
Under review as a conference paper at ICLR 2024

BITGNN: PREDICTION OF DRUG-TARGET INTERAC-
TIONS BASED ON BIDIRECTIONAL TRANSFORMER

AND GRAPH NEURAL NETWORK ON HETEROGENEOUS

GRAPH

Anonymous authors
Paper under double-blind review

ABSTRACT

Drug-target interaction (DTI) is a widely explored topic in the field of bioin-
formatics and plays a pivotal role in drug discovery. However, the traditional
bio-experimental process of drug-target interaction identification requires a large
investment of time and labor. To address this challenge, graph neural network
(GNN) approaches in deep learning are becoming a prominent trend in the field
of DTI research, which is characterized by multimodal processing of data, feature
learning and interpretability in DTI. Nevertheless, some methods are still limited
by homogeneous graphs and single features. To address the problems we mech-
anistically analyze graph convolutional neural networks (GCN) and graph atten-
tional neural networks (GAT) in order to propose a new model for drug-target
interaction prediction based on graph neural networks named BiTGNN (bidirec-
tional transformer and graph neural network). The method first establishes drug-
target pairs through the pseudo-position specificity scoring matrix (PsePSSM) and
drug fingerprint data, and constructs a heterogeneous network by utilizing the re-
lationship between the drug and the target. Then, the computational extraction
of drug and target attributes is performed using GCN and GAT for the purpose of
model information flow extension and graph information enhancement. We collect
interaction data using the proposed Bi-directional transformer (Bi-transformer) ar-
chitecture, in which we design a bi-directional cross-attention mechanism for cal-
culating the effects of drug-target interactions for realistic biological interaction
simulations. Finally, a feed-forward neural network is used to obtain the feature
matrices of the drug and the target, and DTI prediction is performed by fusing
the two feature matrices. The Enzyme, Ion Channel (IC) , G Protein-coupled Re-
ceptor (GPCR) , and Nuclear Receptor (NR) datasets are used in the experiments,
and compared with several existing mainstream models, our model outperforms
the others in Area Under the Curve (AUC), Area Under the Precision-Recall Curve
(AUPR) , Accuracy and Specificity metrics.

1 INTRODUCTION

Despite significant progress in pharmaceutical research and development, the traditional drug dis-
covery process continues to be plagued by risks, time constraints, and exorbitant costs Paul et al.
(2011); Adams & Brantner (2006). Currently, a key approach to expediting drug discovery involves
the discernment of potential interactions between drugs and their respective targets Nunez et al.
(2012). This identification process plays a critical role in efficiently screening novel drug candi-
dates Chen et al. (2018). The exponential growth of drug and target data has led to an increase in
drugs without corresponding target information, rendering traditional experiments time-consuming
and labor-intensive. As a result, researchers are increasingly adopting machine learning and deep
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learning techniques to construct DTI prediction networks. This progressive trend in DTI research
has contributed to the identification of new DTIs, thereby promoting the development of combina-
tion drugs. In addition, DTI prediction is crucial for any repositioning of existing drugs Langedijk
et al. (2015).

In recent years, traditional machine learning (ML) algorithms have been used to model the prediction
of interactions between compounds and proteins as a binary classification problem Batouche & Bahi
(2021); Yuan et al. (2016); Olayan et al. (2018); Mohamed et al. (2019). With the rapid development
of deep learning, many variants of the GNN model have been proposed to achieve state-of-the-art
performance Nguyen et al. (2021); Long et al. (2019); Peng et al. (2021); Rifaioglu et al. (2020);
Tsubaki et al. (2019); Wan et al. (2019); Zheng et al. (2020). It is then concluded that in the field
of drug-target interaction analysis, various methods can be categorized based on the method of
extracting features from the drug and target. These approaches fall into two primary groups: one
relies on independent features of drug-target pairs, while the other leverages interactive information
Cheng et al. (2022). The former category employs an independent feature extractor to obtain distinct
feature vectors for both drugs and targets.

