© N O O A~ W N =

N = O ©

LLM-Guided Autoscheduling for Large-Scale Sparse
Machine Learning

Rubens Lacouture Genghan Zhang Konstantin Hossfeld Tian Zhao

Stanford University Stanford University Stanford University Classie Al

rubensl@stanford.edu zgh23@stanford.edu hossfeld@stanford.edu tian@classie.ai
Kunle Olukotun

Stanford University
kunle@stanford.edu

Abstract

Optimizing sparse machine learning (ML) workloads requires navigating a vast
schedule space. Two of the most critical aspects of that design space include
which operators to fuse and which loop/dataflow order to use within each fused
region. We present AUTOSPARSE, an LLM-guided autoscheduler atop a fusion-
capable sparse ML compiler that focuses on fusion grouping and legal dataflow
order selection. The compiler enumerates lawful orders per fused region and
exposes a lightweight FLOPs/byte signal; the LLM proposes structured candidates
(fusion sets and orders) that we validate and rank before codegen. With backend
defaults for blocking and parallelism held fixed, case studies on GCN, GraphSAGE
show consistent gains over unfused baselines and parity with hand-tuned/heuristic
schedules. Coupling LLM reasoning with compiler legality and roofline-style
signals efficiently explores sparse scheduling spaces with minimal human effort.

Schedule

- Fusion Groups
Problem Setup - Loop Order

- Model Config f S m s ST oo — oo 2
- Dataset Properties

Scheduling Knobs
- Capabilities LLM Sparse ML

- Constraints Compiler —> Best Config

Objective
- Maximize OI A
- Minimize Memory

Access

Performance Estimators
- Operational Intensity (OI)
- Memory Accesses

Figure 1: Overview of AUTOSPARSE: the LLM proposes schedules; the compiler validates, enumer-
ates legal dataflow orders, and returns cost estimates; the best configuration is then selected.

1 Introduction

Sparse deep learning models are hard to optimize because of irregular memory access and vast
scheduling spaces. High performance usually requires expert decisions about which operations to

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

38

39
40

41
42

43
44

45

46
47
48
49
50
51
52

53

54

55
56
57
58

59

60
61
62
63

fuse to cut memory traffic, which dataflow order to use, how to tile to fit fast memory, and how to
parallelize. Manual exploration is infeasible for full models. Autoschedulers in dense settings (e.g.,
Halide, TVM) have been successful [12, 2], but sparse models add combinatorial dataflow choices
and sparsity-specific constraints that make search harder [[11} [1}[13]]. Dataflow accelerators for sparse
workloads further increase the payoff of getting fusion and dataflow order right [8,[7].

Fusion—especially cross-expression fusion in sparse workloads—is a first-order lever for perfor-
mance. By co-iterating producers/consumers and avoiding materialized intermediates, the right
fusion granularity increases operational intensity and can change the algorithmic cost (work and 1/0),
yielding asymptotic efficiency gains when traversal aligns with sparse storage format [[15].

We propose to leverage LLMs to co-pilot the scheduling process. Our LLM-guided autoscheduler
works with a fusion-capable sparse ML compiler targeting dataflow hardware. The compiler can fuse
any subset of expressions given a user Fuse schedule, then enumerates all legal dataflow orders for
the fused regions and exposes a lightweight heuristic that estimates FLOPs and memory traffic of
alternative plans. The autoscheduler feeds a textual description of the compute graph, the compiler’s
knobs (fuse sets and dataflow orders), and hardware hints to an LLM, asking for concrete schedule
proposals and reasoning. Candidate schedules are validated against compiler invariants and scored
using the heuristic; poor candidates are pruned before code generation.

LLMs have shown promise in compiler optimization by reasoning over large discrete spaces and
leveraging prior knowledge [9. 16} 3]]. For sparse ML, schedule quality hinges on long-range trade-offs
(e.g., partial fusion to avoid recomputation versus full fusion to reduce memory traffic), which LLMs
can articulate, while the compiler ensures legality and supplies fast cost signals. We evaluate on
GCN [10] and GraphSAGE [5], showing robust gains and workload-adaptive fusion choices.

