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Abstract

Speakers of unwritten languages have the po-001
tential to benefit from speech-based automatic002
information retrieval systems. This paper pro-003
poses a speech embedding technique that fa-004
cilitates such a system that can be used in a005
zero-shot manner on the target language. After006
conducting development experiments on sev-007
eral written Indic languages, we evaluate our008
method on a corpus of Gormati – an unwritten009
language – that was previously collected in part-010
nership with an agrarian Banjara community011
in Maharashtra State, India, specifically for the012
purposes of information retrieval. Our system013
achieves a Top 5 retrieval rate of 87.9% on this014
data, giving the hope that it may be useable by015
unwritten language speakers worldwide.016

1 Introduction017

Introducing and integrating well-designed digital018

systems into communities, particularly those with019

low digital participation, such as oral communities,020

can enhance their exposure to digital technologies021

and could reduce inequalities arising from their022

limited digital use or presence (Deumert, 2014;023

Gorman et al., 2011).024

One application of advancements in language025

technology is in the application of speech-based026

search and information retrieval (IR). This task,027

commonly known as Spoken Document Retrieval028

(SDR) has been investigated over several decades,029

mostly notably in DARPA and IARPA programmes030

such as BOLT, GALE and Babel (Griffitt and031

Strassel, 2016; Olive et al., 2011; Hartmann et al.,032

2017) . Early work, e.g., (Weintraub, 1993) took033

the form of simple keyword-spotting tasks (some-034

times referred to as Spoken Term Detection), but035

more sophisticated search capabilities have also036

been developed (Coden et al., 2002).037

In a standard setting, SDR operates over spoken038

documents (i.e., audio and video files containing039

speech) but input queries remain text-based. How- 040

ever, in an alternative setting the input query may 041

be in the form of speech as well. It is this lat- 042

ter formulation that is of course, most relevant to 043

unwritten languages. Whilst SDR systems are typi- 044

cally developed for a specific target language, often 045

using significant quantities of transcribed speech 046

data for model training, this is not possible for an 047

unwritten language. In this case, work to date has 048

adopted a significant simplification of the IR task to 049

that of Query-by-example (QbE), essentially a form 050

of keyword-spotting in which spoken documents 051

are ranked based on the estimated occurrence of an 052

arbitrary spoken input phrase. 053

QbE systems have been developed in a zero-shot 054

manner (Zhang et al., 2013), meaning that no tran- 055

scribed data from the target language is required. A 056

simple approach is to perform pattern matching at 057

the acoustic level, usually requiring a variant of dy- 058

namic time warping (DTW). However, the advent 059

of unsupervised methods for neural network based 060

acoustic word embedding raises the potential that 061

such embeddings could be used for QbE, or even 062

more sophisticated IR tasks for languages without 063

a written form, or even for languages whose speak- 064

ers would benefit from voice interfaces but where 065

speech transcription tools are unreliable. 066

In this paper, we leverage speech embeddings 067

similar to Sanabria et al. (2023a) and introduce 068

novel inference techniques designed specifically 069

for IR with unwritten languages. We conduct a 070

comprehensive set of development experiments in 071

which we compared the technique to common com- 072

peting methods – including both DTW and a dis- 073

crete string search – on a QbE proxy task that we 074

create for several Indic languages. We go on to 075

evaluate the method on a recently-collected cor- 076

pus of Gormati (Reitmaier et al., 2024), an actual 077

unwritten language. This data was collected specif- 078

ically with IR in mind, and enables us to evaluate 079

the performance of our method against metrics that 080
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are directly relevant for the community in question.081

