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Abstract

Large Language Models (LLMs) have become proficient in addressing complex tasks by
leveraging their extensive internal knowledge and reasoning capabilities. However, the black-
box nature of these models complicates the task of explaining their decision-making processes.
While recent advancements demonstrate the potential of leveraging LLMs to self-explain
their predictions through natural language (NL) explanations, their explanations or chain-of-
thoughts may not accurately reflect the LLMs’ decision-making process due to a lack of true
decision-making pivots involved. Measuring the fidelity of NL explanations is a challenging
but important issue, as it is difficult to manipulate the input context to mask the semantics
of these explanations, but it can effectively assess the quality of explanations. To this end, we
introduce FaithLM for explaining the decision of LLMs with NL explanations. Specifically,
FaithLM designs a method for evaluating the fidelity of NL explanations by incorporating the
contrary explanations to the query process. Moreover, FaithLM conducts an iterative process
to improve the fidelity of derived explanations. Experiment results on three datasets from
multiple domains demonstrate that FaithLM can significantly improve the fidelity of derived
explanations, which also provides a better alignment with the ground-truth explanations.
Our source code is available at https://anonymous.4open.science/r/xLLM-305B/.

1 Introduction

Large language models (LLMs) exhibit remarkable performance in various natural language processing tasks,
such as the GPT4 (Achiam et al., 2023), LLaMA (Touvron et al., 2023), and Claude (AnthropicAI, 2023).
However, these language models are commonly regarded as intricate black-box systems. The opacity of their
internal mechanisms poses a significant challenge when trying to explain their decision-making process. The
lack of transparency in LLMs, especially in API-accessed LLM services, inferences contradict the practical
requirements of stakeholders and are in opposition to regulatory standards in various domains, such as
GDPR (Goodman et al., 2017; Floridi, 2019). The imperative arises to develop explainability mechanisms for
LLMs, particularly for their use in high-stakes applications such as healthcare. In this work, we focus on
“LLM explanation", rather than “LLM reasoning" or “LLM self-refinement", to interpret the model prediction
behaviors after providing the final responses. (More illustrations of their discrepancy are in Section 2.2).

Numerous studies have attempted to enhance the transparency of decision-making processes in LLMs by
providing natural language (NL) explanations. However, recent advancements are struggling to generate
reliable NL explanations for interpreting LLMs (Ye & Durrett, 2022), which fail to provide the underlying
true explanation behind their decisions-making. Some work attempt to leverage powerful LLMs (Majumder
et al., 2021; Chen et al., 2023b;a) with auxiliary information to generate NL sentences or heatmap of
input tokens as model explanations. Although existing work emerged that LLMs may possess the ability
to self-explain (Madsen et al., 2024), their explanation-generating process usually overlooks the fidelity, a
fundamental metric for evaluating the quality of explanations (Chuang et al., 2023; Wang et al., 2023),
which means that the explanations from the existing work may not accurately reflect “why model generate
this answers" (Zhao et al., 2023; Turpin et al., 2023) (i.e., low fidelity for the NL explanations). Some
work attempts to leverage chain-of-thought (CoT) reasoning steps as the post-hoc model explanation (Lyu
et al., 2023; Radhakrishnan et al., 2023). However, these reasoning steps are not considered as model
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Question and LLM Answer Faithful NL Explanation Question conditioned with Contrary NL Explanation

Question: Can the positive
pole from two magnets pull
each other closer?
Original Answer: No

Each magnet has a positive
pole and a negative pole,
and similar poles push
each other away.

Question: Each magnet has a positive pole and a negative
pole, and similar poles pull each other closer. Can the
positive pole from two magnets pull each other closer?
New Answer: Yes

Table 1: An example of measuring fidelity of NL explanations. The LLM first answers the question in No.
Given a faithful explanation “similar poles pull each other away," with its contrary NL explanation, the LLM
changes the answer from No to Yes when introduced contrary NL explanation as an extra condition to LLM.

explanations (Tanneru et al., 2024), as they are only the intermediate outputs in resulting answers without
fidelity guarantee. Generally, prior work define this manner as failing to provide faithful explanations (or low
fidelity) for a given generated answer. These CoT steps are produced without a thorough fidelity check (i.e.,
one that involves masking out the key factors) to ensure they genuinely influence the final answer. These
steps are only the intermediate results during the LLM prediction and their fidelity remains unknown. A
proper fidelity measurement requires masking the critical features or key messages in the explanation and
observing the model’s performance afterward (Du et al., 2019), but neither of them are monitored or adopted
before claiming CoT reasoning as model explanations. Measuring the fidelity of NL explanations now become
a important but challenging issue, as we can monitor and optimization the explanation generation process
based on fidelity improvement. The ones may provide crucial information beyond the input context, but the
faithful information may appear in semantic levels, making it hard to measure by manipulating the tokens
for fidelity measurement.

To overcome this challenge, we propose a method to measure the fidelity of NL explanations. We give an
example to convey the motivation in Table 1. Specifically, the fidelity of an explanation can be measured by
leveraging its contrary explanation as extra conditions of the input context, and observing the LLM’s output
difference compared with its initial output. Here, a contrary explanation refers to a statement with opposite
semantics to the original explanation. By incorporating the contrary explanation to the input context, we can
identify an explanation as high fidelity if there is a significant change in the LLM’s output, such as from No
to Yes. This change indicates that the crucial information present in the original explanation is substituted
with the opposite meaning context in the contrary explanation, where the crucial information is essential to
the LLM’s decision-making process. Based on this observation, we propose to extend the applicability of
fidelity to the evaluation on NL explanations. This extension follows the integration of contrary explanations
to represent the concepts of masking important features in traditional fidelity measurement.

Building upon this new fidelity measurement, we introduce Faithful LLM Explainers (FaithLM) to generate
faithful NL explanations for LLMs. Specifically, FaithLM adopts LLMs as explainer to generate the NL
explanations and explanation trigger prompts, and iteratively optimizes the derived NL explanations and
trigger prompts with the goal of fidelity enhancement. During the iterative process, FaithLM computes
the fidelity of each derived explanation and optimized prompt based on our proposed fidelity measurement
method, and progressively improves their fidelity through in-context learning. We conducted the experiments
on four different LLMs under three datasets. FaithLM achieves significantly higher fidelity in generating
NL explanations and more closely matched the golden explanations compared with state-of-the-art baseline
methods. Our contributions can be summarized as follows:

• Fidelity of NL Explanations: We propose the way to measure the fidelity of NL explanations by
introducing a contradictory explanation and observing how the LLM’s output changes.

• Faithful LLM Explainers: FaithLM improves the fidelity of NL explanations, aiming at faithfully
explaining the decision-making process of LLMs.

