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Abstract

Existing Text-to-SQL generators require the
entire schema to be encoded with the user
text. This is expensive or impractical for large
databases with tens of thousands of columns.
Standard dense retrieval techniques are inad-
equate for schema subsetting of a large struc-
tured database, where the correct semantics of
retrieval demands that we rank sets of schema
elements rather than individual elements. In
response, we propose a two-stage process for
effective coverage during retrieval. First, we
instruct an LLM to hallucinate a minimal DB
schema deemed adequate to answer the query.
We use the hallucinated schema to retrieve a
subset of the actual schema, by composing
the results from multiple dense retrievals. Re-
markably, hallucination — generally consid-
ered a nuisance — turns out to be actually use-
ful as a bridging mechanism. Since no exist-
ing benchmarks exist for schema subsetting
on large databases, we introduce three bench-
marks. Two semi-synthetic datasets are de-
rived from the union of schemas in two well-
known datasets, SPIDER and BIRD, result-
ing in 4502 and 798 schema elements respec-
tively. A real-life benchmark called SocialDB
is sourced from an actual large data warehouse
comprising 17844 schema elements. We show
that our method1 leads to significantly higher
recall than SOTA retrieval-based augmentation
methods.

1 Introduction

State-of-the-art language model based Text-to-SQL
generators provide impressive accuracies on well
known benchmarks, but they require the entire
DB schema as input, along with the user question
text (Scholak et al., 2021; Li et al., 2023a; Liu
et al., 2023; Rajkumar et al., 2022). Widely-used
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1The code and dataset for the paper are available at https:
//github.com/iMayK/CRUSH4SQL

benchmarks such as SPIDER (Yu et al., 2018) and
WikiSQL (Zhong et al., 2017), and even “datasets
in the wild,” like SEDE (Hazoom et al., 2021), are
all associated with modest-sized schema. E.g., the
average number of tables and columns in any one
schema for SPIDER is 5.3 tables and 28.1 columns,
and for SEDE is 29 tables and 212 columns.

In contrast, real-life datasets may have thousands
of tables with hundreds of columns per table. E.g.,
a real-life data warehouse of data about various so-
cial indicators of a country comprises of more than
17.8 thousand columns! For such large schema, we
cannot afford to include the entire schema in the
prompt preceding each query; only a high-recall
subset of the schema can be attached to each ques-
tion. LLM-as-a-service usually charges for each
token exchanged between client and server, so we
want the subset to be as small as possible while
ensuring high recall. Even for in-house (L)LMs or
other Text-to-SQL methods, admitting extraneous
schema elements as candidates for use in the gen-
erated SQL reduces its accuracy (Li et al., 2023a).

Retrieving a subset of a corpus of passages to
augment the LLM prompt has become an emerg-
ing area (Shi et al., 2023; Ram et al., 2023) for
non-Text-to-SQL applications as well. Most re-
trieval modules depend on standard “dense passage
retrieval” (DPR) based on similarity between the
question embedding and an embedding of a docu-
ment (Khattab and Zaharia, 2020) or schema ele-
ment (Nogueira et al., 2020; Muennighoff, 2022).

We argue (and later demonstrate) that Text-to-
SQL needs a more circumspect approach to jointly
leverage the strengths of LLMs and dense retrieval.
Consider a question “What is the change in fe-
male school enrollment and GDP in Cameroon
between 2010 and 2020?”, to be answered from
a large database like World bank data2. An ef-
fective Text-to-SQL system needs to realize that
GDP and female school enrollment are two key

2https://datacatalog.worldbank.org/
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’atoms’ in the question and match these to ta-
bles Development indicators and Education
statistics respectively. Additionally, it needs to
generalize Cameroon to Country, and 2010,2020
to year to match correct columns in these ta-
bles. This requires generalization and phrase-level
matching via LLMs (with all the world knowl-
edge they incorporate); pre-deep-NLP and ‘hard’
segmentation techniques (Gupta and Bendersky,
2015), as well as token-decomposed deep retrieval,
such as ColBERT (Khattab and Zaharia, 2020), are
unlikely to suffice.

Our setting thus requires us to retrieve, score
and select sets of schema elements that collectively
cover or explain the whole query. This bears some
superficial similarity with multi-hop question an-
swering (QA). Closer scrutiny reveals that, in multi-
hop QA benchmarks such as HotPotQA, each ques-
tion comes with only 10 passages, out of which 8
are ‘distractors’ and two need to be selected to ex-
tract the answer. The best-performing systems (Li
et al., 2023c; Yin et al., 2022) can afford exhaus-
tive pairing of passages along with the question,
followed by scoring using all-to-attention — such
techniques do not scale to our problem setting with
thousands of tables and hundreds of columns per
table, where as many as 30 schema elements may
be involved in a query.

Our contributions: In this paper, we propose a
new method called CRUSH3 that leverages LLM
hallucination (generally considered a nuisance) in
conjunction with dense retrieval, to identify a small,
high-recall subset of schema elements for a down-
stream Text-to-SQL stage. CRUSH first uses few-
shot prompting of an LLM to hallucinate a minimal
schema that can be used to answer the given query.
In the example above, the LLM might hallucinate
a schema that includes tables like
• Indicators(name, country, year) and
• Education enrollment data(type,
country, year, value)

The hallucinated schema contains strings that are
significantly closer to the gold table names men-
tioned earlier. We use the hallucinated schema
elements to define a collection of index probes for
fast index-based retrieval of the actual schema ele-
ments in the DB. Finally, CRUSH approximately
solves a novel combinatorial subset selection objec-
tive to determine a high-recall, small-sized schema
subset. The objective includes special terms to
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maximize coverage of distinct elements of the hal-
lucinated schema while rewarding connectivity of
the selected subset in the schema graph.

