitively, the role of A is to transform f into a positive function. We show that ¢/ generally has
an approximate local-star-upper curvature, where the approximation stems from A potentially being
strictly positive in x*.



Definition 4 (Approximate local-star-upper curvature). We will say that a function f with minimizer
x* has e-approximate \y-star-upper-curvature around vy if there exists € such that

f@*) = f(y) = (g, " —y) > - 2A gy ll5 — €, Vg, € 0f(y) .

Since we do not make explicit assumptions i with respect to f, we can only hope to achieve
convergence to the minimum of % or 1. So, from here onward we denote x* as as minizer of .

Lemma 2. Let h : RY — Rx be convex. Define ) = $h?. Then, v is (2y/1(z)(x*) — 1p(z*))-
approximate ||g||-LSUC for any g € Oh(x).

Proof. Given that the function 1(x) might not be differentiable, we have to be careful in the
calculation of its subgradients. We have

V) = 5H () > 5h%(@) + h@)[h(y) - h(e)]
> J2(@) + hw){g,y — @) = vl@) + (hw)g,y - ),

where g € Oh(z) and the first inequality is due to the fact that 3 (-)? is a convex function. Hence, we
see that g := h(x)g is a subgradient of ¢ in . Hence, for any u € R?, we have

V@)~ (g0 —u) + mnﬂwb S (@) = h(@)lg. @ — u) + Sh()’
(a) (h() ~ (9.2 — w)
<mm> <><gw—w+h<»

< h(x u) = 24/9

where the inequality is due to the convexity of  and the fact that h(:c) > 0. Setting u = x*, we have
the stated bound. O

With approximate local curvature, a generalization of Lemmal[I]is immediate.

Lemma 3. Assume v : R? — R to be e;-approximately \;-star-upper-curve around x,. Then, for
any n: > 0, any g, € 0V (x:), and X111 = T+ — 19, we have

* 2 * 2
o) — oot < g2 A=t o (Y g2 4 e
t

The last two lemmas tell us that the properties of the surrogate functions breaks if )(x*) # 0. Hence,
we will not be able to prove convergence results, but only that, for example, the suboptimality gap
will converge up to a floor that depends on v (x*). However, in Section @ we will show that this is
not an artifact of the proof. Indeed, we can construct simple one-dimensional functions where the
generalized Polyak stepsize does not converge.

5.1 Stochastic Approximation Setting

Consider now the case that we are minimizing F(z) := E¢p[f(x, €)], where f : R x S — R, that
covers both the stochastic approximation and finite-sum settings. We do not know the distribution D,
but we assume that we can sample £ i.i.d. from D.

In this setting, we argue that the Polyak stepsize makes sense only in restricted settings. In fact, the
interpretation of the Polyak stepsize as minimizing a surrogate function implies that in the stochastic
setting we will minimize the function E¢..p[4h?(z, £)], where the function h(-, £) depends on the
particular variant of the stochastic Polyak stepsize. It is clear that in general argmin, E¢p[f(x, )]
can be completely different from argmin, Ee¢~p[3h?(x, £)].

Here, starting from ALI-G [5] and SPS,,,,x [29] that use the idea of limiting the stepsizes, we propose
a generalized Polyak stepsize algorithm. The proof is in Appendix



Algorithm 1 Generalized Polyak Stepsize
Require: 7 :R% x S - R, ¢; € R?

1: fort=1,...,T do

2:  Sample &, from D

3:  Tranform f(x,&,) into h(x, &,)

4:  Receive g, € Oh(x,&,)

5. if g, # 0 then

6: Tip1 = ¢ — neh(xy, €,)g, Where 7, = min (Hgil\z’ h(wlﬁt))
7:  else

8 Tyl = Ty

9:  endif

10: end for

Theorem 3. Let h : RY x S — Rsq be convex in its first argument. Denote by H(xz) =
Eeplh(x,&)]. Then, setting 1y = min (m, h(%it)) in Algorithm we have

o Ifh(-,&,) is L-self bounded, we have

LS in () i) < 2o o gy
7 3omin (g B0l < F g s

and
T 1 1 1 &
3 " min <2L7) E[H (@) =7 Y H(@") < 5ller "I + 5 Y 1Ellgill*)
t=1 t=1

* Ifh(-,&,) is G-Lipschitz, then we have

[#1 — x*||? o Gl — =¥
— E[H <—4+2H(x")+ ———— + G\/2vH(x¥) .
§ £l - (@) + V)
o Ifh(-, &) is L-self-bounded and H(x) has j-quadratic growth, then
T+1

1 —
E [z — 2] < E [l — 2] o+ + b= H(a"),

where a = § min (5, 7) and b = 2y — min (5, 7).