Our contributions are:

* An LLM-guided autoscheduler for sparse ML that wraps a fusion-capable sparse ML com-
piler able to perform arbitrary expression fusion and human-in-the-loop dataflow selection.

* A semi-structured schedule format that the LLM emits and the compiler validates, plus a
cost-guided pruning loop using a FLOPs/bytes heuristic.

* An empirical study on sparse models on a simulated dataflow architecture, demonstrating
consistent speedups over unfused baselines and parity with hand-tuned/heuristic strategies.

2 Background and Related Work

Dense autoscheduling has matured in systems such as Halide and TVM [12, 2]. Sparse compilers
expose formats and scheduling but mostly target CPUs/GPUs and single-expression fusion [11} 1} [13]].
Dataflow abstractions and recent sparse-to-dataflow compilers highlight the importance of fusion and
dataflow ordering on streaming hardware [8} [7]]. Sequence models motivate block-sparse patterns and
specialized attention mechanisms [14} l4]. Our work complements this landscape by using an LLM to
search the fuse/order space while keeping the compiler itself a black box that guarantees correctness
and provides cost signals.

3 Method

3.1 Problem Setting and Interface

We assume a fusion-capable sparse ML compiler that: (i) ingests a model graph (e.g., PyTorch) and a
user Fuse schedule; (ii) runs its internal fusion then enumerates legal dataflow orders for each fused
region; (iii) provides a fast FLOPs/bytes heuristic for any (fusion, order) pair; and (iv) generates code
for a dataflow backend once a schedule is selected.

3.2 LLM-Guided Autoscheduling Loop

Prompt state. We serialize operator types, tensor shapes, sparsity statistics, producer—consumer
relations, and known bottlenecks (via coarse roofline classification). In addition, the prompt state
captures admissible fuse sets and compiler-enumerated legal execution orders for each fused region.
(Tiling and parallelization are treated as context only and are not selected by the LLM.)

64
65
66
67
68

69

70
71

72
73

7

76

77
78
79
80

81

82
83

84

85
86
87
88
89
90
91
92

93

94
95
96
97
98
99
100
101
102

103
104
105
106
107
108

109
110
111

Proposals and validation. At each iteration, the LLM (i) identifies bottlenecks, (ii) picks a fusion
granularity, and (iii) selects a legal dataflow order from the compiler’s set. Outputs use a compact
schema; we validate names/shapes and that every order is compiler-legal, then score with the
compiler’s FLOPs/bytes heuristic. Candidates are ranked by a roofline-style score and pruned; if
none pass thresholds, we request alternatives.

Proposal schema. The LLM communicates via a compact JSON-like schema (Listing|[T).

Listing 1: AUTOSPARSE proposal schema.

Plan := {"rank”: int, "score"”: number, "estimated_OI": number,
"fusion_groups”: [{"name”: string,
"ops": [stringl,
"dataflow_order”: [stringl} 13}

3.3 Heuristic and Search Pruning

The heuristic symbolically estimates FLOPs and bytes for a fused loop nest, computes operational
intensity (FLOPs/byte), and classifies compute- vs. memory-bound relative to machine balance. It
rewards elementwise fusion and penalizes plans that increase FLOPs via recomputation. Coupled
with legal-order enumeration, this yields a small, high-quality candidate set.

3.4 Human-in-the-Loop Selection

When multiple near-ties remain, we surface top-k plans with LLM rationales and heuristic estimates;
practitioners may override choices—typically dataflow order—based on dataset-specific sparsity.

3.5 Why LLM-guided vs. solver- or BO-based search

Sparse scheduling spans fusion grouping and legal dataflow orders, forming a large, discrete, hierar-
chical space with non-smooth objectives (memory-fit thresholds, sparsity-dependent reuse). Exact
solvers (ILP/CP/SMT) need brittle encodings and scale poorly; Bayesian Optimization assumes
smooth, low-dimensional objectives and struggles here. We instead pair the compiler—which enu-
merates legal orders and provides a fast FLOPs/bytes signal—with an LLM that proposes structured
fusion+order plans; a validator enforces legality and a roofline-style score prunes candidates, yielding
high sample efficiency. Once structure is fixed, BO/small solvers can tune numeric knobs offline (e.g.,
tile/parallel factors).