Our second contribution involves the creation
of three novel benchmarks for the task of retrieval
augmentation related to Text-to-SQL conversion on
a large schema. We developed two semi-synthetic
benchmarks, encompassing 4502 and 768 columns
respectively, by taking a union of all databases
from the well-known SPIDER benchmark, as well
as the relatively recent BIRD benchmark. The
third benchmark is sourced from a production data
warehouse and features 17.8 thousand columns.
This serves to mitigate a critical limitation in ex-
isting Text-to-SQL benchmarks, which have much
smaller schema. Beyond its large scale, our third
benchmark introduces additional challenges such
as a significantly higher overlap in column names,
and challenging lexical gaps (when compared to
SPIDER), between schema mentions in the ques-
tion and the actual schema name.

Using these benchmarks, we present an exten-
sive empirical comparison between CRUSH and
existing methods. We show consistent gains in
recall of gold schema elements, which translates
to increased accuracy of Text-to-SQL generation.
The results of our analysis provide valuable in-
sights into the weaknesses of the existing single-
embedding or token-level representations.

2 Notation and problem statement

We are given a large database schema D consist-
ing of a set of tables T , with each table t ∈ T
comprising of a set of columns c ∈ C(t). We will
use d to denote a schema element (‘document’),
which can be either a table or a column. A schema
element d has a textual name or description S(d).
The text associated with a column t.c is written as
the concatenation S(t).S(c) as shown in Figure 1.

Apart from the database, the input includes a nat-
ural language question x. Question x is associated
with a (possibly unknown) correct (‘gold’) SQL
query q(x). The gold SQL query q(x) mentions
a subset R(q(x)) of the schema elements from D.
Almost always, |R(q(x))| ≪ |D|.

Our goal is to retrieve from D, a (small) subset
R(x) ⊂ D that includes R(q(x)), i.e., R(q(x)) ⊆
R(x). The question x will be concatenated with
the schema subset R(x) and input to a Text-to-SQL
model to convert the question into an SQL query.
There are multiple reasons to minimize |R(x)|.

https://hotpotqa.github.io/


Hallucinated schema 

club(name, id, location, description),
member_of_club(club id, student id),

student(id, age)

 :  Count the number of members in the
Bootup Baltimore Club older than 18.

Prompt prefix for decomposition

Hallucinate the minimal schema of a relational
database that can be used to answer the natural
language question. Here are some Examples:
Example 1: Question: Show the season, the player,
and the name of the team that the player belongs
to. 
Tables: 1. match_season(season, team, player),
             2. team(name, team identifier)
Example 2: ...

LLM

 club.student.age,
club.member_of_club.clubid,
club.member_of_club.stuid

Text2SQL

Real schema 
college.student.age, club.student.age,

club.club.clubid,  college.student.stu_num,

shop_membership.membership_register_branch.branch_id,

club.member_of_club.club_id,
shop_membership.branch.membership_amount,

club.student.major, club.club.clublocation,

college.student.stu_class, 

shop_membership.membership_register_branch.member_id,

club.student.stuid, e_learning.students.student_id, 

shop_membership.membership_register_branch.register_year,

club.club.clubname,
shop_membership.member.member_id,

student_assessment.students.student_id, coffee_shop.member.age,

club.member_of_club.stuid, gymnast.people.age,

debate.people.age, culture_company.book_club.year, 

journal_committee.editor.age, dorm.student.age,  

club.member_of_club.position,

 riding_club.club.club_id,  baseball.team.attendance, club.student.advisor,

riding_club.club.start_year, university_baskteball.university.enrollment,

club.clubdesc,
student_assesment.student_course_attendance.student_id,

behavior_monitoring.students.student_id

Solve collective objective
in Eqn. (6)

Figure 1: Illustration of how CRUSH works. We prefix a decomposition prompt with in-context examples to the
question x and submit to an LLM. The response has a hallucinated schema K(x) with ‘query elements’ k. The real
schema D has ‘documents’ d, which may be connected to each other via same-table-as and primary-foreign-key
relations ed,d′ . The queries from the hallucinated schema are used to get candidate real schema elements C(x).
Similarities cos(k,d) lead to sk,d scores. B is the budget size of R(x), the relevant real schema subset to be
returned by the optimizer. R(x) is used by the downtream Text-to-SQL system.

(1) The size of D is significantly larger than can
be fitted in a prompt to a LLM. (2) LLM-as-a-ser-
vice usually charges usage fees in proportion to
the number of tokens exchanged with the client.
(3) The performance of even in-house (L)LMs or
other Text-to-SQL systems degrade when extra-
neous schema elements are presented as possible
candidates for inclusion in the SQL query. In this
paper we focus on the task of efficiently retrieving
R(x) from D, while maximizing the recall of gold
schema elements in R(q(x)).

We assume that the schema D is indexed in a
pre-processing step. Each table t(c1, . . .) in the
database D is exploded into the form t.c for each
column, where ‘.’ is a separator character. Each col-
umn now acts as a ‘document’ d in an information
retrieval system, except that we will retrieve sets
of documents. Each document is sent into a pre-
trained transformer, SGPT (Muennighoff, 2022),
or the LLM service to get an embedding d.