The main contributions of this work are that to our082

knowledge, this is the first successful approach on083

a real-world IR task for an unwritten language; and084

our method is the first to develop speech embed-085

dings for a new language in a zero-resource setting086

targetted specifically to SDR.087

2 Prior work088

2.1 Spoken Document Retrieval089

The key challenges of SDR are how to represent090

spoken queries and documents, and how to per-091

form search using those representations. Most ap-092

proaches use large vocabulary continuous speech093

recognition (LVCSR) to transcribe both queries094

and documents into text, followed by standard text095

IR methods (Chelba et al., 2008). In cases where096

high recall is required, lattices containing alterna-097

tive candidate transcriptions can be used in place098

of a single 1-best transcription (James and Young,099

1994; Richardson et al., 1995).100

Historically, SDR was performed without the101

need for word-based transcription by using pho-102

netic transcriptions instead (Amir et al., 2001; Ng103

and Zue, 2000). This approach was commonly104

termed “phonetic search”. When both queries and105

documents are transcribed into sequences of dis-106

crete phoneme-like symbols, it is possible to use107

string-matching algorithms to perform keyword108

search. However, the matching must be robust to109

the high error rates typically seen in phone recog-110

nition, requiring methods such as Buzo et al.’s111

(2013) windowed string search method – which112

calculates string distances between queries and seg-113

ments of documents – or retrieval with the vector114

space model (VSM), using phone n-grams as terms115

(Moreau et al., 2004). It should be noted that pho-116

netic search methods often exhibit very high false117

positive rates.118

When performing QbE or another form of fully119

speech-speech retrieval, it is also possible to per-120

form matching with continuous representations in121

the acoustic domain. In this case, it is essential to122

perform dynamic time warping to account for the123

differing term lengths between query and document124

audio. Early work used standard signal processing125

features such as mel-frequency cepstral coefficients126

(MFCCs) (Park and Glass, 2008), but such features127

are not robust to variation in speaker charactertis-128

tics or acoustic environment (Sudhakar et al., 2023).129

Subsequently many alternative neural-network fea-130

tures have been tested, including phone posterior- 131

grams (Hazen et al., 2009) and multilingual bottle- 132

neck features (BNFs) (van der Westhuizen et al., 133

2022). San et al. (2021) found that self-supervised 134

features from wav2vec 2.0 and XLSR-53 can out- 135

perform MFCCs and BNFs using DTW. 136

For low-resource languages, LVCSR systems 137

may suffer from unacceptably high error rates, or 138

may not be available at all; and of course, for un- 139

written languages it simply may not be possible to 140

produce word-like output. In such cases, it may be 141

necessary to use phonetic search methods or acous- 142

tic domain matching. We compare both of these 143

approaches in our experiments. 144

2.2 Acoustic Word Embeddings 145

Acoustic Word Embeddings (AWEs) are embed- 146

dings of speech that aim to capture word-like prop- 147

erties. In theory, they may be able to use con- 148

textual information to learn semantic information, 149

in a manner similar to text-based word embed- 150

dings. Compared to text, however, speech data has 151

a much higher time resolution; contains additional 152

nuisance factors that are unrelated to word identity; 153

and is generally available in more limited quanti- 154

ties. Furthermore, word boundaries are generally 155

unknown. However, since they can be trained in 156

an unsupervised manner on a target language – or 157

trained on related languages – AWEs can be useful 158

for untranscribed languages (Sanabria et al., 2023a; 159

Jacobs and Kamper, 2021). 160

The extent to which AWEs are able to capture se- 161

mantic information is still a current research topic. 162

Pasad et al. (2024) demonstrate that self-supervised 163

representations (e.g., HuBERT vectors) do contain 164

some level of semantic information, useful for dis- 165

criminating words. They additionally show that 166

when these features are used as inputs to down- 167

stream models, they perform much better at word 168

discrimination than with other more standard fea- 169

tures - e.g., MFCCs. 170

Pasad et al. (2024) show that pooling self- 171

supervised representations (e.g., from wav2vec2 172

or HuBERT) can produce effective AWEs, and 173

Sanabria et al. (2023b) find HuBERT to be the best 174

for English word discrimination. Although, since 175

HuBERT is only trained on English, the quality de- 176

grades when it is applied to other languages. How- 177

ever, the recent release of mHuBERT, a compact 178

model with the same architecture as HuBERT-Base, 179

trained on 147 languages, could enable generating 180

high-quality AWEs for languages beyond English 181
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(Boito et al., 2024; Hsu et al., 2021).182