Despite the commendable performance achieved by the methods relying on the independent charac-
teristics of drugs and targets, it is crucial to acknowledge that drug-target interaction encompasses
the interplay of drug-target pairs within a high-dimensional space Schenone et al. (2013). Con-
sequently, combining interactive information concerning drug-target pairs for predictive purposes
becomes highly rational. The approach based on interaction information takes into account au-
thentic biological drug-target interaction processes and effectively simulates them. Notably, drugs
and targets are no longer treated as discrete elements within the feature extraction process. As an
illustration, Chen et al. (2020) introduced a transformer-based neural network called Transformer-
CPI, which effectively mitigates certain particular shortcomings encountered in sequence-based DTI
models.

This investigation adopts a methodological approach entailing the extraction of amino acid se-
quences from diverse protein classifications, encompassing Enzyme, IC, GPCR, and Nuclear Re-
ceptor NR. The principal aim is to proficiently apprehend the inherent characteristic information
embedded within these amino acid sequences. To realize this objective, PsePSSM features are
employed, facilitating the encoding of both evolutionary and sequential insights pertaining to the
protein sequences. Regarding drug characterization, this article employs molecular ”fingerprints” as
essential inputs for drug characterization due to their pivotal role in chemoinformatics and machine
learning within drug discovery applications Kearnes et al. (2016).

Building upon the work of Chen et al. (2020) in capturing potential features, we propose BiTGNN.
Recognizing the heterogeneity of the DTI graph and the varying significance of different neighbors,
we leverage the graph attention layer to explore the attention weights of adjacent nodes, thereby
significantly enhancing model capacity. In this paper, we present BiTGNN as a solution to the
aforementioned challenges. It fuses the interactive and independent features between drugs and
targets to predict DTIs. During this process, GNN and GAT are selected as independent feature
extractors, capable of capturing abundant semantic information associated with drugs and targets.
Following this, the feature vectors are fed into a Bi-transformer, which considers the local substruc-
tures of both the drug and target, facilitating the extraction of interaction features for downstream
classification. Finally, the fused feature vectors are inputted into a fully connected layer to predict
DTIs. Experimental results demonstrate that BITGNN outperforms other state-of-the-art methods
across four distinct datasets, as evidenced by superior AUC, AUPR, precision, and accuracy metrics.

In summary, the contributions of this paper are summarized as follows: to the best of our knowl-
edge, this is the first time that a Bi-transformer has been considered to take into account drug-target
interaction features; We utilize GAT and GCN as drug-independent feature extractors to extract
their semantic information for targets as well; Our comprehensive experimental results show that
the method outperforms the four state-of-the-art methods on the four benchmark datasets.
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2 MODEL

2.1 PROBLEM DESCRIPTION

Target dataset P = {p1, p2, · · · , pm} and drug dataset D = {d1, d2, · · · , dr} are given, containing
m targets and r drugs respectively. Our goal is to predict whether there will be an interaction
between the target pi and the drug dj . A binary matrix indicates whether there is an interaction
between the drug and the target. If Apd(i, j) = 1, it indicates that the target interacts with the drug;
otherwise Apd(i, j) = 0.

2.2 OVERVIEW

In this study, we propose a new method called BiTGNN to predict DTIs. We first briefly describe
the method and then focus on the different modules of the method. Figure 1(a) shows the net-
work architecture of BiTGNN. It consists of four modules: the graph construction module, the node
feature aggregation module, the Bi-transformer module, and the prediction module. The node fea-
ture aggregation module and the Bi-transformer module are the core of the BiTGNN model. The
Bi-transformer is composed of self-attention, bidirectional cross-attention, feedforward neural net-
work, and multi-layer perceptron. Using the Bi-transformer module, we can extract the interactive
information of drugs and targets.