Choosing the function h, the above theorem covers and extends a number of results in previous
papers, for example:

* SPSpax [29]: &) = f(x, &) —infy f(x,€),s0 H(x*) =E[f(x*, &) —inf, f(z,&)].

h(z
o spst .. [33]: h(x, &) = f(x, &) — q(§), where g(&) is a lower bound to inf, f(z,&). In
this case, H(z*) — E[f(x*,€) — g(&)]

* SPS; [I3]: h(x, &) = (f(x,&) — f(x*,€))+. In this case, H(x*) = 0 so we can also
safely set ¥ = oo. Moreover, H(x) > F(x) — F(x*), hence any bound on H () translates
to a bound on the suboptimality gap.

Remark 1. If h(x*,&,) = 0 for all t, then ||xs11 — x*|| < ||@r — x*||. Hence, in this case we only
need to consider all the properties of h in the bounded domain {x € R? : ||z — x*|| < ||z, — =*||}.
This is well-known via the subgradient projector perspective, as x. is guaranteed to approach the set
ﬂg{w : h(x, &) = 0} at each iteration if it is non-empty. This property was observed in Gower et al.
[20)] for SPS.. [15)], but here it holds more generally. For example, h(x, &) = (f(x, &) — a), where
a > supg f (z*, &), would also have no neighbourhood of convergence and satisfies the assumption
of the theorem.



Remark 2. The above theorem also applies to the case where some of the f(-,&) are non-convex
functions, while still guaranteeing the convergence to the global optimum of F. For example,
consider F(z) = 0.5f1(x) + 0.5f2(x), where fi = —|z| (non-convex) and fo = 2|x|. We have
that F(z) = L|z| so @* = 0. Now, choose hi(z) = max(fi(z) — fi(z*),0) = 0 and ho(z) =
max(f2(z) — fa(x*),0) = 2|x|. Hence, the hypotheses of the theorem are verified. Moreover,
H(z) = 0.5h1(z) 4+ 0.5h2(x) > F(z) and H(z*) = 0, so the theorem implies a convergence rate
for the minimization of F(x) — F(x*) by using SPSy.

Remark 3. In the proof of Theorem[3} if one stops before taking expectations, one obtains a regret
guarantee on a sequence of arbitrary losses h(x,€,). Such regret scales as the sum of the loss in
a*. This is exactly the L* bound that we mentioned in Section[2] Indeed, this kind of updates and
guarantees were already obtained in the online learning literature for the special case of linear
predictors by the Passive-Aggressive family of algorithms [11)].

Besides covering a number of previous algorithmic variants, we also extend the previous known
guarantees. In particular, Loizou et al. [29] only studied SPS in the non-smooth setting but did not
include SPSmaXE] Theorem shows for the first time that SPS . is adaptive to the entire range of
upper curvature of the function, from Lipschitz to smooth functions. In Appendix [D|we also show
additional results. Moreover, the second result in the smooth case is new, and it allows to recover
the SGD guarantee on H when + is sufficiently small. For example, we include a precise statement
for SPS. when f(x, &) is L-self-bounded, that recovers the guarantee in Gower et al. [20, Corollary
2.3].

6 Neighbourhood of Convergence and Instability of the Polyak Stepsize

In Section[5|we demonstrate that a generalized version of the Polyak stepsize and existing variants can
be viewed as GD on a function with approximate local curvature, with convergence to a neighbourhood
of the optimal solution. This neighbourhood of convergence appears in our analysis just like in all
existing variants, therefore suggesting it is unavoidable if

H(x) =E¢oplh(x,&)] > 0 forall x . Q)

In this section, we demonstrate that this neighbourhood of convergence is not an artifact of the
analysis and indeed cannot be avoided in general. We also show that the positivity condition (3] can
fundamentally change the dynamics of Algorithm[I] even in the deterministic setting, thus posing a
challenge that is not just associated with interpolation.

Condition (3) occurs with SPS [29] without interpolation, or in the deterministic setting when the
optimal value is underestimated, h(x) = f(x) — ¢ where f* > ¢. Convergence under this condition
was first studied in the deterministic case in Polyak’s original paper [36]], where it is shown that if
inf, h(xz) = h* > 0 then lim;_, o, miny<4<¢ h(x¢) — h* < h*. That is, the best iterate eventually
enters a neighbourhood of the minima where the size of the neighbourhood is dependent on how
much h* is underestimated by 0. In the stochastic case, convergence of the average iterate to a
neighbourhood when understimating the minimum was also studied by Orvieto et al. [35] under
spst ... However, we demonstrate the consequence of condition () is far greater than existing
results suggest, with instability of fixed points, potential cycles, lower bounds in the sub-optimality
gap, and lack of convergence regardless of initialization.