Instead of pooling, one can train a model that183

uses self-supervised representations to produce184

AWEs. Sanabria et al. (2023a) describe a sim-185

ple method of producing AWEs using a learned186

pooling layer trained on at least one hour of target187

language speech. They use a multilingual phone188

recogniser (MPR) to transcribe the recordings and189

then train the model contrastively to embed speech190

segments with the same transcription similarly. The191

limitations of this method are that it is not clear how192

to apply it to a QbE task and it requires at least one193

hour of target language training data plus an MPR.194

In contrast, Hu et al. (2021) and Jacobs and Kamper195

(2021) explored the performance of transfer learn-196

ing with AWE models on a QbE task by training on197

well-resourced languages and applying the models198

to low-resource target languages without finetuning.199

Both studies embedded the entire query, segmented200

the search collection with a sliding window and201

embedded these segments. Jacobs and Kamper202

(2021) found that training using languages that are203

closely related to the target language improves per-204

formance, and when adding training languages, the205

largest improvement is gained from adding a single206

related language. We hypothesise that adopting207

this approach with a learned pooling model, with208

its lower data requirements, could allow for the209

development of an effective QbE system using an210

AWE model trained with only a small amount of211

related language training data.212

3 AWE Model for QbE213

Our approach, which we refer to as the AWE model,214

uses learned pooling over mHuBERT representa-215

tions to acquire AWEs. We also introduce two216

inference methods that use these AWEs to perform217

retrieval.218

3.1 mHuBERT Model219

One simple way to perform the QbE task is to use220

mHuBERT vectors as-is. We first convert docu-221

ment and query recordings into sequences of vec-222

tors by directly passing them through mHuBERT.223

Then, we compute cosine similarity between all224

extracted vectors for a given query and document.225

Finally, for each query vector, the maximum sim-226

ilarity over the document vectors is taken and the227

similarities are averaged over the query vectors to228

get a single similarity value between a query and229

a document, illustrated by Figure 1. This is done230

Figure 1: Example of calculating the final similarity
value between a query and a document from the cosine
similarity matrix. Darker cells indicate higher similarity.

for all combinations of queries and documents and 231

for each query, the documents are ranked based on 232

their similarity scores. 233

However, mHuBERT vectors only cover very 234

short, fixed-length segments (20 ms) making it dif- 235

ficult to capture information from longer, variable- 236

length words (Pasad et al., 2024; Algayres et al., 237

2022). For more word-like representations, we 238

can combine multiple mHuBERT vectors together 239

through pooling methods. 240

3.2 Learned Pooling 241

To build on the vanilla mHuBERT model, we ob- 242

tain AWEs by learning a pooling function over 243

mHuBERT features. The pooling function is 244

trained using the NTXent contrastive loss as in 245

Sanabria et al. (2023a). As input, this loss takes a 246

batch consisting of several pairs, each from a differ- 247

ent class. Within each pair, the two examples serve 248

as positive examples for each other, while examples 249

from other pairs act as negatives, and vice versa 250

for the other pairs. Samples are selected based on 251

their phonetic transcriptions – segments that share 252

the same transcription are considered positive sam- 253

ples. We train using gold phone transcriptions as 254

the training language can be higher resource than 255

the target language and so may have gold transcrip- 256

tions. For when gold labels are unavailable, we 257

experiment with MPR transcriptions. 258

3.3 AWE Model Inference 259

We present two inference methods for SDR with 260

AWEs based on a sliding window approach, similar 261

to those discussed in Section 2.2. However, here it 262

is necessary to window both the document and the 263

query because for Gormati, the queries can be just 264

as long or longer than many of the documents. 265
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The first method, Phone Window Inference (Fig-266

ures 2 and 4), relies on the phone timings from an267

MPR to divide recordings into segments of contin-268

uous, non-silence phones.1 The min/max length of269

these segments is specified in phones. For example,270

for 2-4 phones, all segments containing 2 continu-271

ous, non-silent phones are extracted first, followed272

by extracting segments with 3, and 4 phones. These273

segments are then embedded using the AWE model,274

and queries and documents are compared using the275

cosine distance method, described in Section 3.1.276

The second method, Time Window Inference277

(Figures 3 and 4), does not require phone timing278

knowledge. Instead, an average phone length is279

assumed and the window is applied as a standard280

sliding window with 50% overlap. E.g., with an 80281

ms average phone length, 2-4 phones would equal282

windows of 160 ms, 240 ms, and 320 ms.283

We anticipate that phone window inference with284

gold labels will outperform time window inference285

and phone window inference with an MPR, be-286

cause of the additional noise from silences and par-287

tial phones in the time window and from incorrect288

transcriptions with the MPR. However, we treat289

this is a top line system, since gold labels would290

not be available at inference time in a deployment291

scenario.292

4 Data293

4.1 Gormati Dataset294

Our primary task is IR for Gormati, an unwritten295

language spoken by the Banjara farming commu-296

nity in India. This dataset was recently collected297

by Reitmaier et al. (2024). Community members298

were asked to provide a natural spoken description299

of images of various crops. The dataset contains300

302 recordings (3.8 hours) split over 32 different301

classes/images.302

To select Gormati queries, we removed silent303

recordings and those longer than 3 minutes to avoid304

memory issues. Any classes with only 1 record-305

ing were removed from the corpus. The remain-306

ing recordings were divided into queries and doc-307

uments. We used 99 queries as in Reitmaier et al.308

(2024). The queries were unmodified recordings309

randomly selected from a given class, and the num-310

ber of queries in each class was proportional to the311

number of recordings in that class. We ensured that312

1Note that, for training and inference, recordings are first
passed through mHuBERT before they are split up into differ-
ent segments.

