
LLM-Guided Autoscheduling for Large-Scale Sparse
Machine Learning

Rubens Lacouture
Stanford University
rubensl@stanford.edu

Genghan Zhang
Stanford University
zgh23@stanford.edu

Konstantin Hossfeld
Stanford University

hossfeld@stanford.edu

Tian Zhao
Classie AI

tian@classie.ai

Kunle Olukotun
Stanford University
kunle@stanford.edu

Abstract

Optimizing sparse machine learning (ML) workloads requires navigating a vast1

schedule space. Two of the most critical aspects of that design space include2

which operators to fuse and which loop/dataflow order to use within each fused3

region. We present AUTOSPARSE, an LLM-guided autoscheduler atop a fusion-4

capable sparse ML compiler that focuses on fusion grouping and legal dataflow5

order selection. The compiler enumerates lawful orders per fused region and6

exposes a lightweight FLOPs/byte signal; the LLM proposes structured candidates7

(fusion sets and orders) that we validate and rank before codegen. With backend8

defaults for blocking and parallelism held fixed, case studies on GCN, GraphSAGE9

show consistent gains over unfused baselines and parity with hand-tuned/heuristic10

schedules. Coupling LLM reasoning with compiler legality and roofline-style11

signals efficiently explores sparse scheduling spaces with minimal human effort.12

LLM
Sparse ML
Compiler

Best Config

Problem Setup
- Model Config
- Dataset Properties

Scheduling Knobs
- Capabilities
- Constraints

Objective
- Maximize OI
- Minimize Memory

Access

Schedule
- Fusion Groups
- Loop Order

Performance Estimators
- Operational Intensity (OI)
- Memory Accesses

Figure 1: Overview of AUTOSPARSE: the LLM proposes schedules; the compiler validates, enumer-
ates legal dataflow orders, and returns cost estimates; the best configuration is then selected.

1 Introduction13

Sparse deep learning models are hard to optimize because of irregular memory access and vast14

scheduling spaces. High performance usually requires expert decisions about which operations to15

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

fuse to cut memory traffic, which dataflow order to use, how to tile to fit fast memory, and how to16

parallelize. Manual exploration is infeasible for full models. Autoschedulers in dense settings (e.g.,17

Halide, TVM) have been successful [12, 2], but sparse models add combinatorial dataflow choices18

and sparsity-specific constraints that make search harder [11, 1, 13]. Dataflow accelerators for sparse19

workloads further increase the payoff of getting fusion and dataflow order right [8, 7].20

Fusion—especially cross-expression fusion in sparse workloads—is a first-order lever for perfor-21

mance. By co-iterating producers/consumers and avoiding materialized intermediates, the right22

fusion granularity increases operational intensity and can change the algorithmic cost (work and I/O),23

yielding asymptotic efficiency gains when traversal aligns with sparse storage format [15].24

We propose to leverage LLMs to co-pilot the scheduling process. Our LLM-guided autoscheduler25

works with a fusion-capable sparse ML compiler targeting dataflow hardware. The compiler can fuse26

any subset of expressions given a user Fuse schedule, then enumerates all legal dataflow orders for27

the fused regions and exposes a lightweight heuristic that estimates FLOPs and memory traffic of28

alternative plans. The autoscheduler feeds a textual description of the compute graph, the compiler’s29

knobs (fuse sets and dataflow orders), and hardware hints to an LLM, asking for concrete schedule30

proposals and reasoning. Candidate schedules are validated against compiler invariants and scored31

using the heuristic; poor candidates are pruned before code generation.32

LLMs have shown promise in compiler optimization by reasoning over large discrete spaces and33

leveraging prior knowledge [9, 6, 3]. For sparse ML, schedule quality hinges on long-range trade-offs34

(e.g., partial fusion to avoid recomputation versus full fusion to reduce memory traffic), which LLMs35

can articulate, while the compiler ensures legality and supplies fast cost signals. We evaluate on36

GCN [10] and GraphSAGE [5], showing robust gains and workload-adaptive fusion choices.37

Our contributions are:38

• An LLM-guided autoscheduler for sparse ML that wraps a fusion-capable sparse ML com-39

piler able to perform arbitrary expression fusion and human-in-the-loop dataflow selection.40