PsePSSM and fingerprint are used as feature representations for given targets and drugs, respectively.
We construct a network of drugs and targets, where node represents drug or target, and edge repre-
sents interactions between drugs and targets, interactions between drugs and drugs, and interactions
between targets and targets. We then apply graph attention networks and graph convolutional net-
works to generate drug and target embeddings in the heterogeneous network. It is worth noting that
different neighbors have different importance. In implementation, the attention mechanism is used
to assign different weights to different neighbors, which will increase the capacity of the model. A
Bi-transformer is used to extract the interaction features of drugs and targets in subsequent sessions.
Through bidirectional cross-attention, drug features are considered while learning target features,
and target features are considered when learning drug features. The BiTGNN model has obtained
better results.

2.3 GRAPH CONSTRUCTION

Target feature representation According to the previous research setup by Shi et al. (2018), protein
sequences are represented as a PsePSSM features to encode the evolution and sequence information
of proteins with different length sequences. The settings for this paper are the same as before Shi
et al. (2018).

For a target sequence pm with L amino acid residues, we use the position-specific scoring matrix
(PSSM) as its descriptor introduced by Jones (1999). The PSSM with a dimension of L×20 can be
expressed as:

APSSM =



E1→1 E1→2 · · · E1→j · · · E1→20

E2→1 E2→2 · · · E2→j · · · E2→20

...
...

...
...

...
...

Ei→1 Ei→2 · · · Ei→j · · · Ei→20

· · · · · · · · · · · · · · · · · ·
EL→1 EL→2 · · · EL→j · · · EL→20


Here, j is the natural amino acid types, and Ei→j is the score of the i-th residue in the amino acid
sequence mutated to the j-th amino acid residue, which can be searched using PSI-BLAST in the
Swiss-Prot database Altschul et al. (1997).
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Figure 1: (a) The graph is the general framework of the model. It is divided into four parts from
left to right, including the graph construction module, the node feature aggregation module, the dual
converter module, and the prediction module. (b) The figure shows the schematic diagram of GCN
in a heterogeneous network. (c) Fig. shows the schematic diagram of GAT in a heterogeneous
network, from left to right (1), (2), (3), and (4). Figure (d) shows bidirectional cross-attention.
The self-attention block receives input from a single source and the cross-attention block receives
information from two sources.

The following equation is used to normalize matrix elements to intervals:

Ēi→j =
1

1 + exp (−Ei→j)
. (1)

However, according to the PSSM descriptor, the number of amino acids in different proteins varies,
so the number of rows in the PSSM matrix varies. One possible method to make PSSM descriptors
a unified representation is to represent protein sample P as:

ĀPSSM =
[
Ē1, Ē2, . . . , Ē20

]T
(2)

Here T is the transpose operator.

Ēj =
1

L

L∑
i=1

Ēi→j (3)

where Ēi→j is the score of the residue of the i-th position in the amino acid sequence changed to
the j-th amino acid residue after normalization, Ēj is the average score of the amino acid residue
in protein p being mutated amino acid type j during the process of evolution. However, if Eq.
(2) is used to represent protein p, all sequence information will be lost. To avoid complete loss
of sequence information, in combination with the concept of the pseudo-amino acid composition
(PseAAC) initially proposed by Chou (2001), we use PsePSSM to represent the protein p

Pλ
P sePSSM =

[
E1, E2, · · · , E20, G

1
1, G

1
2, · · · , G1

20, · · · , Gλ
1 , G

λ
2 , · · · , Gλ

20

]T
(4)

where,
Gλ

j = 1
L−λ

∑L−λ
i=1

[
Ēi→j − Ēi+λ→j

]2
(j = 1, 2, · · · 20; 0 ≤ λ ≤ L) (5)
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where Gλ
j is the correlation factor of the j-th amino acid and the continuous distance along the

protein sequence is λ. This means that G1
j represents the relevant factor coupled along the most

continuous PSSM score on the protein chain of amino acid type j, G2
j represents the second closest

PSSM score by coupling, and so on. Therefore, a protein sequence can be expressed as Eq. (4) using
PsePSSM and generates a (20+20λ)-dimensional feature vector.

