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Abstract
Sharpness-Aware Minimization (SAM) is a highly effective regularization technique for improving
the generalization of deep neural networks for various settings. However, the underlying working
of SAM remains elusive because of various intriguing approximations in the theoretical character-
izations. SAM intends to penalize a notion of sharpness of the model but implements a computa-
tionally efficient variant; moreover, a third notion of sharpness was used for proving generalization
guarantees. The subtle differences in these notions of sharpness can indeed lead to significantly
different empirical results. This paper rigorously nails down the exact sharpness notion that SAM
regularizes and clarifies the underlying mechanism. We also show that the two steps of approxi-
mations in the original motivation of SAM individually lead to inaccurate local conclusions, but
their combination accidentally reveals the correct effect, when full-batch gradients are applied.
Furthermore, we also prove that the stochastic version of SAM in fact regularizes another notion
of sharpness, which is most likely to be the preferred notion for practical performance. The key
mechanism behind this intriguing phenomenon is the implicit alignment between the gradient and
the top eigenvector of Hessian when running SAM.

1. Introduction
Modern deep nets are often overparametrized and have the capacity to fit even randomly labeled
data [24]. Thus, a small training loss does not necessarily imply good generalization. Yet, stan-
dard gradient-based training algorithms such as SGD are able to find generalizable models. Recent
empirical and theoretical studies suggest that generalization is well-correlated with the sharpness
of the loss landscape at the learned parameter [6, 7, 13, 14, 21]. Partly motivated by these studies,
Foret et al. [9], Wu et al. [23], Zheng et al. [26] propose to penalize the sharpness of the landscape
to improve the generalization. We refer this method to Sharpness-Aware Minimization (SAM) and
focus on the version of Foret et al. [9] in this paper.

Despite its empirical success, the underlying working of SAM remains elusive because of the
various intriguing approximations made in its derivation and analysis. There are three different
notions of sharpness involved – SAM intends to optimize the first notion, the sharpness along the
worst direction but actually implements a computationally efficient notion, the sharpness along the
direction of the gradient. But in the analysis, a third notion of sharpness is actually used to prove
generalization guarantees, which admits the first notion as an upper bound. The subtle difference
between the three notions can lead to very different explicit biases. (see Figure 1 for demonstraion)

More concretely, let L be the training loss, x be the parameter and ρ be the perturbation radius,
a hyperparameter requiring tuning. The first notion corresponds to the following optimization prob-
lem (1), where we call Rmax

ρ (x) = Lmax
ρ (x) − L(x) the worst-direction sharpness at x and thus

SAM is intended to minimize the original training loss plus the worst-direction sharpness at x.
min
x

Lmax
ρ (x), where Lmax

ρ (x) = max∥v∥2≤1 L(x+ ρv), (1)
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Type of Sharpness Symbol Definition Limiting Regularizers Among Minimizers
Worst-direction Lmax

ρ max∥v∥2≤1 L(x+ ρv) λ1(∇2L(x))/2 (Theorem 12)

Ascent-direction Lasc
ρ L

(
x+ ρ ∇L(x)

∥∇L(x)∥2

)
λmin(∇2L(x))/2(Theorem 13)

Average-direction Lavg
ρ Ev∼N(0,I)L(x+ ρ v

∥v∥2
) Tr(∇2L(x))/2D (Theorem 14)

Table 1: Definitions and explicit biases of different notions of sharpness. Here λmin denotes to the
smallest non-zero eigenvalue.

However, even evaluation of Lmax
ρ (x) is computationally expensive, not to mention optimiza-

tion. Thus [9, 26] proposed to approximate the worst perturbation direction by the direction of
the gradient and implement the second notion of sharpness, which corresponds to (2). We call
Rasc

ρ (x) = Lasc
ρ (x)− L(x) the ascent-direction sharpness at x.

min
x

Lasc
ρ (x), where Lasc

ρ (x) = L

(
x+ ρ

∇L(x)

∥∇L(x)∥2

)
. (2)

Intriguingly, in the generalization analysis of SAM by [9, 23], the first notion of sharpness, i.e.,
the worst-direction sharpness, is only used for upper bounding the third notion of sharpness via
the PAC Bayesian theory [20]. We call the third notion Ravg

ρ (x) = Lavg
ρ (x) − L(x) the average-

direction sharpness at x, where Lavg
ρ (x) = Eg∼N(0,I)L (x+ ρg/∥g∥).

For further acceleration, Foret et al. [9], Zheng et al. [26] omit the gradient through other oc-
currence of x and approximate the gradient of ascent-direction sharpness by gradient taken after
one-step ascent, i.e., ∇Lasc

ρ (x) ≈ ∇L
(
x+ ρ ∇L(x)

∥∇L(x)∥2

)
and derive the update rule of SAM, where

η is the learning rate.

Sharpness-Aware Minimization (SAM): x(t+ 1) = x(t)− η∇L

(
x+ ρ

∇L(x)

∥∇L(x)∥2

)
(3)

In this paper, we analyze the explicit bias of various notions of sharpness and the optimization
trajectory of SAM. Our analysis is performed for small perturbation radius ρ and learning rate η
under the setting where the minimizers of loss form a manifold following [8, 16] In particular, we
make the following theoretical contributions.
1. We prove that full-batch SAM does minimize worst-direction sharpness. (Theorem 8)
2. Surprisingly, when batch size is 1, SAM minimizes average-direction sharpness. (Theorem 11)
3. We characterize the explicit biases of three notions of sharpness among minimizers when pertur-

bation radius ρ goes to zero. (Theorems 12 to 14, also see Table 1) Surprisingly, both heuristic
approximations made for the update rule of SAM lead to inaccurate solutions, that is, (1) mini-
mizing worst-direction sharpness and ascent-direction sharpness induce different biases among
minimizers, and (2) SAM doesn’t minimize ascent-direction sharpness.
The key mechanism behind this implicit bias of SAM is an alignment phenomenon between the

gradient and the top eigenvector of Hessian when running SAM.

2. Notations and Assumptions
For any integer k, we define Ck as the set of k times continuously differentiable functions. For
any mapping F , we define ∂F (x)[u] and ∂2F (x)[u, v] as the first and second order directional
derivative of F (x) along the direction u (and v). Given a differential submanifold Γ of RD and a
point x ∈ Γ, define Px,Γ as the projection operator onto the manifold of the normal space of Γ at x
and P⊤

x,Γ = ID−Px,Γ. We fix our initialization as xinit and our loss function as L : RD → R. Given
the loss function, the gradient flow can be defined as mapping ϕ : RD × [0,∞) → RD satisfying
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ϕ(x, τ) = x −
∫ τ
0 ∇L(ϕ(x, t))dt. We further define the limiting map Φ : RD → RD as Φ(x) =

limτ→∞ ϕ(x, τ). For any positive definite symmetry matrix A ∈ RD×D, define {λi(A), vi(A)}i∈[D]

as all its eigenvalues and eigenvectors satisfying λ1(A) ≥ λ2(A)... ≥ λ3(A) and ∥vi(A)∥2 = 1.
Our analysis assumes sufficiently small η and ρ and uses O(·) to hide constant.

Following Arora et al. [2], Fehrman et al. [8], Li et al. [16], we make the below assumption.
Assumption 1 Assume loss L : RD → R belongs to C4, and there exists a manifold Γ that is
D −M dimensional C2−submanifold of RD for some integer 1 ≤ M ≤ D, where for all x ∈ Γ, x
is a global minimizer of L, L(x) = 0 and rank(∇2L(x)) = M .

The smoothness assumption is met with networks with smooth activation functions and the
existence of the manifold is due to the vast overparameterization of the modern neural network.
The full rank assumption is necessary for the analysis to guarantee the differentiability of Φ. Let
U = {x ∈ RD|Φ(x) exists and Φ(x) ∈ Γ}. Assumption 1 implies that U is open and Φ is in C3 on
U (from Lemma B.15 [2]).

3. Explicit and Implicit Bias in the Full-batch Setting
Section 3.1 provides a general theorem to properly analyze the explicit bias of various notions of
sharpness among different minimizers. We then apply our machinery on ascent-direction sharpness
and worst-direction sharpness and show that they have different explicit biases. In Section 3.2
we provide our main theorem in the full-batch setting, that SAM implicitly minimizes the worst-
direction sharpness, via characterizing its limiting dynamics as learning rate ρ and η goes to 0 with
a Riemmanian gradient flow with respect to the top eigenvalue of the Hessian of the loss on the
manifold of local minimizers. In Appendix C.1 we sketch the proof of the implicit bias of SAM
and identified a key property behind the implicit bias, which is the implicit alignment between the
gradient and the top eigenvector of the Hessian throughout the training.

3.1. Worst- and ascent-direction sharpness have different explicit bias
The intuition of approximating Rmax

ρ by Rasc
ρ comes from the following Taylor expansions [9, 23].

Rmax
ρ (x) = sup

∥v∥2≤1
L(x+ ρv)− L(x) = sup

∥v∥2≤1

(
ρv⊤∇L(x) +

ρ2

2
v⊤∇2L(x)v +O(ρ3)

)
(4)

Rasc
ρ (x)=L

(
x+ ρ

∇L(x)

∥∇L(x)∥2

)
−L(x) =ρ ∥∇L(x)∥2+

ρ2

2

∇L(x)⊤∇2L(x)∇L(x)

∥∇L(x)∥22
+O(ρ3) (5)

For most of points x with non-zero gradient, their leading terms are both the first order term
and are the same, since sup∥v∥2≤1 v

⊤∇L(x) = ∥∇L(x)∥2. Unfortunately, the first order term
vanishes when we actually try to minimize the regularized objective, i.e., the sharpness-aware loss
Lasc
ρ or Lmax

ρ , because every minimizer of the original loss has zero gradient. When one attempts
to optimize the regularized loss, the original loss must first be optimized, meaning the first order
term goes away and the first-order approximation becomes trivial. A quick way to see this is that
any global minimizer of the original loss L will kill the first order term and is a O(ρ2)-approximate
minimizer of the sharpness-aware loss. In order to allow the regularizer to actually “regularize” the
learning algorithm, the goal must be at least reaching O(ρ2) error, and what really matters is indeed
the second order term.

In this section, we aim to understand under Assumption 1 what the explicit biases of various
notions of sharpness among different minimizers are. Theorem 4 will be our main theoretic tool to
analyze the explicit bias for small perturbation radius ρ.
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Notation for Regularizers. Let Rρ : RD → R∪{∞} be a family of regularizers parameterized
by ρ. If Rρ is not well-defined at some x, then we let Rρ(x) = ∞. This convention will be useful
when analyzing ascent-direction sharpness Rasc

ρ = Lasc
ρ −L which is not defined when ∇L(x) = 0.

This convention will not change the minimizers of the regularized loss. Intuitively, a regularizer
should always be non-negative, but however, when far away from manifold, regularizer Rρ(x) can
actually be negative, e.g., Ravg

ρ (x) ≈ ρ2

2DTr[∇2L(x)]. Therefore we make the following assumption
to allow the regularizer to be mildly negative.

Assumption 2 Suppose for any bounded closed set B ⊂ U , there exists C > 0, such that for
sufficiently small ρ, ∀x ∈ B,Rρ(x) ≥ −Cρ2.

The following concept of limiting regularizer is of crucial role in our analysis.

Definition 3 (Limiting Regularizer) We define the limiting regularizer of {Rρ} as the function

S : Γ → R, S(x) = lim
ρ→0

lim
r→0

inf
∥x′−x∥2≤r

Rρ(x
′)/ρ2.

We say the limiting regularizer S of {Rρ} is a good around some x∗ ∈ Γ, if there is an open set V
containing x∗, such that S is a non-negative continuous function in V and for any ϵ > 0, there is
some ρx∗ > 0, it holds that ∀x ∈ Γ ∩ V, 0 < ρ ≤ ρx∗ ,

∣∣∣S(x)− inf∥x′−x∥2≤ϵ·ρRρ(x
′)/ρ2

∣∣∣ < ϵ. We
say the limiting regularizer S is good on Γ, if S is good around every point x ∈ Γ.

The high-level intuition behind the definition of limiting regularizer is to capture the second
order term in the Taylor expansion of regularizer Rρ when ρ → 0. When the second order term
is continuous in x, the definition of S(x) can also be simplified as Rρ(x)/ρ

2. The intuition of the
concept of a good limiting regularizer is that, the regularizer should not change very fast, especially
in an O(ρ) neighborhood of the minimizer. If so, the minimizer of the regularized loss may be Ω(ρ)
away from any minimizer to reduce the regularizer at the cost of increasing the original loss, which
makes the limiting regularizer unable to capture the explicit bias of the regularizer.

Theorem 4 Let U ′ be any bounded open set such that its closure U ′ is contained in U and that
U ′ ∩Γ = U ′ ∩ Γ. Then for any family of parametrized regularizers {Rρ} admitting a good limiting
regularizer on Γ and satisfying Assumption 2 and any ϵ ≥ 0, there is a ρ0 > 0, such that for all
u ∈ U ′ and ρ < ρ0, it holds that

L(u) +Rρ(u) ≤ inf
x∈U ′

(L(x) +Rρ(x)) + ϵρ2 + o(ρ2)

⇐⇒
(
L(u)− inf

x∈U ′
L(x)

)
+

∣∣∣∣Rρ(u)− ρ2 inf
x∈U ′∩Γ

S(x)

∣∣∣∣ ≤ ϵρ2 + o(ρ2)

For the applications we are interested in in this paper, the good limiting regularizer S can be
continuously extended to the entire space RD. In such a case, the implication of “=⇒” of The-
orem 4 also admits the following alternative form which doesn’t involve Rρ. Corollary 5 implies
minimizing regularized loss L(x) + Rρ(x) is equivalent to minimizing the limiting regularizer of
{Rρ}ρ, S(x) on the global minimizer manifold Γ.

Corollary 5 Under the setting of Theorem 4, let S be an continuous extension of S to Rd, if
L(u) + Rρ(u) ≤ inf

x∈U ′
(L(x) +Rρ(x)) + ϵρ2 + o(ρ2), then we have that L(u) − infx∈U ′ L(x) =

O(ρ2) and that
∣∣S(u)− infx∈U ′∩Γ S(x)

∣∣ = ϵ+ o(1).
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Corollary 5 suggests a sharp phase transition of the property of the solution of minx L(x) +
Rρ(x) when the optimization error drops from ω(ρ2) to O(ρ2). when the optimization error is larger
than ω(ρ2), no regularization effect happens and any minimizer satisfies the requirement. When the
error becomes O(ρ2), there is a non-trivial restriction on the (extended) limiting regularizer.

Theorem 6 (Summary of Theorem 13,12 and 14) Rasc
ρ , Rmax

ρ , Ravg
ρ satisfy Assumption 2 and ad-

mit good limiting regularizers on Γ. (see Table 1)

Using Theorem 6, we can apply Corollary 5 to characterize their explicit biases, which are all
different.

3.2. SAM provably decreases worst-direction sharpness locally

Though ascent-direction sharpness has different explicit bias from worst-direction sharpness, in
this subsection we will show that surprisingly, SAM, an heuristic method designed to minimize
ascent-direction sharpness, provably decreases worst-direction sharpness. The main result here
is an exact characterization of the trajectory of SAM (3) via the following ordinary differential
equation (ODE) (6), when learning rate η and perturbation radius ρ are small and the initialization
x(0) = xinit is in U . We call the solution of (6) the limiting flow of SAM, which is exactly the
Riemannian Gradient Flow on the manifold Γ with respect to λ1(∇2L(·)). In other words, the
ODE (6) is essentially a projected gradient descent algorithm with loss λ1(∇2L(·)) on the constraint
set Γ and an infinitesimal learning rate.

X(τ) = X(0)− 1

2

∫ τ

s=0
P⊤
X(s),Γ∇λ1(X(s))ds,X(0) = Φ(xinit). (6)

Note λ1(∇2L(x)) may not be differentiable at x if λ1(∇2L(x)) = λ2(∇2L(x)), thus to ensure
the (6) is well-defined, we assume there is a positive eigengap for L on Γ. Assuming ODE (6) has
a solution till time T3, we have Theorem 8, which is the main theorem of this section.
Assumption 7 For x ∈ Γ, there exists a positive eigengap,i.e., λ1(∇2L(x)) > λ2(∇2L(x)).

Theorem 8 (Main, Theorems 46 and 47 stated informally) Let {x(t)} be the iterates of SAM (3)
with x(0) = xinit ∈ U , then under Assumptions 1 and 7, for all η, ρ such that η ln(1/ρ) and ρ/η are
sufficiently small, the dynamics of SAM can be split into two phases:
• Phase I: SAM follows Gradient Flow with respect to L until entering an O(ηρ) neighborhood of

the manifold Γ in Õ( 1η ) steps;
• Phase II: SAM tracks the solution X of (6), the Riemannian Gradient Flow with respect to
λ1(∇2L(·)) in the O(ηρ) neighborhood in the sense that max0≤T≤T3 ∥Φ(x(⌈T/(ηρ2)⌉))−X(T )∥ =
O((η + ρ) log(1/ηρ)). Moreover, the angle between ∇L(x(t)) and v1(∇2L(x(t))) is O(ρ).

Theorem 8 shows that SAM decreases the largest eigenvalue of Hessian of loss locally around
the manifold of local minimizers.

4. Explicit and Implicit bias in the stochastic setting
In practice, people usually use SAM in the stochastic mini-batch setting, and the test accuracy
improves as the batch size decreases [9]. Towards explaining this phenomenon, Foret et al. [9]
argues intuitively that stochastic SAM minimizes stochastic worst-direction sharpness.

In this section, we focus on SGD with batch size 1. We still need Assumption 1 in this section.
We first by analyzing the explicit bias of the stochastic ascent- and worst-direction sharpness in
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Section 4.1 via the tools developed in Section 3.1. It turns out they are all proportional to the trace
of hessian as ρ → 0. In Section 4.2, we show stochastic SAM locally decreases trace of Hessian.

Setting. Let fk(x) be the model output on kth data where fk is a C4-smooth function and yk be
the ith label for l = 1, . . . ,M . We define the loss on kth data as Lk(x) = ℓ(fk(x), yk) and the total
loss L =

∑M
k=1 Lk/M , where ℓ(y′, y) is a C4-smooth function satisfying the following properties1:

(1). argminy′∈R ℓ(y′, y) = y, for any y ∈ R; (2). d2ℓ(y′,y)
d2y′ |y′=y > 0, for any y ∈ R.

4.1. Stochastic worst- and ascent-direction sharpness have same explicit bias
Below we specify stochastic worst-direction sharpness and stochastic ascent-direction sharpness
as Ek[R

max
k,ρ ] = Ek[L

max
k,ρ ] − L and Ek[R

asc
k,ρ] = Ek[L

asc
k,ρ] − L. Unlike the full-batch setting, these

two sharpness have same explicit bias, or more precisely, they have the same limiting regularizers.
We omit the result on the stochastic average-direction sharpness as it is the same as its counterpart
in the full-batch case.
Theorem 9 Stochastic worst-direction sharpness Ek[R

max
k,ρ ] satisfies Assumption 2 and admits

Tr(∇2L(·))/2 as a good limiting regularizer on Γ.
Theorem 10 Stochastic ascent-direction sharpness Ek[R

asc
k,ρ] satisfies Assumption 2 and admits

Tr(∇2L(·))/2 as a good limiting regularizer on Γ.