Deterministic Setting. We first demonstrate that in the deterministic setting, for different classes of
h, if h* = min, h(x) > 0, then the fixed points of

Ty =T (xe) = Ti Il\l!flf\ggt’ if g, € Oh(x:), 0 & Oh(zy),
o T, otherwise

(6)

are unstable. Intuitively, this can be explained via our surrogate function view: In fact, denoting the
local curvature constant of the surrogate % (h(x) — h*)? around @, as A, we see that the stepsize 7,
in update (6) can be equivalently written as

4Although Loizou et al. [29] state that SPS analysis can be readily extended to SPSmax this does not seem to
be the case due to the non-convexity of the min function, as demonstrated by our different proof technique in

Appendix [C}
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Figure 2: Trajectories under T' (@) for h(z) = % + a with an unstable fixed point at x* = 0. Lack of
convergence is observed for different values of a as predicted by Proposition [3]

If h is Lipschitz or self-bounded then 7, — 400 as &; — x*. Therefore, if h possesses curvature,
then ;41 may move further away from =* within a neighborhood of =*. Indeed, in Proposition I]
we show that for all self-bounded functions with a quadratic growth condition, the fixed point of 7" in
(@) is unstable. A similar result can also be shown if & is L-Lipschitz and has a sharp mininum (see
Proposition[6]in the Appendix).

Proposition 1 (Unstable fixed point). Suppose h is convex, strictly positive, L-self-bounded, and
satisfies the quadratic growth condition h(x) — h* > & |l@ — x*||?, where x* = argming h(x) is
the only fixed point of T, defined in (). Then, for any pointx € S = {y : y # *,h(y) — h* <

h* g, } we have

1T (2) — 2*[| > [l — 27| .

Note that this reinforces the need to clip the stepsize as proposed in ALI-G and SPS,,,,x. However,
clipping will not remove this behaviour unless the maximum value is taken to be small enough. In
Proposition 8| we show there is always a subregion where the stepsize is bounded, and this subregion
can be made arbitrarily large within the unstable region; therefore, if the clipped value is too large
instability is unavoidable.

The importance of & > 0 in update (6) has also been studied in Bauschke et al. [3]], where they
demonstrate with examples that 7" can fail to be quasi-firmly non-expansive if 4* > 0. Propositions [T}
and [f] provide extra insight on this phenomenon as they automatically prove 7" cannot be quasi-firmly
non-expansive and therefore we have the following remark.

Remark 4. If h > 0, and either of the following conditions hold:

* h is convex, self-bounded, and satisfies the quadratic growth condition,

e h is convex, Lipschitz, and has a sharp minimum,
then T from (6) is not quasi-firmly non-expansive.

While Propositions[T|and [festablish that minima can be unstable, this property may not fully describe
the dynamics of update (6). In fact, instability can admit convergence in the average iterate or last
iterate if the local critical neighborhood is skipped. So, in Proposition [2] we provide an example of a
function h, which satisfies the assumptions of Proposition [T} where the iterates cycle and never reach
the minimum in best iterate or on average.

Proposition 2 (Cycling and failure to converge). There exists a strictly positive smooth and strongly
convex function h, and an initial point x such that iterates from update (6) cycle and satisfy the

inequality h(+ Zle x;) —h*>§>0forallt.

Note that since the cycle in Proposition [2] consists of a finite number of points, clipping will not
necessarily remove this behaviour (e.g. if the clipped value is taken to be larger than any of the seen
stepsizes). In Proposition 2} a specific initialization was chosen to construct a cycle that would not
converge. However, in Proposition [3|we show that for 1-d quadratics the lack of convergence is true
for all initializations and values of h* up to a set of measure zero.



Proposition 3 (The set of good initializations can have measure zero). Let h : R — R, defined as
h(z) = w—; + afora > 0, where x4 = x; — %Vh(xt), and x1 is randomly initialized.

Then, P{lim; o, x; = x*} = 0. In other words, the set of initializations that can converge to the
optimal solution has measure zero.

Proof. Note h is 1-smooth and 1-strongly convex and therefore satisfies the conditions of Proposition
[[with = L = 1 and an unstable unique fixed point. Let T be such that z,11 = T'(z;). T(z) =
z (3 — %) if 2 # 0 and 0 otherwise. With inverse 7! (S) = {z & V22 + 2a : « € S}. Therefore,

T=*({x*}) has at most 2* points which has measure zero for all k. By LemmalS|in Appendix|E} the
result follows. O

Remark 5. Note that, by Lemma Proposition[3|can be extended much more generally if T from (6)
is shown to satisfy the Lusin (N ~") property (see Deﬁnition@ [23| Definition 4.12].