• Fidelity and Truthfulness: Experimental results show that FaithLM can improve the fidelity of NL
explanations, revealing a better alignment with the ground-truth explanations.
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2 Preliminaries

2.1 Notations and Objectives

We aim to explain the decisions of arbitrary targeted LLMs f(·) with NL explanations in a post-hoc manner.
Given an input X, the targeted LLMs generate an output Y = f(X). Our objective is to produce an NL
explanation ENL that faithfully explains the reasons behind the prediction of Y = f(X). In this work, we
employ an LLM as the explainer g(·) to generate the NL explanation ENL = g(· | X, Y ). However, the ENL
under single-forward passing generated directly from LLMs may not be faithful and accurate. The consistency
between f(·) and g(·) is ensured through an iterative optimization process monitored by fidelity scores. To
this end, the explainer g(·) to generate more faithful NL explanations regarding the decision of f(·)
in post-hoc, where f(·) can be either closed-source or open-source LLMs.

2.2 Difference between LLM Explanation and Chain-of-thoughts

Due to the limited accessibility of LLM APIs, recent research on LLM explanations has largely relied on
post-hoc explanation approaches (Chen et al., 2023b). However, some studies conflate ’LLM reasoning’ and
“LLM self-refinement’ with ’LLM explanations’ when discussing these post hoc LLM explanations, even
though these three terms are not identical and with different goals. We illustrate the difference as follows.

LLM reasoning and Chain-of-thoughts refers to the internal process the model undergoes when it
encounters a query or instruction, such as weighting probabilities and generating words step by step plus
verification, with the goal of improving performance on reasoning tasks. Some advantages rely on providing
chain-of-thought (CoT) reasoning (Lanham et al., 2023; Radhakrishnan et al., 2023; Chen et al., 2023a; Wang
et al., 2022) to present the hidden inference steps that the model goes through. These studies show that
CoT Manuvinakurike et al. (2025) can improve reasoning performance, but does not necessarily provide an
explanation or even count as explanations of how or why an LLM arrives at its answers (Tanneru et al.,
2024), where “good fidelity” in the series of work is typically defined by the alignment between the content
of CoT and the final answer (Lyu et al., 2023; Radhakrishnan et al., 2023). Another line of work leverages
self-refinement techniques (Lightman et al., 2023; Madaan et al., 2024; Tian et al., 2024), which employ self-
reasoning or knowledge supervision as feedback, to iteratively enhance reasoning performance. Although these
advancements introduce robust self-feedback loops that effectively boost reasoning accuracy, the “feedback”
during optimization is neither necessarily faithful nor equivalent to LLM explanations (Tanneru et al., 2024).
Notably, this feedback may be wrong yet still guide LLMs toward a correct reasoning direction. Due to its
non-stationary nature, it yields non-faithful outputs when treated as an LLM explanation, which is also very
distinct from the goal of “LLM explanation" tasks.

LLM Explanations. Unlike LLM reasoning and self-refinement, LLM explanation focuses on clarifying why
the model provides a particular answer after generating its final decision (Siegel et al., 2024). The concept
of fidelity in an LLM explanation (Du et al., 2019; Zhao et al., 2023), which differs from LLM reasoning
and self-refinement, refers to whether the model’s prediction would change if the key knowledge provided
explanation were removed. If removing the knowledge causes a drastic change in the model’s prediction,
we can conclude that the derived explanation is faithful to the LLMs prediction (i.e., the actual reasons
that results the predictions). In this work, we focus on LLM explanation, rather than LLM reasoning or
self-refinement.

2.3 Limitations of Traditional Fidelity Measurement on NL Explanations

The fidelity metric measures the fidelity of the given explanation, which is broadly applicable when ground-truth
explanations are unavailable. In the NLP scenario, fidelity has been used to evaluate the heatmap-formatted
explanations (Lopardo et al., 2023; Huang et al., 2023), where the heatmap one highlights the important
tokens of the input. Specifically, fidelity evaluates the explanation by removing the important tokens from the
input X and checking the prediction difference of the targeted LLM. Following the definition of fidelity (Miró-
Nicolau et al., 2024). Given a sequence of tokens I = {t1, · · · , tM} ⊆ ENL, which is identified as an important
component of explanation to the prediction of a targeted LLM Y = f(X). The traditional fidelity can be
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Figure 1: The framework of Fidelity Evaluator. The evaluator calculates the fidelity scores of the derived
explanations based on its contrary explanations.

estimated as:
Fidelity = f(X)− f(X \ I),

where "X \ I" denotes token removal from X in I.

If important component T achieves higher fidelity, this demonstrates that ENL comprises the crucial tokens
that significantly influence the predictions of the targeted LLMs. However, it is challenging to evaluate
the fidelity of NL explanations throughout the fidelity defined above, as the critical components in NL
explanations may not contain in the input context X.Some work (Lanham et al., 2023) attempts to measure
fidelity by modifying the output chain-of-thought (CoT) reasoning to overcome this challenge. However,
altering only the output does not guarantee changes in the model’s pre-filling probability and may therefore
meet self-consistency, but rather than the definition of fidelity. Thus, we cannot simply remove or modify
critical components from the question following the traditional definition. Unlike the previous approaches, we
propose a solution to address this obstacle by removing the critical components from the semantic meaning
instead of the tokens.

3 FaithLM: The Explainer LLM Framework

In this section, we introduce a generative explanation framework, FaithLM, which derives faithful explanations
in NL format. The derived explanations are expected to accurately reflect the predictive decision-making
process of targeted LLMs with high fidelity after optimizing under FaithLM.

3.1 Fidelity Evaluator for Natural Language Explanations

We introduce the Fidelity Evaluator to assess the fidelity of NL explanations shown in Figure 1.

Fidelity of NL Explanations. To assess the fidelity of NL explanations, we extend the traditional fidelity
definition to equip it with special constraints regarding NL explanations. To address this challenge, we propose
formulating the fidelity of NL explanation as the prediction difference caused by the “contrary explanation".
Specifically, the contrary explanation ¬ENL is defined as a statement obtained opposite semantics to the
given NL explanation ENL. For instance, if the explanation is "similar poles push each other away,"
then the contrary explanation would be "similar poles pull each other closer." To estimate the fidelity
of ENL, we use the contrary explanation ¬ENL as an extra given condition to the input queries, forming
conditional LLM inferences f(X | ¬ENL). This operation results in different prediction results for targeted
LLMs compared to the original predictions, which compels the targeted LLMs to follow contrary information
from the explanations of the input queries. In this manner, the fidelity SE of ENL can be estimated by the
prediction difference:

SE := f(X)− f(X | ¬ENL). (1)

This formulation aligns with the traditional definition of fidelity by observing the prediction difference of the
LLM when considering input with and without the component supplied by the explanations.