4.2. Stochastic SAM minimizes stochastic worst-direction sharpness
Stochastic SAM: Recall Lk is the loss on kth data, we use stochastic SAM to denote the following
update rule, where kt is sampled i.i.d from uniform distribution on [M ].

x(t+ 1) = x(t)− η∇Lkt

(
x+ ρ

∇Lkt(x)

∥∇Lkt(x)∥2

)
, (7)

The main result of this section is to show stochastic SAM tracks the following Riemannian
gradient flow with respect to Tr(∇2L(·)) on the manifold for sufficiently small η and ρ,

X(τ) = X(0)− 1

2

∫ τ

s=0
P⊤
X(s),Γ∇Tr(X(s))ds,X(0) = Φ(xinit). (8)

Theorem 11 Let {x(t)} be the iterates defined by SAM (7) and x(0) = xinit ∈ U , then under
Assumption 1, for all η and ρ such that (η+ρ) log(1/ηρ) is sufficiently small, the dynamics of SAM
can be split into two phases:
• Phase I: Stochastic SAM follows Gradient Flow with respect to L until entering an O(ηρ) neigh-

borhood of the manifold Γ in Õ( 1η ) steps, with probability at least 1−O(
√
ρ);

• Phase II: Stochastic SAM tracks the solution X of (8), the Riemannian Gradient Flow with re-
spect to Tr(∇2L(·)), with time scaling as ∥Φ(x(⌈T3/(ηρ

2)⌉))−X(T3)∥ = O((η+ρ) log(1/ηρ).

5. Conclusion
In this work, we have performed a rigorous mathematical analysis of the explicit bias of various
notions of sharpness when used as regularizers and the implicit bias of the SAM algorithm. In
particular, we show the explicit biases of worst-, ascent- and average-direction sharpness around
the manifold of minimizers are minimizing the largest eigenvalue, the smallest nonzero eigenvalue,
and the trace of Hessian of the loss function. We show that in the full-batch setting, SAM provably
decreases the largest eigenvalue of Hessian, while in the stochastic setting when batch size is 1,
SAM provably decreases the trace of Hessian.

1. Examples include ℓ2 loss: ℓ(y, y′) = 0.5(y − y′)2.
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Appendix A. Related Works
Sharpness and Generalization. The study on the connection between sharpness and generalization
can be traced back to [10]. Keskar et al. [14] observed a positive correlation between the batch
size, the generalization error, and the sharpness of the loss landscape when changing the batch
size. Jastrzebski et al. [12] extends this by finding a correlation of the sharpness and the ratio
between learning rate to batch size. Dinh et al. [6] shows that one can easily construct networks
with good generalization but with arbitrary large sharpness by reparametrization. Dziugaite and
Roy [7], Neyshabur et al. [21], Wei and Ma [22] give theoretical guarantees on the generalization
error using sharpness-related measures. [13] performs a large-scale empirical study on various
generalization measures and showed that sharpness-based measures have the highest correlation
with generalization.

Background on Sharpness Aware-Minimization. Foret et al. [9], Zheng et al. [26] concur-
rently proposed to minimize the loss at the perturbed from current parameter towards the worst
direction to improve generalization. Wu et al. [23] proposed the almost identical method for a differ-
ent purpose, robust generalization of adversarial training. [15] proposed a different metric for SAM
to fix the rescaling problem pointed out by [6]. Liu et al. [17] proposed an more computationally
efficient version of SAM. Zhao et al. [25] proposed to improve generalization by penalizing gradient
norm. Their proposed algorithm can be viewed as a generalization of SAM. Andriushchenko and
Flammarion [1] studied a variant of SAM where the step size of ascent step is ρ instead of ρ

∥∇L(x)∥2
.

They showed that for a simple model this variant of SAM has a stronger regularization effect when
batch size is 1 compared to the full-batch case and argued that this might be the explanation that
SAM generalizes better with small batch sizes.

Sharpness Minimization as Implicit Bias. Recent theoretical works Blanc et al. [3], Damian
et al. [4], Li et al. [16] showed that SGD with label noise is implicitly biased to local minimizers
with a smaller trace of Hessian. Arora et al. [2] showed that normalized GD implicitly decreases
the largest eigenvalue of the Hessian. Lyu et al. [18] showed that GD with weight decay on a scale
invariant loss function implicitly decreases the spherical sharpness, i.e., the largest eigenvalue of the
Hessian evaluated at the normalized parameter.

10
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Appendix B. Discussion and Implication of main result

B.1. Limiting Regularizer

Theorem 12 Worst-direction sharpness Rmax
ρ satisfies Assumption 2 and admits λ1(∇2L(·))/2 as

a good limiting regularizer on Γ.

Theorem 13 Ascent-direction sharpness Rasc
ρ satisfies Assumption 2 and admits λM (∇2L(·))/2

as a good limiting regularizer on Γ.

Theorem 14 Average-direction sharpness Ravg
ρ satisfies Assumption 2 and admits Tr(∇2L(·))/(2D)

as a good limiting regularizer on Γ.

When Rρ is continuous at some x ∈ Γ, the definition of S(x) can be simplified as limρ→0Rρ(x)/ρ
2.

Worst- and average- direction sharpness fall into this type and the limiting regularizer can be solved
straightforwardly by Taylor expansion.

The analysis for ascent-direction sharpness is more tricky as Rasc
ρ (x) = ∞ and thus is not

continuous for any x ∈ Γ. To minimize Rasc
ρ around x, we can pick x′ → x to make ∥∇L(x)∥2 → 0

but not equal to 0. By (5), we have Rasc
ρ (x′) ≈ ρ2/2 · ∇L(x′)⊤∇2L(x)∇L(x′)/∥∇L(x′)∥2. Here

the crucial step of the proof is that because of Assumption 1, ∇L(x)/ ∥∇L(x)∥2 must almost lie

in the column span of ∇2L(x), and thus implies infx′ ∇L(x′)⊤∇2L(x)∇L(x′)/∥∇L(x′)∥2 ρ→0→
λM (∇2L(x)). The above alignment property between the gradient and the column space of Hessian
can be checked directly for any non-negative quadratic function and the maximal Hessian rank
assumption in Assumption 1 ensures this property extends to general losses.

Unlike in the full-batch setting where the implicit regularizer of ascent-direction sharpness and
worst-direction sharpness have different explicit bias, in the stochastic case they are the same be-
cause there is no difference between the maximum and minimum of its non-zero eigenvalue for
rank-1 Hessian of each individual loss, and that the average of limiting regularizers is equal to the
limiting regularizer of the average regularizers by definition.

B.2. Full-batch setting

As a corollary of Theorem 8, we can also show that the largest eigenvalue of the limiting flow
closely tracks the regularized training loss.

Corollary 15 For all T ′
3 > 0, for all ρ, η such that η ln(1/ρ) and ρ/η are sufficiently small we

have ∀T ′
3 < ηρ2t ≤ T3, ∥Rmax

ρ (x(t))− ρ2λ1(X(ηρ2t))/2∥ = Õ(ηρ2)

Recall Theorem 13 shows that the largest eigenvalue of Hessian is the limiting regularizer of the
worst-direction sharpness, leveraging the equivalence relationship in Theorem 4, below we show
that full-batch SAM provably minimizes worst-direction sharpness if we additionally assume the
limiting flow converges to a local minimizer of the top eigenvalue of Hessian.

Corollary 16 Define U ′ as in Theorem 4, suppose X(∞) = lim
t→∞

X(t) exists and is a minimizer

of λ1(∇2L(x)) in U ′ ∩ Γ, for all ϵ > 0, there exists a constant T > 0, then for all ρ, η such that
η ln(1/ρ) and ρ/η are sufficiently small we have Lmax

ρ (x(⌈T/(ηρ2)⌉)) ≤ ϵρ2 + infx∈U ′ Lmax
ρ (x)

11
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B.3. Stochastic Setting

Corollary 17 and 18 below are stochastic counterparts of Corollary 15 and 16, which says that
the trace of Hessian of the limiting flow of well-tracks the stochastic worst-direction sharpness, and
therefore when the limiting flow converges to a local minimizer of trace of Hessian, stochastic SAM
minimizes the stochastic worst-direction sharpness.

Corollary 17 For all T ′
3 > 0, for all ρ, η such that (η+ρ) log(1/ηρ) are sufficiently small we have

∀T ′
3 ≤ ηρ2t ≤ T3, ∥Ek[R

max
k,ρ ](x(t))− ρ2Tr(∇2L(X(ηρ2t)))/2∥ = Õ((η + ρ)ρ2).

Corollary 18 Define U ′ as in Theorem 4, suppose X(∞) = lim
t→∞

X(t) exists and is a minimizer of

Tr(∇2L(x)) in U ′ ∩ Γ, for all ϵ > 0, there exists a constant T > 0, then for all ρ, η such that (η +
ρ) log(1/ηρ) are sufficiently small we have Ek[L

max
k,ρ ](⌈T/(ηρ2)⌉)) ≤ ϵρ2 + infx∈U ′ Ek[L

max
k,ρ ](x)

Appendix C. Proof overview
C.1. Proof Sketch for Phase II in Theorem 8
Now we sketch the proof for the ODE-based characterization of the trajectory of SAM in Phase II.
The framework of the analysis is similar to Arora et al. [2], Lyu et al. [18], where the high-level
idea is to use Φ(x(t)) as a proxy for x(t) and study the dynamics of Φ(x(t)) via Taylor expansion,
which turns out to be dependent on the alignment between the gradient and the eigenvectors of the
Hessian. In particular, like Arora et al. [2], Lyu et al. [18], we show that the gradient aligns to the
top eigenvector of Hessian, and thus encourages the SAM dynamics to reduce the top eigenvalue of
the Hessian.

Taylor Expansion on Φ. In Phase II, it can be shown that ∥x(t)−Φ(x(t))∥ = O(ηρ) holds for
every step, this implies ∥x(t+ 1)− x(t)∥2 = O(ρη). (See Lemma 35) Therefore we have that

Φ(x(t+ 1))− Φ(x(t)) =η∂Φ(x(t))(x(t+ 1)− x(t)) +O(η∥x(t+ 1)− x(t)∥2)

=η∂Φ(x(t))∇L

(
x− ρ

∇L(x)

∥∇L(x)∥2

)
+O(η3ρ2) (9)

Now we apply Taylor expansion on ∇L
(
x+ ρ ∇L(x)

∥∇L(x)∥2

)
around x and get

∇L

(
x+ ρ

∇L(x)

∥∇L(x)∥2

)
=∇L(x)− ρ∇2L(x)

∇L(x)

∥∇L(x)∥2
+

ρ2

2
∂2(∇L)(x)

[
∇L(x)

∥∇L(x)∥2
,

∇L(x)

∥∇L(x)∥2

]
+O(ρ3). (10)

Lemma 19 (Lemma B.16 [2]) For x ∈ U , ∂Φ(x)∇L(x) = 0, ∂Φ(x)∇2L(x)∇L(x) = −∂2Φ(x)[∇L(x),∇L(x)].

Now we plug (10) into (9) and simplify the expression using Lemma 19. We have that

Φ(x(t+ 1))− Φ(x(t)) =0 +O(ρ
∥∥∂Φ(x(t))∇2L(x(t))

∥∥ ∥∇L(x(t))∥2) (11)

−ηρ2

2
∂Φ(x)∂2(∇L)(x)

[
∇L(x)

∥∇L(x)∥2
,

∇L(x)

∥∇L(x)∥2

]
+O(η3ρ2 + ηρ3)

where in the last step we use the property that ∥x(t) − Φ(x(t))∥ = O(ηρ), which further implies
∥∇L(x(t))∥2 = O(ηρ) in Phase II (See Lemma 30).
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Lemma 20 For x ∈ Γ, ∂Φ(x) = P⊤
x,Γ, ∂Φ(x)∇2L(x) = 0, where P⊤

x,Γ is the orthogonal projec-
tion matrix of the tangent space of Γ at x.

Next we use Lemma 20 to further simplify (11). Since the entire phase II happens in an O(ηρ)-
neighborhood of manifold Γ, we have that ∥x(t)− Φ(x(t))∥2 = O(ηρ), thus both

∥∥∂Φ(x(t))∇2L(x(t))
∥∥

and ∥∇L(x(t))∥2 are O(ηρ). So far, the proof is almost completed, with the implicit alignment
between gradient and top eigenvector of Hessian being the last missing piece. Suppose we have∥∥∥ ∇L(x)
∥∇L(x)∥2

− v1(∇2L(x))
∥∥∥ = O(ρ), then it holds that

Φ(x(t+ 1))− Φ(x(t)) =− ηρ2

2
∂Φ(x)∂2(∇L)(x)

[
∇L(x)

∥∇L(x)∥2
,

∇L(x)

∥∇L(x)∥2

]
+O(η3ρ2 + ηρ3)

=− ηρ2

2
∂Φ(x)∂2(∇L)(x)

[
v1(∇2L(x)), v1(∇2L(x))

]
+O(η3ρ2 + ηρ3)

=− ηρ2

2
∂Φ(x(t))∇λ1(∇2L(x(t))) +O(η3ρ2 + ηρ3)

=− ηρ2

2
∂Φ(Φ(x(t))) · ∇λ1(∇2L(x))|x=Φ(x(t)) +O(η3ρ2 + ηρ3), (12)

where the second to last step we use the following property about the derivative of eigenvalue
(Lemma 57) and the last step is due to Taylor expansion.

Implicit Hessian-gradient Alignment. It remains to explain why the gradient implicitly aligns
to the top eigenvector of Hessian, which is the key component of the analysis in Phase II. The
proof strategy here is to first show alignment for a quadratic loss function, and then generalize its
proof to general loss functions satisfying Assumption 1. Below we first give the formal statement
of the implicit alignment on quadratic loss Theorem 21. Note this alignment property is an implicit
property of the SAM algorithm – it is not due to the fact that SAM is an approximation of GD on
Lasc
ρ , because optimizing Lasc

ρ would rather make the gradient align to the smallest eigenvector!

Theorem 21 Suppose A is a positive definite symmetric matrix with unique top eigenvalue. Con-
sider running SAM on loss L(x) := 1

2x
TAx as (13), then for almost every x(0), we have x(t)

converges in direction to v1(A) and limt→∞ ∥x(t)∥ = ηρλ1(A)
2−ηλ1(A) with ηλ1(A) < 1.

x(t+ 1) = x(t)− ηA

(
x(t) + ρ

Ax(t)

∥Ax(t)∥

)
, (13)

Equivalently, we can reformulate the update rule through the lens of the gradient ∇L(x) = Ax:

∇L(x(t+ 1)) = ∇L(x(t))− η(∇2L(x(t)))2
(
∇L(x(t)) + ρ

∇L(x(t))

∥∇L(x(t)))∥

)
, (14)

and the result of Theorem 21 becomes the alignment between gradient and the top eigenvector of
Hessian. This property can be generalized to the analysis of general loss as the dynamic of SAM
near a fixed point on Γ is similar to the quadratic case with small perturbation. To see this, we apply
Taylor expansion on the update rule of SAM (3):

x(t+ 1) = x(t)− η∇L(x(t))− ηρ∇2L(x(t))
∇L(x(t))

∥∇L(x(t))∥2
+O(ηρ2). (15)

13
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Since phase II happens in an O(ηρ)-neighborhood of manifold Γ, we have ∥x(t+ 1)− x(t)∥2 =
O(ηρ). Then by (15) and Taylor expansion on ∇L(x(t+ 1)) at x(t), we have that

∇L(x(t+ 1)) =∇L(x(t))−∇2L(x(t)) (x(t+ 1)− x(t)) +O(η2ρ2) (16)

=∇L(x(t))− η(∇2L(x(t)))2
(
∇L(x(t)) + ρ

∇L(x(t))

∥∇L(x(t)))∥

)
+O(ηρ2) (17)

Equation (16) is a O(ηρ2)-perturbed version of the update rule in the quadratic case. Note this
is a higher order term comparing to the other two terms, which have orders Θ(η2ρ) and Θ(ηρ)
respectively, the implicit alignment between Hessian and gradient happens for the same reason as
in the quadratic case. We further show once this alignment happens, it will be kept until the end of
our analysis, which is Θ(η−1ρ−2) steps.

C.2. Proof Sketch for Stochastic Case

Given our results in Section 3, it’s natural to ask if we can justify the implicit Hessian-gradient
alignment in the stochastic setting. Unfortunately, such alignment is not possible in the most general
setting. For example, take a simple quadratic loss L(x) = L1(x)+L2(x)

2 , where Lk(x) = 0.5x⊤Akx
and Ak is a positive definite matrix for k = 1, 2. If A1 and A2 have different top eigendirection, then
no x can simultaneously satisfy that ∇Lk(x) = Akx aligns to the top eigenvector of ∇2Lk(x) =
Ak. Yet when the batch size is 1, we can prove rigorously that stochastic SAM minimizes stochastic
worst-direction sharpness (Section 4.2).

The fundamental difference between stochastic SAM (7) with batch size 1 and that in the general
setting is that the rank of the Hessian of each stochastic loss at minimizers is only rank-1, which
enforces the gradient ∇Lk(x) ≈ ∇2Lk(x)(x − Φ(x)) to (almost) lie in the direction of the top
eigenvalue of the Hessian. Lemma 22 formally states this property. For convenience, we denote
d2ℓ(y′,yk)

d2y′ |y′=fk(x)∇fk(x)/∥∇fk(x)∥ as Λk(x), wk(x).

Lemma 22 Under Assumption 1, for any x ∈ U and p ∈ Γ,∇2Lk(p) = Λk(p)wk(p)wk(p)
T and ∃s ∈

{1,−1} ∇Lk(x)
∥∇Lk(x)∥ = swk(p) +O(∥x− p∥)

With Lemma 22, we can show Φ(x(t + 1)) − Φ(x(t)) = −ηρ2P⊤
t,Γ∇(Λk(x))/2 + Õ(η2ρ2)

when ∥x(t+ 1)− x(t)∥ = Õ(ηρ), via a similar but slightly more complicated analysis on Φ(x(t+
1))−Φ(x(t)) as in Section 3.2. As we have E[Λk(x)] = (

∑
k Λk(x))/M = Tr(∇2L(x)), we have

that locally SAM is essentially performing a stochastic projected gradient descent with respect to
Tr(∇2L(·)).

It still remains to prove stochastic SAM gets Õ(ηρ) close of the manifold, which is addressed
by Theorem 51.

Appendix D. Proof Details

D.1. Setup

We will first restate our main assumptions in Section 2.

Assumption 23 Assume loss L : RD → R belongs to C4, and there exists a manifold Γ that is
D −M dimensional C2−submanifold of RD for some integer 1 ≤ M ≤ D, where for all x ∈ Γ, x
is a local minimizer of L, L(x) = 0 and rank(∇2L(x)) = M .

14
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Figure 1: Visualization of the different biases of different sharpness notions on a 4D-toy example.
For x, y ∈ R2, consider loss L(x, y) = F0(x)y

2
0 + F1(x)y

2
1 with F0(x) = x20 + 6x21 + 8

and F1(x) = 4(1 − x0)
2 + (1 − x1)

2 + 1. L has a zero loss manifold {y = 0} and the
eigenvalues of its Hessian on manifold are F0(x) and F1(x) with F0(x) ≥ 8 > 6 ≥ F1(x)
on [0, 1]2. As our theory predicts, (1). full-batch SAM (3) finds the minimizer with the
smallest top eigenvalue, F0(x); (2). GD on Ascent-direction Loss Lasc

ρ (2) finds the
minimizer with the smallest bottom eigenvalue, F0(x). (3). Stochastic SAM (7) (with
L0(x, y) = F0(x)x

2
0, L1(x, y) = F1(x)y

2
1) finds the minimizer with smallest trace of

Hessian. Loss landscape L(x, ·) are visualized as 3D plots at converged x to illustrate the
different biases.(cf.Table 1)

Assumption 24 For x ∈ Γ, there exists a positive eigengap,i.e., λ1(x) > λ2(x).

For stochastic loss, we use notation in Assumption 49, a general assumption containing our
setup in Theorem 11. We additionally define Φk as the gradient flow with respect to Lk.