In the stochastic case with SPS, condition (3)) is due to lack of interpolation, and Orvieto et al. [35]
show that it can change the expected fixed point. In contrast, in the deterministic setting we have
shown lack of convergence despite the fixed point being «*. Therefore the issue here stems from the
instability of the method due to the underestimation of A* and not the bias of the expected update.

Stochastic Setting. In the stochastic setting, the positivity condition (3) can occur despite
ming h(x, &) = 0, such as in SPS (h(x, &) = f(x) — min, f(x, £)) without interpolation. Orvieto
et al. [35] demonstrate that without interpolation SPS can fail to converge in a 1-d quadratic and
has an expected fixed point different than ming F'(x) = ming E¢wp[f(x, €)]. Similarly to the
deterministic setting, we can show that SPS can have a random walk between a finite number of
points.

Proposition 4 (Failure to converge). There exist f1 and fo quadratic 1-d functions and a starting
point x1 such that SPS on F(x) = 0.5(f1(z) + f2(z)) satisfies

E[F(x¢)] — mxin F(x) >2/3, Vt.

Proof. Let fi = 2% + 2x + 5 and fo(x) = 222 — 42 + 10. Let’s start from z; = 1 where
F(z1) = 8. If we draw f1, 2 = —1, while if we draw f3 then zo = 1 because f4(1) = 0. Hence,
E[F(x2)] = O.5M + 0.5% = 9. Iterating, we have that 3 has equal probability
to be equal to 1 and -1. Hence, again we have E[F'(z3)] = 9. So, we have that this holds for any ¢.
Moreover, we have that min, F'(x) = 44/6. O

7 Discussion and Limitations

We have shown that the design, properties, and failure of the (variants) of the Polyak stepsize can be
easily derived through the lens of the minimization of a surrogate objective function. This framework
also provides a new and natural explanation on the adaptivity of the stepsize via the local curvature
of the surrogate. We believe this framework has the promise to design new variants, by simply
designing surrogate functions with the required properties. Furthermore, with our perspective we
have provided new insight on the challenge of controlling neighbourhoods of convergence that often
appear in variants of the Polyak stepsize. We demonstrate that this neighbourhood is unavoidable and
a fundamental issue causing instability. Moreover, we show that this issue is not due to the lack of
interpolation, as commonly believed, but instead because the minimum of the surrogate loss is not
zero more generally.

The limitations of our framework include the assumption of convex h in the generalized surrogate
that must be assumed apriori. It is unclear if this framework can be extended to the more general
case of noncovex surrogate functions. The class of such surrogates that admit fast rates and tight
neighbourhoods of convergence remains an open question that we leave to future work.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: To the best of our knowledge our framework in Section 3] that both generalizes
and analyzes the Polyak stepsize is novel. Additionally, we have included novel negative
results in Section

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of our framework and assumptions in Section 7]
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: All theoretical statements outline assumptions used in their respective proof.
Complete proofs are either presented directly in the main body or in the appendix. We do
not provide proof sketches for proofs not in the main body but do provide intuition and
discussion in such cases.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]
Justification: We do not include any experiments in our paper.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]
Justification: We do not include any experiments in our paper.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

 The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]
Justification: We do not include any experiments in our paper.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]
Justification: We do not include any experiments in our paper.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]
Justification: We do not include any experiments in our paper.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: As our paper is theoretical we do not have any concerns regarding: research
with human subjects, and data concerns. Nor do we foresee any societal impact.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Due to the fundamental research of our paper we do not foresee broader
societal impacts as per the guidelines below.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: We do not use nor provide any models or data.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: No assets of the kind are used.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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15.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: We do not use or release any such assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: No human subjects are used.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: No human subjects are used.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: An LLM was used to help derive result but not our core results or analyses.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Proofs for the Surrogate ¢

Theorem 1| (Curvature of the Polyak surrogate). Let f(z) be convex and define * € argmin,, f(x).
Define ¢(x) = 1(f(x) — f(x*))2 Then, we have

* ¢ is ||g, |I*>-LSUC around any y for any g,, € Of (y).
o If f is s-sharp, then ¢ has s*-quadratic growth.
o If f has p-quadratic growth and L-self bounded, then ¢ satisfies a local quadratic growth:

1plgl* i

*2
25551 |2, ¥g € 0f (=)

¢(x) >

Proof.

o r*) — xr—x* 1 2

= QU@ @) ()~ @ Ngyy — ) + g Vo)l
= LU~ F@) ()~ ) g,y — o)+ L TEIE
= (Fly)— £@) (F) ~ ") (g, — =)

IN
o

where the inequality is due to the convexity of f and the fact that f(y) — f(x*) > 0.