3 The CRUSH4SQL Approach

Successfully matching a user question x to a rel-
evant schema R(q(x)) could be quite non-trivial,
since the schema element names or descriptions
are often not directly mentioned in the question.
For example, consider the question x = Count the
number of members in the Bootup Baltimore Club
older than 18. In order to match this question prop-

erly to gold schema D, containing such schema
elements as Age, Club description, and Club
members, etc., we need to perform multiple types
of lexical and syntactic reasoning on the question
and schema:
• extract segments like older than 18 and Bootup

Baltimore Club,
• generalize the first segment to a likely schema

element Age, and,
• for the second segment, instead of attempting

to match strings like Bootup Baltimore verba-
tim, match to a schema element called Club
description.
To bridge such large lexical gap between the

tokens of x and the gold schema R(q(x)), we de-
signed a two-phase approach. In the first phase,
we transform x into an intermediate form K(x)
comprising of multiple generalized segments lever-
aging an LLM. In the second phase, we use K(x)
to retrieve from the DB schema D suitable schema
element subset R(x), by approximately optimizing
a combinatorial objective that collectively maxi-
mizes coverage of all elements of K(x). We de-
scribe these two phases next.

3.1 LLM-based Query Transformation

Our goal here is to infer from the question text x,
a set K(x) of intermediate search strings, which,
when used to probe a suitable index over the client’s



DB schema, will retrieve R(x). After unsuccessful
attempts with query decomposition and token-level
retrieval methods, we proposed to harness an LLM
to aid with this task.

Initially, we attempted to use the LLM to extract
variable name mentions or perform conventional
query decomposition like in (Pereira et al., 2022).
While these showed promise, we obtained much
better results when we took a leap and harnessed
the power of an LLM to directly hallucinate a DB
schema that could be used to answer the question x.

We use state-of-the-art LLMs with few-shot
prompting to hallucinate such a schema. We em-
ploy GPT-3 (text-davinci-003) with a fixed prompt
comprising of six in-context examples as shown
in the first half of Table 1 for one of our datasets.
We create the desired output K(x) corresponding
to each x in the prompt guided by the gold schema
R(q(x)) in the SQL corresponding to x. In the
second half of Table 1 we show examples of a few
hallucinated schema from the LLM in response
to the prompt. In each of the four examples, we
see that the LLM has produced very reasonable
schemas applying the right level of generalization
to constants and implicitly segmenting the query
across multiple tables in the hallucinated schema.
The same trend holds for the significantly more
challenging examples from the SocialDB dataset
as seen in Table 15, and is also observed in the
BirdUnion dataset as shown in Table 16.

We experimented with a few other prompt types,
and we will present a comparison in Section 5.4 of
our empirical evaluation.

3.2 Collective Retrieval
In this stage our goal is to retrieve a subset R(x)
from D so that collectively R(x) is closest to the
halluncinated schema K in the context of x. First,
we retrieve a candidate set C(x) using K as probes
on the indexed embeddings in D, and then we col-
lectively match C(x) to K(x).

3.2.1 Retrieving candidate set C(x)

K(x) consists of a set of hallucinated tables with
their hallucinated columns, each of the form
t(c1, . . .). These are written out as a set of “t.c1”
column names prefixed with table names. Hence-
forth, we regard K(x) as a set of such hallucinated
texts {k}. Each k ∈ K(x) is converted into an
embedding vector k for retrieving ‘real’ schema
elements, via the following steps:

1: form concatenation “x t.c”

2: apply a pretrained transformer,
SGPT (Muennighoff, 2022)

3: get per-token contextual embedding vectors
4: average-pool per-token embeddings into k

(Through experiments, we will show that using the
form “x t.c” improves recall, compared to not pre-
fixing x.) At this stage, K(x) has been converted
into a bag of vectors {k}. We perform a nearest
neighbor search on D using each key vector k, and
retain some number of top matches per probe k
based on cosine similarity of their embeddings.
This gives us the candidate set C(x) of schema
elements from D. See Figure 1.

Cosine baseline: A baseline method may simply
return C(x). However, C(x) thus collected was ob-
served to be biased toward generic, uninformative
schema names such as Name and Identifier that
appear across many tables. This hurts coverage.
Therefore, we design a more careful optimization
around C(x), described next.

3.2.2 Retrieval objective
We extract from the candidate set C(x) a manage-
able subset R(x) with size |R(x)| ≤ B for some
size budget B, that provides coverage to all parts
of K, and also to reward connectivity in the schema
graph on the retrieved subset. Recall that a large
budget not only results in a higher expense to use
an LLM-as-a-service, but may also provide a more
challenging generation task for the downstream
Text-to-SQL module.

Entropy-guided similarity: Instead of just co-
sine as the distance between a k ∈ K and d ∈ D,
we refine the similarity to score match of rarer
columns higher. Consider some k ∈ K(x) that
has good matches with many schema elements
d ∈ C(x). In information retrieval, this is anal-
ogous to a query word with low inverse document
frequency (IDF) (Manning et al., 2008), and its ef-
fect on scores should be damped down. In the deep
retrieval regime, we use a notion of entropy to act
as a surrogate for IDF. Specifically, let cos(k,d)
be the cosine score between k and d. Fix k and
consider the multinomial probability distribution{

1
2(1 + cos(k,d))∑

d′∈C(x)
1
2(1 + cos(k,d′))

: d ∈ C(x)

}
(1)

in the multinomial simplex ∆|C(x)−1|. This multi-
nomial distribution has an entropy, which we will
denote by H(k). If H(k) is large, that means k
has no sharp preference for any schema element



in C(x), so its impact on the perceived similar-
ity cos(k,d) should be dialed down, inspired by
TFIDF vector space model from information re-
trieval. We achieve this effect via the score

sk,d =
1

2
(1 + cos(k,d)) σ(H̄ −H(k)), (2)

where σ(·) is the standard sigmoid shifted by the
average entropy H̄ defined as the average H(k)
over all k ∈ K.