Figure 2: Example phone window inference with a
length of 3.

Figure 3: Example of time window inference.

Figure 4: Example AWE representation for a recording
using either phone or time window inference with a
length of 2-4.

classes with only 2 recordings had at least 1 query. 313

This left 288 documents and 99 queries consisting 314

of natural spoken descriptions. Since these descrip- 315

tions might discuss a topic indirectly rather than 316

directly naming the subject, there is no assurance 317

of any lexical or phonetic overlap between a query 318

and its corresponding documents. 319

Our processed data had small discrepancies with 320

the data described in Reitmaier et al. (2024), which 321

we were unable to reconcile despite best efforts. 322

However, their search collection was restricted to 323

only include high volume classes, while ours has 324

no such restriction, including classes with as few 325

as two recordings; hence, our formulation should 326

be more difficult and realistic. 327
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Language # Queries Corpus Size

Gormati 99 288

Gujarati 896 23,255
Hindi 163 4,686
Marathi 89 2,550
Odia 30 873
Tamil 983 28,321
Telugu 984 28,504

Table 1: Data corpus sizes and number of queries.

4.2 Indic Datasets328

Given the limited Gormati data, we used higher-329

resource Indic language data during the develop-330

ment of our models. We used data for Gujarati,331

Hindi, Marathi, Odia, Tamil, and Telugu from the332

2021 Interspeech Multilingual and Code-Switching333

(MUCS) challenge (Diwan et al., 2021). For each334

language, we combined the training and test sets to335

form the search corpus, we filtered out short utter-336

ances under 4 words, and we sampled one example337

of each repeated sentence. Data not used for the338

search corpus was used for training.339

For QbE, we extracted single-word queries us-340

ing tf-idf weighting. We imposed a minimum doc-341

ument frequency of 2 and a maximum of 6. We342

ranked each word by its maximum tf-idf value and343

selected the top scorers as queries, such that the344

ratio of queries to corpus size was 0.03-0.04, as345

in Table 1. For each keyword, we selected one346

recording as the query source, while the remain-347

ing recordings containing the keyword were the348

corresponding gold standard matches.349

5 Methods350

5.1 Baseline Implementation351

To gauge the performance of the AWE model,352

we chose traditional DTW acoustic matching and353

phone recognition-based search methods as our354

baselines, as mentioned in Section 2.1. We im-355

plemented DTW using mHuBERT representations356

(3rd iteration, final layer) (Boito et al., 2024) as357

features. For each query, we ranked relevant358

recordings based on normalised subsequence DTW359

(Giorgino, 2009; Tormene et al., 2009) with Eu-360

clidean local distance.2361

For the phone-based matching baselines, we362

tested both VSM retrieval and windowed string363

search. We used the MPR from Reitmaier et al.364

2To embed a MUCS query, we first embed the whole
recording containing the query, then extract the series of vec-
tors representing the query using gold standard timings.