For the second property, we have
2

* * * o *
f(@) = f(@") = allz - 2| = é(x) - d(x") > o-|lo — 2.
For the third property we have

1 2 lgl?

I (f@) - @) = LI oo

—2 2L
O

Remark 6. Convergence of the last iterate follows from a classic argument with Fejér monotone
sequences. From Lemmal(l|we have that the distance to any solution is decreasing ||@,+1 — x*|| <
ey — a*|| for any minimizer x* of ¢, that is, {x, }+>0 is a Fejér monotone sequence with respect to
the solution set. Since we have ¢(xy) — 0 and ¢ is continuous then for every limit point €' of the
sequence it also holds that ¢(x') = 0 implying x’ is also a minimizer of ¢. Therefore we can use
the fact that if {x;}1>¢ is Fejér monotone with respect to the solution set and the set contains all
the limit points of the sequence then the sequence must converge to a point in the solution set (see
Theorem 8.16 in Beck [4)]).

B Relationship between Star Upper Curvature and Upper Quadratic Growth

For a function f, denote by X* := {x : f(x) = min, f(«)}. In Guille-Escuret et al. [21], they
define the following function class.

Definition 5. A function f is L-quadratically upper bounded (denoted L-QG™) if for all x € RY:

f@) — £ <Z min flz -3

We now show that convex L-QG™ are globally L-star upper curved, while the other direction is true
for the local version of the two definitions.
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Theorem 5. Let f be a convex L-QG™ function, then f is globally L-star upper curved. On the
other hand, let f be Ly-LSUC, then for all x we have

Ly .
fla)— £ < 22 min o — a3

Proof. Assume that f is L-QG™. Then, we have

* L .
fy)+{g.z—y) < fl@) < f*+ 5 min [lz —a'[,

where the first inequality is due to convexity and g € 9f(y). Now, set € = x* + %g for any
x* € X*, to have
2

lgll3

1
< - L —g—
S g+ r9-y)+ oF

5 L

1
:c*—l—zg—ac'

1 L
_ < * s -~ .
Jy) = < —(g.a" + g —y)+ 5 min

1
_ _oa*\ 2
=(g.y —x") *QLHgIIm

Now, assume that f is A,-LSUC and set g € df(x). For any * € argmin,, f(x), using Cauchy-
Schwarz’s inequality, we have

1 1 A
flx) = f(x") < (g,z—x") — xllgllg < llgll2llx — z*[]> — x\lg\@ < fllw —z*|3.
Given that this holds for all x* € X'*, it implies

A
fw)— 17 <22 in e —a'|3 =

C Proofs for the Stochastic Surrogate

Theorem[3, Let h : RY x S — R be convex. Denote by H(x) = E¢p[h(zx,€)]. Then, setting
7; = min W, m) in Algorithm we have

o Ifh(-,&,) is L-self bounded, we have
T
1 (1 1 —a*|? «
— il P
T tEﬂ min <2L,'y> E[H (x:)] < T +2vH (z*)
and

T T T

(1 1 . 1
> min (%7) E[H ()] < 5lle1 - 2" |+ 5 Y VElllg.[*) +7 Y H(z").
t=1 t=1 t=1

* Ifh(-,&,) is G-Lipschitz, then we have

Glley — 27|

VT

1 iE[H(:B ) < o = @) 2H (z*) +
T Vi=aT

+ G/2vH (x*) .

o Ifh(-,€) is L-self-bounded and H(x) has u-quadratic growth, then

1 —
E [Jers —o*|?) < E[le: - 2*|] "' + b-————H(a"),

where a = min (.7) and b = 2 min (57.9).
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Proof. For simplicity, denote by h;(x) = h(x,&;).

From the Lemma 3] we have

x n 1
Znt < *”331 —z*|? +Z ! ( PAE ) llg; || (x; —&—Zn,ﬁt @) h(x*) .

t=1
For the last term in the r.h.s., we have

Nehe (@) he(x”) = min <||9127 ]%Zmyf)) he (@) he (™) < vhe(2™) .

Observe that if h; is L-self bounded then ||g;||> < 2L(h¢(x) — infg hi(x)) < 2Lhi(x). Therefore,
we have

. 1 . ht(wt) 2
— < — = .
mirx (2 ,7) ht(ﬂft) < 1mMin < || tHQ , Y ht(ﬂ%g) ntht ($t)

Now, since 7: < 1/||g,|1? the second term on the r.h.s can be discarded because it’s negative. Taking
expectations, we have the first stated bound.