We abuse the notation and define λi(x), vi(x) as λi(∇2L(Φ(x))), vi(∇2L(Φ(x))) whenever the
latter is well defined. When x(t) and Γ is clear from context, we also use λi(t) := λi(x(t)), vi(t) :=
vi(x(t)), P

⊤
t,Γ := P⊤

Φ(x(t)),Γ, Pt,Γ := PΦ(x(t)),Γ.
In our proof, we repeatedly discuss compact set in Γ and their neighborhoods. We will use

K ⊂ Γ to denote a compact set. This notation may have different meanings in different proof and
will be clearly stated. We further define Kd = {x|Dist(x,K) ≤ d}.

We first present some lemmas regularizing the behavior of L and Γ near C.

Definition 25 A function L is µ−PL in a set U iff ∀x ∈ U , ∥∇L(x)∥2 ≥ 2µ(L(x)− infx∈U L(x)).

Definition 26 The spectral 2-norm of a k-order tensor Γi1,...,ik ∈ Rd1×...×dk is defined as

∥Γ∥ = max
∥xi∥∈Rdi ,∥xi∥=1

Γ[x1, ..., xk].

Lemma 27 Given C, there is a sufficiently small r(C) > 0 such that
1. Kr ∩ Γ is compact
2. Kr ⊂ U ∩ (∩kUk)
3. L is µ−PL on Kr

4. infx∈Kr(λ1(∇2L(x))− λ2(∇2L(x))) ≥ ∆ > 0
5. infx∈Kr λM (∇2L(x)) ≥ µ > 0
6. infx∈Kr λ1(∇2Lk(x)) ≥ µ > 0

15
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We further assume

ζ = sup
x∈Kr

∥∇2L(x)∥, ν = sup
x∈Kr

∥∇3L(x)∥, Υ = sup
x∈Kr

∥∇4L(x)∥,

ξ = sup
x∈Kr

∥∇2Φ(x)∥, χ = sup
x∈Kr

∥∇3Φ(x)∥,

and all these constants are greater than 1. We also abuse the notation and use notations like ζk to
denote the same norm for stochastic loss.

Lemma 28 Given C, there is a sufficiently small h(C) > 0 such that
1. sup

x∈Kh

L(x)− inf
x∈Kh

L(x) ≤ µρ2

8

2. ∀x ∈ Kh,Φ(x) ∈ Kr/2

Then we have

Lemma 29 For any x ∈ Kh, we have
1. The entire gradient flow trajectory with respect to every stochastic loss Lk and L lies in Kr.
2. The whole segment xΦ(x) and xΦk(x) lies in Kr.

The proof of these lemmas can be found in [2].

D.2. Lemma about Φ

In this section, we will introduce some geometric lemma about SAM , which will be heavily used
in the analysis below.

Lemma 30 For x ∈ Kh, we have

∥x− Φ(x)∥ ≤
∫ ∞

0
∥dϕ(x, t)

dt
∥ ≤

√
2(L(x)− L(Φ(x)))

µ
≤ ∥∇L(x)∥

µ

Lemma 31 For x ∈ Kh, we have

∂Φ(x)∇L (x) = 0, x ∈ U

∂Φ (x)∇2L (x)∇L (x) = −∂2Φ (x) [∇L (x) ,∇L (x)] , x ∈ U

∂Φ (x) ∂2(∇L)(x)[v1, v1] = P⊥
X,Γ∇(λ1(∇2(L(x)))), x ∈ Γ.

Lemma 32 At any point x ∈ Kh, we have

∥∇L (x)−∇2L (Φ(x)) (x− Φ(x))∥ ≤ ν

2
∥x− Φ(x)∥2∣∣∣∣ ∥∇L (x) ∥

∥∇2L (Φ(x)) (x− Φ(x))∥
− 1

∣∣∣∣ ≤ 2ν

µ
∥x− Φ(x)∥

∇L (x)

∥∇L (x) ∥
=

∇2L (Φ(x)) (x− Φ(x))

∥∇2L (Φ(x)) (x− Φ(x))∥
+O(

ν

µ
∥x− Φ(x)∥)

The proof of above lemmas can be found in [2].
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Lemma 33 For x ∈ Kh,

∥∂Φ(x)∇Lk(x)∥ ≤ (νk + ζkξ)∥x− Φ(x)∥2

∥∂Φ(x)∇2Lk(x)
∇Lk (x)

∥∇Lk (x) ∥
∥ ≤ (νk + ζkξ)∥x− Φ(x)∥

Proof Consider doing Taylor expansion,

∥∂Φ(x)∇Lk(x)∥ ≤ ∥∂Φ(x)∇2Lk(Φ(x))(x− Φ(x))∥+ νk∥x− Φ(x)∥2

≤ ∥∂Φ(Φ(x))∇2Lk(Φ(x))(x− Φ(x))∥+ νk∥x− Φ(x)∥2 + ζkξ∥x− Φ(x)∥2

= ∥P⊤
x,ΓΦ(Φ(x))∇2Lk(Φ(x))(x− Φ(x))∥+ νk∥x− Φ(x)∥2 + ζkξ∥x− Φ(x)∥2

= (νk + ζkξ)∥x− Φ(x)∥2

and

∥∂Φ(x)∇2Lk(x)
∇Lk (x)

∥∇Lk (x) ∥
∥ ≤ ∥∂Φ(x)∇2Lk(Φ(x))

∇Lk (x)

∥∇Lk (x) ∥
∥+ νk∥x− Φ(x)∥

≤ ∥∂Φ(Φ(x))∇2Lk(Φ(x))
∇Lk (x)

∥∇Lk (x) ∥
∥+ (νk + ζkξ)∥x− Φ(x)∥

= (νk + ζkξ)∥x− Φ(x)∥

Here we use Lemma 28 to ensure the approximation is correct.

Lemma 34 There exists h1 > 0, for x ∈ Kh and p ∈ C,∇2Lk(p) = Λk(p)wk(p)wk(p)
T ,

suppose ∥x− p∥ < h1, there exists s ∈ {1,−1},

∇Lk (x)

∥∇Lk (x) ∥
= swk(p) +O(∥x− p∥)

Further if we have |wT
k (x−p)| ≥ ∥x−p∥3/2, then we have s = sign(wT

k (x−p)). This implies

∇Lk (x)

∥∇Lk (x) ∥

T

(x− p) ≥ swT
k (x− p)−O(∥x− p∥2)

≥ ∥wT
k (x− p)∥ −O(∥x− p∥3/2)

Proof There are two ways we may use to estimate the direction ∇Lk(x)
∥∇Lk(x)∥ .

First Way According to Lemma 32,

∇Lk (x)

∥∇Lk (x) ∥
=

∇2Lk(Φk(x))(x− Φk(x))

∥∇2Lk(Φk(x))(x− Φk(x))∥
+O(∥x− Φk(x)∥)

Suppose ∇2Lk(Φk(x)) = Λk(Φk(x))wk(Φk(x))wk(Φk(x))
T , then

∇Lk (x)

∥∇Lk (x) ∥
= wk(Φk(x)) +O(∥x− Φk(x)∥)

17
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Define ∇2Lk(O) = viv
T
i , using Davis-Kahan Theorem 55, we would have ∃s ∈ {−1, 1}, such

that ∥wk(Φk(x))− swk(p)∥ ≤ ζ∥Φk(x)− p∥

∇Lk (x)

∥∇Lk (x) ∥
= swk(p) +O(∥Φk(x)− p∥+ ∥x− p∥)

According to Lemma 30, we have ∥x− Φk(x)∥ ≤ ∥∇Lk(x)∥
µ ≤ ζ∥x−p∥

µ . This implies,

∇Lk (x)

∥∇Lk (x) ∥
= swk(p) +O(∥x− p∥) (18)

Second Way There is another direct way to consider the direction of ∇Lk(x)
∥∇Lk(x)∥ . Doing a Taylor expansion at O,

∇Lk (x) = Λk(x)wk(p)wk(p)
T (x− p) +O(ν∥x− p∥2).

That being said, when |wT
k (x− p)| ≥ ∥x− p∥3/2, we have∣∣∥∇Lk (x) ∥ − ∥wkw

T
k (x− p)∥

∣∣ ≤ O(∥x− p∥2)∣∣∥∇Lk (x) ∥ − ∥wkw
T
k (x− p)∥

∣∣
∥wkw

T
k (x− p)∥

≤ O(
∥x− p∥2

∥wkw
T
k (x− p)∥

) = O(∥x− p∥1/2)

Hence we have
∇Lk (x)

∥∇Lk (x) ∥
= sign(wT

k (x− p))wk +O(∥x− p∥1/2) (19)

Comparing (18) and (19), we have there exists h1, such that if ∥x−p∥ ≤ h1, s = sign(wT
k (x−p))

when |wT
k (x− p)| ≥ ∥x− p∥3/2. The final inequality is self-explanatory.

We will abuse notation slightly and suppose h1 in Lemma 34 satisfies h1 ≥ h.

Lemma 35 Suppose x ∈ Kh and y = x− η∇L
(
x+ ρ ∇L(x)

∥∇L(x)∥

)
,

∥∇L(x)∥ ≤ ζ∥x− Φ(x)∥
∥Φ(x)− Φ(y)∥ ≤ ξηρ∥∇L (x) ∥+ ξηρ2 + ξη2∥∇L (x) ∥2 + ξζ2η2ρ2

≤ ζξηρ∥x− Φ(x)∥+ ζ2ξη2∥x− Φ(x)∥2 + ξηρ2 + ξζ2η2ρ2

∥y − x∥ ≤ η∥∇L (x) ∥+ ηζρ

Proof Using Taylor Expansion and Lemma 28,

∥Φ(y)− Φ(x)∥ ≤ ∥∂Φ(x)(y − x)∥+ ξ∥y − x∥2/2

Further

y − x = −η∇L

(
x+ ρ

∇L (x)

∥∇L (x) ∥

)
= −η∇L (x)− ηρ∇2L(x)

∇L (x)

∥∇L (x) ∥
− ηρ2∂∇2L (x)[

∇L (x)

∥∇L (x) ∥
,

∇L (x)

∥∇L (x) ∥
]/2 +O(ηρ3Υ)

⇒∥y − x+ η∇L (x) + ηρ∇2L(x)
∇L (x)

∥∇L (x) ∥
+ ηρ2∂∇2L (x)[

∇L (x)

∥∇L (x) ∥
,

∇L (x)

∥∇L (x) ∥
]/2∥ ≤ ηρ3Υ

18
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This implies

∥y − x∥ = η∥∇L

(
x+ ρ

∇L (x)

∥∇L (x) ∥

)
∥ ≤ η∥∇L (x) ∥+ ηζρ

∥∂Φ(x)(y − x)∥ ≤ η∥∂Φ(x)∇L (x) + ρ∂Φ(x)∇2L(x)
∇L (x)

∥∇L (x) ∥
∥+ ηρ2ξ

Using Lemma 31,

∥∂Φ(x)(y − x)∥ ≤ ηρ∥∇L (x) ∥∥∂2Φ(x)

[
∇L (x)

∥∇L (x) ∥
,

∇L (x)

∥∇L (x) ∥

]
∥+ ηρ2ξ

≤ ξηρ∥∇L (x) ∥+ ηρ2ξ

Putting together we have

∥Φ(x)− Φ(y)∥ ≤ ξηρ∥∇L (x) ∥+ ηρ2ξ + ξη2∥∇L (x) ∥2 + ξζ2η2ρ2

Lemmas in this section will be repeatedly used in our proofs.

D.3. Explicit Bias

We will first prove the generic Theorem 4 and then apply this theorems to characterize a variety of
regularizers.

Lemma 36 Let U ′ be any bounded open set such that its closure U ′ ⊆ U . Further assume U ′∩Γ =
U ′ ∩ Γ, then for all h2 > 0,∃ρ0 > 0 if x ∈ U ′,dist(x,Γ) ≤ ρ0 ⇒ dist(x, U ′ ∩ Γ) ≤ h2

Proof Prove by contradiction. If there exists a list of ρ1, ..., ρk, ..., such that ρk → 0 and there
exists xk ∈ U ′, such that dist(xk,Γ) ≤ ρk and dist(xk, U ′ ∩Γ) ≥ h2. Then consider accumulation
point of xk x∗ in U ′. Then we would have x∗ ∈ Γ ∩ U ′ = U ′ ∩ Γ.

Lemma 37 Let U ′ be any bounded open set such that its closure U ′ ⊆ U . then for all h2 >
0,∃ρ1 > 0 if x ∈ U ′, L(x) ≤ ρ1 ⇒ dist(x, U ′ ∩ Γ) ≤ h2

Proof Prove by contradiction. If there exists a list of ρ1, ..., ρk, ..., such that ρk → 0 and there exists
xk ∈ U ′, such that L(xk) ≤ ρk and dist(xk, U ′ ∩ Γ) ≥ h2. Then consider accumulation point of
xk x∗ in U ′. Then we would have x∗ ∈ Γ ∩ U ′ = U ′ ∩ Γ.

Proof [Proof of Theorem 4 ] We will first prove ⇒ side. The proof consists of four steps. Define h
as the constant in Lemma 29 with K = U ′ ∩H .
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Step 1 Consider x0 ∈ U ′ ∩ Γ, satisfying

S(x0) ≤ inf
x∈U ′∩Γ

S(x) +O(ρ).

Then using definition 3, we have there exists sufficiently small ϵρ < ρ2, such that exists ∥x1 −
x0∥ ≤ ϵρ < ρ2 and ∥S(x0)−Rρ(x1)/ρ

2∥ = O(ρ2). Now that as x0 ∈ U ′, we have for sufficiently
small ρ, x1 ∈ U ′. By Lemma 36, we have for sufficiently small ρ, x0x1 ∈ U ′ ∩H

h
, then consider

doing Taylor Expansion, we would have L(x1) +Rρ(x1) ≤ ρ2S(x0) + o(ρ2).
Step 2 Now consider L(u) +Rρ(u) ≤ ρ2 infx∈U ′∩Γ S(x) + ϵρ2 + o(ρ2). We easily have L(u) ≤ O(ρ2)

by Assumption 2. By Lemma 37, we have uΦ(u) ∈ Kh and that ∥u − Φ(u)∥ = O(ρ) by
Lemma 30. This implies dist(U ′ ∩H,Φ(u)) = o(1). Notice now, we have shown Rρ(u) ≤
ρ2 inf S(x) + ρ2ϵ+ o(ρ2)

Step 3 Now applying definition of a good limiting regularizer and Finite covering theorem, we have this
further implies S(Φ(u))ρ2 ≤ Rρ(u)+o(ρ2). We also have S(Φ(u)) ≥ infx∈U ′∩Γ S(x)−o(1) as
S ∈ C0. Finally Rρ(u) ≥ S(Φ(u))ρ2−o(ρ2) ≥ ρ2 inf S(x)−o(ρ2). We also have L(u) ≤ o(ρ2),
proving our claim.

For the ⇐ side, we need to provide a lower bound for L(x) + Rρ(x). Define constant C1 such
that for all x, ∥x − Φ(x)∥ ≥ C1ρ, we have L(x) ≥ (CU ′ + infx∈U ′∩Γ S(x) + 1)ρ2 where CU ′ is
the constant in Assumption 2. Then we have for x such that ∥x − Φ(x)∥ ≥ C1ρ, we have L(x) +
Rρ(x) ≥ (infx∈U ′∩Γ S(x) + 1)ρ2. For ∥x− Φ(x)∥ ≤ C1ρ, we have by definition of good limiting
regularizer and Finite covering theorem, Rρ(x) ≥ ρ2S(Φ(x))−o(ρ2). As distΦ(x), U ′ ∩ Γ = o(1),
we have Rρ(x) ≥ infx∈U ′∩Γ S(x)− o(ρ2), hence L(x) +Rρ(x) ≥ infx∈U ′∩Γ S(x)ρ

2.

Theorem 4 implies Corollary 38 saying that the minimum of the regularized loss is approxi-
mately the sum of the minimum of loss and the minimum of limiting regularizer.

Corollary 38 Under the setting of Theorem 4,∣∣∣∣ infx∈U ′
(L(x) +Rρ(x))− inf

x∈U ′
L(x)− ρ2 inf

x∈U ′∩Γ
S(x)

∣∣∣∣ ≤ o(ρ2)

Proof [Proof of Corollary 38] In Theorem 4, choose ϵ = 0, and choose u such that L(u)+Rρ(u) ≤
infx∈U ′(L(x) +Rρ(x)) + o(ρ2), the result is then clear.

We will then prove the Corollary 5.
Proof [Proof of Corollary 5] By Theorem 4, we have ∥L(u)−infx∈U ′ L(x)∥ = O(ρ2). This implies
∥u− Φ(u)∥ = O(ρ) and also dist(U ′ ∩H,Φ(u)) = o(1).

We also have ρ2S(Φ(x)) − o(ρ2) ≤ Rρ(u) ≤ ρ2 infx∈U ′∩H S(x). We have ∥S(Φ(x)) −
infx∈U ′∩H S(x)∥ = o(1). This further implies ∥S(Φ(x))− infx∈U ′∩H S(x)∥ = o(1)

Proof [Proof of Theorem 12]
Step 1 For assumption 2

Rmax
ρ (p) = max

∥v∥2≤1
L(p+ ρv)− L(p) ≥ max

∥v∥2≤1

(
ρ⟨∇L(p), v⟩+ ρ2vT∇2L(p)v/2

)
−Υρ3

≥ −Υρ3 ≥ −Cρ2
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Step 2 For definition of good limiting regularizer, by Davis-Kahan Theorem and assumption 1, S(x) =
λ1(x)/2 is non-negative and continuous on Γ.
We also have

lim
ρ→0

lim
r→0

inf
∥x′−x∥≤r

Rmax
ρ (x′)

ρ2
= lim

ρ→0

Rmax
ρ (x)

ρ2
= λ1(∇2L(x))/2

Further for x∗ ∈ Γ, consider a sufficiently small open set V containing x∗ in which ∥∇3L∥ is
bounded, for x ∈ V ∩ Γ, for ∥x′ − x∥ ≤ Cρ, we have

Rmax
ρ (x′) = max

∥v∥2≤1
L(x′ + ρv)− L(x′) ≥ max

∥v∥2≤1

(
ρ⟨∇L(x′), v⟩+ ρ2vT∇2L(x′)v/2

)
−Υρ3

≥ ρ2λ1(∇2L(x′))/2−Υρ3 ≥ ρ2λ1(∇2L(x′))/2−Υρ3 ≥ ρ2λ1(∇2L(x))/2−O(ρ3)

On the other hand

Rmax
ρ (x) = max

∥v∥2≤1
L(x+ ρv)− L(x) ≥ ρ2λ1(∇2L(x))/2−Υρ3

Proof [Proof of Theorem 13]

Step 1 For assumption 2

Rmax
ρ (p) = L(p+ ρ

∇L (p)

∥∇L (p) ∥
)− L(p)

≥
(
ρ∥∇L (p) ∥+ ρ2(

∇L (p)

∥∇L (p) ∥
)T∇2L(p)

∇L (p)

∥∇L (p) ∥
/2

)
−Υρ3

≥ −Cρ2

This constant is by taking minimizer of λ1(∇2L) over U ′.
Step 2 For definition of good limiting regularizer, by Davis-Kahan Theoremm 55 and assumption 1,

S(x) = λM (x)/2 is non-negative and continuous on Γ.
Further for x∗ ∈ Γ, consider a sufficiently small open set V containing x∗ in which ∥∇3L∥ is
bounded, for x ∈ V ∩ Γ, for ∥x′ − x∥ ≤ Cρ, then we easily have ∥x′ − Φ(x)∥ ≤ O(ρ), we have

Rmax
ρ (x′) = L(x′ + ρ

∇L (x′)

∥∇L (x′) ∥
)− L(x′)

≥ ρ∥∇L (x) ∥+ ρ2(
∇L (x′)

∥∇L (x′) ∥
)T∇2L(x)

∇L (x)

∥∇L (x) ∥
/2−O(ρ3)

≥ ρ2(
∇L (x)

∥∇L (x) ∥
)T∇2L(Φ(x))

∇L (x)

∥∇L (x) ∥
/2−O(ρ3)

Using Lemma 32 and Theorem 55, we have

Rmax
ρ (x′) ≥ ρ2λM (Φ(x))−O(ρ3)

≥ ρ2λM (u)−O(ρ3)
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We also have

lim
ρ→0

lim
r→0

inf
∥x′−x∥≤r

Rasc
ρ (x′)

ρ2
= lim

ρ→0
lim
r→0

inf
∥x′−x∥≤r

ρ2λM (Φ(x′))

2ρ2
= λM (∇2L(x))/2

Combining we have S(x) is a good limiting regularizer of R(x).