Fidelity Evaluator. Unreliable explanations derived from LLMs often present incorrect predictions (Ye
& Durrett, 2022), which means that the relationship between the reliability of the explanations and the
correctness of the predictions is significantly high. Motivated by the observation, we propose a framework
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Figure 2: An overview of FaithLM framework for two different optimization objectives. The blue dotted
line reveals the trajectory to optimize the NL explanation (Section 3.2), and the red dotted line indicates
the trajectory of the explanation trigger prompt optimization (Section 3.3). “Traj. Prompt” denotes the
trajectory system prompt shown in Section H.

for the Fidelity Evaluator as illustrated in Figure 1. Specifically, we utilize a powerful LLM agent, such as
GPT-3.5, to generate the contrary explanation ¬ENL regarding the original ENL. The generation process for
¬ENL is guided by the prompt provided in Appendix G. Given the contrary explanation as a condition for the
input context, the Fidelity Evaluator computes the fidelity scores according to the difference of output logits
f(X)− f(X | ¬ENL). Intuitively, if the targeted LLMs’ output probability changes significantly enough to
flip the result (i.e., judgements or choices), it implies that the contrary explanations ¬ENL consist of the
contrasting key messages against ENL that can significantly impact the decision-making process of the targeted
LLM. This suggests that the explanation ENL contains key components that significantly support the inference
of the targeted LLMs. Unlike previous approaches, we did not utilize counterfactual explanations to measure
fidelity, as the ones may contain contexts different from the target-to-assessed explanation ENL (Parcalabescu
& Frank, 2024), leading to inaccurate assessment. In this work, we introduce a “contrary explanation” (i.e.,
not the counterfactual explanations) that preserves the opposite meaning of existing information in ENL,
enabling LLM explanation to have better chance to reflect the true decision-making pivots that lead to the
given prediction.

3.2 FaithLM on Fidelity-enhanced Explanation

In this section, we introduce an iterative framework designed to progressively enhance the fidelity of NL
explanations with iterative fidelity-enhanced optimization.
Fidelity-enhanced Explanation. The framework of fidelity-enhanced explanation is illustrated in Figure 2a.
Since the initial explanation may be unreliable and unfaithful, we propose a fidelity-enhanced optimization
approach designed to progressively generate explanations with higher fidelity. We aim to explain the response
Y produced by the targeted LLM f(·) in response to the given input queries X with NL explanations ENL
following the goal of fidelity enhancement. In the first round of enhancement, the LLM explainer generates
NL explanations ENL following a given human-crafted explanation trigger prompt PE provided in Appendix G.
The explanations are then generated by the explainer g(PE | X, Y ). Starting from the second round till
converge, FaithLM collects a trajectory T with the NL explanations ENL and their corresponding fidelity
scores SE generated by Fidelity Evaluator. The collection process can be represented as T ← {T , [ENL, SE ]},
where T initially starts as an empty trajectory. Following this trajectory, the LLM explainer generates new
explanations with the goal of achieving higher fidelity scores in subsequent iterations. This process is guided
by the system prompts detailed in Figure 13.

The trajectory T is continuously updated by incorporating each newly derived explanation with its assessed
fidelity score until the convergence. Regardless of any given explanation trigger prompts PE , FaithLM can all
systematically guide the generation of NL explanations, progressively improving fidelity scores by following
the reference path established in the trajectory.
Algorithm of Fidelity-enhanced Explanation. The outline of FaithLM for Fidelity-enhanced Explanation
is detailed in Algorithm 1. Specifically, in the first iteration, FaithLM generates the NL explanations using
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the human-craft prompts (line 1). starting from the second iteration till the convergence or optimization ends,
FaithLM estimates the fidelity of the derived NL explanations (line 4). Then, we incorporate the explanation
and its corresponding fidelity score to the trajectory (line 5), and update the explanations with the goal of
achieving higher fidelity scores in subsequent iterations (line 6). The iteration terminates at a predetermined
step or ceases earlier as soon as FaithLM observes a flipping performance from the targeted LLM f(·).

3.3 FaithLM on Trigger Prompt Optimization

Algorithm 1 Fidelity-enhanced explanation
Input: Input X, output Y , targeted LLMs f(·), human-crafted
prompt PE , and LLM explainer g(·).
Output: NL explanation ENL.
1: ENL ∼ g(PE | X, Y )
2: T = ∅
3: while steps not end and decision not flips do
4: Estimate the fidelity score SE of ENL
5: Append T ← T ∩ [ENL, SE ]
6: Update ENL ∼ g(T | X, Y )
7: end while

Despite the success of enhancing fidelity in Sec-
tion 3.2, the low quality of the explanation trigger
prompts PE may still hinder the optimization process
of receiving a high-fidelity explanation. Given that
the unknown preference for prompts from LLMs,
human-crafted trigger prompts used in Fidelity-
enhanced Explanation Optimization might lead to
sub-optimal fidelity enhancement in the derived ex-
planations. In this section, we hereby propose a
new optimization pipeline under FaithLM, aiming
to optimize the trigger prompt PE for generating NL explanations with higher fidelity scores as the LLM
explanations of input each input query.

Trigger Prompt Optimization. The framework of Trigger Prompt Optimization is shown in Figure 2b.
The framework aims to optimize the trigger prompt to generate NL explanations with higher fidelity. Different
from the optimization goal in Section 3.2, the trajectory in this task collects the trigger prompts PE and their
fidelity scores SP . The trajectory is constructed by the system optimization prompts detailed in Figure 12.

To estimate the fidelity score for a trigger prompt, FaithLM first adopts the randomly human-crafted trigger
prompt to guide the LLM explainers to generate NL explanations, and then utilize the Fidelity Evaluator to
assess the fidelity of the derived explanation. The final estimated score is averaged by the fidelity score SEi

of
the hold-out dataset (Xi, Yi) ∈ D. Formally, the fidelity score for a trigger prompt PE is as follows:

SP = EEi∼g(PE |Xi,Yi)
[
SEi

]
, (2)

where SEi represents the fidelity score of the explanation Ei, which is generated by g(PE |Xi, Yi), as assessed
by the Fidelity Evaluator in Section 3.1.

During the optimization, the trajectory begins from an empty set and starts to incorporate newly derived
trigger prompts with the fidelity scores in each optimization iteration. Following this trajectory, the LLM
explainer generates a new trigger prompt with the goal of achieving higher fidelity scores of explanations in
subsequent iterations. After several rounds of iterations, FaithLM ultimately yields an optimal explanation
trigger prompt with the highest fidelity score for the LLM explainer to generate a more faithful NL explanation.