The PsePSSM algorithm converts the protein sequences with different lengths in the dataset into
vectors with the same dimension after feature extraction. In this paper, λ is set to 10 after executing
the optimization program for the training sample by 5-fold cross-validation. So, to facilitate the
implementation of the following algorithm, the characteristic dimension of each target is 220.

Drug feature representation Some researchers commonly use drug fingerprints to represent drug
features, such as Sun et al. (2021) and Nguyen et al. (2023), who have shown that using fingerprints
to represent drug features can improve model performance. For drug molecules, we used the chem-
ical structure of molecular substructure fingerprints from the PubChem database Kim (2019). For
each drug molecule, it defines an 881-dimensional binary vector Q to represent the molecular sub-
structure, where the corresponding bit code of the vector is 1s, indicating that the substructure exists,
and the code of nonexistence is 0s. Therefore, given a drug, its fingerprint features are represented
as

Q (dn) = [q1 (dn) , q2 (dn) , · · · , q881 (dn)] . (6)

Construct heterogeneous graphs Given a dataset of m targets P = {p1, p2, . . . , pm} and r drugs
D = {d1, d2, . . . , dr}, where pi ∈ Rp, di ∈ Rd, where p and d represent the dimensions of
PsePSSM and fingerprint, respectively. The interactions between drugs and targets are represented
by T = (t1, t2, . . . , tk), t∈{1,-1}, where 1 means the relationship between two nodes is pulled
in and -1 means two nodes are distant. In the drug-target interaction bipartite graph, the bipartite
graph is transformed into a heterogeneous graph by increasing the similarity between drugs and the
similarity between proteins.

We make additive aggregation easier by unifying the features of PsePSSM and drug fingerprints into
same dimension. This paper uses two weighting matrices to achieve this goal Wang et al. (2021)

p′i = ReLU (Wp · pi) , Wp ∈ Rp×F , pi ∈ RF ,

d′i = ReLU (Wd · di) , Wd ∈ Rp×F , di ∈ RF .
(7)

We combine the new target dataset P ′ = (p′1, p
′
2, · · · , p′m) and the new drug dataset D′ =

(d′1, d
′
2, · · · , d′r) with the graph nodes H = (h1, h2, · · · , hK), hi ∈ RF . These nodes are connected

to the undirected edge e ∈ {1,−1}, indicating the similarity between drug-target interactions, drug-
drug interactions, and target-target interactions.

The edge set, E, contains two different components: interaction edges and similarity edges. The
interaction edge, ei, is either 1 or -1, referring positive relation and negative relation of two nodes.
Since the positive relation is from the ground truth interaction targets set, T , the initial graph of the
DTI is very sparse and has an imbalanced issue. To solve the above issues, the negative samples
are selected randomly from the unidentified drug-target pairs. We assume that the positive samples
are a small percentage of all possible samples, so there is a low probability that real interaction
be selected as a negative sample. The proportions of positive samples detected in each dataset are
0.99% (Enzymes), 3.49% (ICs), 2.99% (GPCRs), and 6.40% (NRs). In the experiment, we choose
a negative sample with the same number of positive samples. However, the initial interaction edges
are the edges between the drugs and the targets, drugs and targets construct a bipartite graph, which
limits the information flow. So, by adding edges between drugs and targets, the bipartite graph is
converted into a heterogeneous graph. Similar edge e is based on DTI bipartite graphs and their
common neighborhood information. If the number of common positive or negative neighbors of
two nodes is greater than the threshold θ, the two nodes are represented by 1, which means they are
similar, Otherwise, they are represented by 0.
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2.3.1 NODE FEATURE AGGREGATION MODULE