Proof [Proof of Theorem 14]
Step 1 For assumption 2

Ravg
ρ (p) = Eg∼N(0,I)L(p+ g/∥g∥)− L(p)

≥
(
ρ2(g/∥g∥)T∇2L(p)g/∥g∥

)
/2−Υρ3

≥ −Cρ2

This constant is by taking minimizer of Tr(∇2L) over U ′.
Step 2 For definition of good limiting regularizer, by Davis-Kahan Theoremm 55 and assumption 1,

S(x) = Tr(x)/(2D) is non-negative and continuous on Γ.
Further for x∗ ∈ Γ, consider a sufficiently small open set V containing x∗ in which ∥∇3L∥ is
bounded, for x ∈ V ∩ Γ, for ∥x′ − x∥ ≤ Cρ, we have

Rmax
ρ (x′) = Eg∼N(0,I)L(x

′ + g/∥g∥)− L(x′)

≥
(
ρ2(g/∥g∥)T∇2L(x′)g/∥g∥

)
/2−O(ρ3)

≥ ρ2Tr(∇2L(x′))/2D −O(ρ3)

≥ ρ2Tr(∇2L(x))/2D −O(ρ3)

We also have

lim
ρ→0

lim
r→0

inf
∥x′−x∥≤r

Ravg
ρ (x′)

ρ2
= lim

ρ→0

Ravg
ρ (x)

ρ2
= Tr(∇2L(x))/2D

Combining we have S(x) is a good limiting regularizer of R(x).

Proof [Proof of Theorem 9]
By Theorem 50, Assumption 49 holds.
Easily deducted from Theorem 12 Λk(x) is a good limiting regularizer for Rmax

k,ρ on Γk. Then
as Γ ⊂ Γk, Λk(x) is a good limiting regularizer for Rmax

k,ρ on Γ. Hence S(x) =
∑

k Λk(x)/2M =

Tr(∇2L(x))/2 is a good limiting regularizer of Ek[R
max
k,ρ ](x) on Γ.

Proof [Proof of Theorem 10]
By Theorem 50, Assumption 49 holds.
Easily deducted from Theorem 13 Λk(x) is a good limiting regularizer for Rasc

k,ρ on Γk as the
codimension of Γk is 1. Then as Γ ⊂ Γk, Λk(x) is a good limiting regularizer for Rmax

k,ρ on Γ.Hence
S(x) =

∑
k Λk(x)/2M = Tr(∇2L(x))/2 is a good limiting regularizer of Ek[R

asc
k,ρ](x) on Γ.
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D.4. Full-batch SAM on Quadratic Loss: Proof of Theorem 21

We first simplify the iterate as

x(t+ 1) = x(t)− ηAx(t)− ηρ
A2x(t)

∥Ax(t)∥

Define x̃(t) = Ax(t)
ρ . We have

x̃(t+ 1) = x̃(t)− ηAx̃(t)− η
A2x̃(t)

∥x̃(t)∥
(20)

Our proof consists of three steps
(1) Preparation Phase ∃T1, ∀t > T1, ∥P (j:D)x̃(t)∥ ≤ ηλ2

j

(2) Alignment Phase Define S1 = {t|∥x̃(t)∥ ≤ ηλ2
1

2−ηλ1
, t > T1}, suppose t, t′ ∈ S1, t ≤ t′, then

|x̃1(t)| < |x̃1(t′)| (Lemma 45) and we have t ∈ S1 or t+ 1 ∈ S1 for t ≥ T1(Lemma 43).
(3) Length Convergence ∥x̃(t)∥ will converge to ηλ2

1
2−ηλ1

D.4.1. PREPARATION PHASE

We define Ij = {x̃|∥P (j:D)x̃∥ ≤ ηλ2
j} and we will prove the following two lemmas. Lemma 39

will show this is an invariant set for update rule 20 and Lemma 40 will show that all vectors not in
this set will shrink exponentially in norm.

Lemma 39 If x̃(t) ∈ Ij , using update rule 20, x̃(t+ 1) ∈ Ij

Proof We have by update rule 20,

P (j:D)x̃(t+ 1) = (I − P (j:D)ηA− η
P (j:D)A2

∥x̃(t)∥
)P (j:D)x̃(t)

Hence

∥P (j:D)x̃(t+ 1)∥ = ∥(I − P (j:D)ηA− η
P (j:D)A2

∥x̃(t)∥
)P (j:D)x̃(t)∥

≤ ∥I − P (j:D)ηA− η
P (j:D)A2

∥x̃(t)∥
∥∥P (j:D)x̃(t)∥

.
We have ∥x̃(t)∥ ≤ ηλ2

j

1−ηλj
by assumption,

I(1− ηλj − η
λ2
j

∥P (j:D)x̃(t)∥
) ≺ I(1− ηλj − η

λ2
j

∥x̃(t)∥
) ≺ I − P (j:D)ηA− η

P (j:D)A2

∥x̃(t)∥
≺ I

Then we have ∥I − P (j:D)ηA− ηP (j:D)A2

∥x̃(t)∥ ∥ ≤ max(1, ηλj + η
λ2
j

∥P (j:D)x̃(t)∥ − 1)

Hence

∥P (j:D)x̃(t+ 1)∥ ≤ max(∥P (j:D)x̃(t)∥, ηλ2
j − (1− ηλj)∥P (j:D)x̃(t)∥)

≤ ηλ2
j
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.
Here the last equation use 1− ηλj ≥ 0. We have by definition x̃(t+ 1) ∈ Ij

Lemma 40 If x̃(t) ̸∈ Ij , then ∥P (j:D)x̃(t+ 1)∥ ≤ max (1− ηλD, ηλj) ∥P (j:D)x̃(t)∥

Proof

∥P (j:D)x̃(t+ 1)∥ = ∥(I − P (j:D)ηA− η
P (j:D)A2

∥x̃(t)∥
)P (j:D)x̃(t)∥

≤ ∥I − P (j:D)ηA− η
P (j:D)A2

∥x̃(t)∥
∥∥P (j:D)x̃(t)∥

.
We have ∥x̃(t)∥ ≥ ∥P (j:D)x̃(t)∥ > ηλ2

j , hence ηP (j:D)A2

∥x̃(t)∥ ≺ ηP (j:D)A2

ηλ2
j

≺ I

This implies

−ηλjP
(j:D) ≺ −P (j:D)ηA ≺ I − P (j:D)ηA− η

P (j:D)A2

∥x̃(t)∥
≺ P (j:D)(1− ηλD)

Hence we have

∥P (j:D)x̃(t+ 1)∥ ≤ max (1− ηλD, ηλj) ∥P (j:D)x̃(t)∥

.

Lemma 41 Choosing T1 = maxj

(
− logmax(1−ηλD,ηλj)max(∥x̃(0)∥

ηλ2
j
, 1)

)
, then ∀t ≥ T1, D >

j ≥ 1, x̃(t) ∈ Ij

Proof Proof by contradiction, suppose ∃j, T > T1, x̃(T ) ̸∈ Ij .
By Lemma 39, ∀t < T, x̃(t) ̸∈ Ij .
Then by Lemma 40,

∥P (j:D)x̃(T )∥ ≤ (1− ηλj)
T ∥P (j:D)x̃(0)∥ ≤ max (1− ηλD, ηλj)

T ∥P (j:D)x̃(0)∥ ≤ ηλ2
j ,

which is a contradiction.

D.4.2. ALIGNMENT PHASE

Define θ(t) = arccos( |⟨x̃(t),e1⟩|∥x̃(t)∥ ) , x̃i(t) = ⟨x̃, ei⟩
We will first show the following lemma.

Lemma 42 When ∥x̃(t)∥ ≤ ηλ2
1

2−ηλ1
, using update rule 20

|x̃1(t+ 1)| > |x̃1(t)| & cos(x̃(t+ 1)) ≥ cos(x̃(t))
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Proof We have |x̃1(t+ 1)| = |1− ηλ1 − η
λ2
1

∥x̃(t)∥ ||x̃1(t)|

We also have η
λ2
1

∥x̃(t)∥ > 2− ηλ2
1, hence 1− ηλ1 − η

λ2
1

∥x̃(t)∥ < −1.
Hence we have |x̃1(t+ 1)| > |x̃1(t)|
On the other hand, ∥P (2:D)x̃(t+1)∥ ≤ max

(
|1− ηλ2 − η

λ2
2

∥x̃(t)∥ |, |1− ηλD − η
λ2
D

∥x̃(t)∥ |
)
∥P (2:D)x̃(t)∥

Notice that

1− ηλ1 − η
λ2
1

∥x̃(t)∥
< 1− ηλ2 − η

λ2
2

∥x̃(t)∥
≤ 1− ηλD − η

λ2
D

∥x̃(t)∥
≤ 1− ηλD < 1 < ηλ1 + η

λ2
1

∥x̃(t)∥
− 1

Hence max
(
|1− ηλ2 − η

λ2
2

∥x̃(t)∥ |, |1− ηλD − η
λ2
D

∥x̃(t)∥ |
)
< |1− ηλ1 − η

λ2
1

∥x̃(t)∥ |.

Lemma 43 ∥x̃(t)∥ >
ηλ2

1
2−ηλ1

, x̃(t) ∈ ∩Ij , then using update rule 20,

∥x̃(t+ 1)∥ ≤ max(
ηλ2

1

2− ηλ1
− η

λ4
D

2λ2
1

, ηλ2
1 − (1− ηλ1)∥x̃(t)∥)

Proof

x̃(t+ 1) = (I − ηA− η
A2

∥x̃(t)∥
)x̃(t)

=
1

∥x̃(t)∥

D∑
j=1

(
(1− ηλj)∥x̃(t)∥ − ηλ2

j

)
x̃j(t)ej

Consider the following three cases.

Case 1 ∀i,
∣∣(1− ηλ1)∥x̃(t)∥ − ηλ2

1

∣∣ ≥ ∣∣(1− ηλi)∥x̃(t)∥ − ηλ2
i

∣∣
In this case, we have ∥x̃(t+ 1)∥ ≤

∣∣(1− ηλ1)∥x̃(t)∥ − ηλ2
1

∣∣ = ηλ2
1 − (1− ηλ1)∥x̃(t)∥

A more detailed analysis would show ∥x̃(t+ 1)∥ is upper bounded by√(
ηλ2

1 − (1− ηλ1)∥x̃(t)∥
)2

cos2(θ(t)) + max{|ηλ2
2 − (1− ηλ2)∥x̃(t)∥|, |ηλ2

D − (1− ηλD)∥x̃(t)∥|} sin2(θ(t))

Case 2 ∃i,
∣∣(1− ηλ1)∥x̃(t)∥ − ηλ2

1

∣∣ < ∣∣(1− ηλi)∥x̃(t)∥ − ηλ2
i

∣∣, suppose WLOG, i is the smallest among
such index.
As

ηλ2
i − (1− ηλi)∥x̃(t)∥ < ηλ2

1 − (1− ηλ1)∥x̃(t)∥ =
∣∣(1− ηλ1)∥x̃(t)∥ − ηλ2

1

∣∣
We have −ηλ2

i + (1− ηλi)∥x̃(t)∥ > ηλ2
1 − (1− ηλ1)∥x̃(t)∥. Equivalently,

∥x̃(t)∥ >
ηλ2

1 + ηλ2
i

2− ηλ1 − ηλi
(21)

Combining with x̃(t) ∈ I1 ⇒ ∥x̃(t)∥ ≤ ηλ2
1, we have η < λ1−λi

λ2
1

.
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Now consider the following vertors,

v(1)(t) := (ηλ2
1 − (1− ηλ1)∥x̃(t)∥)x̃(t)

v(2)(t) := ((2− ηλ1 − ηλi)∥x̃(t)∥ − ηλ2
i − ηλ2

1)P
(i:D)x̃(t)

v(2+j)(t) := ((ηλi+j−1 − ηλi+j)∥x̃(t)∥ − ηλ2
i+j + ηλ2

i+j−1)P
(i+j:D)x̃(t), 1 ≤ j ≤ D − i

.
Then we have

∥x̃(t+ 1)∥ = ∥ 1

∥x̃(t)∥

D∑
j=1

(
(1− ηλj)∥x̃(t)∥ − ηλ2

j

)
x̃j(t)ej∥

≤ ∥ 1

∥x̃(t)∥

 i−1∑
j=1

(
ηλ2

1 − (1− ηλ1)∥x̃(t)∥
)
x̃j(t)ej +

D∑
j=i

(
(1− ηλj)∥x̃(t)∥ − ηλ2

j

)
x̃j(t)ej

 ∥

= ∥ 1

∥x̃(t)∥

D+1−i∑
j=1

∥v(j)∥

≤ 1

∥x̃(t)∥

D+1−i∑
j=1

∥v(j)∥

By assumption, we have x̃(t) ∈ ∩Ij , hence we have

∥v(1)(t)∥ = (ηλ2
1 − (1− ηλ1)∥x̃(t)∥)∥x̃(t)∥

∥v(2)(t)∥ ≤ η((2− ηλ1 − ηλi)∥x̃(t)∥ − ηλ2
i − ηλ2

1)λ
2
i

∥v(2+j)(t)∥ ≤ η((ηλi+j−1 − ηλi+j)∥x̃(t)∥ − ηλ2
i+j + ηλ2

i+j−1)λ
2
i+j , 1 ≤ j ≤ D − i

Using AM-GM inequality, we have

λi+j−1λ
2
i+j ≤

λ3
i+j−1 + 2λ3

i+j

3

λ2
i+j−1λ

2
i+j ≤

λ4
i+j−1 + λ4

i+j

2

Hence

∥v(2+j)(t)∥ ≤ η((ηλi+j−1 − ηλi+j)∥x̃(t)∥ − ηλ2
i+j + ηλ2

i+j−1)λ
2
i+j

≤ η2∥x̃(t)∥
λ3
i+j−1 − λ3

i+j

3
+ η2

λ4
i+j−1 − λ4

i+j

2
, 1 ≤ j ≤ D − i

D−i∑
j=1

∥v(2+j)(t)∥ ≤ η2∥x̃(t)∥
λ3
i − λ3

D

3
+ η2

λ4
i − λ4

D

2
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So,

∥x̃(t+ 1)∥ ≤ 1

∥x̃(t)∥

D+1−i∑
j=1

∥v(i)∥

≤ ηλ2
1 + ηλ2

i (2− ηλ1 − ηλi) + η2
λ3
i − λ3

D

3
− (1− ηλ1)∥x̃(t)∥

− η2λ2
i (λ

2
i + λ2

1)
1

∥x̃(t)∥
+ η2

λ4
i − λ4

1

2

1

∥x̃(t)∥

≤ ηλ2
1 + ηλ2

i (2− ηλ1 −
2

3
ηλi)− (1− ηλ1)∥x̃(t)∥ − η2λ2

i (
1

2
λ2
i + λ2

1)
1

∥x̃(t)∥
− η2

λ4
D

2∥x̃(t)∥

≤ ηλ2
1 + ηλ2

i (2− ηλ1 −
2

3
ηλi)− (1− ηλ1)∥x̃(t)∥ − η2λ2

i (
1

2
λ2
i + λ2

1)
1

∥x̃(t)∥
− η

λ4
D

2λ2
1

We further discuss three cases

Case 2.1 ηλi

√
1
2
λ2
i+λ2

1

1−ηλ1
<

ηλ2
1+ηλ2

i
2−ηλ1−ηλi

.

In this case we have ∥x̃(t)∥ >
ηλ2

1+ηλ2
i

2−ηλ1−ηλi
> ηλi

√
1
2
λ2
i+λ2

1

1−ηλ1
,then

∥x̃(t+ 1)∥ ≤ ηλ2
1 + ηλ2

i (2− ηλ1 −
2

3
ηλi)− (1− ηλ1)∥x̃(t)∥ − η2λ2

i (
1

2
λ2
i + λ2

1)
1

∥x̃(t)∥
− η

λ4
D

2λ2
1

≤ ηλ2
1 + ηλ2

i (2− ηλ1 −
2

3
ηλi)− (1− ηλ1)

ηλ2
1 + ηλ2

i

2− ηλ1 − ηλi

− η2λ2
i (
1

2
λ2
i + λ2

1)
2− ηλ1 − ηλi

ηλ2
1 + ηλ2

i

− η
λ4
D

2λ2
1

≤ ηλ2
1

2− ηλ1
− η

λ4
D

2λ2
1

The second line is because (1 − ηλ1)∥x̃(t)∥ + η2λ2
i (

1
2λ

2
i + λ2

1)
1

∥x̃(t)∥ monotonously increase

w.r.t ∥x̃(t)∥ when ∥x̃(t)∥ > ηλi

√
1
2
λ2
i+λ2

1

1−ηλ1
. The last line is due to technical lemma Lemma 59.

Case 2.2 ηλ2
1 ≥ ηλi

√
1
2
λ2
i+λ2

1

1−ηλ1
≥ ηλ2

1+ηλ2
i

2−ηλ1−ηλi
.

∥x̃(t+ 1)∥ ≤ ηλ2
1 + ηλ2

i (2− ηλ1 −
2

3
ηλi)− (1− ηλ1)∥x̃(t)∥ − η2λ2

i (
1

2
λ2
i + λ2

1)
1

∥x̃(t)∥
− η

λ4
D

2λ2
1

≤ ηλ2
1 + ηλ2

i (2− ηλ1 −
2

3
ηλi)− 2ηλi

√
(λ2

1 +
1

2
λ2
i )(1− ηλ1)− η

λ4
D

2λ2
1

≤ ηλ2
1

2− ηλ1
− η

λ4
D

2λ2
1

The second line is because of AM-GM inequality. The last line is due to technical lemma
Lemma 61.

27



HOW DOES SHARPNESS-AWARE MINIMIZATION MINIMIZES SHARPNESS?

Case 2.3 ηλ2
1 < ηλi

√
1
2
λ2
i+λ2

1

1−ηλ1
.

In this case we have ∥x̃(t)∥ < ηλ2
1 < ηλi

√
1
2
λ2
i+λ2

1

1−ηλ1
, then

∥x̃(t+ 1)∥ ≤ ηλ2
1 + ηλ2

i (2− ηλ1 −
2

3
ηλi)− (1− ηλ1)∥x̃(t)∥ − η2λ2

i (
1

2
λ2
i + λ2

1)
1

∥x̃(t)∥
− η

λ4
D

2λ2
1

≤ ηλ2
1 + ηλ2

i (2− ηλ1 −
2

3
ηλi)− (1− ηλ1)ηλ

2
1 − ηλ2

i (
1

2
λ2
i + λ2

1)
1

λ2
1

− η
λ4
D

2λ2
1

≤ ηλ2
1

2− ηλ1
− η

λ4
D

2λ2
1

The second line is because (1 − ηλ1)∥x̃(t)∥ + η2λ2
i (

1
2λ

2
i + λ2

1)
1

∥x̃(t)∥ monotonously decrease

w.r.t ∥x̃(t)∥ when ∥x̃(t)∥ < ηλi

√
1
2
λ2
i+λ2

1

1−ηλ1
. The last line is due to technical lemma Lemma 60.