Algorithm 2 Trigger Prompt Optimization.
Input: Hold-out dataset D, Targeted LLMs f(·), and LLM
explainers g(·).
Output: Optimal explanation trigger prompt PE .
1: Initialize human-crafted PE
2: Initialize T = {∅}
3: while (Steps Not End) do
4: for (Xi, Yi) ∼ D do
5: Ei ← g(PE | Xi, Yi)
6: Estimate the fidelity score Si of Ei

7: end for
8: SP = EEi∼g(PE |Xi,Yi)

[
SEi

]
9: Append T ← T ∩ (PE ,SP )

10: Update PE ← g(PE | D)
11: end while

Algorithm of Trigger Prompt Optimization.
The outline of FaithLM for Trigger Prompt Opti-
mization is detailed in Algorithm 2, which focuses
on optimizing the trigger prompt for generating NL
explanations. Specifically, in each iteration, LLM ex-
plainer g(·) leverages the trigger prompt to generate
the NL explanations and estimates its fidelity (lines 4-
7). The fidelity scores of the trigger prompts average
the fidelity scores of the entire hold-out dataset (lines
8). Afterward, the trajectory appends the trigger
prompt with its corresponding fidelity score (line 9),
and updates the trigger prompt as a new sequence
of words to achieve higher fidelity scores (line 10).
Through multiple iterations, FaithLM progressively
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guides the trigger prompt to generate explanations with higher fidelity scores, following the reference path
established in the trajectory. The iteration process terminates at a predetermined 20 step.

4 Experiment

In this section, we conduct experiments to evaluate the performance of FaithLM, aiming to answer the
following three research questions: RQ1: How does FaithLM perform in generating explanations in terms of
efficacy? RQ2: Can optimized explanation trigger prompts transfer between different datasets? RQ3: How
does the contrary explanations affect the explanation performance?

4.1 Datasets and Baselines

Datasets. Three datasets with multiple tasks are included: ECQA (Aggarwal et al., 2021) dataset on
commonsense question-answer task, TrivaQA-Long (Bai et al., 2023; Joshi et al., 2017) dataset on reading
comprehension task, and COPA (Kavumba et al., 2019; Roemmele et al., 2011) dataset on commonsense
causal reasoning task. More details are provided in Appendix A. Baseline Methods. Two state-of-the-art
baseline methods: SelfExp (Madsen et al., 2024) and Self-consistency (Wang et al., 2022). The former
ones instruct LLMs to generate explanations using prompt engineering under single-forward inference, and
the later ones leverage the chain-of-thought outputs as the model explanations.

4.2 Experiment Settings

We introduce the experimental settings for evaluating FaithLM. Two distinct types of explanation tasks and
evaluation settings are as follows.

Fidelity-enhanced Explanation In this task, our goal is to produce NL explanations that exhibit a
higher fidelity. The fidelity is exploited as a metric to evaluate fidelity. FaithLM is evaluated across all
testing instances, where an NL explanation is generated for each instance, and the averaged fidelity score is
calculated, serving as the reported metric to evaluate fidelity.

Explanation Trigger Prompt Optimization. In this task, we aim to optimize the explanation trigger
prompt that benefits FaithLM in generating better explanations. The optimization process is conducted
on the same dataset, where 30 instances are sampled as a hold-off dataset in each optimization step from
the training set. During the optimization process, the fidelity score of a trigger prompt is calculated as the
average of the fidelity scores from the selected instances.

Evaluation Metrics. The quality of the derived NL explanation is evaluated under the fidelity and
truthfulness metrics. The fidelity follows Section 3.1, which observes the flipping rate of the targeted LLMs
by incorporating contrary explanations to the input. The evaluation of truthfulness assesses the correlation
between the derived NL explanations to the ground-truth explanations Specifically, we leverage GPT-3.5
and two well-trained natural language inference (NLI) models, Roberta-Large and XLNet-Large (Nie et al.,
2020) from the huggingface hub (Wolf et al., 2019), as the evaluators. With the same evaluators setup, the
truthfulness evaluation follows the settings from (Liu et al., 2023), and uses the evaluation prompt provided
in Appendix F. Specifically, the evaluators assess the derived explanations and ground-truth explanations,
determining whether the two sentences belong to “similar content", “dissimilar content," or “non-relevant
content". Higher the proportion of “similar content", the more consistent results with ground-truth NL
explanations.

Implementation Details. In the experiments, we explore two variants of LLMs as the targeted LLMs f(·):
Vicuna-7B (Chiang et al., 2023) and Phi-2 (Javaheripi & Bubeck, 2023), two types of LLMs as the explainers
g(·) in FaithLM: GPT-3.5-Turbo and Claude-2 (Anthropic, 2023). The LLM agent for generating the contrary
explanations takes the same LLMs as those used by the explainers. All reported results are calculated from
the average scores of 3 times repetitions with the grid search on the performance. The settings for predictors
are uniform, with Phi-2 (2.7B) and Viucua-7B receiving identical hyperparameter configurations during
the experiments conducted in this study. The hyper-parameter settings and device configuration, including
temperature and total optimization steps, of FaithLM are given in Appendix C and D, respectively.
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Figure 3: Fidelity evaluation of explanations on ECQA (left), TriviaQA-Long (middle), and COPA (right).
Scores are average fidelity on test instances at each step of fidelity-enhanced optimization.
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Figure 4: Trustfulness evaluation of the NL explanations. A higher proportion of “similar to ground-truth
explanation," indicates more consistent generated explanations with the ground-truth.

4.3 Explanation Efficacy of FaithLM (RQ1)

Efficacy of Derived Explanations. We assess the efficacy of derived explanations under the fidelity
metric. FaithLM adopts the trajectory system prompts in Figure 13 of Appendix H. The generation of
contrary explanations is guided by the prompt in Table 8.

• Fidelity Evaluation. The results in Figure 3 demonstrate that FaithLM achieves significantly higher
fidelity scores across all three datasets compared with two baselines after 20 steps of optimization. Moreover,
the optimization curve of fidelity demonstrates that 20 rounds of optimization are sufficient to converge.
A similar phenomenon occurs across different settings of explainers and targeted LLMs. Additional results
are provided in Appendix E.

• Truthfulness Evaluation. To evaluate the truthfulness of explanations, we show the proportions of
“similar to ground-truth explanations" in the ECQA dataset, as depicted in Figure 4. We leverage GPT
evaluators and well-trained NLI evaluators to assess whether the given explanations are within similar
content to ground-truth explanations. The results show that FaithLM’s explanations are more consistent
with the ground-truth NL explanations, indicated by a larger proportion of “similar to ground-truth
explanations" generated by FaithLM than baseline methods.

Efficacy of Explanation Trigger Prompts. We first show prompt optimization curves on three different
datasets, and then leverage the optimal explanation trigger prompts to generate explanations via FaithLM.
In the experiments, we randomly select 15 instances from the training dataset in each optimization round,
and compute the average fidelity scores of the newly derived trigger prompts. After the progress is terminated,
we evaluate the optimized trigger prompts on the testing set. The optimization step is established at 50
rounds across different explainer and targeted LLMs.