GCN on heterogeneous graphs

In this study, the graph convolution module uses adjacent nodes of the central node in graph G to
define the information propagation framework. These parameters and weights are shared across
all local computational graphs, and the same information propagation method should be used in
the same local computational graph. As shown in the GAT diagram in Figure 1(d), there are four
different local calculation diagrams: (1), (2), (3), and (4). In (1), the central node is drug d1, and
all adjacent nodes are drugs; In (2), the central node d3 is the drug, and there are two adjacent
nodes: drug d1, d5, and target t4. (3) and (4) are the other two cases where the target node is in
the center. Add the features of the same drug node calculated by (1) and (2) to obtain its embedded
representation. Similarly, according to (3) and (4), the feature representation of the target node can
be obtained. The calculation method for node embedding is as follows

h′
d = h

′(1)
d + h

′(2)
d , h′

p = h′(3)
p + h′(4)

p (8)

where h′
d represents the embedding representation of drug node d; h

′(a)
d and h

′(b)
d represent the

hidden states of node d in the local calculation graphs (a) and (b), respectively; h′
p represents the

embedding representation of the target node p and h
′(c)
p and h

′(d)
p represent the hidden states of the

node p in the local calculation graphs (c) and (d), respectively.

In each layer of GCN, four local computational graphs are calculated based on the types of edges
in the original graph to propagate and aggregate node information. The aggregation method for
single-layer graph convolution is as follows

h
′(t+1)
i = δ

∑
τ

∑
j∈N i

t

W (t)
τ h

′(t)
j

 (9)

where h
′(t)
i ∈ Rd(t)

represents the hidden state of node i in the k-th layer of the GCN, and d(t)

represents the dimension of node embedding in the t-th layer. τ represents the type of edge in the
heterogeneous graph G, such as drug-drug, target-target and drug-target. W (k)

τ is the weight of edge
type τ in the k-th layer, and the weight of the same edge type is shared. N i

τ represents the set of
direct neighbors of node i under type τ , including i itself. δ is the ReLU activation function. As
shown in Figure 1(b).

GAT on heterogeneous graphs Our approach uses GAT Velikovi et al. (2017) to adaptively learn
weights for each edge and represent each node by message passing. The input of GAT is a set
of node features H = (h1, h2, · · · , hK), hi ∈ RF and DTI adjacent matrix A. H contains
Hp = (hp1

, hp2
, . . . , hpm

) and Hd = (hd1
, hd2

, . . . , hdr
) and A is generated by the construct

heterogeneous graphs. The output is a new set of node features H ′′ = (h′′1 , h
′′
2 , · · · , h′′

K) , h
′′
i ∈ RF ′′

To convert the input feature to a higher level feature, we apply a weight matrix, W ∈ RF ′×F , to
each node.

fi = σ (W · hi) , fi ∈ RF ′
. (10)

Then we perform a self-attention mechanism on node pair, a: RF ′×RF ′ → R, to compute attention
weight, which indicates the importance of nj to ni, nj ∈ Ni, where Ni is the neighborhood of ni

and itself in DTI graph.
wij = a (fi, fj) , wij ∈ R1. (11)

In the GAT layer, the attention mechanism a is a single-layer neural network, parametrized by a
weight matrix ã ∈ R2F ′

. Then the LeakyReLU nonlinearity is applied.

wij = LeakyReLU
(
ãT [fi∥fj ]

)
(12)
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where T is transposition and ∥ is the concatenation operation. In the general formulation, the atten-
tion mechanism allows every node to attend to every other node, dropping all structural information.
To add graph structure information, we perform mask attention according to the DTI adjacent matrix
A, which enables only the neighbor nodes to be attended. Then we normalize the attention weight
across all choices of j using the softmax function to make it comparable to different nodes.

αij = softmax xj(wij) =
exp (wij)∑

k∈Ni
exp (wik)

(13)

where Ni is the set of i,s neighborhood and itself. After obtaining the normalized attention score,
we use message passing to compute a linear combination of the node features and output the final
aggregated features of each node.

h′′
i = σ

∑
j∈Ni

αijWhj

 (14)

where σ is a nonlinearity, H ′′ is final aggregated features.