Lemma 44 If ∥x̃(t)∥ ≤ ηλ2
1

2−ηλ1
, x̃(t) ∈ ∩Ij , then ∥x̃(t+ 1)∥ ≤ ηλ2

1 − (1− ηλ1)∥x̃(t)∥

Proof This can be directly inferred from the proof of lemma 42

Lemma 45 Define S1 = {t|∥x̃(t)∥ ≤ ηλ2
1

2−ηλ1
, t > T1}, suppose t, t′ ∈ S1, t ≤ t′, then |x̃1(t)| <

|x̃1(t′)|

Proof For t ∈ S1, by Lemma 43, t+ 1 ∈ S1 or t+ 1 ̸∈ S1, t+ 2 ∈ S1.
Case 1 t+ 1 ∈ S1, we can use Lemma 42 to show |x̃1(t)| < |x̃1(t+ 1)|.
Case 2 t+ 1 ̸∈ S1, t+ 2 ∈ S1.

|x̃1(t+ 2)| = (ηλ2
1 − (1− ηλ1)∥x̃(t)∥)(ηλ2

1 − (1− ηλ1)∥x̃(t+ 1)∥)
∥x̃(t)∥∥x̃(t+ 1)∥

|x̃(t)|

We only need to prove

(ηλ2
1 − (1− ηλ1)∥x̃(t)∥)(ηλ2

1 − (1− ηλ1)∥x̃(t+ 1)∥) > ∥x̃(t)∥∥x̃(t+ 1)∥
⇐⇒ η2λ4

1 − ηλ2
1(1− ηλ1)(∥x̃(t)∥+ ∥x̃(t+ 1)∥) + (−2ηλ1 + η2λ2

1)∥x̃(t)∥∥x̃(t+ 1)∥ ≥ 0

⇐⇒ η2λ4
1 − ηλ2

1(1− ηλ1)∥x̃(t)∥ ≥
(
(2ηλ1 − η2λ2

1)∥x̃(t)∥+ ηλ2
1(1− ηλ1)

)
∥x̃(t+ 1)∥

Now using Lemma 44, we only need to prove,

η2λ4
1 − ηλ2

1(1− ηλ1)∥x̃(t)∥ ≥
(
(2ηλ1 − η2λ2

1)∥x̃(t)∥+ ηλ2
1(1− ηλ1)

) (
ηλ2

1 − (1− ηλ1)∥x̃(t)∥
)

Through some calculation, this is equivalent to

((2− ηλ1)∥x̃(t)∥ − ηλ2
1)((1− ηλ1)∥x̃(t)∥ − ηλ2

1) ≥ 0

which holds for ∥x̃(t)∥ ≤ ηλ2
1

2−ηλ1
.

Concluding the two cases and use induction, we can get the desired result.
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D.4.3. LENGTH CONVERGENCE

As Lemma 45 show, ∥x̃1(t)∥ increase monotonously for t ∈ S1. We can inferred from Lemma 43,
S1 is infinite.

∀ϵ > 0, ∃Tϵ satisfies ∀t, t′ ∈ S1, t
′ > t > Tϵ,

∥x̃1(t′)∥
∥x̃1(t)∥ < 1 + ϵ.

Then ∀t > Tϵ, we have

1 + ϵ ≥ ∥x̃1(t+ 1)∥
∥x̃1(t)∥

=
ηλ2

1 − (1− ηλ1)∥x̃(t)∥
∥x̃(t)∥

or

1 + ϵ ≥ ∥x̃1(t+ 2)∥
∥x̃1(t)∥

=
(ηλ2

1 − (1− ηλ1)∥x̃(t)∥)(ηλ2
1 − (1− ηλ1)∥x̃(t+ 1)∥)

∥x̃(t)∥∥x̃(t+ 1)∥

≥
(ηλ2

1 − (1− ηλ1)∥x̃(t)∥)
(
ηλ2

1 − (1− ηλ1)
(
ηλ2

1 − (1− ηλ1)∥x̃(t)∥
))

∥x̃(t)∥
(
ηλ2

1 − (1− ηλ1)∥x̃(t)∥
)

=
ηλ2

1 − (1− ηλ1)
(
ηλ2

1 − (1− ηλ1)∥x̃(t)∥
)

∥x̃(t)∥

Hence ∥x̃(t)∥ ≥ min
(

ηλ2
1

2−ηλ2
1+ϵ

,
η2λ3

1
(2−λ1η)λ1η+ϵ

)
, ∀t > Tϵ, t ∈ S1.

As ∀t ̸∈ S1, t > Tϵ we have ∥x̃(t)∥ ≥ ηλi

√
1
2
λ2
i+λ2

1

1−ηλ1
.

Hence we have ∀t > Tϵ, ∥x̃(t)∥ ≥ min
(

ηλ2
1

2−ηλ2
1+ϵ

,
η2λ3

1
(2−λ1η)λ1η+ϵ

)
Further by Lemma 44, we can prove ∀t > Tϵ+1, ∥x̃(t)∥ ≤ ηλ2

1−(1−ηλ1)min
(

ηλ2
1

2−ηλ2
1+ϵ

,
η2λ3

1
(2−λ1η)λ1η+ϵ

)
.

Combining both bound, we have lim
t→∞

∥x̃(t)∥ =
ηλ2

1
2−ηλ1

.

Notice that ∥P (2:D)x̃(t+1)∥ ≤ max
(
|1− ηλ2 − η

λ2
2

∥x̃(t)∥ |, |1− ηλD − η
λ2
D

∥x̃(t)∥ |
)
∥P (2:D)x̃(t)∥.

When ∥x̃(t)∥ >
ηλ2

2
2−ηλ2−δ ,

−1 + δ ≤ 1− ηλ2 − η
λ2
2

∥x̃(t)∥
≤ 1− ηλD − η

λ2
D

∥x̃(t)∥
≤ 1− ηλD

∥P (2:D)x̃(t+ 1)∥ ≤ max(1− ηλD, 1− δ)∥P (2:D)x̃(t)∥

Hence for sufficiently large t, ∥P (2:D)x̃(t)∥ shrinks exponentially, showing that lim
t→∞

∥x̃1(t)∥ =

ηλ2
1

2−ηλ1

D.5. Full-batch SAM on General Loss: Proof of Theorem 8

To prove the theorem, we will separate the dynamic of SAM on general loss L to two phases.
Define

Rj(x) =

√√√√ M∑
i=j

λ2
i (x)⟨vi(x), x− Φ(x)⟩2 − ηρλj(x), j ∈ [M ], x ∈ U,

which is the length projection of x−Φ(x) on button−k eigenspace of ∇2L(Φ(x)). We will provide
a fine-grained convergence bound on Rj(x).

29



HOW DOES SHARPNESS-AWARE MINIMIZATION MINIMIZES SHARPNESS?

Theorem 46 (Phase I) Let {x(t)} be the iterates defined by SAM (3) and x(0) = xinit ∈ U , then
under Assumption 1 there exists a constant T1, such that for any T ′

1 > T1, it holds for all η, ρ such
that (η + ρ) log(1/ηρ) is sufficiently small, we have

max
T1 log(1/ηρ)≤ηt≤T ′

1 log(1/ηρ)
max
j∈[M ]

Rj(x) = O(ηρ2)

max
T1 log(1/ηρ)≤ηt≤T ′

1 log(1/ηρ)
∥Φ(x(t))− Φ(xinit)∥ = O((η + ρ) log(1/ηρ))

Theorem 46 implies SAM will converge to an O(ηρ) neighbor of Γ. Notice in the time frame
defined by Theorem 46, x(t) effectively operates at a local regime around Φ(⌈−T1 log ηρ/η⌉), this
allows us to approximate L with the quadratic Taylor expansion of L at Φ(⌈−T1 log ηρ/η⌉) and
give us the following theorem.

Theorem 47 (Phase II) Let {x(t)} be the iterates defined by SAM (3) under Assumptions 1 and 7,
further assuming that (1) maxj Rj(x(0)) = O(ηρ2), (2) ∥Φ(x(0))−Φ(xinit)∥ = O((η+ρ) log(1/ηρ))
and (3) |⟨x(0) − Φ(x(0)), v1(x(0))⟩| ≥ Ω(ρ2), then there exists constant T2 > 0, for any T3 > 0
till which solution of (6) exists, for all η, ρ such that η ln(1/ρ) and ρ/η is sufficiently small,

max
t≤T3/ηρ2

∥Φ(x(t))−X(ηρ2t)∥ = O((η + ρ) log(1/ηρ))

min
T2 log(1/ρ)/η≤t≤T3/ηρ2

|⟨x(t)− Φ(x(t)), v1(x(t))⟩| = Θ(ηρ)

max
T2 log(1/ρ)/η≤t≤T3/ηρ2

max
j∈[2:M ]

|⟨x(t)− Φ(x(t)), vj(x(t))⟩| = O(ηρ2)

In this section we will define K as {X(t)} where X is the solution of (6).

D.5.1. PHASE I: PROOF OF THEOREM 46

The proof of Theorem 46 is further split into three subphases.
In Subphase A, we will show that the trajectory of SAM will track gradient flow to the working

zone Kh. This subphase will take time O( 1η ) for sufficiently small η and ρ. At the end of this
subphase x(t)− Φ(x(t)) = O(1),Φ(x(t))− Φ(x(0)) = O(η + ρ).

In Subphase B, we will show that in the working zone, the loss will continue to decrease until
∥∇L∥ = O(ρ) . This will take time O(− log ρ

η ) for sufficiently small η and ρ. At the end of this
subphase x(t)− Φ(x(t)) = O(ρ),Φ(x(t))− Φ(x(0)) = O(−(η + ρ) log ρ).

In Subphase C, we will show that Rj(x) will shrink exponentially to O(ηρ3/2) and x(t) will
stay in the invariant sets Ij = {Rj(x) ≤ O(ηρ3/2)}.

Subphase A We know ∃T0, ∥Φ(xinit, T0)−Φ(xinit)∥ ≤ h
4 , L(Φ(xinit, T0)) <

h2µ
16 . Using standard

approximation theory, ∃η0, ρ0 > 0, such that

η < η0, ρ < ρ0 ⇒ ∥x(T0

η
)− Φ(xinit, T0)∥ ≤ O(η + ρ),

L(x(
T0

η
)) ≤ h2µ

8
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This further implies

∥Φ(x(T0

η
))− Φ(xinit)∥ = ∥Φ(x(T0

η
))− Φ(Φ(xinit, T0))∥

≤ O(∥x(T0

η
)− Φ(xinit, T0)∥)

≤ O(η + ρ)

Subphase B Define

D(x) = ∥Φ(x)− Φ(x(
T0

η
))∥

In this subphase, we will track the descent of loss to show that ∃t, such that

∥∇(L(x(t)))∥ ≤ 4ζρ

∥Φ(x(t))− Φ(xinit)∥ ≤ O(−(η + ρ) log ρ)

for sufficiently small η. We require η ≤ 1
2ζ . We assume infx∈U L(x) = 0.

We also requires −η log ρ being sufficiently small, i.e ρ is not too small compared to η. So that

log1− ηµ
8
(
64ζ2ρ2

h2
)(2ηρζ2h+ 2η2ζ4h2) ≤

− log 64ζ2ρ2

h2

ηµ
8

(2ηρζ2h+ 2η2ζ4h2)

≤ −1024 log ρ(2ρζ2h+ 2ηζ4h2)

≤ h

8

We will prove the following proposition,

∥∇L(x)∥ ≥ 4ζρ, t ≤ T0

η
+ log1− ηµ

8
(
64ζ2ρ2

h2
)

L(x(t)) ≤ h2µ

8
, D(x(t)) ≤ (2ηρζ2h+ 2η2ζ4h2)(t− T0

η
)

⇒L(x(t+ 1)) ≤ (1− ηµ

8
)L(x(t)), D(x(t+ 1)) ≤ (2ηρζ2h+ 2η2ζ4h2)(t+ 1− T0

η
)

Proof
By lemma 31, we have

∥x(t)− Φ(x(t))∥ ≤

√
2L(x(t))

µ
≤ h

2

Further, given the choice of η, ρ, ∥Φ(x(t))− Φ(xinit)∥ ≤ h
4 .

Hence we have x(t) ∈ K
3h
4 . By Lemma 35. we have x(t)x(t+ 1) ⊂ Kh

Under update rule (3), using the smoothness of L, we have

L(x(t+ 1)) = L(x(t)− η∇L

(
x(t) + ρ

∇L (x(t))

∥∇L (x(t)) ∥

)
)

≤ L(x(t))− η

〈
∇L (x(t)) ,∇L

(
x(t) + ρ

∇L (x(t))

∥∇L (x(t)) ∥

)〉
+

ζη2∥∇L
(
x(t) + ρ ∇L(x(t))

∥∇L(x(t))∥

)
∥2

2
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We have that

∥∇L

(
x(t) + ρ

∇L (x(t))

∥∇L (x(t)) ∥

)
−∇L (x(t)) ∥ ≤ ζρ

Hence

L(x(t+ 1)) ≤ L(x(t))− η∥∇L (x(t)) ∥2 + ηζρ∥∇L (x(t)) ∥+ ζη2∥∇L (x(t)) ∥2 + ζ3η2ρ233

By induction hypothesis, we have

ζη2∥∇L (x(t)) ∥2 ≤ 1

2
η∥∇L (x(t)) ∥2

ηζρ∥∇L (x(t)) ∥ ≤ 1

4
η∥∇L (x(t)) ∥2

ζ3η2ρ ≤ ζ2ηρ2 ≤ 1

16
η∥∇L (x(t)) ∥2

Hence as x(t+ 1)x(t) ∈ Kh

L(x(t+ 1)) ≤ L(x(t))− 1

16
η∥∇L (x(t)) ∥2

≤ L(x(t))− ηµ

8
L(x(t))

This implies

L(x(t+ 1)) ≤ (1− ηµ

8
)L(x(t))

Using Lemma 30

∥Φ(x(t+ 1))− Φ(x(t))∥ ≤ ζηρ∥∇L (x) ∥+ ηρ2ν + ζ2η2∥∇L (x) ∥2 + ζ3η2ρ2

≤ ηρζ2h+ ηρ2ν + η2ζ4h2 + η2ρ2ζ3

≤ 2ηρζ2h+ 2η2ζ4h2

The induction is complete.
Now define t1 the minimal t ≥ T0

η , such that ∥∇L(x(t))∥ ≤ 4ζρ.

If t1 > T0
η + log1− ηµ

8
(64ζ

2ρ2

h2 ), then by the induction,

L(
T0

η
+ log1− ηµ

8
(
64ζ2ρ2

h2
)) ≤ (1− ηµ

8
)
log1− ηµ

8
( 64ζ

2ρ2

h2 L(
T0

η
)

≤ 64ζ2ρ2

h2
L(

T0

η
)

≤ 8ζ2ρ2µ

⇒ ∇L

(
T0

η
+ log1− ηµ

8
(
64ζ2ρ2

h2
)

)
≤ 4ζρ.

This is a contradiction.
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Subphase C Recall the definition of Rj(x),

Rj(x) =

√√√√ M∑
i=j

λ2
i (x)⟨vi(x), x− Φ(x)⟩2 − ηρλ2

j (x)

In this subphase, we will show that Rj(x) will shrink exponentially to O(ηρ2) and x(t) will
stay in the invariant sets Ij = {Rj(x) ≤ O(ηρ2 + (ηρ)3/2)}.

Define x̂(t) = x(t)− Φ(x(t)), A(t) = ∇2L (Φ(x(t))) , x̃(t) = A(t)x̂(t)

We will prove the induction hypothesis for t1 ≤ t ≤ t1 + 10 log1−ηµ
ηµ3

4ζ2
,

∥x̃(t)∥ ≥ ηλ1(t)
2 ⇒ ∥x̃(t+ 1)∥ ≤ (1− ηµ)∥x̃(t)∥

∥x̃(t)∥ ≤ ηλ1(t)
2µ ⇒ ∥x̃(t+ 1)∥ ≤ ηρλ2

1(t) + 2c1ηρ
2

As we have ∥x̃(t1)∥ = ∥A(t1)x̂(t1)∥ ≤ ζ
µ∥∇L (x(t1)) ∥ ≤ 4ζ2ρ

µ .

Combining with the induction hypothesis, we have ∥x̃(t)∥ ≤ 4ζ2ρ
µ .

Then we have,

∥Φ(x(t+ 1))− Φ(x(t))∥ ≤ ζηρ∥∇L (x(t)) ∥+ ηρ2ν + ζ2η2∥∇L (x(t)) ∥2 + ζ3η2ρ2

≤ ζ2ηρ∥x(t)− Φ(x(t))∥+ ζ4η2∥x(t)− Φ(x(t))∥2 + ηρ2ν + ζ3η2ρ2

≤ ζηρ

µ
∥x̃(t)∥+ ζ4η2

µ2
∥x̃(t)∥2 + ηρ2ν + ζ3η2ρ2

≤ c0ηρ
2

As t1 ≤ t ≤ t1 + 10 log1−ηµ
ηµ3

4ζ2
≤ t1 + 10

− log ηµ3

4ζ2

ηµ , this implies

∥Φ(x(t))− Φ(x(t1))∥ ≤ O(−ρ2 log η)

∥Φ(x(t))− Φ(xinit)∥ ≤ O(−(η + ρ) log ρ)

We have x(t) ∈ K
h
2 Using Lemma 35, we conclude that x(t)x(t+ 1) ⊂ Kh.