• Trigger Prompt Optimization Curve. Figure 5 demonstrates the optimization curves of three datasets.
We display the explainer as GPT-3.5-Turbo and Claude-2 and the explainer as Vicuna-7B. We observe
that the optimization curve exhibits a generally ascending trend as the step progresses, interspersed with
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Figure 5: The fidelity in different optimization steps of the trigger prompts (Algorithm 2) on the ECQA,
TrivaQA, and COPA datasets. The fidelity grows higher as the number of steps increases.
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(b) Transferability results of trigger prompts

Figure 6: Assessment on the adaptation of the optimized explanation trigger prompts. Figure (a) reveals the
robustness evaluation, and figure (b) illustrates the results on transferability.

multiple waves throughout the optimization procedure. This indicates that FaithLM generates better
explanation trigger prompts after the optimization. More results are provided in Appendix E.

• Explanation Generation by Optimized Trigger Prompts. We utilize the optimized explanation
trigger prompts to generate explanations following Algorithm 1. The results are displayed in Figure 6a,
including the ones using all three datasets with Claude-2 as the explainer and Vicuna-7B as the targeted
LLM. We observe that optimized explanation trigger prompts obtain higher fidelity scores than the initial
human-crafted trigger prompt in generating explanations. This trend is consistent across all datasets,
regardless of whether the explanations are refined by Algorithm 1.

A Case Study of FaithLM. The case studies illustrate the evolving trend via FaithLM, including derived
NL explanations, explanation trigger prompts, and contrary explanations in Appendix I. These studies
demonstrate that the explanations generated by FaithLM are informative and readable, which enables humans
to understand the reasons behind the decision-making process of target LLMs.

4.4 Transferability of Trigger Prompt (RQ2)

We assess the transferability of ultimately optimized trigger prompts across different unseen datasets within
the same domain, as depicted in Figure 6b. Specifically, we transfer the optimized trigger prompts from
the ECQA to the Social-IQA dataset, and from the COPA to the XCOPA datasets, without any additional
optimization. Specifically, the Social-IQA dataset is dedicated to commonsense question-answering (similar to
the ECQA dataset), while the XCOPA dataset specializes in causal reasoning (similar to the COPA dataset).
We adopt the Vicuna-7B as the targeted LLM, and Claude-2 as the explainer on these transfer tasks. The
fidelity of the derived NL explanation on the target dataset is shown in Figure 6(b). The optimized trigger
prompts show better explanation efficacy than human-crafted prompts when it is transferred in similar
domain. This shows that the optimized trigger prompts generated by FaithLM possess a great property of
data transferability.

4.5 Ablation Studies on Contrary Explanation in FaithLM (RQ3)

The quality of contrary explanations ¬ENL determines the efficacy of FaithLM. We leverage the powerful LLMs
as the LLM agent to generate contrary explanations, requesting the delivery of high-quality opposite-meaning
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Figure 7: Ablation studies on evaluating contrary explanation. The results show that contrary explanations
obtain opposite meanings to the derived explanations.

outputs from their original NL explanations. We evaluate the quality of contrary explanations, aiming to
observe the semantic differences between the original NL explanations and their contrary explanations. To
examine the quality, we employ the GPT classifier and two well-trained NLI classifiers, Roberta-Large and
XLNet-Large (Nie et al., 2020). We leverage each classifier to distinguish whether the relationship between
the “original NL explanations" and “contrary explanations" belong to the category of “similar meaning
(entailment)," “dissimilar meaning (contradiction)," or “non-relevant (neutral)." We follow the evaluation
settings from (Liu et al., 2023) on GPT-classifier with evaluation prompt provided in Appendix F. The results
show in Figure 7 with randomly sampled 100 instances from the ECQA and COPA datasets. We observe
that the two NLI classifiers achieve up to 86% and 82% in the “dissimilar meanings"" category. The results
show that SelfExp obtains more non-faithful information than FaithLM, risking to generate non-relevant
explanations. Case studies are provided in Appendix I, showing informativeness and readability of contrary
explanations.

5 Conclusion
In this paper, we introduce FaithLM to explain the decision-making process of LLMs, instead of providing
reasoning or self-refinement feedback as model explanation. Specifically, FaithLM employs a fidelity enhance-
ment strategy to progressively refine the fidelity of derived explanations and explanation trigger prompts.
FaithLM conducts an iterative process to improve the fidelity of derived explanations. Experimental results
demonstrate the effectiveness of FaithLM, and better alignment with the ground-truth explanations. This
suggest that the decision-making process are truly reflected. For future work, we plan to extend FaithLM in
healthcare, where the needs for transparency is critical given the growing reliance on black-box LLMs.
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Appendix

A Details about Datasets

The experiments are conducted on the three NLU datasets. The details of the datasets are provided as
follows:
• ECQA (Aggarwal et al., 2021). ECQA is an extension of the CQA dataset (Talmor et al., 2019).

Specifically, based on the CQA dataset, it annotates the positive or negative properties and golden
explanations for the QA pairs. Due to API cost budgets, we evaluate our framework on the first 500
instances in the ECQA dataset.

• TriviaQA LongBench (Joshi et al., 2017). TriviaQA LongBench (TriviaQA-Long) is a reading
comprehension dataset. It includes 300 question-answer-evidence triples sourced from the Longbench (Bai
et al., 2023) dataset1. This dataset features question-answer pairs crafted by trivia enthusiasts, accompanied
by independently sourced evidence documents, providing supervision for answering these questions.

• Balanced COPA (Roemmele et al., 2011; Kavumba et al., 2019). The Balanced COPA (COPA)
dataset is a collection of 500 questions for commonsense causal reasoning. Each question consists of a
premise and two alternatives, where the task is to select the alternative that more plausibly has a causal
relation with the premise.

B Related Work

B.1 Post-hoc Explanation

Post-hoc explanation techniques have undergone significant development and discussion, driven by the
widespread adoption of black-box ML models across various data modalities. A multitude of post-hoc
algorithms has been introduced from two aspects: local and global explanations (Molnar, 2022; Du et al.,
2019). Explanations aim to explain the reasoning behind an individual model for each input instance,
while global explanations aim to uncover the overall functioning of a complex model (Chuang et al., 2023).
Considering various purposes of explanation, the explanation techniques mainly showcase the explanation
from two perspectives, including feature attributions and counterfactual examples. Feature attribution aims
to provide users with important scores for each feature’s impact on model predictions, while counterfactual
examples aim to offer alternative instances that explicitly assist users in grasping the model’s decision-making
process. In recent years, with the growing proficiency and wide usage of black-box LLMs, especially closed-
source LLMs service, post-hoc explanations have become increasingly prominent and have garnered significant
attention in NLP research due to the inaccessibility of LLMs’ model weights and structure (Zhao et al., 2023).