(2024) to transcribe both queries and documents, 365

then performed search on these transcriptions. 366

For VSM retrieval, we represented queries and 367

documents as vectors of tf-idf weighted terms and 368

scored based on their cosine similarity. We used all 369

phone n-grams from 1-grams to 8-grams as terms. 370

For approximate string search, we slid a window 371

of 1.2 times the query length over each document. 372

Documents were scored based on their edit distance 373

within the window, and documents with the lowest 374

scores were returned as matches. 375

5.2 mHuBERT Model 376

The most important consideration for mHuBERT is 377

what layer to extract the representations from. We 378

used layer 9, which we found through experimen- 379

tation to be optimal. See Appendix A for results 380

over more layers. 381

5.3 AWE Model 382

The architecture of the pooling function is the same 383

as in Sanabria et al. (2023a) and Algayres et al. 384

(2022), with a layer norm followed by a 1D convo- 385

lution, then by a transformer layer with positional 386

embeddings, and finally by a max pooling layer 387

through time (total: 6.8M params). 388

We train three monolingual models separately 389

on 2 hours of Tamil, Telugu and Gujarati using the 390

NTXent contrastive loss.3 During training, we test 391

the multilingual search performance of models at 392

each epoch by testing on a Marathi search task. We 393

early stop when performance does not improve for 394

2 epochs. We use the Adam optimiser with learning 395

rate, l = 10−4 and we set the NTXent temperature 396

τ = 0.07. Training takes under 5 hours on an 397

NVIDIA V100 16GB (Volta). 398

For time window inference, we assume an av- 399

erage phone length of 80 ms. For phone window 400

inference, we use the MPR from Reitmaier et al. 401

(2024). 402

5.4 Hyperparameters 403

Following initial experiments, we determined opti- 404

mal hyperparameters for model training of: 9, 0.07, 405

and 10−4 for layer, temperature and learning rate, 406

respectively. 407

For inference: 3-9 phones was optimal for both 408

time and phone (gold and MPR) window infer- 409

ence for the MUCS languages. For Gormati: 4-13 410

3We choose these languages since they are sampled at 16
kHz, the required sample rate for mHuBERT.
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phones and 3-7 phones was optimal for time and411

phone (MPR) window inference, respectively.412

For MUCS languages, phone window (MPR)413

marginally outperformed time window, so we use414

MPR phone window inference (3-9) with MUCS415

languages. For Gormati, time window inference416

outperformed phone window (MPR), so we use417

time window inference (4-13) with Gormati. Dis-418

cussion of these results is continued in Section 6.2.419

5.5 Evaluation420

Reitmaier et al. (2024) evaluated their Gormati421

voice search system with a Top 5 metric, which422

is the percentage of queries that had at least one423

correct document in their top 5 returns. They used424

this metric because their voice search app displayed425

5 images per page and users could reliably iden-426

tify a single correct image among them. We use427

this metric partly for consistency, but also because428

our systems could be integrated into a similar user-429

facing application in future. However, the Top 5430

metric is quite coarse - it does not consider the num-431

ber of results in the top 5 or their order. Likewise,432

it does not indicate how the system performs across433

all returns. Hence, in addition to the Top 5 metric,434

we use Mean Average Precision (MAP) and Mean435

Average Precision at 5 (MAP@5).436

6 Results437

6.1 Baseline Results438

Results for the traditional baseline methods are439

reported in Table 2. We found that DTW consis-440

tently outperformed both types of retrieval using441

the MPR. These results suggest that the MPR tran-442

scriptions were simply too inconsistent for even443

our approximate string retrieval methods.444

We tested the accuracy of the MPR on one of445

our MUCS test languages, Tamil. We transcribed446

all Tamil queries with the MPR and treated these447

as “reference" transcriptions. Then, we transcribed448

all instances of query words within documents and449

quantified the mismatch between these and the “ref-450

erences" using phone mismatch rate (PMR).4 The451

results highlighted the MPR’s poor performance,452

revealing a PMR of 54%. We also examined how453

well the MPR can detect voice activity. Using the 2454

hours of Tamil training data and comparing it to the455

gold labels, we determined there were 89 minutes456

of voice activity. Nevertheless, we use these results457

as baselines for comparison to the AWE model.458

4Phone mismatch rate is similar to phone error rate.