Finally, based on the outputs of GCN and GAT, the feature representation of node i is as follows

qi = h′
i + h′′

i (15)

where h′
i and h′′

i are the outputs of GCN and GAT respectively. Here i denotes the drug and target
serial number.

2.3.2 BIDIRECTIONAL TRANSFORMER

Eecoder The encoder is mainly composed of self-attention, layer normalization, feedforward neural
networks, and residual blocks. Its inputs are three matrices V , K, Q, where Q ∈ Rlq×dk ,K ∈
R1k×dk , V ∈ R1v×dv , lq, lk, lv is the dimension of the input length, dk and dv is the dimension after
conversion, and then the output matrix is

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (16)

where Q, K and V are created from the output of the GAT by the projection functions f = WTx+b
(where W and b are weight and bias, respectively).

Decoder The decoder is mainly composed of bidirectional cross-attention, feedforward neural net-
work, and layer normalization. After taking the outputs from the encoder, we need to precisely inte-
grate them to capture valuable drug and target features and reveal the properties of the DTI. These
information sources are increasingly valued because many researchers have demonstrated that this
multi-modal feature can improve model performance. K and V of the targets are used as inputs in
one direction of cross-attention, and the Q matrix of the drug is used as input in the other direction
of cross-attention. Our goal in the cross-attention block is to force the model to capture patterns
that show the effect of information from the compound on the target information and the effect of
information from the target on the compound information.The final interaction representation can
be expressed as follows

Interactions = CrossAttention(V,K,Q) (17)

The Q, K and V from the encoder are generated by f = W ′x + b, where W and b are weight and
bias, respectively. We found that a single-headed cross-attention is superior to other multi-headed
cross-attention. As shown in Figure 1(c).
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2.3.3 THE FINAL DECODER

The final decoder is a neural network, parametrized by a weight matrix W ∈ R2F ′
. It takes pairs of

drug-protein embeddings, generated by the Bi-transformer layer (e.g. q′i and q′j ), as input. Then the
two node vectors do an element-wise multiplication, p ⊙ d → v, v, p, d ∈ RF . Finally, through a
layer of neural network vF → R1 and a Sigmoid activate the function, produce a probability score
indicating whether they interact:

sij = Sigmoid
(
ReLU

(
W

(
q′i ⊙ q′j

)))
.

3 EXPERIMENTAL SETTING

3.1 DATASETS

The Yamanishi dataset contains four sub-datasets: Enzyme, IC, GPCR, and NR datasets. Each
sub-dataset contains three networks: drug-drug structure similarity network, target–target similarity
network, and DTI network. As a widely used dataset, the Yamanishi dataset makes it easier for
researchers to compare their algorithms with state-of-the-art methods.

Table 1: The evaluation results of BiTGNN and other baseline methods on Enzyme’s dataset.
RF SVM GCN GAT DTIGAT DTICNN DTIGNN EEGDTI SGCLDTI MHADTI BiTGNN

AUC 0.8202 0.7886 0.7594 0.8485 0.9627 0.9335 0.9132 0.9001 0.9315 0.9440 0.9730
AUPR 0.8351 0.8116 0.7970 0.8335 0.9613 0.9338 0.8488 0.8436 0.9177 0.9373 0.9796

The best result is indicated in bold, and the second best result is marked with an underline.

Table 2: The evaluation results of BiTGNN and other baseline methods on GPCR’s dataset.
RF SVM GCN GAT DTIGAT DTICNN DTIGNN EEGDTI SGCLDTI MHADTI BiTGNN

AUC 0.8423 0.8009 0.7658 0.7753 0.7622 0.8543 0.8634 0.8793 0.8787 0.8814 0.8819
AUPR 0.8502 0.8534 0.7676 0.7680 0.7649 0.8510 0.8552 0.8432 0.8720 0.8596 0.9125

The best result is indicated in bold, and the second best result is marked with an underline.