Coverage score: We will assume that the hal-
lucinated schema elements are all informative, so
we would like to ‘cover’ all of them using R(x).
We score coverage of a k by R(x) using a soft
maximization function defined as

smx(skd : d ∈ R(x)) = log
∑
skd

exp(skd) (3)

The first part of our collective objective is

O1(R(x)) =
∑

k∈K(x)

smx(skd : d ∈ R(x)) (4)

Connections between ‘documents’: Schema el-
ements are not isolated, but related to each other
using the rich structure of the schema graph (Wang
et al., 2020, Figure 2). For example, two columns
may belong to the same relation, or they may be-
long to different tables connected by a foreign
key-primary key link. A scalar connectivity score
e(d, d′) ≥ 0 characterizes the strength of such a
connection between d, d′ ∈ C(x). In our experi-
ments we choose e(d, d′) to be a non-zero constant
γ for all column pairs that are part of the same table
or connected by a foreign key. We should choose
R(x) to also maximize

O2(R(x)) =
∑

d∈R(x)

smx(e(d, d′) : d′ ∈ R(x)) (5)

The function smx is chosen instead of directly
summing e(d, d′) for all pairs in R(x) to prevent
quadratically growing rewards for large subgraphs.

Overall objective: Combining the two desider-
ata, we get our overall objective as

R(x) = argmax
R⊆C(x)
|R|=B

(
O1(R) +♣O2(R)

)
, (6)

with a balancing hyperparameter ♣. It is possible to
express the above optimization as a mixed integer
linear program. In practice, we find it expeditious
to use a simple greedy heuristic. Also, we fix ♣ =
1 in all experiments.

4 Related work

Dense Passage Retrieval (DPR): A default
method of identifying R(x) is based on nearest

neighbors in a dense embedding space. First a lan-
guage model (LM) M like SGPT (Muennighoff,
2022) or OpenAI’s Similarity and Search Em-
beddings API (model text-embedding-ada-002)
converts each string S(d) into a fixed-length em-
bedding vector which we denote d = M(S(d)).
Given a question x, we obtain the embedding x of
x, i.e., x = M(x), and then retrieve the K nearest
neighbors of x in D as R(x) = K-NN(x, {d : d ∈
D}). This method has the limitation that the top-K
retrieved elements may be skewed towards captur-
ing similarity with only a subset of the gold schema
R(q(x)). The RESDSQL (Li et al., 2023a) Text-to-
SQL system, too, selects the most relevant schema
items for the encoder, using a cross-encoder (based
on RoBERTa) between the question and the whole
schema. Although the early-interaction encoder
may implicitly align question tokens to schema to-
kens, there is no apparent mechanism to ensure
phrase discovery and (LLM knowledge mediated)
measurement of coverage of question phrase with
schema element descriptions.

LLMs for ranking: Sun et al. (2023) use an
LLM for relevance ranking in information retrieval.
They show that a properly instructed LLM can beat
supervised learning-to-rank approaches. No query
decomposition of multi-hop reasoning is involved.
Other uses of LLMs in scoring and ranking items
are in recommender systems (Gao et al., 2023; Hou
et al., 2023): turning user profiles and interaction
history into (recency focused) prompts, encoding
candidates and their attributes into LLM inputs,
and asking the LLM to rank the candidates. No-
tably, LLMs struggle to rank items as the size of
the candidate set grows from 5 to 50.

LLMs for question decompostion and retrieval:
Decomposing complex questions has been of inter-
est for some years now (Wolfson et al., 2020). In
the context of LLMs, Pereira et al. (2022) propose
a question answering system where supporting evi-
dence to answer a question can be spread over mul-
tiple documents. Similar to us, they use an LLM
to decompose the question using five in-context
examples. The subquestions are used to retrieve
passages. A more general architecture is proposed
by Khattab et al. (2022). None of these methods use
the notion of a hallucinated schema. They match
subquestions to passages, not structured schema
elements. They entrust the final collective answer
extraction to an opaque LM. In contrast, we have
an interpretable collective schema selection step.

https://openai.com/blog/new-and-improved-embedding-model
https://openai.com/blog/new-and-improved-embedding-model


# LLM prompt: Hallucinate a minimal schema of a relational database that can be used to answer the natural language
question. Here are some examples:

x Count the number of members in the Bootup Baltimore Club older than 18.
K Club(Name, id, description, location), member_of_club(club id, student id), Student(id, age)
x What are the names of all stations with a latitude smaller than 37.5?
K Station(Name, Latitude)
x Show the season, the player, and the name of the team that players belong to.
K Match_season(season, team, player), Team(name, team identifier)
x Find the first name and age of the students who are playing both Football and Lacrosse.
K SportsInfo(sportname, student id), Student(age, first name, student id)
x What are the names of tourist attractions reachable by bus or is at address 254 Ottilie Junction?
K Locations(address, location id), Tourist_attractions(how to get there, location id, name)
x Give the name of the highest paid instructor.
K Instructor(Name, Salary)

Hallucinated K generated by LLM given input x
x What are the names of properties that are either houses or apartments with more than 1 room?
K Property(name, type, number of rooms)
x Which employee received the most awards in evaluations? Give me the employee name.
K Employee(name, employee id), Evaluations(employee id, awards)
x What is the document name and template id with description with the letter ’w’ in it?
K Document(name, description, template id)
x What semester ids had both Masters and Bachelors students enrolled?
K Semester(id, start date, end date), Enrollment(semester id, student id, degree), Student(id, name)

Table 1: Examples of in-context training examples given to the LLM to prompt it to hallucinate a minimal schema
of a database that can be used to answer the given question.

5 Experiments

In this section we compare CRUSH with existing
methods for schema subsetting. We also present a
detailed ablation on the various design options for
CRUSH.