Additionally, we report results for the mHu- 459

BERT model in Table 3 over all languages. 460

6.2 AWE Model Initial Experiments 461

As shown in Section 5.4, the optimal inference 462

lengths for Gormati differ to that for the MUCS lan- 463

guages. The Gormati time window length (4-13) is 464

much longer than that for the MUCS languages (3- 465

9). This could be because Gormati queries are gen- 466

erally much longer (average 34 s) than our MUCS 467

language queries (average <1 s), meaning longer 468

phone sequences occur more frequently and there- 469

fore may be more discriminative. In contrast, the 470

Gormati phone window (MPR) length (3-7) is sim- 471

ilar to that for the MUCS languages (3-9). This 472

could be since the MPR is inaccurate, regularly 473

deletes phones and inserts silences, meaning long 474

phone sequences are less likely to occur and those 475

that do occur are unlikely to be transcribed cor- 476

rectly. 477

6.3 Ensemble Models 478

We hypothesized that by ensembling models 479

trained on different languages we may produce a 480

model that performs well over all metrics and over 481

all languages. To ensemble models, we simply 482

averaged the scores for each document, for each 483

query, over all models (training languages: Gu- 484

jarati, Tamil and Telugu, as in Section 5.3). Results 485

in Table 4 show that the ensemble model performs 486

well over all metrics. See Appendix B for results 487

for non-ensemble models. 488

Considering inference methods again, Table 5 489

shows that for the ensemble model, phone window 490

(MPR) inference performs on average slightly bet- 491

ter than time window inference for the MUCS lan- 492

guages, matching our initial results. A full break- 493

down is in Appendix C. Table 5 additionally shows 494

that the performance of phone window (MPR) in- 495

ference is much lower than the top-line results with 496

the gold labels. This highlights the importance of a 497

good MPR and demonstrates that performance can 498

still be enhanced by improving the MPR. Further- 499

more, in contrast to the MUCS languages, Table 5 500

shows that on Gormati, time window inference per- 501

forms much better than phone window (MPR) in- 502

ference. This could indicate that the MPR performs 503

much worse on Gormati than other languages. 504

6.4 Training with MPR Labels 505

Training with MPR-predicted phone timings re- 506

moves the requirement for labelled training data, 507
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Language DTW MPR VSM MPR String Search
Top 5 MAP@5 MAP Top 5 MAP@5 MAP Top 5 MAP@5 MAP

Gujarati 44.0% 0.332 0.312 22.8% 0.163 0.148 19.9% 0.143 0.138
Hindi 43.6% 0.328 0.333 24.5% 0.167 0.177 27.0% 0.190 0.196
Marathi 61.8% 0.484 0.401 34.8% 0.265 0.201 28.1% 0.214 0.184
Odia 73.3% 0.517 0.432 30.0% 0.232 0.196 53.3% 0.367 0.304
Tamil 46.6% 0.357 0.340 12.7% 0.090 0.085 13.6% 0.089 0.086
Telugu 40.7% 0.307 0.286 18.9% 0.133 0.118 20.0% 0.142 0.131

Average 51.7% 0.388 0.351 24.0% 0.175 0.154 27.0% 0.191 0.173

Table 2: Baseline DTW and MPR results for MUCS languages.

Language Top 5 MAP@5 MAP

Gormati 68.7% 0.496 0.228

Gujarati 48.1% 0.214 0.215
Hindi 50.3% 0.226 0.242
Marathi 64.0% 0.308 0.274
Odia 86.7% 0.367 0.324
Tamil 51.2% 0.401 0.377
Telugu 45.8% 0.199 0.196

Average (MUCS) 57.7% 0.286 0.271

Table 3: Results for the mHuBERT model (layer 9).

Language Top 5 MAP@5 MAP

Gormati 87.9% 0.683 0.336

Gujarati 62.9% 0.286 0.291
Hindi 60.1% 0.268 0.284
Marathi 69.7% 0.357 0.333
Odia 90.0% 0.410 0.371
Tamil 61.5% 0.479 0.465
Telugu 59.0% 0.270 0.265

Average (MUCS) 67.2% 0.345 0.335

Table 4: Results using the AWE ensemble model,
trained with gold labels. MPR phone window inference
is used with the MUCS languages and time window is
used with Gormati.

which is useful as low-resource languages often508

lack labelled data. We expect that training using509

MPR-predicted phone timings will produce a worse510

model than using gold timings, due to the added511

noise from the MPR. However, as the MPR is rea-512

sonably effective for inference, we expect that a513

model trained with MPR-timings could still be rea-514

sonably effective.515

To test this, we retrained our models using the516

MPR-predicted timings and compared it to our pre-517

vious models trained on gold labels. Table 6 shows518

that the ensembled MPR-trained models are clearly519

worse than the gold label-trained models, as ex-520

pected. However, they still perform reasonably521

well, with metrics that are only at most 7% lower522

than those of the gold labelled models. These re-523

Language Inference Top 5 MAP@5 MAP

Gormati MPR 71.7% 0.541 0.254
Time 87.9% 0.683 0.336

MUCS Average
Gold 75.1% 0.393 0.388
MPR 67.2% 0.345 0.335
Time 64.7% 0.338 0.329

Table 5: Results for Gormati and MUCS for the AWE
ensemble model, trained with gold labels, with time and
phone (Gold and MPR) window inference.