For the second result, bring on the Lh.s. the terms %hf (x¢). Taking expectations, we have the stated
bound.
For the third result, first of all observe that for any a,b > 0 we have

1 1

min(e, b) = S e 1/0) 2 Ta s i/b

Hence, we have

() ) HED) hi ()
W (x,) = mln( , he(x >y .
e a7 ") M) 2 Vi) gl = e + 167
Now, observe that the function B(z) = - +7G2 is convex x > 0, because B" (z) = % So,

summing over time and using Jensen’s 1nequa11ty, we have

1< 1 &
B <T;ht(wt)) < T;B(ht(:ct —

||331 - w*||2

3 hie)

3
§
+
2
%

\
’ﬂ\w

Va2 +dzyG? . . . .
Note that B~!(z) = % <z4+G that is an increasing concave function for z > 0.
So, inverting B and taking expectation, we have

T
1 e ==t 2 "
T; ( i +T2ht(m)
*H2

le1 — Gllzs — x|
< ———+2H(x") + +G\/2 H(x*)
7T @)+ = !
For the smooth and quadratic growth case, we have

. 1
win (5.7 ) ) < ()

<oy — @*|]? = w1 — &*||* + 2nhe () e ()
<y — | — @1 — @] + 29he(27) .

Taking expectations and using the quadratic growth assumption on H, we have
1 1
X i <2L"y> E [z — 2*]?] < min <2Lv> E{H (z) — H(z")]
) 1
B [l - 2] - & (Jors - 2] + (20— min (57.7) ) #a)

>Using the inequality v/z + y < vz + .y Vz,y > 0.
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Hence, we obtain
E (@1 — 2*]*] < (1 — a)E [[|@; — 2*|*] +b,

where a = %min (ﬁ,'y) and b = (2’)/ — min (ﬁ,'y)) H(x*). Note we have 0 < a < w/ar < 1.

From this inequality, it is immediate to obtain

*2 *12] T+1 1—a"t!
E[llzrs —2*|°] <E[|z1 —2*|*]a to—7——- N

D Additional Convergence Result for Generalized Polyak Stepsize

Corollary 1. Let f : R? x S be convex and L-self-bounded. Define x> =

argmin, (Eeplf(z,€)] = F(x)). Let h(x,€) = (f(2,€) — f(x*,€))s. Then, running Al-
gorithm[I\with v = oo, we have

< 2Ljes — 2| E[\/2L(F (z*) — E[inf, f (2, §)]) |21 — z*|
— T \/T )

— 1 T _ .
where T = 1 ), Ty OF T = argMingep o0y F(T).

Proof. Given the definition of h, we have that H (x*) = 0. Moreover, h(x, &) > f(x, &) — f(x*, £),
hence E[H ()] > E[F(x;)] — F(«*) for any ¢.

‘We have that

Of(x,8), if f(x,8) > f(z*, €)
Oh(z,§) = {0}, if f(x,€) < f(z*,€) .
{fag:ae(0,1],g € 0f(x,8)}, if f(x,8) = f(=*,§)

Hence, for all g, € Oh(x:, €,) we have
lg.|I* < 2L(f (=.&,) —inf f(.£,))
=2L(f(=,&) — f(2", &) + f(=", &) —nf f(2,£))
< 2L(h(z.&) + f(a* &) — inf f(.,))
So, using this inequality in Lemma 3| gives

Z h2( ) ET: Znt h2 wt 1”:1:1 —CE*||2. (8)
L(hy(xs) + fi(z* P} 2||.9t||2 2

t=1

Now, from Cauchy—Schwarz inequality, for any non-negative random variable Y and random variable
X, wehave E[X?/Y] > (E[X])?/E[Y]. Denote by f; = inf, f(x,&,). Giventhat f;(x*)—f; >0,
if fo(x*) — f} = 0 with probability 1, i.e., F(x*) — E[inf, f(x, £)] = 0, then the expectation of the
Lh.s. of the previous inequality is E[h:(x;)]. Otherwise, if we assume F'(x*) — E[inf,, f(x,£)] > 0
we have

hi (@) S (B (:)])?
AL(hy() + fi(2*) = f) | — AL(E[hy(a)] + F(x*) — E[infy, f (2, §)]) -

Hence, in all cases we have the last expression is a lower bound to the l.h.s. of @ ‘We now can
proceed as in the proof of the Lipschitz case in Theorem [3] to have the stated bound. O

We now extend Theorem [3to Holder-self-bounded functions.
Definition 6. We say that f is (L,,v) Holder-self-bounded if there exits v € [0, 1] and L,, such That

lolP < (14 5) " L3 (1(e) - £t P, v < 0f(e).
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This definition is weaker than both Lipschitz and smoothness and it is easy to see that L-smooth
functions satisfies this condition with » = 1 and L; = L.