∥ (x(t+ 1)− x(t)) +

(
η∇L (x(t)) + ηρ∇2L (x(t))

∇L (x(t))

∥∇L (x(t)) ∥

)
∥ ≤ νρ2η

Now Using Lemma 32, we have

∥(x(t+ 1)− x(t)) + η∇2L (Φ(x(t))) (x(t)− Φ(x(t))) + ηρ∇2L (x(t))
∇L (x(t))

∥∇L (x(t)) ∥
∥ ≤ νρ2η + νη∥x(t)− Φ(x(t))∥2

Further we have

∥ ∇L (x(t))

∥∇L (x(t)) ∥
− ∇2L (Φ(x(t))) (x(t)− Φ(x(t)))

∥∇L (x(t)) ∥
∥ ≤ ν∥x(t)− Φ(x(t))∥2

2∥∇L (x(t)) ∥
≤ ν∥x(t)− Φ(x(t))∥

2µ

∥∇
2L (Φ(x(t))) (x(t)− Φ(x(t)))

∥∇L (x(t)) ∥
− ∇2L (Φ(x(t))) (x(t)− Φ(x(t)))

∥∇2L (Φ(x(t))) (x(t)− Φ(x(t)))∥
∥ ≤ 4v

3µ
∥x(t)− Φ(x(t))∥
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Hence

∥(x(t+ 1)− x(t)) + η∇2L (Φ(x(t))) (x(t)− Φ(x(t))) + ηρ∇2L (x(t))
∇2L (Φ(x(t))) (x(t)− Φ(x(t)))

∥∇2L (Φ(x(t))) (x(t)− Φ(x(t)))∥
∥

≤νρ2η + νη∥x(t)− Φ(x(t))∥2 + ηρ
2ζν

µ
∥x(t)− Φ(x(t))∥

Hence,

∥(x(t+ 1)− x(t)) + η∇2L (Φ(x(t))) (x(t)− Φ(x(t))) + ηρ∇2L (Φ(x(t)))
∇2L (Φ(x(t))) (x(t)− Φ(x(t)))

∥∇2L (Φ(x(t))) (x(t)− Φ(x(t)))∥
∥

≤νρ2η + νη∥x(t)− Φ(x(t))∥2 + ηρ
2ζν

µ
∥x(t)− Φ(x(t))∥+ νηρ∥x(t)− Φ(x(t))∥

This implies,

∥A(t)

(
(x(t+ 1)− x(t)) + ηx̃(t) + ηρA(t)

x̃(t)

∥x̃(t)∥

)
∥

≤ζνρ2η + ζνη∥x(t)− Φ(x(t))∥2 + ζηρ
2ζν

µ
∥x(t)− Φ(x(t))∥+ ζνηρ∥x(t)− Φ(x(t))∥

Also by Lemma 35

∥A(t)(x(t+ 1)− x(t))− x̃(t+ 1) + x̃(t)∥
=∥A(t)(x(t+ 1)− x(t))−A(t+ 1)x(t+ 1) +A(t)x(t) +A(t+ 1)Φ(x(t+ 1))−A(t)Φ(x(t))∥
=∥(A(t)−A(t+ 1))(x(t+ 1)− Φ(x(t+ 1))) +A(t)(Φ(x(t+ 1))− Φ(x(t)))∥
≤ν∥Φ(x(t+ 1))− Φ(x(t))∥∥x(t+ 1)− Φ(x(t+ 1))∥+ ζ∥Φ(x(t+ 1))− Φ(x(t))∥
≤(νh+ ζ)∥Φ(x(t+ 1))− Φ(x(t))∥
≤(νh+ ζ)(ζηρ∥∇L (x) ∥+ ηρ2ν + ζ2η2∥∇L (x) ∥2 + ζ3η2ρ2)

Combining with induction hypothesis, we know exists constant c1, such that

∥x̃(t+ 1)− x̃(t) + ηA(t)x̃(t) + ηρA2(t)
x̃(t)

∥x̃(t)∥
∥ ≤ c1ηρ

2

We first bound ∥x̃(t)∥, as in quadratic case, if ∥x̃(t)∥ > ηρλ2
1(t), we would have

∥x̃(t)− ηA(t)x̃(t)− ηρA2(t)
x̃(t)

∥x̃(t)∥
∥ ≤ ∥x̃(t)∥∥I − ηA(t)− ηρA2(t)

1

∥x̃(t)∥
∥

≤ ∥x̃(t)∥max{ηλ1, 1− ηλD − ηρλ2
D

1

∥x(t)∥
}

≤ max{(1− ηλD)∥x̃(t)∥ − ηρλ2
D, ηλ1∥x̃(t)∥}

Choosing ρ small enough, we have

∥x̃(t+ 1)∥ ≤ max{1− ηλD, 2ηλ1}∥x̃(t)∥ ≤ (1− ηµ)∥x̃(t)∥
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If∥x̃(t)∥ ≤ ηρλ2
1(t)

∥x̃(t+ 1)∥ ≤ ηρλ2
1(t) + c1ηρ

2

≤ ηρλ2
1(t+ 1) + 2c1ηρ

2

Here we use

max
i

∥λi(t)− λi(t+ 1)∥ ≤ ∥A(t+ 1)−A(t)∥2 ≤ c0κηρ
2

Now define t2 the minimal t ≥ t1, such that ∥x̃(t)∥ ≤ ηρλ2
1(t).

If t2 > t1 + log1−ηµ(
ηµ3

4ζ2
), then by the induction,

∥x̃(t1 + log1−ηµ(
ηµ3

4ζ2
) + 1)∥ ≤ (1− ηµ)

log1−ηµ(
ηµ3

4ζ2
)∥x̃(t1)∥

≤ ηµ3

4ζ2
∥x̃(t1)∥

≤ ηµ3

4ζ2
ζ∥x(t1)− Φ(x(t1)∥

≤ ηµ2

4ζ
∥∇L(t1)∥

≤ µ2ηρ

≤ λ2
1(t1 + log1−ηµ(

ηµ3

4ζ2
) + 1)ηρ

This is a contradiction.
Following the induction, we further have for t2 ≤ t ≤ t1 + T ′

1 log1−ηµ(
ηµ3

4ζ2
),

∥x(t)∥ ≤ ηρλ2
1(t+ 1) + 2c1ηρ

2

We will now use a quantization technique separating [M ] into disjoint continuous subset S1, ..., Sp

such that ∀i ̸= j,

min
k∈sk,l∈Sj

|λk(t)− λl(t)| ≥ ρ

We would have

min
k∈sk,l∈Sj

|λk(t+ 1)− λl(t+ 1)| ≥ ρ− 8νηρ2 ≥ 0.99ρ

We would then have for t ≥ t2 (analogous to proof in Section D.4.1)

If
√∑p

i=j ∥P
(t)

S(i) x̃(t)∥2 > maxk∈Sj
λ2
k(t)ηρ√√√√ p∑

i=j

∥P (t)

S(i) x̃(t+ 1)∥2 ≤ max{(1− ηλD(t+ 1)∥
p∑

i=j

P
(t)

S(i) x̃(t)∥ − ηρλD(t+ 1)2, ηmax
k∈Sj

λk(t+ 1)∥
p∑

i=j

P
(t)

S(i) x̃(t)∥}+ c1ηρ
2
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If
√∑p

i=j ∥P
(t)

S(i) x̃(t)∥2 ≤ maxk∈Sj
λ2
k(t)ηρ

√√√√ p∑
i=j

∥P (t)

S(i) x̃(t+ 1)∥2 ≤ max
k∈Sj

λ2
k(t)ηρ+ c1ηρ

2

≤ max
k∈Sj

λ2
k(t+ 1)ηρ+ 2c1ηρ

2

Further we have ∥P (t)
sk − P

(t+1)
sk ∥ ≤ O(νηρ) by the Lemma 53

So we have
If
√∑p

i=j ∥P
(t)

S(i) x̃(t)∥2 > maxk∈Sj
λ2
k(t)ηρ√√√√ p∑

i=j

∥P (t+1)

S(i) x̃(t+ 1)∥2 ≤ max{(1− ηλD)∥
p∑

i=j

P
(t)

S(i) x̃(t)∥ − ηρλ2
D, ηmax

k∈Sj

λk∥
p∑

i=j

P
(t)

S(i) x̃(t)∥}+ c1ηρ
2

If
√∑p

i=j ∥P
(t)

S(i) x̃(t)∥2 ≤ maxk∈Sj
λ2
k(t)ηρ√√√√ p∑

i=j

∥P (t+1)

S(i) x̃(t+ 1)∥2 ≤ max
k∈Sj

λ2
k(t)ηρ+ c1ηρ

2 +O(ηρ2)

≤ max
k∈Sj

λ2
k(t+ 1)ηρ+ 2c1ηρ

2 +O(ηρ2)

Finally taking into quantization error, as all the eigenvalue in the same group at most differ Dρ,
we would have

If Rk(x(t)) ≥ 0

Rk(x(t+ 1)) + λ2
k(t+ 1)ηρ ≤ (1− ηλD)Rk(x(t))

≤ (1− ηµ)(Rk(x(t)) + λ2
k(t)ηρ)

If Rk(x(t)) < 0

Rk(x(t+ 1)) ≤ O(ηρ2)

Similar to the proof of existence of t2, we can show the existence of t3 ≤ t2 + log1−ηµ(
ηµ3

4ζ2
),

such that for t3 ≤ t ≤ t3 + T ′
1 log1−ηµ(

ηµ3

4ζ2
),

max
j

Rj(t) ≤ O(ηρ2)

D.5.2. PHASE II: PROOF OF THEOREM 47

The proof consists of two subphase.
In subphase A, we will show x(t)− Φ(x(t)) aligns with v1(t) in O(log(1/ρ)/η) steps.
In subphase B, we will show that the alignment continues to hold and x(t) moves as a time-

rescaled version of solution of Equation (6).
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Subphase A This proof is analogous to Section D.4.2. To maintain consistency with previous
section, we abuse notation and change the starting step to t3. The time frame we are discussing is
t3 ≤ t ≤ t3 + T ′

1 log1−ηµ(
ηµ3

4ζ2
).

First Induction We will inductively prove ∥x1(t)∥ is Ω(ρ2) and that there exists step t4 for t4 ≤
t ≤ t3 + T ′

1 log1−ηµ(
ηµ3

4ζ2
) that x1(t) ≥ 1

4

(
ηλ2

1
2−ηλ1

+ 3
ηλ2

2
2−ηλ2

)
ρ−O(ηρ2)

For step t, we fixed the quadratic function as ⟨x− Φ(x(t)),∇2L (Φ(x(t))) (x− Φ(x(t))⟩,
Define x̄ = ∇2L(Φ(x(t)))(x−Φ(x(t))

ρ , A = ∇2L(t)

We have for t ≤ t4 − 1, ∥x̄1(t)∥ ≤ 1
2

(
ηλ2

1
2−ηλ1

+
ηλ2

2
2−ηλ2

)
.

By assumption, we have ∥x̄1(t)∥ ≥ Ω(ρ).
We have

∥(x(t+ 1)− x(t)) + η∇2L (Φ(x(t))) (x(t)− Φ(x(t))) + ηρ∇2L (Φ(x(t)))
∇2L (Φ(x(t))) (x(t)− Φ(x(t)))

∥∇2L (Φ(x(t))) (x(t)− Φ(x(t)))∥
∥

≤νρ2η + νη∥x(t)− Φ(x(t))∥2 + ηρ
2ζν

µ
∥x(t)− Φ(x(t))∥+ νηρ∥x(t)− Φ(x(t))∥

≤c2ηρ
2

Further we have, there exists constant c4 such that

∥(x(t+ 1)− x(t)) + ηρx̄(t) + ηρA
x̄(t)

∥x̄(t)∥
∥

≤c2ηρ
2 + c3∥Φ(x(t))− Φ(x(t3))∥

≤ − c4
ζ
ηρ2 log ρ

Now we have

∥x̄(t+ 1)− x̄(t) + ηAx̄(t) + ηA2 x̄(t)

∥x̄(t)∥
∥ ≤ −c4ηρ log ρ

So here our goal is to discuss the dynamics of the following perturbed version of quadratic
SAM.

∥x̄(t+ 1)− x̄(t) + ηAx̄(t) + ηA2 x̄(t)

∥x̄(t)∥
∥ ≤ −c4ηρ log ρ

∥P (j:D)x̄(t)∥ − λ2
jη ≤ c5(ηρ+ η3/2ρ1/2)

Define x̂(t+ 1),

x̂(t+ 1) = x̄(t)− ηAx̄(t)− ηA2 x̄(t)

∥x̄(t)∥

In the quadratic case, we have Lemma 43 to show ∥x̃(t)∥ can’t stay greater ηλ2
1

2−ηλ1
for two

steps. Hence here we have if ∥x̄(t)∥ ≥ ηλ2
1

2−ηλ1
, then ∥x̂(t + 1)∥ ≤ ηλ2

1
2−ηλ1

− O(η), which leads

∥x̄(t+ 1)∥ ≤ ∥(̂x(t+ 1))∥+ Õ(ηρ) ≤ ηλ2
1

2−ηλ1
. Here we can in fact prove a more subtle version of

this lemma showing,
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Lemma 48

∃C1(λ1, λ2, λD), C2(λ1, λ2, λD) < 1, ∥x̄(t)∥ ≥ C1
ηλ2

1

2− ηλ1
⇒ ∥x̄(t+ 1)∥ ≤ C2

ηλ2
1

2− ηλ1

Proof
If

∥x̄(t)∥ ≥ ηλ4
1

λ2
1(1− ηλD) + (λ2

1 − λ2
D)(1− ηλ1)

Using Lemma 43, we have

∥x̂(t)∥ ≤ max(
ηλ2

1

2− ηλ1
− η

λ4
D

2λ2
1

, ηλ2
1 − (1− ηλ1)∥x̃(t)∥) ≤ c6(λ1, λD)

ηλ2
1

2− ηλ1

c6(λ1, λD) < 1

If

∥x̄(t)∥ ≤ ηλ4
1

λ2
1(1− ηλD) + (λ2

1 − λ2
D)(1− ηλ1)

Then we have

−ηλ2
D + (1− ηλD)∥x̄(t)∥

ηλ2
1 − (1− ηλ1)∥x̄(t)∥

≤
λ2
1 − λ2

D

λ2
1

ηλ2
2 − (1− ηλ2)∥x̄(t)∥

ηλ2
1 − (1− ηλ1)∥x̄(t)∥

≤ λ2
2

λ2
1

This implies,

∥x̂(t+ 1)∥ ≤ (ηλ2
1 − (1− ηλ1)∥x̄(t)∥)

√
∥x̄21(t)∥
∥x̄(t)∥2

+ (1− ∥x̄21(t)∥
∥x̄(t)∥2

)max{
λ2
1 − λ2

D

λ2
1

,
λ2
2

λ2
1

}

As we suppose

∥x̄1(t)∥ ≤ 1

2

(
ηλ2

1

2− ηλ1
+

ηλ2
2

2− ηλ2

)
∥x̄(t)∥ ≥ ηλ2

1

2− ηλ1

This implies

∥x̄1(t)∥
∥x̄(t)∥

≤ λ2
1 + λ2

2

2λ2
1

Combining we have

∥x̂(t+ 1)∥ ≤ c7(λ1, λ2, λD)(ηλ
2
1 − (1− ηλ1)∥x̄(t)∥)

c7(λ1, λ2, λD) < 1
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This implies

∥x̄(t)∥ ≥
c6ηλ

2
1 − c5+1

ηλ21
2−ηλ1

c6(1− λ1)

⇒∥x̂(t+ 1)∥ ≤ max{c7,
c6 + 1

2
} ηλ2

1

2− ηλ1

As ∃c8,

∥x̂(t+ 1)− x̄(t+ 1)∥ ≤ c8ηρ

. We can conclude that

∃C1(λ1, λ2, λD), C2(λ1, λ2, λD) < 1, ∥x̄(t)∥ ≥ C1
ηλ2

1

2− ηλ1
⇒ ∥x̄(t+ 1)∥ ≤ C2

ηλ2
1

2− ηλ1

Define T = {t|∥x̄(t)∥ ≤ 1
2

(
ηλ2

1
2−ηλ1

+
ηλ2

2
2−ηλ2

)
}, S = {t|∥x̄(t)∥ ≤ ηλ2

1
2−ηλ1

},
For s ∈ S, n(s) := minj>s{j ∈ S}.

We will show when ∥x̄1(t)∥ ≤ 1
2

(
ηλ2

1
2−ηλ1

+
ηλ2

2
2−ηλ2

)
,

∃c4(λ1, λ2, λD) > 1, ∥x̄1(n(s))∥ ≥ c4∥x̄1(s)∥ or ∥x̄1(n(n(s)))∥ ≥ c4∥x̄1(s)∥

Define x(t+ 1) = x̂(t)− ηAx̂(t)− ηA2 x̂(t)
∥x̂(t)∥

Consider two cases
Case 1 ∥x̄(s)∥ ≤ C1

ηλ2
1

2−ηλ1

∥x̂1(s+ 1)∥
∥x̄1(t)∥

=
ηλ2

1 − (1− ηλ1)∥x̄(t)∥
∥x̄(t)∥

≥ (2− C1)− ηλ1 + C1ηλ1

C1
≥ 1

C1

∥x1(s+ 2)∥
∥x̄1(s)∥

=
(ηλ2

1 − (1− ηλ1)∥x̄(s)∥)(ηλ2
1 − (1− ηλ1)∥x̂(s+ 1)∥)

∥x̄(s)∥∥x̂(s+ 1)∥

≥
(ηλ2

1 − (1− ηλ1)∥x̄(s)∥)
(
ηλ2

1 − (1− ηλ1)
(
ηλ2

1 − (1− ηλ1)∥x̄(s)∥
))

∥x̄(s)∥
(
ηλ2

1 − (1− ηλ1)∥x̄(s)∥
)

=
ηλ2

1 − (1− ηλ1)
(
ηλ2

1 − (1− ηλ1)∥x̄(s)∥
)

∥x̄(s)∥
≥ (1− ηλ1)

2 +
(2− ηλ1)

C

≥ 1 + C3η

Here we require C3 ≥ 0 As n(s) = s+ 1 or n(s) = s+ 2 and we have

∥x− x̄∥ ≤ c9ηρ

∥x̂− x̄∥ ≤ c8ηρ

Also

|x̄1(s)| ≥ Ω(ρ)

We have

∥x̄1(n(s))∥ ≥ (1 + C3η/2)∥x̄1(s)∥
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Case 2 ∥x̄(s)∥ > C1
ηλ2

1
2−ηλ1

, then ∥x̄(s+ 1)∥ ≤ C2
ηλ2

1
2−ηλ1

, n(s) = s+ 1
Similar to case 1 We have ∥x̂1(s+ 1)∥ ≥ ∥x̃1(s)∥
So in fact we have x̄1(n(s)) ≥ x̄1(s)−O(ηρ), suppose x̄1(t3)

ρ is a sufficiently large constant, then
we can assume |x̄1(n(s))| ≥ (1− C3η/8)|x̄1(s)|.
As ∥x̄(n(s))∥ ≤ C2

ηλ2
1

2−ηλ1
, similar to case 1, ∥x̄1(n(n(s)))∥ ≥ (1 + C3η/2)∥x̄1(n(s))∥ ≥

(1 + C3η/2)∥x̄1(s)∥
In conclusion, if ∥x̄1(s)∥ ≤ 1

2

(
ηλ2

1
2−ηλ1

+
ηλ2

2
2−ηλ2

)
, we would have

∃c4(λ1, λ2, λD) > 0, ∥x̄1(n(s))∥ ≥ (1 + c4η)∥x̄1(s)∥ or ∥x̄1(n(n(s)))∥ ≥ (1 + c4η)∥x̄1(s)∥

This implies ∃t4 ≤ t3 − 4(log ρ)/(c4η), such that

∥x̄1(t4)∥ ≥ 1

2

(
ηλ2

1

2− ηλ1
+

ηλ2
2

2− ηλ2

)
As we have ∥x̄1(n(t))∥ ≥ ∥x̄1(t)∥−max{c8, c9}(ηρ+η3/2ρ1/2) for ∥x̄1(t)∥ ≥ 1

2

(
ηλ2

1
2−ηλ1

+
ηλ2

2
2−ηλ2

)
,

we would have

∥x̄(t)∥ ≥ ∥x̄1(t))∥ ≥ 1

4

(
ηλ2

1

2− ηλ1
+ 3

ηλ2
2

2− ηλ2

)
for t3 + T ′

1 log1−ηµ(
ηµ3

4ζ2
) ≥ t ≥ t4 and the first induction is complete.

Second Induction Define x̂ and x̄ as before.
This implies for t ≥ t4,

−1 + c10(λ1, λ2) ≤ 1− ηλ2 − η
λ2
2

∥x̃(t)∥
≤ 1− ηλD − η

λ2
D

∥x̃(t)∥
≤ 1−

λ2
D

2λ2
1

∥P (2:D)x̂(t+ 1)∥ ≤ max(1−
λ2
D

2λ2
1

, 1− c10(λ1, λ2))∥P (2:D)x̄(t)∥

As ∥P (2:D)x̄(t)∥ ≤ 2λ2
2η We can inductively show that for t ≥ t4+log

max(1−
λ2
D

2λ21
,1−c10(λ1,λ2))

ρ2

ζ2

iteration, ∥P (2:D)x̄(t+ 1)∥ ≤ 2c5(ηρ)
Now as we have

∥P (2:D)(t)− P (2:D)(t+ 1)∥ ≤ O(νρ2)

∥v1(t)− v1(t+ 1)∥ ≤ O(νρ2)

∥λ1(t)− λ1(t+ 1)∥ ≤ O(νρ2)

This implies we have for t ≥ t4 +O(log
max(1−

λ2
D

2λ21
,1−c10(λ1,λ2))

ρ2

ζ2
)

∥x̃(t)∥ ≥ ∥x̃1(t)∥ ≥ 1

2

(
ηλ2

1(t)

2− ηλ1(t)
+

ηλ2
2(t)

2− ηλ2(t)

)
ρ−O(ηρ2)

∥P (2:D)(t)x̃(t)∥ ≤ O(ηρ2)
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Subphase B We are now ready to show that Φ(x(t)) will track the solution of (6). The main
principal of this proof have been introduced in Section C.1.