4 Evaluation

Workloads. Two-layer GCN and GraphSAGE on real-world datasets (Table [I)).

Backend. Configurable dataflow simulator calibrated to an FPGA (Xilinx Virtex UltraScale+ VU9P);
backend blocking and parallelization are held fixed to isolate fusion/dataflow order effects.
Implementation. AUTOSPARSE queries the compiler’s capabilities and constraints, proposes sched-
ules via the schema in Listing[T] and runs a short beam search (typical: 5-15 iterations, beam 6-16).
Baselines. (i) UNFUSED: compiler default with no cross-op fusion; (ii) FULLY FUSED: compiler’s
greedy fusion/order; (iii)) HAND: expert/curated schedule.

LLM configuration. We used GPT-5 Thinking (OpenAl) to generate schedule proposals. The
model’s outputs followed Listing 1’s schema and were validated for legality before scoring.

The evaluation on two-layer GCN and GraphSAGE workloads shows that AUTOSPARSE achieves
essentially the same performance as the hand-crafted expert schedule. In particular, the reported
geomean speedup over a no-fusion baseline is about 1.85x for GCN and 2.22x for GraphSAGE (about
2x overall). By contrast, the fully-fused (greedy) schedule performs very poorly — the LLM-guided
plan runs roughly 13-15x faster (geomean) than the fully-fused case — indicating that indiscriminate
full fusion greatly inflates memory traffic and hurts performance.

As shown in Figure |3} the fused schedules found by AUTOSPARSE preserve the same total FLOPs
as unfused execution but dramatically cut memory traffic. For example, on the largest dataset (OGB-
Collab) the GCN model has 1.7 GFLOPs in both cases but bytes drop from 445.9 MiB (unfused) to

112
113
114
115
116
117

118

119
120
121

186.8MiB (best fused); similarly, GraphSAGE on OGB-Collab goes from 625.2 MiB to 316.4 MiB.
This roughly 2x reduction in data movement (with FLOPs unchanged) underlies the speedup gains.
The LLM’s search effort is modest (Table2): per workload, the beam search ran only 9-11 iterations
and tested about 28-36 candidate schedules. In other words, only a few dozen configurations were
evaluated before converging on the expert-equivalent schedule, suggesting the LLM proposals were
close to optimal.

Table 1: Structure of the graph datasets.

Category Metric Cora Cora_ML DBLP OGB-Collab
#Vertex 2708 2995 17716 235868
Structure #Edge (directed) 10556 16316 105734 2570930

Feature length 1433-16-7 2879-16-7 1639-16-4 128-16-2

GCN GraphSAGE
Unfused Expert

=) Fully Fused LLM-guided
52

2,
n

cora cora_ml dblp collab cora cora_ml dblp collab
Dataset Dataset

Figure 2: End-to-end speedup (vs. Unfused) for GCN and GraphSAGE on various datasets. The LLM-
guided schedule matches the human-expert selection across all datasets and outperforms the unfused
and fully fused baselines. Geomean speedup vs. Unfused: 1.85x (GCN) and 2.22x (GraphSAGE).

FLOPs Memory Traffic

2.7 2.7 625.2

GCN Unfused
BB CCN Top-1 159.0 4459

GraphSAGE Unfused
BN CraphSAGE Top-1

p2e0 186.8

3 0404

0.2 0.2 03 0.

cora cora ml dblp collab cora cora_ml dblp collab
Dataset Dataset

Figure 3: FLOPs (G) and Bytes (MiB) per forward pass. Unfused = no fusion; Top-1 = best fused
configuration from the LLM search.

Table 2: Autoscheduler search statistics for GCN and GraphSAGE.

Model Metric Cora Cora_ML DBLP OGB-Collab
Iterations 9 10 11 10

GCN Tested points 28 30 34 36
Iterations 9 10 11 11

GraphSAGE Tested points 28 30 32 36

5 Conclusion

AUTOSPARSE couples an LLM’s structural proposals with compiler legality and a cheap cost signal
to traverse sparse scheduling spaces. Results across representative workloads indicate the approach is
practical and competitive with expert schedules under fixed backend settings.