B.2 Explainability of LLMs

The majority of explanation efforts in LLM research have centered on delivering explanations. One group of
studies calculates importance scores for specific tokens (Lopardo et al., 2023; Huang et al., 2023), another line
of progress generates NL explanations by leveraging the pre-trained LLMs with internal model knowledge
sources (Kumar & Talukdar, 2020; Chen et al., 2023b; Menon et al., 2023), the other group of work leverages
LLMs themselves to generate chain-of-thought (CoT) reasoning (Lanham et al., 2023; Radhakrishnan
et al., 2023; Chen et al., 2023a;a) as the self-explanations through the one feed-forward inference process.
Furthermore, some studies aim to yield counterfactual explanations by pre-trained LLMs to assist users
in better understanding the decision-making process from LLMs (Chen et al., 2021; 2023a). Although NL
explanations offer fantastic human-understandable insights than token-wise explanations, the explanations can
lose their fidelity via one feed-forward inference process of pre-trained LLMs. Unreliability and non-fidelity
of NL explanations are still a concern (Ye & Durrett, 2022; Turpin et al., 2023). Given our primary aim
of producing faithful explanations, our efforts are to generate NL explanations to improve the likelihood of
accurately representing the decision-making process of LLMs.

1https://huggingface.co/datasets/THUDM/LongBench/
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B.3 LLMs as Optimizers

LLMs as optimizers is a novel paradigm, describing optimization problems in natural language and utilizing
the reasoning capabilities of LLMs for optimizing (Yang et al., 2023). Depicting optimization problems in
natural language enables the optimization of diverse tasks without defining formal specifications, such as
prompt optimization (Yang et al., 2023; Cheng et al., 2023; Guo et al., 2023), agent learning (Shinn et al.,
2023), and model labeling (Thomas et al., 2023). Based on this optimization paradigm, our work introduces
a generative explanation framework with a novel estimation method of sentence-level fidelity.

C Hyper-parameter Settings of FaithLM

The hyper-parameters of FaithLM are given in Table 2. The configuration for explainers is consistent across
Claude-2 and GPT-3.5-Turbo, provided that the parameters are adjustable. Likewise, the settings for
predictors are uniform, with Phi-2 and Viucua-7B receiving identical hyperparameter configurations during
the experiments conducted in this study.

Dataset ECQA TriviaQA-Long COPA

Fidelity-enhanced
Optimization

Optimization Steps 20 20 20
Temperature of Predictor LLMs 0.7 0.5 0.7
Temperature of Explainer LLMs 0.9 0.9 0.9
Top-P of Explainer LLMs 0.9 0.9 0.9

Trigger-oriented
Optimization

Optimization Steps 50 100 100
Sampled Instances 30 30 30
Temperature of Predictor LLMs 0.7 0.5 0.7
Temperature of Explainer LLMs 0.9 0.9 0.9
Top-P of Explainer LLMs 0.9 0.9 0.9

Table 2: Hyper-parameters and optimization settings in FaithLM.

D Computation Infrastructure and Costs

D.1 Computation Infrastructure

For a fair comparison of testing algorithmic throughput, the experiments are conducted based on the following
physical computing infrastructure in Table 3.

Device Attribute Value
Computing infrastructure GPU
GPU model Nvidia-A40
GPU number 1
GPU Memory 46068 MB

Table 3: Computing infrastructure for the experiments.
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D.2 Computation Costs

The computational costs associated with FaithLM primarily differ from the inference costs of local LLMs and
the expenses related to API-accessed LLMs. The computational costs depend on the parameter scale and
variants of LLMs used in the FaithLM framework, shown in Table 4 and 5.

ECQA TrivaQA COPA
Execution Time (Sec.) ∼3 ∼5 ∼3
Execution Cost ($) ∼0.01 ∼0.04 ∼0.01

Table 4: Computing costs of FaithLM with GPT-3.5 on each dataset.

bs=32 bs=64 bs=96
Execution Time (Sec.) ∼3 ∼5 ∼3
Memory Cost (GB) ∼28GB ∼43GB ∼59GB

Table 5: Computing costs of FaithLM with Vicuna-7B under different batch size (bs).

E Additional Experimental results of FaithLM

E.1 Optimization Procedure of derived explanations

We demonstrate more evaluation results on derived explanations from FaithLM. The outcomes depicted
in Figure 8 reveal that FaithLM attains notably higher fidelity scores across all three datasets following 20
steps of optimization. Additionally, Figure 8 illustrates the evolution of the optimization process during the
generation of explanations.
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Figure 8: The fidelity evaluation of derived explanations from FaithLM under different settings of predictors
and explainers.

E.2 Additional Optimization Curve of Explanation Trigger Prompt

We demonstrate more evaluation results on the optimization curve of explanation trigger prompts of FaithLM.
The optimization curve shown in Figure 9 generally displays an upward trend with the progression of steps,
interspersed with several fluctuations throughout the optimization process. This suggests that FaithLM can
successfully generate improved explanation trigger prompts after optimization.
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Figure 9: The optimization curve of explanation trigger prompts on ECQA (left), TriviaQA-Long (middle),
and COPA dataset (right).

E.3 Additional Experiments on Diverse Domains of Dataset

We further have conducted additional experiments on one new MedMCQA dataset (Pal et al., 2022) in the
healthcare domain. We evaluate the FaithLM using a fidelity assessment under Natural Language Explanation
Generation settings. All experimental configurations follow the settings in Section 4.2. The experimental
results are shown in the table below. We observe that FaithLM outperforms the baseline method, which is
consistent with the experimental results across other domain datasets that were evaluated in our work.

SelfExp Self-consistency FaithLM
Fidelity 0.6956 0.4715 0.9565

Table 6: Additional experimental results on MedMCQA dataset.

E.4 Additional Experiments on Truthfulness Evaluation

We further lunch additional experiments on all evaluators with different evaluation settings to measure
the relevance between derived explanations and ground-truth explanations. The evaluators assesses their
relevance using a GPT-Score in GPT evaluator on a scale of one to five. If the two provided explanations are
classified under the “similar content" category or receive a GPT-Score close to five, this indicates that the
derived explanations are highly similar to ground-truth explanations.

F Details of Evaluation Prompt Usage

We provide a listing of the evaluation prompts in Table 7 utilized in assessing the performance of FaithLM.
The first row reveals the evaluation prompt on comparing the derived explanation with the ground-truth (GT)
explanation in the ECQA dataset in Section 4.3; and the second row demonstrates the evaluation prompt on
activating the GPT classifier and the GPT scorer for assessing contrary explanations in Section 4.5.
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Figure 10: Truthfulness evaluation with ground-truth explanation under GPT-score settings.