To simplify our writing define θ(t) = arccos(⟨v1, ∇L(x)
∥∇L(x)∥⟩)

We can inductively prove the following statement

∥Φ(x(t))−X(ηρ2t)∥ ≤ O(−(η + ρ) log ρ)

∥x(t)− Φ(x(t))∥ = Θ(
ηρλ1(t)

2− ηλ1(t)
)

∥x̄1(t)∥ ≥ 1

2

(
ηλ2

1(t)

2− ηλ1(t
+

ηλ2
2(t)

2− ηλ2(t)

)
ρ−O(ηρ2)

∥P (2:D)(t)x̄(t)∥ ≤ O(ηρ2)

The initial condition is satisfied by assumption.
We have

∥∂Φ(x(t))(x(t+ 1)− x(t))− ηρ∂Φ(x)∇2L (x)
∇L (x)

∥∇L (x) ∥
− ηρ2∂Φ(x)∂∇2L (x)[

∇L (x)

∥∇L (x) ∥
,

∇L (x)

∥∇L (x) ∥
]/2∥ ≤ ηρ3Υ

Using Lemma 31, we have

ηρ∂Φ(x)∇2L (x)
∇L (x)

∥∇L (x) ∥
= ηρ∥∇L (x) ∥∥∂2Φ(x)

[
∇L (x)

∥∇L (x) ∥
,

∇L (x)

∥∇L (x) ∥

]
/2∥ ≤ ηρκ∥∇L (x) ∥

This implies,

∥∂Φ(x(t))(x(t+ 1)− x(t))− ηρ2∂Φ(x)∂∇2L (x)[
∇L (x)

∥∇L (x) ∥
,

∇L (x)

∥∇L (x) ∥
]/2∥ ≤ ηρ3Γ + ηρκ∥∇L (x) ∥.

Further

∥Φ(x(t+ 1))− Φ(x(t))− ηρ2∂Φ(x)∂∇2L (Φ(x))[
∇L (x)

∥∇L (x) ∥
,

∇L (x)

∥∇L (x) ∥
]/2∥

≤ηρ3Γ + ηρκ∥∇L (x) ∥+ ηρ2ν∥x− Φ(x)∥+ 1

2
ζ∥x(t+ 1)− x(t)∥2

By induction we have 0 ≤ t ≤ T3
ηρ2

, we have ∥x− Φ(x)∥ = Θ(ηρ), θ = O(ρ)
So we have

∥Φ(x(t+ 1))− Φ(x(t))− ηρ2∂Φ(x)∂∇2L (Φ(x))[
∇L (x)

∥∇L (x) ∥
,

∇L (x)

∥∇L (x) ∥
]/2∥ ≤ O(ηρ3 + η2ρ2)

Further we have

∥ηρ2∂Φ(x)∂∇2L (Φ(x))[
∇L (x)

∥∇L (x) ∥
,

∇L (x)

∥∇L (x) ∥
]/2− ηρ2∂Φ(x)∂∇2L (Φ(x))[v1(t), v1(t)]/2

≤ηρ2(O(ζθ) +O(
νζ∥x− Φ(x(t))∥

µ
)) ≤ O(ηρ3)

We have

∂Φ(x)∂∇2L (Φ(x))[v1(t), v1(t)] = P⊥
X,Γ∇(λ1(∇2(Φ(L(x))))
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This implies

∥Φ(x(t+ 1))− Φ(x(t)) + ηρ2P⊥
X,Γ∇(λ1(∇2(Φ(L(x))))/2∥ ≤ O(ηρ3 + η2ρ2)

Hence we can perform the induction and the accumulated approximation error will be of order
O(ρ+ η).

D.5.3. PROOF OF COROLLARY

Proof [Proof of Corollary 15] We will do a Taylor expansion on Lmax
ρ (x). By Theorem 46 and 47,

for t > T ′
3/ηρ

2, we have ∥X(ηρ2t)− x(t)∥ = Õ(η + ρ) and ∥x(t)− Φ(x(t))∥ = O(ηρ)

Rmax
ρ (x) = max

v
ρvT∇L(x) + ρ2vT∇2L(x)v/2 +O(ρ3)

Then as ∥vT∇L(x)∥ = O(ηρ), this implies

Rmax
ρ (x) = ρ2max

v
vT∇2L(x)v/2 +O(η2ρ2 + ρ3)

= ρ2max
v

vT∇2L(X(ηρ2t))v/2 + Õ(ηρ2)

= ρ2λ1(X(ηρ2t))/2 + Õ(ηρ2)

Proof [Proof of Corollary 16]
Choose T such that X(T ) is sufficiently close to X(∞), such that λ1(X(T )) ≤ λ1(X(∞))+2ϵ
By corollary 15, we have ∥Rmax

ρ (x(⌈T/(ηρ2)⌉))−ρ2λ1(X(T ))/2∥ ≤ Õ(ηρ2). This further im-
plies ∥Rmax

ρ (x(⌈T/(ηρ2)⌉))−ρ2λ1(X(∞))/2∥ ≤ ϵρ2+Õ(ηρ2). We also have ∥L(x(⌈T/(ηρ2)⌉))∥ =
O(η2ρ2). Then we can leverage Theorem 4 and Theorem 12 to get the desired bound.

D.6. Stochastic SAM: Proof of Theorem 11

We will first prove Lemma 22,
Proof [Proof of Lemma 22] Note that dℓ(y′,yk)

dy′ |y′=fk(p) = 0, we have ∇2Lk(p) = Λk(p)wk(p)wk(p)
T .

Also note ∇Lk(x)/∥∇Lk(x)∥ = sign(dℓ(y
′,yk)

dy′ |y′=fk(x))∇fk(x)/∥∇fk(x)∥. By Assumption 1,
∇2L(p) =

∑
k ∇2Lk(p)/M =

∑
k Λk(p)wk(p)wk(p)

T /M has rank M , this implies ∀k,∇fk(p) ̸=
0, hence ∇fk(x)/∥∇fk(x)∥ is in C1 near p and we have proved our claim.

We will prove under a more general assumption.

Assumption 49 Assume loss L =
∑

k Lk/M and Lk belongs to C4, and there exists a manifold
Γk that is D − 1 dimensional C2−submanifold of RD, where for all x ∈ Γ, x is a global minimizer
of Lk, Lk(x) = 0 and rank(∇2Lk(x)) = 1. Let Uk = {x ∈ RD|Φ(x) exists and Φk(x) ∈ Γk}.

We have Uk is open and Φk is in C3 on Uk.(from Lemma B.15 [2])
Theorem 50 shows that Setting in Theorem 11 satisfies assumption 49.
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Theorem 50 Suppose L(x) =
∑M

k=1 Lk(x)/M and manifold Γ satisfy Assumption 1, and that
fk(x) = yk for every x ∈ Γ, k ∈ [M ]. Then there exists (D − 1)-dimensional C2 submanifolds
of RD, such that ∩M

k=1Γk = Γ and for every x ∈ Γk and k ∈ [M ], fk(x) = yk, that is, Γk is a
manifold of global minimizers of Lk.

Proof [Proof of Theorem 50]
By standard calculus, for x ∈ Γ, we have ∇2L(x) =

∑M
k=1wkw

T
k /M . By Assumption 1,∇2L(x)

is full rank, this implies wk ̸= 0. Then we have in an open set V (x) containing x, ∇fk(x) ̸= 0.
Then consider V = ∪x∈ΓV (x), which is an open set and in which ∇fk ̸= 0. Now apply preimage
theorem, we would have Γk = {x ∈ V |fk(x) ̸= yk} forms C2 dimensional sub-manifolds. We also
easily have ∩Γk = Γ from definitions.

The following theorems shows that stochastic SAM (7) essentially minimize trace of Hessian of
loss. Analogous to the full-batch setting, we will split the trajectory into two phase.

Theorem 51 (Phase I) Let {x(t)} be the iterates defined by SAM (3) and x(0) = xinit ∈ U ,
then under Assumption 1 and 49 there exists a constant T1, it holds for sufficiently small −(η +
ρ) log(ηρ), we have with probability 1−O(

√
ρ), min−T1 log ρ/η≥t ∥x(t)− Φ(x(t))∥ = O(−(ηρ+

ρ2) log ηρ) and max−T1 log ρ/η≥t ∥Φ(xinit)− Φ(x(t))∥ = O(−(η + ρ) log(ηρ)).

Theorem 51 shows that SAM will converges to an Õ(ηρ) neighborhood of the manifold without
getting far away from Φ(x(0)), where we can perform a local analysis on the trajectory of Φ(x(t)).

Under Assumptions 1 and 49, we have Tr(∇2Lk(x)) = λ1(∇2Lk(x)) is differentiable for
x ∈ Γi. Hence Tr(∇2L(x)) =

∑
iTr(∇2Lk(x)) is also differentiable and we have (8) is well

defined for some finite time T2.

Theorem 52 (Phase II) Let {x(t)} be the iterates defined by SAM (7) under Assumptions 1 and 49,
assuming (1) ∀t, k, Lk(x(t)) ̸= 0, (2) ∥x(0)−Φ(x(0))∥ = O(−(ηρ+ρ2) log ηρ) and (3) ∥Φ(xinit)−
Φ(x(0))∥ = O(−(η + ρ) log(ηρ)), then for any T2 > 0 till which solution of (8) exists, for
sufficiently small −(η + ρ) log(ηρ), we have with probability 1 − O(ηρ), for all ηρ2t < T2,
∥Φ(x(t))−X(ηρ2t)∥ = O(−(η + ρ) log ηρ) and ∥x(t)− Φ(x(t))∥ = O(−(ηρ+ ρ2) log ηρ).

In this section we will define K as {X(t)} where X is the solution of (8).
We will prove these theorems respectively in the following sections.

D.6.1. PHASE I: PROOF OF THEOREM 51

We will now discuss the convergence of 1-SAM to the manifold of minimizer. We will separate the
dynamics into the following phase. Define ϕ as the gradient flow projection as in deterministic case.

Subphase A Gradient flow approximation, using standard approximation, we can show that x(t) with high
probability falls into a region Kh where the loss satisfies PL condition.

Subphase B After reaching the region, a detailed analysis will show that loss continue to decrease until ∥x(t)−
Φ(x(t))∥ = Õ(ρ).

Subphase C Consider a quadratic approximation and we will get with high probability x(t) will falls into
O(ηρ+ ρ2) neighbor of Φ(x(t)).

Subphase A This is analogous to Subphase A in Section D.5.1 and we can suppose ∃t1, x(t1) ∈
Kh
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Subphase B Define event A(t) as {∇L (x(τ)) ≥ 4ζρ,∀τ ≤ t}.
We have if ∥∇L (x(t)) ∥ ≥ 4ζρ

E[L(x(t+ 1))|x(t)] = E
[
L

(
x(t)−Mη∇Lk[x(t) + ρ

∇Lk (x(t))

∥∇Lk (x(t)) ∥
]

)
|x(t)

]
≤ E

[
L(x(t))−Mη

〈
∇L (x(t)) ,∇Lk[x(t) + ρ

∇Lk (x(t))

∥∇Lk (x(t)) ∥
]

〉]
+ E

[
ζMη2

2
∥∇Lk[x(t) + ρ

∇Lk (x(t))

∥∇Lk (x(t)) ∥
]∥2
]

≤ L(x(t))−Mη∥∇L (x(t)) ∥2 +Mηρζ∥∇L (x(t)) ∥+ ζMη2E[∥∇Lk(x(t))∥2] + ζ3Mη2ρ2

≤ L(x(t))− Mη

2
∥∇L (x(t)) ∥2

≤ L(x(t))− Mηµ

2
L(x(t))

We have

E[L(x(t+ 1))1A(t+ 1)] ≤ E[L(x(t+ 1))1A(t)] ≤ (1− Mηµ

2
)E[L(x(t))1A(t)].

We can then conclude that with t2 =
2 log h2

16ρ2µMη

Mηµ + t1

16ζ2ρ2µP (A(t2 + 1)) ≤ E[L(x(t2 + 1))1A(t2 + 1)] ≤ (1− Mηµ

2
)t2−t1L(x(t1)) ≤ ζ2h2(1− Mηµ

2
)t2−t1

We have

P (A(t2 + 1)) ≤ Mη

With an abuse of notation, suppose ∇L (x(t2)) ≤ 4ζρ, which implies ∥x(t2) − Φ(x(t2))∥ =
O(ρ).

Subphase C After ∥∇L (x(t2)) ∥ ≤ 4ζρ, it becomes difficult to prove the loss continue to de-
crease. We proceed by consider a quadratic approximation. Now consider

x(t+ 1) = x(t)−Mη∇Lk

(
x(t) + ρ

∇Lk (x(t))

∥∇Lk (x(t)) ∥

)
= x(t)−Mη∇Lk (x(t))−Mηρ∇2Lk(x(t))

∇Lk (x(t))

∥∇Lk (x(t)) ∥
+O(Mηρ2)

= x(t)−Mη∇Lk (x(t))−MηρΛkwkw
T
k

∇Lk (x(t))

∥∇Lk (x(t)) ∥
+O(Mηρ2)

Iteratively define t2,j , for 1 ≤ j ≤ 3, t2,1 = t2.
For j ≤ 2, inductively suppose ∥x(t2,j) − Φ(x(t2,j))∥ ≤ O(ρ(j+1)/2 + Mηρ), let pj =

Φ(x(t2,j)), further assume ∇Lk(Φ(x(t2,j))) = viv
T
i . Further suppose N as the normal space

of Γ at pj and T as the tangent space. Define PN and PT as projection to the space.
We have ∥PT (x(t2,j)− pj)∥ = O((x(t2,j)− pj)

2).
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Consider t2,j ≤ t ≤ t2,j +
ρ
j−2
2

Mη

Define event Aj(t) = {∥x(τ)− pj∥ ≥ ρ(j+2)/2|∀τ ≤ t}
We have ∥PN (x(t)− pj)∥ = O(ρk+1 +Mηρ2(t− t2,j)) ≤ O(ρ(j+2)/2)
Under Aj(t), we would have ∥PT (x(t)− pj)∥ = O(∥x(t)− pj∥)
By Lemma 34, we have

∇Lk (x(t))

∥∇Lk (x(t)) ∥
= sk(t)wk +O(∥x(t)− pj∥)

We also have

sk(t) ̸= sign(wT
k (x(t)− pj)) ⇒ ∥wT

k (x(t)− pj)∥ ≤ ∥x(t)− pj∥3/2

Now by Taylor Expansion,

x(t+ 1)− pj = (x(t)− pj)−MηΛkwkw
T
k (x(t)− pj) +O(Mη∥x(t)− pj∥2)

−MηρΛksk(t)wkw
T
k wk +O(Mηρ∥x(t)− pj∥) +O(Mηρ2)

= (x(t)− pj)−MηΛkwkw
T
k (x(t)− pj)−MηρΛksk(t)wkw

T
k wk +O(Mηρ2)

We then have

E[∥x(t+ 1)− pj∥2|x(t)] = ∥x(t)− pj∥2 + 2η2
∑
k

Λ2
k|wT

k (x(t)− pj)|2 + η2ρ2
∑
k

Λ2
k +O(Mηρ2∥x(t)− pj∥)

− η
∑
k

Λk|wT
k (x(t)− pj)|2 − ηρ

∑
k

Λksk(t)w
T
k (x(t)− pj)

We lower bound
∑

k Λksk(t)v
T
i (x(t)− pj) again by Lemma 34, there exists C such that∑

k

∥vi∥sk(t)vTi (x(t)− pj) ≥
∑
k

∥vTi (x(t)− pj)∥ − 2κ
∑
k

∥vi∥∥x(t)− pj∥3/2

≥ C∥x(t)− pj∥.

and

E[∥x(t+ 1)− pj∥2|x(t)] ≤ ∥x(t)− pj∥2 + 2η2C1∥x(t)− pj∥2 + η2ρ2C1 + ηρ2C1∥x(t)− pj∥
− ηC∥x(t)− pj∥2 − 3ηρC∥x(t)− pj∥
≤ ∥x(t)− pj∥2 − 2ηρC∥x(t)− pj∥+ η2ρ2C1

Hence we have if ∥x(t)− pj∥ ≥ O(ηρ)

E[∥x(t+ 1)− pj∥|x(t)] ≤ ∥x(t)− pj∥ − αηρ.

which implies,

E[∥x(t+ 1)− pj∥1Aj(t+ 1)] ≤ E[∥x(t+ 1)− pj∥1Aj(t)] ≤ E[∥x(t)− pj∥1Aj(t)]− αηρP (Aj(t))
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Hence

αρj/2P (Aj(t2,j +
ρ(j−2)/2

η
) ≤ αηρ

t=t2,j+
ρ(j−2)/2

η∑
t=t2,j

P (Aj(t)) ≤ ∥x(t2,j)− Φ(x(t2,j))∥ = O(ρ(j+1)/2)

Hence with probability O(
√
ρ), there exists t2,j+1, such that ∥x(t2,j+1) − pj∥ ≤ O(ρ(j+2)/2),

which further implies ∥x(t2,j+1)− Φ(x(t2,j+1))∥ ≤ O(ρ(j+2)/2) using Lemma 30.
Define t3 = t2,3

D.6.2. PHASE II: PROOF OF THEOREM 52

We will inductively prove the following claim holds with probability 1−O(ηρ),

∥Φ(x(t))−X(ηρ2t)∥ ≤ O((η + ρ) log(1/ρ))

∥x(t)− Φ(x(t))∥ = O(ρ(η + ρ) log(1/ρ))

To be more precise, the induction mainly consists of two parts. The first part shows that x(t) will
stay close to the manifold with large probability and the second part shows the direction Φ(x(t))
moves.

To be more succinct with previous section, we abuse notation and suppose the iteration starts at
t3.

Part I: Convergence Near Manifold We have ∥x(t3)−Φ(x(t3))∥ = O(ηρ+ ρ2). By induction
hypothesis, we have x(t) ∈ Kh.