122

123
124
125

126
127
128
129
130

131
132
133
134

135
136
137

138
139
140

141
142
143

144
145
146
147

148
149
150
151

152
153
154

155
156

157
158
159

160
161
162

163
164

165
166
167
168

169
170

References

[1] Aart Bik, Penporn Koanantakool, Tatiana Shpeisman, Nicolas Vasilache, Bixia Zheng, and
Fredrik Kjolstad. Compiler support for sparse tensor computations in mlir. ACM Trans. Archit.
Code Optim., 19(4), September 2022.

[2] Tiangi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen Shen, Meghan
Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin, and Arvind Krishnamurthy.
TVM: An automated End-to-End optimizing compiler for deep learning. In /3th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 18), pages 578-594,
Carlsbad, CA, October 2018. USENIX Association.

[3] Chris Cummins, Volker Seeker, Dejan Grubisic, Baptiste Roziere, Jonas Gehring, Gabriel
Synnaeve, and Hugh Leather. Llm compiler: Foundation language models for compiler
optimization. In Proceedings of the 34th ACM SIGPLAN International Conference on Compiler
Construction, pages 141-153, 2025.

[4] Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and
memory-efficient exact attention with io-awareness. Advances in Neural Information Processing
Systems, 35:16344—16359, 2022.

[5] William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Proceedings of the 31st International Conference on Neural Information Processing
Systems, NIPS’17, page 1025-1035, Red Hook, NY, USA, 2017. Curran Associates Inc.

[6] Charles Hong, Sahil Bhatia, Altan Haan, Shengjun Kris Dong, Dima Nikiforov, Alvin Cheung,
and Yakun Sophia Shao. Llm-aided compilation for tensor accelerators. In 2024 IEEE LLM
Aided Design Workshop (LAD), pages 1-14. IEEE, 2024.

[7] Olivia Hsu, Alexander Rucker, Tian Zhao, Varun Desai, Kunle Olukotun, and Fredrik Kjolstad.
Stardust: Compiling sparse tensor algebra to a reconfigurable dataflow architecture. In Proceed-
ings of the 23rd ACM/IEEE International Symposium on Code Generation and Optimization,
CGO 25, page 628-643, New York, NY, USA, 2025. Association for Computing Machinery.

[8] Olivia Hsu, Maxwell Strange, Ritvik Sharma, Jaeyeon Won, Kunle Olukotun, Joel S Emer,
Mark A Horowitz, and Fredrik Kjglstad. The sparse abstract machine. In Proceedings of the
28th ACM International Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 3, pages 710-726, 2023.

[9] Sehoon Kim, Suhong Moon, Ryan Tabrizi, Nicholas Lee, Michael W Mahoney, Kurt Keutzer,
and Amir Gholami. An llm compiler for parallel function calling. In Forty-first International
Conference on Machine Learning, 2024.

[10] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. In International Conference on Learning Representations, 2017.

[11] Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and Saman Amarasinghe. The
tensor algebra compiler. Proceedings of the ACM on Programming Languages, 1(OOPSLA):1-
29, 2017.

[12] Jonathan Ragan-Kelley, Andrew Adams, Sylvain Paris, Marc Levoy, Saman Amarasinghe,
and Frédo Durand. Decoupling algorithms from schedules for easy optimization of image
processing pipelines. ACM Trans. Graph., 31(4), July 2012.

[13] Zihao Ye, Ruihang Lai, Junru Shao, Tianqgi Chen, and Luis Ceze. Sparsetir: Composable
abstractions for sparse compilation in deep learning, 2022.

[14] Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santi-
ago Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird: Transformers
for longer sequences. Advances in neural information processing systems, 33:17283-17297,
2020.

[15] Genghan Zhang, Olivia Hsu, and Fredrik Kjolstad. Compilation of modular and general sparse
workspaces. Proceedings of the ACM on Programming Languages, 8(PLDI):1213-1238, 2024.

	Introduction
	Background and Related Work
	Method
	Problem Setting and Interface
	LLM-Guided Autoscheduling Loop
	Heuristic and Search Pruning
	Human-in-the-Loop Selection
	Why LLM-guided vs. solver- or BO-based search

	Evaluation
	Conclusion