Evaluation Task Evaluation Prompts

Ground-truth Explanation Given a user instruction and two AI assistant responses, your
job is to classify whether the relation of two responses in S1
and S2 belongs to G-1, G-2, or G-3. The meaning of class is
as follows: (G-1) relevant contents, (G-2) irrelevant contents, or
(G-3) irrelevant contents. Judge responses holistically, paying
special attention to whether two responses have similar con-
tents. Judge responses with only ONE class label as your final
answer. S1:{derived explanation}. S2:{GT-Explanation}.
Please ONLY response your in either G-1, G-2, or G-3; THERE
SHOULD BE NO OTHER CONTENT INCLUDED IN YOUR
RESPONSE.

GPT classifier for Contrary
Explanations

Given a user instruction and two AI assistant responses, your job
is to classify whether two responses in S1 and S2 belong to G-1, G-
2, or G-3. The meaning of class is as follows: (G-1) same semantic
meaning, (G-2) opposite semantic meaning, and (G-3) no relation.
Judge responses holistically, paying special attention to whether
two responses have the same semantic meaning. Judge responses
with only ONE class label as your final answer. S1:{derived
explanation}. S2:{Contrary Explanations}. Please ONLY
respond in either G-1, G-2, or G-3; THERE SHOULD BE NO
OTHER CONTENT INCLUDED IN YOUR RESPONSE.

GPT scorer of Contrary Ex-
planations

Given a user instruction and two AI assistant responses, your job
is to rate from ONE to FIVE to judge whether two responses in
S1 and S2 have the same semantic meaning or not. A FIVE score
refers to being totally the same, and ONE score refers to being
totally the opposite. Judge responses holistically, paying special
attention to whether two responses have the same semantic mean-
ing. The judge responds with the rates between ONE and FIVE.
S1:{derived explanation}. S2:{Contrary Explanations}.
Please ONLY respond to the rate value; THERE SHOULD BE
NO OTHER CONTENT INCLUDED IN YOUR RESPONSE.

Table 7: Evaluation Prompts given to GPT-3.5-Turbo used in assessing the efficacy of FaithLM.
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F.1 Robustness Analytics of Configuration (RQ3)

In this section, the robustness test of the explainer LLMs is conducted under the analytics of hyper-parameters
that are highly dependent on the outputs of LLMs. We focus on two different hyper-parameters: Temperature
and Top-p. The experiments are conducted under the explainer GPT-3.5-Turbo and the predictor Vicuna-7B.
We evaluate the following temperatures and top-p of the explainer LLM in the range of {0.3, 0.6, 0.9}. The
results are shown in Figure 11. We observe that the explainer LLMs perform inferior when the temperature
and Top-p are low, reflecting that the lower exploration of explainer LLM may degrade the optimization
ability in explanation generation. The explainer LLMs are encouraged to obtain the temperatures and top-p
around 0.9. The small values of the temperatures and top-p may lead to low flexibility in updating new
explanations. In contrast, large temperatures and top-p may impact explainer LLMs disobeying the given
optimization trajectory. Thus, in the main experiments, all reported performances are under the settings of
temperature 0.9 and top-p 0.9, achieving the best performance for generating explanations.
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Figure 11: Robustness Analytics of FaithLM: Temperature (left) and Top-p strategies (right).

G Details of Prompts Usage in FaithLM

We provide a listing of the prompts in Table 7 utilized in FaithLM in different tasks. The first row demonstrates
the initial explanation trigger prompt leveraging in both fidelity-enhanced optimization and trigger-oriented
optimization. The second row shows the prompt for the LLM agent to generate the contrary explanations.

Conducted Task Evaluation Prompts

Explanation Genera-
tion

Please provide objective explanations of why the model generates
the answers to the given questions based on your thoughts. Ex-
plain the reason why the model provides the answer, no matter
if it is wrong or correct. Make sure not to answer the questions
or provide any suggestions to better answer the questions by
yourself. Q:{Question}. A:{Targeted LLM-generated An-
swer}.

Contrary Explana-
tions Generation

Please generate one example of obtaining the opposite meaning
from a given sentence. Make sure you output sentences only.
Sentences:{derived explanation}.

Table 8: The example of prompts that are given to two explainer LLMs and LLM agent for contrary
explanation.
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H Trajectory System Prompts Usage in FaithLM

We present a detailed listing of the trigger-oriented trajectory prompt in Figure 12 and the explanation-oriented
prompt in Figure 13, as utilized within the FaithLM framework.

H.1 Trigger-oriented Trajectory Prompt

System instruction: Your task is to generate the general prompts <INS> for language
model generating model explanations of each question. Below are some previous prompts
with their scores in the Inputs. The score is calculated as the flipping answer rates and
ranges from 0 to 1.

Inputs: The following exemplars show how to apply your text:
Text: Please provide objective explanations of why model generates the answers.
Score: 0.21

Text: Provide a concise, objective explanation of only the key reasoning or assumptions that
likely led the model to generate this specific response.
Score: 0.53

· · · · · ·

Trajectory Instruction: Generate a prompt <INS> that is different from all prompt
<INS> in Inputs above and has a higher score than all the prompts <INS> from Inputs.
The prompts should begin with <INS> and end with <INS> and follow the format of the
examples in Inputs. The prompts should be concise, effective, and generally applicable to all
problems above.

Response: <A Newly Generated Trigger Prompt>

Figure 12: A examples of trigger-oriented trajectory prompt. This prompt populates in both LLM
explainers, which are Cluade2 and GPT-3.5-Turbo. The output of FaithLM optimized under trigger-oriented
trajectory prompt is append after the Response label.
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H.2 NL Explanation-oriented Trajectory Prompt

System instruction: You have some texts along with their corresponding scores. The
texts are the possible explanation of the following given question and answer. The texts are
arranged in random order based on their scores, where higher scores indicate better quality.
The scores are calculated as how relative the texts are toward the given question and answer
as the explanation. The scores range from 0 to 1 based on your output text.

Inputs: The following exemplars show how to apply your text:
Text: The model generates the answer "farmland" because an apple tree is likely found in
abundance in farmland.
Score: 0.0

Text: The model generates the answer "farmland" because apple trees require open
spaces and fertile soil, both of which are commonly found in farmland.’
Score: 1.0

· · · · · ·

Trajectory Instruction: You replace <EXP> with your text. We say your output is bad
if your output obtains lower scores than the previous text, and we say your output is good if
your output obtains higher scores than the previous text. Please provide new objective text
to describe why the answers are given to the questions based on your thoughts. Explain the
reason, no matter if the answer is wrong or correct. Make sure not to answer the questions
or provide any suggestions to better answer the questions by yourself. Every explanation
should begin with <EXP>. Make sure not to repeat the input queries and answers. Please
only output the explanation sentences.