Table 3: The evaluation results of BiTGNN and other baseline methods on IC’s dataset.
RF SVM GCN GAT DTIGAT DTICNN DTIGNN EEGDTI SGCLDTI MHADTI BiTGNN

AUC 0.8402 0.8200 0.7947 0.9084 0.7867 0.8918 0.8879 0.8960 0.8989 0.9173 0.9695
AUPR 0.8229 0.8199 0.8156 0.8816 0.7778 0.8890 0.8320 0.8553 0.8883 0.8948 0.975

The best result is indicated in bold, and the second best result is marked with an underline.

3.2 BASELINE

As a comparison, we use RF, SVM, TriModel, GCN, GAT, DTIGAT, DTICNN, DTIMGNN,
EEGDTI, MKTCMF, MHADTI, CnnDTI, PSSMLPQ, CNNEMS, PreDTIs, DTI-HETA to compare
with our model to demonstrate the feasibility of our model. Since DTI prediction is a categorical
task, we use accuracy, precision, the AUC, and AUPR as indicators to measure model performance.
The best results are shown in bold, and the second best are underlined.

3.3 EXPERIMENTAL RESULT

In this study, a 5-fold cross-validation (CV) method is used to carry out experiments. 5-fold CV
can effectively reduce random errors in model evaluation and improve the accuracy of evaluation
results. At the same time, it can also make full use of datasets and reduce the deviation introduced
by unreasonable data segmentation. Therefore, 5-fold CV is one of the most commonly used model
evaluation methods.

8



Under review as a conference paper at ICLR 2024

Table 4: The evaluation results of BiTGNN and other baseline methods on NR’s dataset.
RF SVM GCN GAT DTIGAT DTICNN DTIGNN EEGDTI SGCLDTI MHADTI BiTGNN

AUC 0.8400 0.8378 0.7049 0.8204 0.9120 0.7333 0.8603 0.8778 0.9323 0.9099 0.8673
AUPR 0.8323 0.8196 0.7553 0.8082 0.9032 0.7447 0.8429 0.8655 0.8994 0.9150 0.9153

The best result is indicated in bold, and the second best result is marked with an underline.

Table 5: The evaluation results of BiTGNN and other baseline methods on Enzyme’s dataset.
CnnDTI Zhao et al. PSSM+LPQ CNNEMS PreDTIs DTI-HETA Bi-TDTI

Accuracy 0.943 0.9032 0.8915 0.9419 0.9067 0.94702 0.93162
Specificity N/A N/A N/A N/A 0.8578 0.9222 0.97298

The best result is indicated in bold, and the second best result is marked with an underline.

Many prediction methods have been proposed for DTI prediction. Tables 1 through 2 detail how
BiTGNN compares to other baseline methods on different datasets. Specifically, Table 1 details the
performance of BiTGNN and other methods on Enzyme data. The AUC and AUPR scores of the
best-performing BiTGNN are 97.30% and 97.96%, respectively, which are 0.0103 and 0.0183 higher
than that of the second-best model because our model uses cross-attention to consider the effect of
drugs or targets on targets or drugs. Table 2 details the performance of BiTGNN and other methods
on GPCR data. BiTGNN shows the best performance in AUC and AUPR, which are 0.0005 and
0.0405 higher than the second-best model, although MHADTI uses multi-source drugs and targets
to construct its similarity network, SGCL uses GAT to extract features. Similarly, Table 3 details
the performance of BiTGNN and other methods on the IC dataset. The AUC and AUPR values of
BiTGNN are 0.0522 and 0.0802 higher than those of MHADTI, the second-best effect. As for the
NRs dataset, our model is lower in AUC than the best-performing DTIGAT and slightly higher in
AUPR than MHADTI. This is mainly since the NR dataset only contains a very limited number of
samples for training, and all the deep learning-based methods suffer from it.