The following theorem generalizes both the Lipschitz and the smooth case, recovering both bounds
up to constant factors.

Theorem 7. Let h : R? x & — Rxq be convex. Denote by H(x) = E¢.p[h(z, £)]. Assume that

h(-,&,) is (L,,v)-Holder-self bounded. Then, setting n; = min (”g = m) in Algorithm

where Q(y) = 2y + L, (2 vy) H

we have

’ﬂ \

S+ )"

Proof. For simplicity, denote by h;(x) = h(x,&).

From the Lemma 3] we have
T

T T

1 1 N " 1
Zmﬁf(ﬂ%) < §||331 -z + Z é (nt - g||2> llg:lI?h () + Zntht(wt)ht(a:*) .
t=1 t=1 t

t=1
For the last term in the r.h.s., we have

nehe (@) he(2*) = min (IIgi“’ , m(L)) he(:)he(2*) < vhe(z) .

Observe that if h; is (L,, v)-Holder-self-bounded then

2 1 % = . 2v 2
lgell < ( 1+ > L) (hy(x) — Hmlf he(x)) = < Ky he(x) ™

2v 2
where K, = (1 + %)™ L)™. Therefore, we have

, h}% x . hi(x

min ti(t)ﬁ ht(x:) < min ( il t2),’y) he(:) = nchi (24) -
K, lg.l

2
As before, we lower bound the minimum with the convex function B(z) = —2-"—:

2T 9K,

1—v 2
. R (g h (x
min tT(t)/Y he(x:) > M = vB(hi(zy)) -

htlﬁ (z¢) + 7K,
As before, this allows us to use Jensen’s inequality:

*||2

1« 1 — ||cc x 2
|-
B<T;ht<mt>> <33 Bue < P 25

For simplicity of calculations, we now lower bound B(z),

C(z) = 0.5min | z, LABL o xlli < B(z).
7K, 2max{z ™ , vK,}

Note that C'(x) is invertible and its inverse is

Cil(y) 2?/7 ify > (VKV) v
(27K,y) ", ify < (vK,)Tv

+v

< 2+ (29K,y)
1 124
:2y+L(2’yy)2 (1+ ) .

Taking expectations and using Jensen’s inequality gives the stated bound. O
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E Proofs for Section

Lemma 4. Let f : R" — RT where f* = inf,, f(x). Then for any ¢ > 0 the following are
equivalent:

* flx) = fr<ef
* fla) - < m i),

Proof.

f@)—f"<cf*o f(x) <(c+1)f*
f(z) «
ety <7

o f@ -1t < (1= ) fl@) = S f@). =

Proposition[I} Suppose h is convex, strictly positive, L-self-bounded, and satisfies the quadratic
growth condition h(x) — h* > L@ — x*||?, where * = arg ming h(zx) is the only fixed point of
T (6). Then for any point x € S = {y : h(y) — h* < h* SL“_“} we have

1T () — 2| > [je — 2|

Proof. Let ; be in S then by definition of 7" we have

1 w2 _ L * |2 o 2
Slzee —@*|]" = Slloe — @™[]° = mlgy, & — %) + g
2 2 2
1 oM
> a2~ mllg e, 2+ g,
1 h(z¢) h(z)?
= e — a2 = T g 4 M
lg.l lg.l
1 h(z:) | h(x
= gl = o G |2~ -0
gl lg.ll
If h(xy) — h* < h* SL’:# then we have by LemmaEI
H/(8L—p) + 1 _ 8L

ha > ( ) ()~ 1) = 2wt~ )

/(8L —p)

Consequently,
h(x:) _ 4L (h(z:) — h(z*)) @, — =
2llgll — p lg.ll lg:|

Where the last inequality follows from & being self-bounded and convex,

*H2

> 2L > |lxy — x| .

1
o lgell” < (@) — b < (g, @ — *) < |g[l@ — 2* - 0
Proposition 6. Suppose h is convex, strictly positive, L-Lipschitz, and has a p-sharp minimum

h(x) — h* > plle — x*||, where * = arg ming h(x) is the only fixed point of T (6). Then for any
pointw € S ={y :y #x*, h(y) — h* < h* 5} we have

1T (2) — 2*[| > | — 2" .