Language Labels Top 5 MAP@5 MAP

Gormati Gold 87.9% 0.683 0.336
MPR 82.8% 0.660 0.315

MUCS Average Gold 67.2% 0.345 0.335
MPR 62.2% 0.325 0.314

Table 6: Results with the AWE ensemble model, trained
using MPR/Gold labels. MPR phone window inference
is used with the MUCS languages and time window is
used with Gormati.

sults show that labels are not necessary for building 524

a strong model, and a fully unsupervised transfer 525

learning approach using an MPR can be effective. 526

6.5 Training with Gormati Data 527

We hypothesised that training with Gormati (us- 528

ing MPR-predicted labels) could improve perfor- 529

mance as we train with the same language we test 530

on. However, based on the results in Section 6.4, 531

it seems that the MPR may not perform well on 532

Gormati. To test this, we finetuned our gold label 533

trained Tamil model on Gormati using files previ- 534

ously excluded from the search collection, totalling 535

around 30 minutes of audio. We used Tamil since 536

it had the highest Top 5 score on Gormati. 537

We found that finetuning with Gormati degrades 538

model performance. We could have potentially 539

tested further by partitioning additional Gormati 540

data from the search collection and finetuning the 541

model’s hyperparameters. However, we chose not 542

7



to do this since the initial results were very poor and543

indicated that this method would be unsuccessful.544

6.6 Amount of Data545

In low-resource contexts, it is useful to know how546

much data is necessary to train a model effectively.547

Lower data requirements could enable the use of548

data from languages that are more closely related to549

the target language, even if they have less data than550

other higher-resource but less related languages.551

All previous models were trained using 2 hours552

of data. Here we tested the effect of training using553

half and a quarter of that amount. We tested using554

the Tamil model since it had the best Top 5 score on555

Gormati. We found that reducing the training data556

to 1 hour produces a very similar model to 2 hours.557

Further reducing the data to 0.5 hours noticeably558

impacts performance, though not too drastically.559

Therefore, in general, increasing the training data560

increases performance, with the greatest increase561

between 0.5 to 1 hour of data.562

7 Discussion563

The best results for each model on the MUCS lan-564

guages are shown in Table 7. The AWE ensemble565

model has the best average Top 5 score with 67.2%,566

though it has a slightly worse MAP and MAP@5567

score compared to the DTW baseline. This sug-568

gests that the AWE model is much better at pro-569

ducing at least one correct response per query than570

the DTW model but it is slightly worse when it571

comes to the overall ranking. Combining these two572

models could produce a model with high scores573

over all metrics.574

On Gormati, the AWE model performs the best575

with a Top 5 score of 87.9%, exceeding the best576

score of 74% from Reitmaier et al. (2024). Note577

that the DTW model cannot readily be applied to578

the more complex Gormati document retrieval task.579

Unlike Reitmaier et al. (2024), our model requires580

no target language training data and thus can oper-581

ate on classes that have just one document. Simi-582

larly, the success of our transfer learning approach583

shows that this method can be extended to other584

low-resource languages using only one hour of data585

from a related higher-resource language. For best586

performance, this data must be labelled. However,587

we showed that a good model can be trained using588

MPR labels. This shows that a successful model589

can be produced without any supervised data from590

the target language, a critical requirement for an591

Model Top 5 MAP@5 MAP

AWE Ensemble 67.2% 0.345 0.335
mHuBERT 57.7% 0.286 0.271
DTW Baseline 51.7% 0.388 0.351

Table 7: Average MUCS language results with a selec-
tion of the best-performing models.