Due to the small sample size of NRs and GPCRs, we only used Enzyme and IC datasets when
comparing acc and spec. The overall performance of our model BiTGNN is excellent. Specifically,
the performance of BiTGNN on Enzyme data is shown in Table 5. The acc of BiTGNN is slightly
lower than that of CNNEMS, and BiTGNN scores 97.298% in terms of spec, 0.05078 higher than
the next best model, DTI-HETA. Table 6 compares BiTGNN with other methods on the IC dataset.
Our model BiTGNN performs best, with an acc and spec of 0.00344 and 0.02686 higher than the
next most effective model, respectively.

3.4 ABLATION EXPERIMENT

We remove the GAT module, the GCN and Bi-transformer modules, Bi-transformer module modules
from the enzyme dataset separately to perform experiments to validate the contribution of each part
of the model.

Figure 2: The result of the ab-
lation experiments

We conduct 5-fold CV of the BiTGNN model on the Enzyme
database, and the experimental results are shown in Figure 2. Ob-
viously, the accuracy of all variant models decreases to some ex-
tent, which indicates that all modules of our model are necessary
and key to ensuring a good model effect. After removing the
Bi-transformer module and GAT module, the performance of our
model decreases greatly, which indicates that both Bi-transformer
and GAT can effectively extract graph information. This also in-
dicates that it is necessary to use the Bi-transformer module to ex-
tract cross-information of drugs and targets, and it is impossible to
ignore the extraction of information node neighbor information in
DTI. Our model and comparison experiments without GCN show that heterogeneous graph convo-
lution aggregates information between targets and drugs better than normal graph convolution.
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Table 6: The evaluation results of BiTGNN and other baseline methods on IC’s dataset.
CnnDTI Zhao et al. PSSM+LPQ CNNEMS PreDTIs DTI-HETA Bi-TDTI

Accuracy 0.919 0.8891 0.8601 0.9095 0.8989 0.9400 0.94344
Specificity N/A N/A N/A N/A 0.8567 0.944 0.97086

The best result is indicated in bold, and the second best result is marked with an underline.

3.5 PARAMETER ANALYSIS

In order to verify the influence of the number of common neighbors θ on model performance, we
conduct experiments on a relatively large Enzyme dataset. It is a key factor that connects the similar
edge es of target and drug domains.

Figure 3: The effect of the
common neighbor number θ

The results of different settings are shown in Figure 3. When θ is
equal to 1, it means that if two nodes have a common neighbor,
they are connected. In this case, a heterogeneous graph becomes
a heterogeneous connected graph with the increase of edges, thus
destroying the DTI structure and similarity. That’s why the perfor-
mance of θ=1 is lower than others. As θ increases, the DTI plot
contains more useful similar edges and the precision gets higher.
However, with the increase of θ, AUC and AUPR tend to rise first
and then decline, as shown in Figure 2. Based on the overall condi-
tions, θ = 3 is selected for this paper.

4 CONCLUSION

Identifying potential drug-target interactions is a key task for drug discovery and drug repositioning.
Although existing studies have been highly successful, improving the performance of DTI prediction
remains a major challenge. In this paper, a new and comprehensive learning framework, BiTGNN,
is proposed for predicting drug-target interactions, which can effectively combine the information
of targets and drugs, and heterogeneous graph information. Translate drug and target features into
a drug-target interaction graph. Utilize attention mechanism to assign values to edges, automati-
cally represent the importance of edges, aggregate neighbor features using GCN, and fully refine
the features of drugs and targets using Bi-transformers. We do ablation experiments to verify the
importance of the module. Using cross-validation experiments on four datasets, the BiTGNN model
exhibits good model performance. To verify the impact of the public neighbor threshold θ on our
model, we adjust θ from 1 to 5.
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A APPENDIX

You may include other additional sections here.
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