• A semi-structured schedule format that the LLM emits and the compiler validates, plus a41

cost-guided pruning loop using a FLOPs/bytes heuristic.42

• An empirical study on sparse models on a simulated dataflow architecture, demonstrating43

consistent speedups over unfused baselines and parity with hand-tuned/heuristic strategies.44

2 Background and Related Work45

Dense autoscheduling has matured in systems such as Halide and TVM [12, 2]. Sparse compilers46

expose formats and scheduling but mostly target CPUs/GPUs and single-expression fusion [11, 1, 13].47

Dataflow abstractions and recent sparse-to-dataflow compilers highlight the importance of fusion and48

dataflow ordering on streaming hardware [8, 7]. Sequence models motivate block-sparse patterns and49

specialized attention mechanisms [14, 4]. Our work complements this landscape by using an LLM to50

search the fuse/order space while keeping the compiler itself a black box that guarantees correctness51

and provides cost signals.52

3 Method53

3.1 Problem Setting and Interface54

We assume a fusion-capable sparse ML compiler that: (i) ingests a model graph (e.g., PyTorch) and a55

user Fuse schedule; (ii) runs its internal fusion then enumerates legal dataflow orders for each fused56

region; (iii) provides a fast FLOPs/bytes heuristic for any (fusion, order) pair; and (iv) generates code57

for a dataflow backend once a schedule is selected.58

3.2 LLM-Guided Autoscheduling Loop59

Prompt state. We serialize operator types, tensor shapes, sparsity statistics, producer–consumer60

relations, and known bottlenecks (via coarse roofline classification). In addition, the prompt state61

captures admissible fuse sets and compiler-enumerated legal execution orders for each fused region.62

(Tiling and parallelization are treated as context only and are not selected by the LLM.)63

2

Proposals and validation. At each iteration, the LLM (i) identifies bottlenecks, (ii) picks a fusion64

granularity, and (iii) selects a legal dataflow order from the compiler’s set. Outputs use a compact65

schema; we validate names/shapes and that every order is compiler-legal, then score with the66

compiler’s FLOPs/bytes heuristic. Candidates are ranked by a roofline-style score and pruned; if67

none pass thresholds, we request alternatives.68

Proposal schema. The LLM communicates via a compact JSON-like schema (Listing 1).69

Listing 1: AUTOSPARSE proposal schema.
70

Plan := {"rank": int, "score": number, "estimated_OI": number,71

"fusion_groups": [{"name": string,72

"ops": [string],73

"dataflow_order": [string]}]}7475

3.3 Heuristic and Search Pruning76

The heuristic symbolically estimates FLOPs and bytes for a fused loop nest, computes operational77

intensity (FLOPs/byte), and classifies compute- vs. memory-bound relative to machine balance. It78

rewards elementwise fusion and penalizes plans that increase FLOPs via recomputation. Coupled79

with legal-order enumeration, this yields a small, high-quality candidate set.80

3.4 Human-in-the-Loop Selection81

When multiple near-ties remain, we surface top-k plans with LLM rationales and heuristic estimates;82

practitioners may override choices—typically dataflow order—based on dataset-specific sparsity.83

3.5 Why LLM-guided vs. solver- or BO-based search84

Sparse scheduling spans fusion grouping and legal dataflow orders, forming a large, discrete, hierar-85

chical space with non-smooth objectives (memory-fit thresholds, sparsity-dependent reuse). Exact86

solvers (ILP/CP/SMT) need brittle encodings and scale poorly; Bayesian Optimization assumes87

smooth, low-dimensional objectives and struggles here. We instead pair the compiler—which enu-88

merates legal orders and provides a fast FLOPs/bytes signal—with an LLM that proposes structured89

fusion+order plans; a validator enforces legality and a roofline-style score prunes candidates, yielding90

high sample efficiency. Once structure is fixed, BO/small solvers can tune numeric knobs offline (e.g.,91

tile/parallel factors).92

4 Evaluation93

Workloads. Two-layer GCN and GraphSAGE on real-world datasets (Table 1).94

Backend. Configurable dataflow simulator calibrated to an FPGA (Xilinx Virtex UltraScale+ VU9P);95

backend blocking and parallelization are held fixed to isolate fusion/dataflow order effects.96