unwritten language. 592

The success of the transfer learning approach 593

suggests that the AWEs are mainly capturing pho- 594

netic information, as semantic information is un- 595

likely to generalise well across languages. A 596

method that captures more semantic information 597

might produce better results given the nature of the 598

Gormati data. Jacobs and Kamper (2024) present 599

such a method, but it requires knowledge of word 600

boundaries, making it unsuitable for unwritten lan- 601

guages. In the future, adapting this or similar meth- 602

ods to unwritten languages could increase the se- 603

mantic content of the AWEs, potentially improving 604

information retrieval further. 605

In a case where there is no data from related 606

languages or resources are unavailable for training, 607

then the mHuBERT or DTW models could be used. 608

They perform worse than the AWE model, but re- 609

quire no training and so can be applied directly to 610

the target language. 611

8 Conclusion 612

We have presented a successful unsupervised 613

method for developing a purely speech-based IR 614

system. However, there remain several avenues for 615

future work. Improving our inference method by 616

experimenting with window lengths, strides and 617

overlaps could be valuable. Optimising model ar- 618

chitectures could also lead to improvements, as 619

might combining the AWE model with the DTW 620

model. Our model development with the MUCS 621

data was geared towards the specific task of re- 622

turning documents that directly contained a single- 623

word query. This type of retrieval is insufficient 624

when it is necessary to return semantically similar 625

results to the query, or for multi-word queries that 626

might benefit from partial matching. 627

9 Limitations 628

There are several limitations to this study, all of 629

which can be addressed with further work. First, 630

we only experimented with training using Tamil, 631

Telugu and Gujarati, as these were the only re- 632

8



lated languages where we had approximately simi-633

lar speech data. However, with additional data, it634

would be possible to train using other languages635

more closely related to Gormati, such as Marathi636

and Hindi. We did not experiment with multilin-637

gual training, which could enhance the models’638

ability to generalise to other languages; neither639

did we train mHuBERT on related languages to640

improve the quality of its representations. Our doc-641

ument ranking system was not tuned to the Gormati642

search task; in future, we could experiment with643

different similarity metrics and different methods644

to compare queries and documents. We only ex-645

perimented with mHuBERT representations but646

we could experiment with a wider range of self-647

supervised representations to better determine the648

optimal representation. We used a somewhat lim-649

ited number of documents and queries for testing650

on Odia, Hindi and Marathi; increasing the number651

of queries and documents would increase our con-652

fidence of our results with these languages. Finally,653

the Gormati dataset used in this work was designed654

with IR in mind, and was collected collaboratively655

with members of the Banjara community. When ap-656

plying methods from this work to other languages,657

especially low-resource languages, it is important658

to keep in mind the community being served. This659

could take the form of catering the system towards660

a specific application or domain that is most use-661

ful to speakers of the target language, or involving662

speakers in the evaluation process.663
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A mHuBERT Model Layer Results834

Table 8 shows results for the mHuBERT model835

over layers 7-11. It shows that layer 9 is the best836

over all metrics with layer 8 trailing closely. The837

other layers appear noticeably worse than these838

two.839

Layer Top 5 MAP@5 MAP

7 53.3% 0.282 0.237
8 57.2% 0.313 0.261
9 59.3% 0.316 0.265
10 50.4% 0.264 0.216
11 39.8% 0.207 0.163

Table 8: Average metrics for the mHuBERT model for
all languages (MUCS and Gormati), for various layers.

B Single System AWE Results840

We trained our AWE models on three languages:841

Tamil, Telugu, and Gujarati. The results for these842

non-ensemble models are shown in Table 9 for843

each test language. MPR phone inference is used844

for MUCS languages and time window inference845

is used for Gormati.846

C AWE Ensemble Model Results847

Table 10 contains a breakdown of the results for the848

ensemble model, trained on gold labels over differ-849

ent inference methods and MUCS test languages.850
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Language Tamil training Telugu training Gujarati training
Top 5 MAP@5 MAP Top 5 MAP@5 MAP Top 5 MAP@5 MAP

Gormati 88.9% 0.670 0.310 85.9% 0.696 0.336 85.9% 0.686 0.343

Gujarati 57.7% 0.261 0.265 58.4% 0.261 0.268 63.5% 0.286 0.289
Hindi 55.2% 0.244 0.260 56.4% 0.251 0.267 62.0% 0.274 0.286
Marathi 65.2% 0.334 0.314 65.2% 0.333 0.314 66.3% 0.340 0.307
Odia 80.0% 0.383 0.350 80.0% 0.376 0.339 73.3% 0.368 0.350
Tamil 59.7% 0.456 0.442 59.4% 0.451 0.436 59.8% 0.454 0.439
Telugu 54.3% 0.251 0.246 57.3% 0.263 0.259 55.8% 0.257 0.252

Average (MUCS) 62.0% 0.332 0.313 62.8% 0.323 0.314 63.5% 0.330 0.321

Table 9: Results on each test language (using MPR phone inference for MUCS languages and time window inference
for Gormati) for AWE models with different training languages. The average is only shown over MUCS languages.

Phone Window (Gold) Phone Window (MPR) Time WindowLanguage Top 5 MAP@5 MAP Top 5 MAP@5 MAP Top 5 MAP@5 MAP

Gujarati 69.8% 0.315 0.319 62.9% 0.286 0.291 60.6% 0.274 0.277
Hindi 70.6% 0.315 0.332 60.1% 0.268 0.284 59.5% 0.277 0.289
Marathi 79.8% 0.397 0.377 69.7% 0.357 0.333 70.8% 0.352 0.337
Odia 93.3% 0.473 0.450 90.0% 0.410 0.371 76.7% 0.388 0.362
Tamil 71.1% 0.562 0.553 61.5% 0.479 0.465 61.2% 0.469 0.452
Telugu 66.1% 0.293 0.296 59.0% 0.270 0.265 59.2% 0.266 0.259

Average 75.1% 0.393 0.388 67.2% 0.345 0.335 64.7% 0.338 0.329

Table 10: Results for ensemble model for different inference methods.
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