5.1 Datasets
We test on the following two benchmarks that
we designed, because of the absence of any pre-
existing large-schema benchmark.

SpiderUnion: This is a semi-synthetic bench-
mark derived from SPIDER (Yu et al., 2018), a pop-
ular Text-to-SQL benchmark, where each question
x corresponds to one of the 166 database schemas.
These schemas cover various, somewhat overlap-
ping topics such as Singers, Concert, Orchestra,
Dog Kennels, Pets, and so forth. Each schema is
compact, averaging approximately 5.3 tables and
28 columns. To simulate a larger schema, we com-
bine these 166 schemas, prefixing each table name
with its corresponding database name. The uni-
fied schema comprises 4,502 columns distributed
across 876 tables, forming the D. We evaluate
the model using 658 questions sourced from the
SPIDER development set after excluding questions
where the gold SQL contains a ‘⋆’. Unlike in SPI-
DER, the question x is not associated with one of
these 166 DB ids. Instead, the system has to find
the correct schema subset.

Our evaluation metric, given a retrieved set
R(x), is recall, defined as |R(q(x))∩R(x)|

|R(q(x))| . For each

question in the test set, since the gold SQL is
available, we have access to the gold retrieval set
R(q(x)) ⊂ D. We measure recall only over col-
umn names, since if a column name is selected in
R(x), the table name is always implicitly selected.

BirdUnion: Following the same approach as
with SpiderUnion, we created BirdUnion from
BIRD (Li et al., 2023b), a relatively new cross-
domain dataset, with 95 large databases and a total
size of 33.4 GB. It covers more than 37 profes-
sional domains, such as blockchain, hockey, health-
care, education, etc. To simulate a larger schema,
we combined 11 schemas in the development set
(where each schema covers approximately 6.82 ta-
bles and 10.64 columns), prefixing each table name
with its corresponding database name. The unified
schema comprises 798 columns distributed across
75 tables, constituting D. We evaluate the model
using 1534 questions sourced from BIRD dev-set.
We adopt the same evaluation metric as with Spi-
derUnion.

SocialDB: We created this benchmark from a
real-life data warehouse, which collates statistics
on various social, economic, and health indicators
from a large country, featuring diverse geographical
and temporal granularities. The complete database
schema is publicly accessible, though we withhold
the URL during the anonymity period. The ware-
house holds approximately 1046 tables and a total
of 18,685 columns. Each table and column carries
descriptive names. From administrators of the Web-



site, we obtained 77 questions along with the gold
tables, which contain the answers. Some examples
of questions and schema names can be found in
Table 15. We could not obtain gold column names
on this dataset, and thus our evaluation metric is
table recall measured as |Tables(q(x))∩Tables(R(x))|

|Tables(q(x))| .

5.2 Methods Compared
Single DPR (SGPT): This is the popular Dense

Passage Retrieval (DPR) baseline where we use
the SGPT LM (Muennighoff, 2022) to embed
x into a single embedding vector x and retrieve
from D based on cosine similarity with a d ∈ D.

Single DPR (OpenAI): As above, except we use
OpenAI’s Similarity and Search Embeddings
API (text-embedding-ada-002) as the LM.

Token-level Embedding (ColBERT): Instead of
searching with a single embedding we perform
token-decomposed retrieval for finer-grained in-
teraction (Khattab and Zaharia, 2020).

CRUSH: Our proposed method, where we use
OpenAI’s DaVinci to get hallucinated schema
with prompts in Table 1 for SpiderUnion and Ta-
ble 15 for SocialDB. Embeddings are obtained
using SGPT, because we need contextual em-
beddings for tokens in x (not supported in Ope-
nAI’s embedding API) to build embeddings for
k ∈ K. The default candidate set size is lim-
ited to 100, with edge scores assigned a default
value of e(d, d′) = 0.01 for all edges in both
SpiderUnion and BirdUnion, while it is zero for
SocialDB.

5.3 Overall Comparison
In Table 2 we present recall for different budgets
on the size of the retrieved set R(x) on the four
different methods on both the SpiderUnion and
SocialDB datasets. Key observations:
• We see a significant boost in the recall by

CRUSH, particularly at low to medium budget
levels. For example, on SpiderUnion at a budget
of ten columns, we recall 83% of gold columns
whereas the best existing method only gets up to
77%. On the BirdUnion dataset, we recall 76%
with CRUSH, while the best alternative method
reaches only 56%. On the more challenging
SocialDB dataset we recall 58% of gold tables
whereas the best alternative method gets 49%.

• Token-level methods are worse than even Single
DPR-based methods.

• Embedding of OpenAI is slightly better than than
of SGPT.

In Table 14 we present anecdote that illustrates
how CRUSH is able to more effectively cover the
gold schema, compared to Single DPR. Single DPR
gets swamped by matches to the student_id column
across many diverse tables, whereas CRUSH is
able to cover all gold columns.

Impact of improved recall on Text-to-SQL gen-
eration accuracy: We use the state-of-art RES-
DSQL (Li et al., 2023a) model for generating the
SQL using the schema subset selected by various
systems. Following standard practice, we use Exact
Match (EM) and Execution Match (EX) accuracy
to evaluate the quality of the generated SQL. As
seen in Table 3, the improved recall of schema
subsetting translates to improved accuracy of Text-
to-SQL generation. However, beyond a budget of
30, we see a drop in the accuracy of the generated
SQL, presumably because the Text-to-SQL method
gets distracted by the irrelevant schema in the input.
For the BirdUnion dataset, the RESDSQL system
could not handle the larger schema at budget 100,
but we expect a similar trend.