Implementation. AUTOSPARSE queries the compiler’s capabilities and constraints, proposes sched-97

ules via the schema in Listing 1, and runs a short beam search (typical: 5–15 iterations, beam 6–16).98

Baselines. (i) UNFUSED: compiler default with no cross-op fusion; (ii) FULLY FUSED: compiler’s99

greedy fusion/order; (iii) HAND: expert/curated schedule.100

LLM configuration. We used GPT-5 Thinking (OpenAI) to generate schedule proposals. The101

model’s outputs followed Listing 1’s schema and were validated for legality before scoring.102

The evaluation on two-layer GCN and GraphSAGE workloads shows that AUTOSPARSE achieves103

essentially the same performance as the hand-crafted expert schedule. In particular, the reported104

geomean speedup over a no-fusion baseline is about 1.85x for GCN and 2.22x for GraphSAGE (about105

2x overall). By contrast, the fully-fused (greedy) schedule performs very poorly – the LLM-guided106

plan runs roughly 13-15x faster (geomean) than the fully-fused case – indicating that indiscriminate107

full fusion greatly inflates memory traffic and hurts performance.108

As shown in Figure 3, the fused schedules found by AUTOSPARSE preserve the same total FLOPs109

as unfused execution but dramatically cut memory traffic. For example, on the largest dataset (OGB-110

Collab) the GCN model has 1.7 GFLOPs in both cases but bytes drop from 445.9 MiB (unfused) to111

3

186.8MiB (best fused); similarly, GraphSAGE on OGB-Collab goes from 625.2 MiB to 316.4 MiB.112

This roughly 2x reduction in data movement (with FLOPs unchanged) underlies the speedup gains.113

The LLM’s search effort is modest (Table 2): per workload, the beam search ran only 9–11 iterations114

and tested about 28–36 candidate schedules. In other words, only a few dozen configurations were115

evaluated before converging on the expert-equivalent schedule, suggesting the LLM proposals were116

close to optimal.117

Table 1: Structure of the graph datasets.

Category Metric Cora Cora_ML DBLP OGB-Collab

Structure
#Vertex 2708 2995 17716 235868
#Edge (directed) 10556 16316 105734 2570930
Feature length 1433-16-7 2879-16-7 1639-16-4 128-16-2

GCN

cora cora ml dblp collab
Dataset

0

2

S
p

ee
d

u
p

Unfused

Fully Fused

Expert

LLM-guided

GraphSAGE

cora cora ml dblp collab
Dataset

Figure 2: End-to-end speedup (vs. Unfused) for GCN and GraphSAGE on various datasets. The LLM-
guided schedule matches the human-expert selection across all datasets and outperforms the unfused
and fully fused baselines. Geomean speedup vs. Unfused: 1.85× (GCN) and 2.22× (GraphSAGE).

cora cora ml dblp collab
Dataset

0

2

F
L

O
P

s
(G

)

0.2
0.4

1.3

1.7

0.2
0.4

1.3

1.7

0.3
0.6

2.2

2.7

0.3
0.6

2.2

2.7

FLOPs

GCN Unfused

GCN Top-1

GraphSAGE Unfused

GraphSAGE Top-1

cora cora ml dblp collab
Dataset

0

250

500

B
yt

es
(M

iB
)

45.4
99.9

338.7

445.9

15.5 33.8
115.1

186.8

62.0
134.9

459.1

625.2

30.6
67.1

227.0

316.4

Memory Traffic

Figure 3: FLOPs (G) and Bytes (MiB) per forward pass. Unfused = no fusion; Top-1 = best fused
configuration from the LLM search.

Table 2: Autoscheduler search statistics for GCN and GraphSAGE.