Proof. Let x; € S then by following similar steps to Lemma([I] we have
h(zy) [h(zt)
lg:ll L2llg.ll

1 1
§||$t+1 — ¥ > §Hwt—$*||2+ —lzt —x
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By Lemma[d] we have

h(m) — h* < h*QL’”‘_ .
< h(xy) > <Im) (h(xy) — h*) = %(h(mt) —h*).

Therefore, by sharpness and Lipschitz property of h, we have
hay)  L(h(z:) —h*) _ Lllz — 2|
2(g.|l pllgdl = llgell

Proposition 2] (Cycling and failure to converge). There exists a strictly positive smooth and strongly
convex function h, and initial point &, such that iterates from update (@) cycle and satisfy the
inequality h(+ Z§=1 ;) —h*> 6> 0forallt.

> |le: — x| - O

Proof. The proof is constructive: consider h : R — R, h(x) = 22 + 1, so h* = 1. Observe that the
update is
?2+1  z7-1
x = T+ — =
i+l ¢ 2.’Et 2.’L't

Now, we want to choose x; so that we oscillate between 3 possible values.

Set x1 = cot 6 where € has to be determined. The update becomes
2 —1 B cot?6 — 1
2¢1  2cotf

To = = cot(26),

where in the last equality we used the identity for cot. Hence, we have x; = cot(2'9). Given that
we want to oscillate between 3 values, we want x; 3 = x, that is, cot(2!+30) = cot(2'0). We can
achieve it if we select § = /7. Indeed, we have

x1 = cot(m/7)

o = cot(27/7)

x3 = cot(4m/7)

x4 = cot(8m/7) = cot(m + w/7) = cot(n/7) = x1 .

Finally, one can verify numerically that f(} 22:1 xe) — f*>0.77. O

Proposition 8. There exists subregions within the unstable regions in Propositions [I|and [6|where
the stepsizes are upper bounded.

Proof. By convexity of h we have h — h* < (g,, x; — x*) < ||g.||||x: — =*||, so ||g;]| > %

By assumption in Lemmas [I]and [6]the unstable region is S = {x : h(x) — h* < ch*} where ¢
depends on the properties of h. Therefore, for € S and denoting g € dOh(x) as any subgradient at
x, we have

h(z) h@)le -z _ (c+ Dh*|z —z*|*
lgl* = (h(x) — h*)? (h(z) —h*)>

, then we have {2} < <tlp* Therefore, the

If h has a sharp minimum, h(x) — h* > pllx — x* EAE 2

stepsizes are always bounded within S.

Now consider the subregion Sy, = {x : h(x) — h* < {h*} for some k > 1. Consider x € S'\ Sk,
thatis (1 + £)h* < h(x) < (1 + c)h*. If h statisfies the quadratic growth condition h(xz) — h* >
£llx — *||* then
h(x) < (c+ 1)h* ||z — x*|? < 2(c+1)h* < 2k(c+1)
lgll? (h(z) =h*)* = p(h(@) =h*) = pe

Where the last inequality follows since x ¢ Sj. Therefore, stepsize is bounded within S \ Sy, and
grows as we increase k.

€))
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Definition 7 (Lusin (N ') condition). Let T : R — R*. We define T~! over a set S C R as
T71(8) ={x:T(x) € S}.

We say that T satisfies (N 1) condition if for every set E of measure zero we have that T~ (E) also

has measure zero.

Lemma 5. Let T : R® — R" with a unique fixed point x*. If x* is unstable, that is, there exists
§ such that x # x* and |z — x*|| < 5, then |T(z) — x*|| > ||z — =*|. Define T~ over a set
SCR"asT7Y(S) = {x:T(x) € S}. IfT~*({x*}) is of measure zero for any k, then

P(lim wt::c*) =0.
t—oo
In other words, the set of initializations that can converge to the fixed point has measure zero.

Proof. We divide R™ into two sets, S = (J;—, T~ *({z*}), and its compliment S¢. S represents the

points that can exactly reach the unique minimizer z*. If T%({z*}) is a null set for every k then so
is S since the countable union of null sets is a null set.

Now we show that for all initializations in ; € S€¢, x; cannot converge to *. Suppose the contrary,
limg oo ¢ = x*. Let B = {y : y # x*, ||z — =*|| < J}. Since x; — x* there exists a step n
where {&; };>, C B. Similarly, there exists n’ > n where ||z; — «*|| < ||z, —«*| forallt > n'.
This is a contradiction as we have that ||z, — z*|| < ||€n+1 — *|| < - -+ < ||&, — «*||. Therefore,
the initializations that allow for ; — x* coincide exactly with the null set S.
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