5.4 Robustness Across Prompt Variations

Before we arrived at the schema hallucination ap-
proach, we experimented with other prompts moti-
vated by the techniques in the question decompo-
sition literature. In Table 4 we present two such
alternatives. (1) Variables: that seeks to identify
key isolated variables mentioned in x, and (2) Rela-
tions: that relates the variables to a subject, roughly
analogous to a table name. We present a compari-
son of different prompt types in Table 6. Observe
that the schema-based prompts of CRUSH are con-
sistently better than both the earlier prompts.

In CRUSH we used six examples of hallucinated
schema in the prompt for in-context learning. We
reduce that number to two and four and present the
results in Table 7. Recall improves significantly
with more examples but even with two examples,
the LLM provides gains over the baseline.

In Tables 8 and 9, we present the impact of ran-
dom shuffling on the six in-context examples in
the prompt (Tables 1 and 15). We provide mean
and standard deviation schema retrieval recall and
downstream Text-to-SQL generation accuracy. No-
tably, across the five iterations, the standard de-
viation in recall and EX remains low, suggesting
robust performance regardless of the prompt order.
In Tables 10 and 11, we investigate the robustness
of recall and EX values when different sets of few-

https://openai.com/blog/new-and-improved-embedding-model
https://openai.com/blog/new-and-improved-embedding-model


Data set Method Budget−→
r @ 3 r @ 5 r @ 10 r @ 20 r @ 30 r @ 50 r @ 100

SpiderUnion Single DPR (SGPT) 0.50 0.61 0.76 0.86 0.89 0.92 0.95
Single DPR (OpenAI) 0.55 0.64 0.77 0.86 0.90 0.93 0.96
Token-level (ColBERT) 0.49 0.59 0.72 0.84 0.88 0.92 0.95
CRUSH (ours) 0.59 0.72 0.83 0.90 0.92 0.94 0.97

SocialDB Single DPR (SGPT) 0.35 0.40 0.45 0.52 0.58 0.67 0.73
Single DPR (OpenAI) 0.39 0.44 0.49 0.56 0.60 0.67 0.76
Token-level (ColBERT) 0.36 0.36 0.44 0.51 0.55 0.57 0.64
CRUSH (ours) 0.40 0.52 0.58 0.67 0.69 0.71 0.75

BirdUnion Single DPR (OpenAI) 0.33 0.43 0.56 0.66 0.72 0.8 0.93
CRUSH (ours) 0.39 0.54 0.71 0.82 0.88 0.92 0.97

Table 2: Comparison of recall for various column ranking methods on the test sets of SpiderUnion, SocialDB, and
BirdUnion datasets. We observe a significant boost in the recall by CRUSH of the gold schema at all budget levels.

Data set Method Budget−→
r @ 3 r @ 5 r @ 10 r @ 20 r @ 30 r @ 50 r @ 100

SpiderUnion Single DPR (OpenAI) 0.29/0.33 0.35/0.41 0.45/0.53 0.48/0.57 0.48/0.59 0.48/0.59 0.51/0.62
CRUSH (ours) 0.35/0.39 0.46/0.53 0.52/0.60 0.53/0.64 0.54/0.64 0.52/0.63 0.52/0.62

BirdUnion Single DPR(OpenAI) 0.03/0.07 0.05/0.10 0.07/0.13 0.09/0.15 0.09/0.16 0.10/0.18 -/-
CRUSH (ours) 0.04/0.07 0.07/0.11 0.09/0.15 0.11/0.19 0.11/0.19 0.12/0.21 -/-

Table 3: Exact Match (EM) / Execution Match (EX) accuracy when RESDSQL is used to generate SQL on schema
retrieved at various budgets from CRUSH and Single DPR (OpenAI). The higher recall of CRUSH’s retrievals lead
to more accurate SQLs. Very large budget worsens SQL accuracy.

Example Question
x Count the number of members in club Bootup Baltimore older than 18.

Variables: Age, Club
Relations: Age of club members, Name of the club

x What are the names of all stations with a latitude smaller than 37.5?
Variables: Latitude, Station
Relations: Latitude of the station, Name of the station

x Show the season, the player, and the name of the team that players belong to.
Variables: Match, Season, Player
Relations: Name of the team the player belongs to, Season(s) played by player, Name of the player

x Find the first name and age of the students who are playing both Football and Lacrosse.
Variables: Student, Age, Game, Football
Relations: Sports played by student, Age of student, Name of student

Table 4: Two alternative forms of transforming x into segments. Contrast these with the hallucinated schema in
Table 1. Only top-4 shown due to lack of space.

shot in-context examples. Low standard deviation
suggests a high level of robustness across differ-
ent samples. In Table 12, we explore the LLM’s
schema generation under different temperature set-
tings, finding minimal impact on the results. Fi-
nally, as shown in Table 13, even in the zero-shot
setting, CRUSH exhibits significant improvement
over the baseline Single DPR based retrieval.

5.5 Ablation on Collective Retriever

CRUSH includes a number of careful design
choices. In Table 5 we show the impact of each
design choice.
• During retrieval, we obtain the embeddings of a
k ∈ K jointly with x. In contrast, if we indepen-
dently embed k, the recall drops significantly.

• After retrieval, the overall objective of collec-
tive selection (Eq 6) incorporates three key ideas:

entropy guided similarity, edge scores, and cov-
erage of hallucinated schema elements. We study
the impact of each. We remove the entropy dis-
counting in Eqn. (2), and observe a drop in recall
at low budget levels. When we remove the edge
scores, we also see a mild drop.

• To study the impact of coverage, we replace the
soft-max function smx() with a simple summa-
tion so that for each selected d ∈ D, the reward is
just the sum of similarity to each k ∈ K. We find
that the recall suffers. A coverage encouraging
objective is important to make sure that the se-
lected items are not over-represented by matches
to a few k ∈ K.