Response: <A Newly Generated Trigger Prompt>

Figure 13: A examples of explanation-oriented trajectory prompt. This prompt populates in both LLM
explainers, which are Cluade2 and GPT-3.5-Turbo. The output of FaithLM optimized under trigger-oriented
trajectory prompt is append after the Response label.
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I Case Studies of FaithLM

I.1 Explanations Generation

We demonstrate the case studies of explanation results generated by FaithLM after fidelity-enhanced opti-
mization in the following two Figure 14 and Figure 15. The results show that FaithLM can generate faithful
explanations that truly express the decision-making process of targeted LLMs.

Case Study 1
Question: What is the cause of the Promise? Premise: The movie tickets sold out.
Choices: [choice] It was opening day for the movie. [choice] The movie received poor
reviews.
Ground Truth: The movie received poor reviews.
LLM Answer: It was opening day for the movie. (wrong)
derived explanation: The model likely selected that answer because opening day tends to
have very high demand for movies, often resulting in sold out showings. While there could
be other reasons for the sell out, high opening day demand is a reasonable explanation
given the limited context provided.

Case Study 2
Question: What is the effect of the Promise? Premise: I drilled a hole in the wall.
Choices: [choice] A mouse crawled out of the hole. [choice] Dust blew out of the hole.
Ground Truth: Dust blew out of the hole.
LLM Answer: Dust blew out of the hole. (correct)
derived explanation: Dust exiting the hole in the wall is a reasonable effect to expect
when drilling into a wall. Without further context, there is no reason to assume a mouse
coming out of the hole is likely based solely on the premise that a hole was drilled. The
model selected the choice directly supported by the information provided in the premise.

Figure 14: Case Study: derived explanations (Dataset: COPA; Targeted Model f(·): Claude-2; Explainer
g(·): Vicuna)
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Case Study 1
Question: Where would you get a dog if you do not have one?
Choices: [choice] pet store [choice] outside [choice] neighbor’s house [choice] park [choice]
rug
Ground Truth: store
LLM Answer: store (correct)
Derived explanation: The model suggested "pet store" as the place to get a dog if you
don’t already have one because pet stores are a common retail business where people can
purchase dogs as pets.

Case Study 2
Question: Where would you put coins if you want to bring them with you?
Choices: [choice] medium [choice] water fountain [choice] wishing well [choice] desk [choice]
purse
Ground Truth: purse
LLM Answer: desk (wrong)
Derived explanation: The model may have predicted "desk" because desks often have
drawers or containers where coins could be stored temporarily. However, a purse is the most
practical option for carrying coins when leaving.

Figure 15: Case Study: Derived explanations (Dataset: ECQA; Targeted Model f(·): Claude-2;
Explainer g(·): Phi)
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I.2 Explanation Trigger Prompts

The demonstrations in the explanation trigger prompts generated by FaithLM in Figure 16. The results show
that FaithLM can generate explanation trigger prompts that lead explainer LLMs to generate explanations
and obtain higher fidelity.

Initial Explanation Trigger Prompt:
Please provide objective explanations of why model generates the answers to the given
questions based on your thoughts. Explain the reason why the model provides the answer,
no matter if it is wrong or correct. Make sure not to answer the questions or provide any
suggestions to better answer the questions by yourself.

Optimized Trigger Prompt (Dataset: ECQA; Targeted Model f(·): Phi-2; Explainer g(·):
Claude-2):
Explain your reasoning clearly and impartially based solely on the factual inputs, without
assumptions. Succinctly identify factual connections and provide clarification if helpful. I
tried distilling this down to: clear, impartial reasoning solely from the facts; succinctly
identifying factual connections without assumptions; and providing clarification if helpful.
The aim is simplified yet effective guidance that remains focused and broadly applicable to
explain reasoning across diverse queries.

Optimized Trigger Prompt (Dataset: COPA; Targeted Model f(·): Vicuna-7B; Explainer
g(·): Claude-2):
Provide a concise, objective explanation of only the key reasoning or assumptions that likely
led the model to generate this specific response, without repeating the original input or
assessing quality. Use the <EXP> tag and avoid adding any personal perspectives. I have
focused on providing clear, minimal guidelines to elicit explanations that specifically convey
the core logic behind each individual response from the model’s perspective, rather than
overall performance evaluation or subjective opinions. The key aspects aim to produce
focused explanations to better understand the model’s reasoning, while maintaining brevity
and objectivity.

Optimized Trigger Prompt (Dataset: TriviaQA; Targeted Model f(·): GPT-3.5; Explainer
g(·): GPT-3.5):
Create concise and insightful explanations for the model’s answers by thoroughly analyzing
the relevant information in the passages and their connection to the given questions. Begin
each explanation with <EXP> and avoid introducing new information or personal opinions.
Use precise and concise language to focus on the key points and enhance the clarity and
comprehensibility of the explanations. Strive for brevity without sacrificing coherence
to ensure the explanations are easily understandable by a wide range of readers. Avoid
repetition of the questions or answers and provide valuable insights into the model’s reasoning
process to improve the effectiveness and impact of the explanations.

Figure 16: Case Study: Generation of Explanation Trigger Prompts
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I.3 Contrary Explanation

We demonstrate results on contrary explanations leveraged in Fidelity Evaluator. The results in Figure 17
show that the contrary explanation obtains the opposite meaning of the given explanation.

Case Study 1
Question: The child wanted to test electricity, so what did he feel as a result?
Choices: [choice] cause fire [choice] shock [choice] short fuse [choice] kill if used improperly
[choice] produce heat
Ground Truth: shock
LLM Answer: cause fire (wrong)
Given Explanation: The model likely incorrectly associated testing electricity with
igniting a fire, rather than understanding that direct contact can cause an electric shock. It
failed to comprehend the potential outcomes of unsafe electrical contact.
Contrary Explanation: The model correctly predicted that testing electricity would not
cause a fire. It likely fully understood that direct contact with electricity can cause a shock
rather than ignite a fire.

Case Study 2
Question: Where would you put coins if you want to bring them with you?
Choices: [choice] medium [choice] water fountain [choice] wishing well [choice] desk [choice]
purse
Ground Truth: purse
LLM Answer: purse (correct)
Given Explanation: A purse is a personal item that people often carry with them when
going places. It has compartments to store small items like coins, so putting coins in your
purse allows you to easily bring them along wherever you go.
Contrary Explanation: The purse is not a good place to put coins if you don’t want to
bring them with you, because purses are designed for other items, not coins.

Figure 17: Case Study: Contrary Explanation (Dataset: ECQA; Targeted Model f(·): Claude-2;
Explainer g(·): Vicuna)
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