Model Metric Cora Cora_ML DBLP OGB-Collab

GCN Iterations 9 10 11 10
Tested points 28 30 34 36

GraphSAGE Iterations 9 10 11 11
Tested points 28 30 32 36

5 Conclusion118

AUTOSPARSE couples an LLM’s structural proposals with compiler legality and a cheap cost signal119

to traverse sparse scheduling spaces. Results across representative workloads indicate the approach is120

practical and competitive with expert schedules under fixed backend settings.121

4

References122

[1] Aart Bik, Penporn Koanantakool, Tatiana Shpeisman, Nicolas Vasilache, Bixia Zheng, and123

Fredrik Kjolstad. Compiler support for sparse tensor computations in mlir. ACM Trans. Archit.124

Code Optim., 19(4), September 2022.125

[2] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen Shen, Meghan126

Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin, and Arvind Krishnamurthy.127

TVM: An automated End-to-End optimizing compiler for deep learning. In 13th USENIX128

Symposium on Operating Systems Design and Implementation (OSDI 18), pages 578–594,129

Carlsbad, CA, October 2018. USENIX Association.130

[3] Chris Cummins, Volker Seeker, Dejan Grubisic, Baptiste Roziere, Jonas Gehring, Gabriel131

Synnaeve, and Hugh Leather. Llm compiler: Foundation language models for compiler132

optimization. In Proceedings of the 34th ACM SIGPLAN International Conference on Compiler133

Construction, pages 141–153, 2025.134

[4] Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and135

memory-efficient exact attention with io-awareness. Advances in Neural Information Processing136

Systems, 35:16344–16359, 2022.137

[5] William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large138

graphs. In Proceedings of the 31st International Conference on Neural Information Processing139

Systems, NIPS’17, page 1025–1035, Red Hook, NY, USA, 2017. Curran Associates Inc.140

[6] Charles Hong, Sahil Bhatia, Altan Haan, Shengjun Kris Dong, Dima Nikiforov, Alvin Cheung,141

and Yakun Sophia Shao. Llm-aided compilation for tensor accelerators. In 2024 IEEE LLM142

Aided Design Workshop (LAD), pages 1–14. IEEE, 2024.143

[7] Olivia Hsu, Alexander Rucker, Tian Zhao, Varun Desai, Kunle Olukotun, and Fredrik Kjolstad.144

Stardust: Compiling sparse tensor algebra to a reconfigurable dataflow architecture. In Proceed-145

ings of the 23rd ACM/IEEE International Symposium on Code Generation and Optimization,146

CGO ’25, page 628–643, New York, NY, USA, 2025. Association for Computing Machinery.147

[8] Olivia Hsu, Maxwell Strange, Ritvik Sharma, Jaeyeon Won, Kunle Olukotun, Joel S Emer,148

Mark A Horowitz, and Fredrik Kjølstad. The sparse abstract machine. In Proceedings of the149

28th ACM International Conference on Architectural Support for Programming Languages and150

Operating Systems, Volume 3, pages 710–726, 2023.151

[9] Sehoon Kim, Suhong Moon, Ryan Tabrizi, Nicholas Lee, Michael W Mahoney, Kurt Keutzer,152

and Amir Gholami. An llm compiler for parallel function calling. In Forty-first International153

Conference on Machine Learning, 2024.154

[10] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional155

networks. In International Conference on Learning Representations, 2017.156

[11] Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and Saman Amarasinghe. The157

tensor algebra compiler. Proceedings of the ACM on Programming Languages, 1(OOPSLA):1–158

29, 2017.159

[12] Jonathan Ragan-Kelley, Andrew Adams, Sylvain Paris, Marc Levoy, Saman Amarasinghe,160

and Frédo Durand. Decoupling algorithms from schedules for easy optimization of image161

processing pipelines. ACM Trans. Graph., 31(4), July 2012.162

[13] Zihao Ye, Ruihang Lai, Junru Shao, Tianqi Chen, and Luis Ceze. Sparsetir: Composable163

abstractions for sparse compilation in deep learning, 2022.164

[14] Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santi-165

ago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird: Transformers166

for longer sequences. Advances in neural information processing systems, 33:17283–17297,167

2020.168

[15] Genghan Zhang, Olivia Hsu, and Fredrik Kjolstad. Compilation of modular and general sparse169

workspaces. Proceedings of the ACM on Programming Languages, 8(PLDI):1213–1238, 2024.170

5

	Introduction
	Background and Related Work
	Method
	Problem Setting and Interface
	LLM-Guided Autoscheduling Loop
	Heuristic and Search Pruning
	Human-in-the-Loop Selection
	Why LLM-guided vs. solver- or BO-based search

	Evaluation
	Conclusion