6 Conclusion

While LLMs incorporate vast world knowledge
and corpus statistics, they may be unfamiliar with



Budget
r @ 3 r @ 5 r @ 10 r @ 20 r @ 30 r @ 50 r @ 100

CRUSH 0.59 0.72 0.83 0.90 0.92 0.94 0.97
− x-contextual embedding 0.53 0.66 0.77 0.86 0.90 0.93 0.95
− Entropy 0.54 0.67 0.81 0.89 0.91 0.94 0.97
− Edge scores 0.57 0.71 0.83 0.90 0.92 0.95 0.97
− Coverage 0.54 0.67 0.81 0.89 0.91 0.94 0.97

Table 5: Ablation on design choices of CRUSH on the SpiderUnion dataset. Each row after the first, provides
CRUSH with one of the key design elements of CRUSH removed.

Prompt Budget
type r @ 3 r @ 5 r @ 10 r @ 20 r @ 30
Variables 0.43 0.56 0.73 0.84 0.89
Relations 0.57 0.66 0.80 0.89 0.92
CRUSH 0.57 0.71 0.83 0.90 0.92

Table 6: Effect of prompt types. Compared to the
CRUSH prompt that ask for hallucinating a schema,
the earlier two prompts, motivated by traditional ques-
tion decomposition viewpoint, are much worse.

Number of Budget
prompts r @ 3 r @ 5 r @ 10 r @ 20 r @ 30
Single DPR (SGPT) 0.50 0.61 0.76 0.86 0.89
CRUSH (2 shots) 0.52 0.67 0.81 0.88 0.90
CRUSH (4 shots) 0.58 0.70 0.82 0.89 0.92
CRUSH (6 shots) 0.59 0.72 0.83 0.90 0.92

Table 7: Number of shots (in-context examples) in
CRUSH prompts. Even two examples give gains over
the baseline and increasing the number of examples im-
proves recall.

Dataset Budget
r @ 3 r @ 5 r @ 10 r @ 20 r @ 30

SpiderUnion
Recall Mean 0.58 0.70 0.82 0.89 0.92
Recall Std 0.01 0.01 0.00 0.00 0.01
SocialDB
Recall Mean 0.37 0.47 0.56 0.65 0.69
Recall Std 0.03 0.03 0.04 0.02 0.02

Table 8: Effect of randomly shuffling (in-context) exam-
ples in CRUSH prompts (SpiderUnion) over recall.

(possibly private) client DB schemas, which can
be very large, rendering impractical or expensive
any attempt to upload the full schema in-context
along with questions for Text-to-SQL applications.
Remarkably, we find a workable middle ground by
allowing the LLM to hallucinate a schema from the
question and limited in-context examples with no
reference to the client schema. Then we formulate
a novel collective optimization to map the hallu-
cinated schema to real DB schema elements. The
resulting real schema subset that is retrieved has a
small size, yet high recall This schema subset can
be readily uploaded to (L)LM-based Text-to-SQL
methods. The reduced space of client DB schema
elements also improves the accuracy of generated
SQL for state-of-the-art Text-to-SQL implementa-

tions.

Dataset Budget
r @ 3 r @ 5 r @ 10 r @ 20 r @ 30

EM Mean 0.33 0.45 0.51 0.51 0.51
EM Std 0.02 0.00 0.01 0.01 0.02
EX Mean 0.38 0.52 0.60 0.61 0.60
EX Std 0.01 0.00 0.01 0.02 0.02

Table 9: Effect of randomly shuffling (in-context) exam-
ples in CRUSH prompts (SpiderUnion) over EM/EX.

Dataset Budget
r @ 3 r @ 5 r @ 10 r @ 20 r @ 30

Recall Mean 0.60 0.70 0.80 0.90 0.90
Recall Std 0.02 0.01 0.01 0.01 0.01

Table 10: Effect of selecting different (in-context) ex-
amples in CRUSH prompts (SpiderUnion) over recall.

Budget
r @ 3 r @ 5 r @ 10 r @ 20 r @ 30

EM Mean 0.34 0.46 0.52 0.52 0.51
EM Stdev 0.01 0.02 0.01 0.02 0.02
EX Mean 0.38 0.53 0.60 0.62 0.61
EX Stdev 0.01 0.01 0.01 0.02 0.02

Table 11: Effect of selecting different (in-context) exam-
ples in CRUSH prompts (SpiderUnion) over EM/EX.

Dataset Budget
r @ 3 r @ 5 r @ 10 r @ 20 r @ 30

SpiderUnion
Recall at temp = 0 0.59 0.72 0.83 0.90 0.92
Recall at temp = 0.5 0.58 0.70 0.82 0.89 0.92
Recall at temp = 1 0.58 0.69 0.82 0.89 0.91
SocialDB
Recall at temp = 0 0.40 0.52 0.58 0.69 0.71
Recall at temp = 0.5 0.41 0.50 0.61 0.67 0.71
Recall at temp = 1 0.36 0.47 0.56 0.63 0.70

Table 12: Effect of temperature changes on recall.

Dataset Budget
r @ 3 r @ 5 r @ 10 r @ 20 r @ 30

SpiderUnion
Zero shot 0.58 0.72 0.84 0.90 0.92
Single DPR(OpenAI) 0.55 0.64 0.77 0.86 0.90
CRUSH (ours) 0.59 0.72 0.83 0.90 0.92
SocialDB
zero shot 0.33 0.43 0.52 0.65 0.68
Single DPR(OpenAI) 0.39 0.44 0.49 0.56 0.60
CRUSH (ours) 0.40 0.52 0.58 0.67 0.69

Table 13: Effect of zero-shot prompting on recall.