According to Lemma 33

∥Φ(x(t+ 1))− Φ(x(t))∥ = O(ηρ2)

Using the same argument in previous section, we have for sufficienly large constant A, if A(ηρ+
ρ2) log(1/ηρ) ≥ ∥x(t) − Φ(x(t))∥ ≥ A(ηρ + ρ2), then there exists constant α,B independent of
A,

E[∥x(t+ 1)− Φ(x(t+ 1))∥|x(t)] ≤ ∥x(t)− Φ(x(t))∥ − αηρ

∥(x(t+ 1)− Φ(x(t+ 1)))− (x(t)− Φ(x(t)))∥ ≤ Bηρ

.
We then have

Pr(y(t+ 1) ≥ A(ηρ+ ρ2) log(1/ηρ)) =
t∑

τ=t3

Pr(y(t+ 1) ≥ A(ηρ+ ρ2) log(1/ηρ)

and y(τ) < A(ηρ+ ρ2) and

∀t+ 1 ≥ τ ′ ≥ τ + 1, y(τ ′) > A(ηρ+ ρ2)

We then consider each term,

Pr(y(t+ 1) ≥ A(ηρ+ ρ2) log(1/ηρ) and y(τ) < A(ηρ+ ρ2) and ∀t+ 1 ≥ τ ′ ≥ τ + 1, y(τ ′) > A(ηρ+ ρ2))

≤Pr(y(t+ 1) ≥ A(ηρ+ ρ2) log(1/ηρ) and ∀t+ 1 ≥ τ ′ ≥ τ + 1, y(τ ′) > A(ηρ+ ρ2)

|A(ηρ+ ρ2) < y(τ + 1) < (A+B)(ηρ+ ρ2))
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Define a coupled process ỹ(τ + 1) = y(τ + 1) and

ỹ(τ ′) =

{
∥x(τ ′)− Φ(x(τ ′))∥, if ỹ(τ ′ − 1) = ∥x(τ ′ − 1)− Φ(x(τ ′ − 1))∥ > A(ηρ+ ρ2)

ỹ(τ ′ − 1)− αηρ, if otherwise

Then clearly

Pr(y(t+ 1) ≥ A(ηρ+ ρ2) log(1/ηρ) and ∀t+ 1 ≥ τ ′ ≥ τ + 1, y(τ ′) > A(ηρ+ ρ2)

|A(ηρ+ ρ2) < y(τ + 1) < (A+B)(ηρ+ ρ2)) ≤ Pr(ỹ(t+ 1) ≥ A(ηρ+ ρ2) log(1/ηρ))

We have

|ỹ(t+ 1)− ỹ(t)| ≤ Bηρ

E[ỹ(t+ 1)]− E[ỹ(t)] ≤ −αηρ

Now applying Azuma-Hoeffding bound(Lemma 56), we have

P (ỹ(t+ 1) ≥ ỹ(τ + 1)− αηρ(t− τ) + h) ≤ P (ỹ(t+ 1) ≥ E[ỹ(t+ 1)] + h)

≤ exp(− 2h2

(t− τ)B2η2ρ2
)

Choosing h = αηρ(t− τ)− y(τ + 1) +A(ηρ+ ρ2) log(1/ηρ)

P (ỹ(t+ 1) ≥ A(ηρ+ ρ2) log(1/ηρ)) ≤ exp(−2
(αηρ(t− τ)− y(τ + 1) +A(ηρ+ ρ2) log(1/ηρ))2

(t− τ)B2η2ρ2
)

≤ exp(−2
(αηρ(t− τ)−A(ηρ+ ρ2) +A(ηρ+ ρ2) log(1/ηρ))2

(t− τ)B2η2ρ2
)

≤ exp(−2
(αηρ(t− τ)−A(ηρ+ ρ2) log(ηρ)/2)2

(t− τ)B2η2ρ2
)

= exp(−2
(α(t− τ)−A log(ηρ)/2)2

(t− τ)B2
)

≤ exp(−2

√
Aα

B2
log(ηρ)) = η10ρ10

We then have

Pr(y(t+ 1) ≥ A(ηρ+ ρ2) log(1/ηρ)) ≤ η10ρ10(t− t3) ≤ η8ρ8

Part II: Direction of Φ(x(t+ 1))− Φ(x(t)) We shall do a Taylor expansion and show that

x(t+ 1) = x(t)− η∇Lk

(
x(t) + ρ

∇Lk (x(t))

∥∇Lk (x(t)) ∥

)
= x(t)− η∇Lk (x(t))− ηρ∇2Lk (x(t))

∇Lk (x(t))

∥∇Lk (x(t)) ∥

− ηρ2∂2(∇Lk)[
∇Lk (x(t))

∥∇Lk (x(t)) ∥
,

∇Lk (x(t))

∥∇Lk (x(t)) ∥
]/2 +O(ηρ3)
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Now by induction we have,

∥x(t)− Φ(x(t))∥ = Õ(ηρ+ ρ2)

, then by Lemma 35, it implies

∥x(t+ 1)− x(t)∥ = O(ηρ)

Then we have

∥Φ(x(t+ 1))− Φ(x(t))− ∂Φ(x(t))(x(t+ 1)− x(t))∥ ≤ ξ∥x(t+ 1)− x(t)∥2 = O(η2ρ2)

Using Lemma 33, we have

∥η∂Φ(x(t))∇Lk (x(t)) ∥ = O(η∥x(t)− Φ(x(t))∥2) = O(η3ρ2 + ηρ4)

∥ηρ∂Φ(x(t))∇2Lk (x(t))
∇Lk (x(t))

∥∇Lk (x(t)) ∥
∥ = O(ηρ∥x(t)− Φ(x(t))∥) = Õ(η2ρ2 + ηρ3)

Hence

∥Φ(x(t+ 1))− Φ(x(t)) + ηρ2∂Φ(x(t))∂2(∇Lk)[
∇Lk (x(t))

∥∇Lk (x(t)) ∥
,

∇Lk (x(t))

∥∇Lk (x(t)) ∥
]/2∥ = Õ(η2ρ2 + ηρ3)

Notice finally that by Lemma 34

∂Φ(x(t))∂2(∇Lk)[
∇Lk (x(t))

∥∇Lk (x(t)) ∥
,

∇Lk (x(t))

∥∇Lk (x(t)) ∥
] = ∂Φ(Φ(x(t)))∂2(∇Lk)[wk, wk] +O(∥x(t)− Φ(x(t))∥)

= P⊤
x,ΓΦ(x(t))∇(λ1(∇2Lk(Φ(x(t))))) +O(∥x(t)− Φ(x(t))∥)

Hence we have

Φ(x(t+ 1))− Φ(x(t)) = −ηρ2P⊤
x,ΓΦ(x(t))∇(λ1(∇2Lk(Φ(x(t)))))/2 + Õ(η2ρ2 + ηρ3)

Notice finally,

Ek[MP⊤
x,ΓΦ(x(t))∇(λ1(∇2Lk(Φ(x(t)))))] = P⊤

x,ΓΦ(x(t))∇(Tr(∇2L(Φ(x(t)))))

Together with standard concentration bound, we would have x(t) follows the Riemannian gradient
flow on Γ for loss

Eiλ1

(
∇2Lk (Φ(x(t)))

)
= EiTr

(
∇2Lk (Φ(x(t)))

)
= Tr∇2L (Φ(x(t))).

D.6.3. PROOF OF COROLLARY

Proof [Proof of Corollary 17] We will do a Taylor expansion on Ek[L
max
k,ρ ](x). By Theorem 51 and

52, for t > ηρ2T ′
3, we have ∥X(ηρ2t)− x(t)∥ = Õ(η + ρ) and ∥x(t)− Φ(x(t))∥ = Õ(ηρ+ ρ2)

Ek[R
max
k,ρ ](x) = max

v
Ek[ρv

T∇Lk(x) + ρ2vT∇2Lk(x)v/2] +O(ρ3)
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Then as Lk(x) = Õ(η2ρ2 + ρ4) and ∥vT∇Lk(x)∥ = Õ(ηρ+ ρ2), this implies

Ek[R
max
k,ρ ](x) = ρ2Ek max

v
vT∇2L(x)v/2 + Õ(η2ρ2 + ρ3)

= ρ2Ek max
v

vT∇2L(X(ηρ2t))v/2 + Õ(ηρ2 + ρ3)

= ρ2Tr(X(ηρ2t))/2 + Õ(ηρ2)

Proof [Proof of Corollary 18]
Choose T such that X(T ) is sufficiently close to X(∞), such that Tr(X(T )) ≤ Tr(X(∞))+2ϵ
By corollary 17, we have ∥Ek[R

max
k,ρ ](x(⌈T/(ηρ2)⌉)) − ρ2Tr(X(T ))/2∥ ≤ Õ(ηρ2). This

further implies ∥Ek[R
max
k,ρ ](x(⌈T/(ηρ2)⌉)) − ρ2Tr(X(∞))/2∥ ≤ ϵρ2 + Õ(ηρ2). We also have

∥L(x(⌈T/(ηρ2)⌉))∥ = O(η2ρ2). Then we can leverage Theorem 4 and Theorem 9 to get the de-
sired bound.

D.7. Technical Lemmas

Lemma 53 (Cor. 4.3.15 in [11]) Let Σ, Σ̂ ∈ RD×D be symmetric and non-negative with eigenval-
ues λ1 ≥ ... ≥ λD and λ̂1 ≥ ... ≥ λ̂D, then for any i,

|λ̂i − λi| ≤ ∥Σ− Σ̂∥2

Definition 54 (Unitary invariant norms) A matrix norm ∥ · ∥∗ on the space of matrices in Rp×d

is unitary invariant if for any matrix K ∈ Rp×d, ∥UKW∥∗ = ∥K∥∗ for any unitary matrices
U ∈ Rp×p,W ∈ Rd×d.

Theorem 55 [Davis-Kahan sin(θ) theorem [5]] Let Σ, Σ̂ ∈ Rp×p be symmetric, with eigenval-
ues λ1 ≥ . . . ≥ λp and λ̂1 ≥ . . . ≥ λ̂p respectively. Fix 1 ≤ r ≤ s ≤ p, let d := s − r + 1
and let V = (vr, vr+1, . . . , vs) ∈ Rp×d and V̂ = (v̂r, v̂r+1, . . . , v̂s) ∈ Rp×d have orthonor-
mal columns satisfying Σvj = λjvj and Σ̂v̂j = λ̂j v̂j for j = r, r + 1, . . . , s. Define ∆ :=

min
{
max{0, λs − λ̂s+1},max{0, λ̂r−1 − λr}

}
, where λ̂0 := ∞ and λ̂p+1 := −∞, we have for

any unitary invariant norm ∥ · ∥∗,

∆ · ∥ sinΘ(V̂ , V )∥∗ ≤ ∥Σ̂− Σ∥∗.

Here Θ(V̂ , V ) ∈ Rd×d, with Θ(V̂ , V )j,j = arccosσj for any j ∈ [d] and Θ(V̂ , V )i,j = 0 for all
i ̸= j ∈ [d]. σ1 ≥ σ2 ≥ · · · ≥ σd denotes the singular values of V̂ ⊤V. [sinΘ]ij is defined as
sin(Θij).

Lemma 56 (Azuma-Hoeffding Bound) Suppose Zn is a super-martingale, suppose −α ≤ Zi+1−
Zi ≤ β, then for all n > 0, a > 0, we have

P (|Zn − Z0| ≥ a) ≤ 2exp(−a2/(2N(α+ β)2))
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Lemma 57 ([19]) Let A : RD → RD×D be any C1 symmetric matrix function and x∗ ∈ RD satis-
fying λ1(A(x∗)) > λ2(A(x∗)) and v1 be the top eigenvector of A(x∗). It holds that ∇λ1(A(x))|x=x∗ =
∇(v⊤1 A(x)v1)|x=x∗ .

We then present some of the technical lemmas we required to prove Lemma 43.

Lemma 58 If 0 < c < b−a
b2

, a
√

a2+2b2

2(1−cb) ≥
a2+b2

2−ca−cb , then a > 1
2b, cb ≤

1
2

Proof Notice that

ca

√
a2 + b2

1− cb
≥ ca

√
a2 + 2b2

2(1− cb)
≥ cb2 + ca2

2− cb− ca
≥ cb2 + ca2

2− cb

.
So

√
1− cb+

1√
1− cb

≥
√
1 +

b2

a2

As c < b−a
b2

, we have 1 > 1− cb > a
b .

So √
a

b
+

√
b

a
≥
√

1 +
b2

a2

The above inequality implies a ≥ 1
2b. As c < b−a

b2
,cb ≤ 1

2

Lemma 59
When 0 < a < b, 0 < c < b−a

b2
, we have

cb2 + ca2(2− cb− 2

3
ca)− (1− cb)

c(a2 + b2)

2− ca− cb
− ca2(

1

2
a2 + b2)

2− ca− cb

(a2 + b2)
≤ cb2

2− cb

Proof
Equivalently, we are going to prove

(1− cb)b2
(

1

2− ca− cb
− 1

2− cb

)
+ a2

1− cb

2− ca− cb
+ a2(

1

2
a2 + b2)

2− ca− cb

(a2 + b2)
≥ a2(2− cb− 2

3
ca)

Further simplifying, we only need to prove

(1− cb)cab2

(2− cb)(2− ca− cb)
+ a2

1− cb

2− ca− cb
≥ 1

3
ca3 +

a4

2(a2 + b2)
(2− ca− cb)

We have the following auxiliary inequalities,

(1− cb)b > a

1− cb

2− ca− cb
=

1
a+b
b + b−a

1−cb

≥ 1
a+b
b + b2−ab

a

=
ab

a2 + b2
≥ a2

a2 + b2
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Using the above anxiliary inequalities we have

(1− cb)cab2

(2− cb)(2− ca− cb)
+ a2

1− cb

2− ca− cb
≥ 1

3
ca3 +

a4

2(a2 + b2)
(2− ca− cb)

⇐ ca2b

(2− cb)(2− ca− cb)
+

(
1− 1

2
(2− ca− cb)

)
a2(1− cb)

2− ca− cb
≥ 1

3
ca3

⇐ ca2b

(2− cb)(2− ca− cb)
+

ca2(a+ b)(1− cb)

2(2− ca− cb)
≥ 1

3
ca3

⇐ ca2b

(2− cb)(2− ca− cb)
+

ca2b(1− cb)

2(2− ca− cb)
≥ 1

3
ca2b

⇐ 1

(2− cb)2
+

1− cb

2(2− cb)
≥ 1

3

⇐3(1− cb)(2− cb) + 6 ≥ 2(2− cb)2

⇐(cb)2 − cb+ 4 ≥ 0

Lemma 60
When 0 < a < b, 0 < c < b−a

b2
, a
√

a2+2b2

2(1−cb) ≥
a2+b2

2−ca−cb , we have

cb2 + ca2(2− cb− 2

3
ca)− (1− cb)cb2 − ca2(

1

2
a2 + b2)

1

b2
≤ cb2

2− cb

Proof Equivalently, we are going to prove,

cb3 + a2(2− cb− 2

3
ca) ≤ b2

2− cb
+

a2(12a
2 + b2)

b2

⇐⇒ cb3 + a2(1− cb− 2

3
ca) ≤ b2

2− cb
+

a4

2b2

We have the auxiliary inequality 1
2−cb > 1

2 + cb
4 .

Hence

cb3 + a2(1− cb− 2

3
ca) ≤ b2

2− cb
+

a4

2b2

⇐cb3 + a2(1− cb− 2

3
ca) ≤ b2

2
+

a4

2b2
+

cb3

4

⇐c(
3b3

4
− ba2 − 2

3
a3) ≤ b2

2
+

a4

2b2
− a2

Case 1 If 3b3

4 − ba2 − 2
3a

3 ≤ 0, then

c(
3b3

4
− ba2 − 2

3
a3) ≤ 0 ≤ b2

2
+

a4

2b2
− a2
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Case 2 If 3b3

4 − ba2 − 2
3a

3 > 0, then

c(
3b3

4
− ba2 − 2

3
a3) ≤ b2

2
+

a4

2b2
− a2

⇐b− a

b2
(
3b3

4
− ba2 − 2

3
a3) ≤ (b2 − a2)2

2b2

⇐2(
3b3

4
− ba2 − 2

3
a3) ≤ (b− a)(b+ a)2

⇐2(b3 − ba2)− (b− a)(b+ a)2 ≤ b3

2
+

4a3

3

⇐(b− a)(2b(a+ b)− (a+ b)2) ≤ b3

2
+

4a3

3

⇐(b− a)2(b+ a) ≤ b3

2
+

4a3

3

Using Lemma 58,a > b
2 ,(b− a)2(b+ a) = (b2 − a2)(b− a) ≤ b2(b− a) ≤ b3

2

Lemma 61 When 0 ≤ a ≤ b, 0 ≤ c ≤ b−a
b2

, b2 ≥ a
√

a2+2b2

2(1−cb) ≥
a2+b2

2−ca−cb , we have

cb2 + ca2(2− cb− 2

3
ca)− 2ca

√
(b2 +

1

2
a2)(1− cb) ≤ cb2

2− cb

Proof
Define

F (a) := a2(2− cb− 2

3
ca)− 2a

√
(b2 +

1

2
a2)(1− cb)

Sa(c, b) := {a|0 ≤ a ≤ b, 0 < c ≤ b− a

b2
, b2 ≥ a

√
a2 + 2b2

2(1− cb)
≥ a2 + b2

2− ca− cb
}

amin(c, b) := inf Sa(c, b)

amax(c, b) := supSa(c, b) ≤ b− cb2

Here we suppose WLOG Sa(c, b) ̸= ϕ.
Consider

dF (a)

da
= 2a(2− cb− 2

3
ca)− 2

3
ca2 − 2

√
(b2 +

1

2
a2)(1− cb)− a2

√
1− cb

b2 + 1
2a

2

d2F (a)

da2
= 2(2− cb− 2

3
ca)− 4

3
ca− 4

3
ca− a

√
1− cb

b2 + 1
2a

2
− 2a

√
1− cb

b2 + 1
2a

2
+

a3

2(b2 + 1
2a

2)
3
2

√
1− cb

≥ 4− 2cb− 4ca− 3a

√
1− cb

b2 + 1
2a

2
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Define u := cb, v := a
b , then u+ v ≤ 1.

d2F (a)

da2
≥ 4− 2u− 4uv − 3

√
1− u

1√
1
2 + 1

v2

≥ 4− 2u− 4u(1− u)− 3
√
1− u

1√
1
2 + 1

(1−u)2

≥ 4u2 − 6u+ 4− 3
√
1− u

(1− u)√
(1−u)2

2 + 1

As
√

(1−u)2

2 + 1 ≥
√

(1−u)2+1
2 ≥ (1− u),we have

d2F (a)

da2
≥ 4u2 − 6u+ 4− 3(1− u) = 4u2 + 1− 3u > 0

The above inequality shows that F (a) is convex w.r.t to a for amin(c, b) ≤ a ≤ amax(c, b).
Hence F (a) ≤ max (F (amin(c, b)), F (amax(c, b)))

Part 1 We abuse the notation and use amin a shorthand for amin(c, b).

We have amin

√
a2min+2b2

2(1−cb) =
a2min+b2

2−camin−cb . This implies

2amin

√
(b2 +

1

2
a2min)(1− cb) = (1− cb)

(a2min + b2)

2− camin − cb
+ a2min(

1

2
a2min + b2)

2− camin − cb

(a2min + b2)

Hence using Lemma 43,

F (amin) = a2min(2− cb− 2

3
camin)− (1− cb)

c(a2min + b2)

2− camin − cb
− ca2min(

1

2
a2min + b2)

2− camin − cb

(a2min + b2)

≤ 1

c
(

cb2

2− cb
− cb2)

Part 2 We abuse the notation and use amax a shorthand for amax(c, b).
It’s not easy to see which boundary condition amax satisfy, hence we will discuss by cases.

Case 1 amax

√
a2max+2b2

2(1−cb) = a2max+b2

2−camax−cb , in this case we simply redo the calculation in Part 1.

Case 2 b2 = amax

√
a2max+2b2

2(1−cb) . This implies

2amax

√
(b2 +

1

2
a2max)(1− cb) = (1− cb)b2 + a2max(

1

2
a2max + b2)

1

b2

Hence using Lemma 60,

F (amax) = a2max(2− cb− 2

3
camax)− (1− cb)cb2 − ca2max(

1

2
a2max + b2)

1

b2

≤ 1

c
(

cb2

2− cb
− cb2)
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Case 3 cb2 = b− amax As 1− cb = amax
b and b2 ≥ amax

√
b(a2max+2b2)

2amax
.

This implies a3max + 2amaxb
2 − 2b3 ≤ 0 ⇒ amax < 9

10b.
Define v := amax

b , cb = 1− v
Then by Lemma 58, 1

2 ≤ v ≤ 9
10

F (amax) = a2max(2− cb− 2

3
camax)− 2amax

√
(b2 +

1

2
a2max)(1− cb)

= b2

(
v2(2− (1− v)− 2

3
(1− v)v)− 2v

√
(1 +

v2

2
)v

)

We will prove the following inequality,

v2(2− (1− v)− 2

3
(1− v)v)− 2v

√
(1 +

v2

2
)v ≤ 1

2− cb
− 1 =

−v

1 + v

In fact we can directly show

v2(1 + v) +
v

1 + v
≤ 2v

√
(1 +

v2

2
)v

⇐⇒ v(1 + v) +
1

1 + v
≤ 2

√
(1 +

v2

2
)v

for v ∈ [0.5, 0.9].

Hence we have

F (a) ≤ max (F (amin(c, b)), F (amax(c, b)))

≤ 1

c
(

cb2

2− cb
− cb2)
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