7 Limitations

Removing two limitations in CRUSH may be use-
ful in future work. First, at present, hallucination
is almost completely unguided by the client DB
schema. It would be of interest to explore if the
client DB schema can be compressed into a very
small prompt text to give some limited guidance to
the LLM schema hallucinator. At present the link
weights e(d, d′) between schema elements d, d′ are
hardwired; it may be useful to extend the learning
optimization to fit these weights.
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CRUSH4SQL: Collective Retrieval Using Schema Hallucination For
Text2SQL
(Appendix)

A Anecdotes

In Table 14 we show examples of schema retrieved by baseline single embedding method and CRUSH.
Observe how retrieved set from single embedding is biased towards matching one of the columns of the
hallucinated schema.

B Prompts for the SocialDB dataset

In Table 15 we show the six few-shot examples in prompts for schema hallucination. The bottom half of
the table shows four hallucinated schema obtained from the LLM.

x What are the ids of students who both have friends and are liked?
R(q(x)) network.friend.student_id, network.likes.liked_id
R(x) Single Embedding (OpenAI)

college.student.id,
student_assessment.students.student_id,
school_player.school.school_id,
school_player.school_performance.school_id,
student_assessment.student_course_attendance.student_id,
student_assessment.candidate_assessments.candidate_id,
student_assessment.candidates.candidate_id,
voter.student.stuid
network_1.likes.student_id,
school_player.school.boys_or_girls

R(x) CRUSH
student_assessment.students.student_id
network_1.likes.student_id
e_learning.students.student_id
network_1.friend.friend_id
network_1.friend.student_id
network_1.likes.liked_id
student_assessment.students.student_details
student_assessment.student_course_attendance.student_id
student_assessment.student_course_registrations.student_id
network_2.personfriend.friend]

Table 14: Results from single embedding retrieval with OpenAI Vs CRUSH.



# LLM prompt: Hallucinate a minimal schema of a relational database that can be used to answer the natural language
question. Here are some examples:

x What is the correlation between child nourishment and parental education in the state of Madhya Pradesh?
K Family_health_survey(child age, child nourishment), Population_census( state, age-group, male literate population,

female literate population)
x Health center per population ratio at the village level or district level from the year 2015?
K Health_infrastructure(village, health care facility), Population_census(district, male population, female population)
x Distribution of medical professionals by type across regions from 2011 onwards from the state of Kerala.
K Health_statistics_statewise(medical professional)
x Correlation between road connectivity and Mother Mortality Rate (MMR) during 2011 from the state UK.
K Family_health_survey(state, year, maternal mortality), Road_statistics(state, road type)
x What is the trend for CPI of goods excluding food and fuel?
K Inflation_money_and_credit(year, Categories of Consumer Expenditure)
x Correlation between number of bank branches and district growth?
K Town_amenities_census(amenities, public works department), bank_details(number of branches, bank type)

Hallucinated K generated by LLM given input x
x Which Central Public Sector Enterprise generated most employment in the 10 years?
K employment_statistics(enterprise, year, employment), enterprise_details(enterprise, sector)
x how awareness among women impact births in caesarean section?
K health_statistics_statewise(state, year, caesarean section births), women_awareness_survey(state, year, awareness level)
x what is the correlation between socio-economic status and health insurance enrollments?
K socio_economic_status(income, education level), health_insurance_enrollment(age, gender, income level)
x Trend of Total Export Volume of Select Commodities to Principal Countries based on New commodity classification as

per 2009-10 over a period of 5 years?
K export_data(year, commodity, country, total export volume), commodity_classification(commodity, new commodity

classification)

Table 15: Examples of in-context training examples (for SocialDB) given to the LLM to prompt it to hallucinate a
minimal schema of a database that can be used to answer the given question.

# LLM prompt: Hallucinate a minimal schema of a relational database that can be used to answer the natural language
question. Here are some examples:

x What is the brand of the truck that is used to ship by Zachery Hicks?
K truck(truck_id, make), shipment(truck_id, driver_id), driver(driver_id, first_name, last_name)
x State the name of the city where Jose Rodriguez works.
K employee(locationID, firstname, lastname), location(locationID, locationcity)
x Please list all horror films that have a rating of 1.
K u2base(movieid, rating), movies2directors(movieid, genre)
x List all the names of the books written by Danielle Steel.
K book(book_id, title), book_author(book_id, author_id), author(author_id, author_name)
x How many female representatives are there in Michigan?
K current(bioguide_id, bioguide, gender_bio), current_terms(bioguide, type, state)
x How many stars does each of the 3 top users with the most likes in their reviews have?
K Tips(user_id, likes), Users(user_id, user_average_stars)

Hallucinated K generated by LLM given input x
x Which country had the gas station that sold the most expensive product id No.2 for one unit?
K Product(product_id, price), Gas_Station(gas_station_id, country), Sales(gas_station_id, product_id, quantity)
x Please list the titles of the posts owned by the user csgillespie?
K Posts(post_id, title, user_id), Users(user_id, username)
x Which country is the constructor which got 1 point in the race No. 24 from?
K race(race_id, constructor_id), points(race_id, constructor_id, points), constructor(constructor_id, country)
x What is the administrator’s email address for the school with the highest number of test takers who received SAT scores

of at least 1500?Provide the name of the school.
K Schools(school_id, school_name, administrator_email), Test_takers(school_id, SAT_score)

Table 16: Examples of in-context training examples (for BirdUnion) given to the LLM to prompt it to hallucinate a
minimal schema of a database that can be used to answer the given question.


