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Abstract

Computational pathology foundation models (CPathFMs) have emerged as a pow-
erful approach for analyzing histopathological data, leveraging self-supervised
learning to extract robust feature representations from unlabeled whole-slide im-
ages. These models, categorized into uni-modal and multi-modal frameworks,
have demonstrated promise in automating complex pathology tasks such as seg-
mentation, classification, and biomarker discovery. However, the development of
CPathFMs presents significant challenges, such as limited data accessibility, high
variability across datasets, the necessity for domain-specific adaptation, and the
lack of standardized evaluation benchmarks. This survey provides a comprehensive
review of CPathFMs in computational pathology, focusing on datasets, adaptation
strategies, and evaluation tasks. We analyze key techniques, such as contrastive
learning, masked image modeling and multi-modal integration, and highlight ex-
isting gaps in current research. Finally, we explore future directions from four
perspectives for advancing CPathFMs. This survey serves as a valuable resource for
researchers, clinicians, and Al practitioners, guiding the advancement of CPathFMs
toward robust and clinically applicable Al-driven pathology solutions.

1 Introduction

Histopathology with hematoxylin and eosin (H&E) staining is central to disease diagnosis, prognosis,
and treatment planning, particularly in oncology. Traditional histopathological analysis relies on
manual examination of whole-slide images (WSIs) by pathologists, a process that is time-consuming,
labor-intensive, and prone to inter-observer variability. The growing availability of digital WSIs
has fueled the development of deep learning-based computational pathology (CPath) models that
automate tasks such as tumor classification, biomarker discovery, and prognosis prediction using
convolutional neural networks (CNNs) and vision transformers (ViTs). Recently, foundation models
(FMs) have gained prominence in CPath [30]. Unlike conventional deep learning models that require
large labeled datasets and are task-specific, computational pathology foundation models (CPathFMs)
employ large backbones (often ViTs) pre-trained on diverse unlabeled histopathological data via
self-supervised learning (SSL), and can be adapted to downstream tasks through transfer, few-shot,
or zero-shot learning, thereby reducing reliance on expert annotations. Uni-modal CPathFMs learn
from histopathological images alone, while multi-modal variants integrate images with clinical data
from electronic health records (EHRSs) to exploit complementary information. Despite promising
advances, pre-training CPathFMs remains hindered by data scarcity, domain adaptation challenges,
and inconsistent evaluation protocols.
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Figure 1: An illustrative example of data modalities and challenges in CPath. The figure illustrates different
histopathology data types, including WSIs, tile images at multiple magnifications (Field of View, FoV), and
imaging types (H&E, IHC, MxIF). These elements are critical for developing CPathFMs, highlighting the
complexity of multi-scale image representation and domain-specific challenges.

Although the development of CPathFMs faces challenges related to data variability, adaptation,
and evaluation, existing survey papers have not provided a sufficiently comprehensive overview of
this field. Some works emphasize benchmarking but cover too few approaches and lack detailed
summaries of pre-training datasets and evaluation tasks [S} 25, 29]. For example, while Neidlinger et
al.[29] included a wide range of CPathFMs and datasets, their analysis of methods and datasets was
not detailed. Similarly, Ochi et al.[30]] and Chanda et al. [8] reviewed many CPathFMs, but their
coverage of methods was neither comprehensive nor up to date, and they did not sufficiently discuss
how these models are adapted to pathology or differentiate between adaptation strategies. Regarding
evaluation, one survey merely listed tasks without providing a taxonomy, while the other offered an
incomplete summary. In this survey, we aim to address these gaps by presenting a comprehensive
review of CPathFMs, with particular emphasis on datasets, adaptation strategies, and evaluation tasks.

* Providing an in-depth analysis of existing pathology datasets and data curation used for pre-training
CPathFMs, identifying key challenges in generalization.

* Systematically reviewing adaptation techniques in pre-training CPathFMs, covering 28 existing and
up-to-date models across both uni-modal (image-based) and multi-modal (image-text) paradigms.

* For the first time, thoroughly summarizing evaluation tasks, categorizing them into six main
perspectives for assessing pre-trained CPathFMs.

* Identifying key future research directions, offering insights into the challenges and opportunities
for advancing CPathFM development.

2 Background

2.1 Computational Pathology (CPath)

CPath combines artificial intelligence, machine learning, and computer vision with digital pathology
to support diagnosis, prognosis, and treatment planning. By leveraging whole-slide imaging (WSI)
and deep learning, CPath enables scalable, automated analysis of histopathological data, reducing
reliance on manual review and improving diagnostic consistency. Despite notable progress in CPath
and CPathFMs, clinical deployment remains limited by challenges in performance, usability, and
regulatory approval.

WSIs are gigapixel-scale digital scans of entire histology slides, capturing detailed tissue structures
but requiring tiling into smaller patches for computational analysis. They serve as the foundation for
both manual and automated review, with FDA approval making them standard in digital pathology
workflows. As shown in Figure|l} CPath utilizes diverse data modalities, including WSIs, tile images
at multiple magnifications, and imaging techniques such as H&E, immunohistochemistry (IHC), and
multiplex immunofluorescence (MxIF). While H&E and IHC are routine in clinical practice, MxIF is
mainly used in research. Multi-modal CPathFMs integrate these image types with clinical reports
and tile captions, enhancing generalizability and interpretability for Al-assisted pathology.
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Figure 2: Overview of the pre-training pipeline for CPathFMs. The process involves data curation, including
image curation, text curation, and dataset filtering, followed by uni-modal and multi-modal pre-training. The
final CPathFMs are evaluated across multiple downstream tasks categorized into six main perspectives.

2.2 ViT-Based SSL Frameworks for FMs

The Vision Transformer (ViT) has become a cornerstone of foundation models due to its self-
attention mechanism for capturing global dependencies, its patch-based tokenization suited for
masked learning, and its scalability for large-scale multi-modal tasks. These properties have driven
the design of self-supervised learning (SSL) frameworks that leverage ViT for robust representation
learning in pathology and beyond.

Masked Image Modeling (MIM) is a key SSL approach. MAE [[18]] predicts masked patches to
learn rich features, while BEIT [4] and BEiT v2 [32] refine this strategy with discrete tokenizers
and knowledge distillation. In parallel, contrastive learning frameworks such as DINO [7] use self-
distillation with a student—teacher paradigm, and DINOv2 [31]] integrates iBOT [47] to combine MIM
and contrastive learning for better generalization. Multi-modal extensions further expand ViT-based
SSL: CLIP [33]] aligns image and text encoders for zero-shot tasks, CoCa [45] fuses contrastive
learning with caption generation, and BEiT-3 [38]] enhances token prediction through multi-modal
learning.

2.3 Challenges in Pre-training CPathFMs

While self-supervised contrastive learning has advanced CPathFMs, pre-training remains challenging
due to limitations in data, adaptation, and evaluation, each of which directly affects model generaliz-
ability and clinical utility. As shown in Figure[2] the process involves dataset curation, training within
an SSL framework, and evaluation on downstream tasks, all of which face practical obstacles.

Data scarcity and variability are major barriers. Large, diverse histopathology datasets are limited
by ethical approvals and access restrictions, public datasets are rare and often single-institution,
and gigapixel-scale WSIs pose storage and computational burdens. Annotation is costly and time-
consuming, while variability in staining, magnification, and tissue structures introduces domain
shifts, compounded by severe class imbalance. Beyond data, adapting models to heterogeneous
pathology tasks is difficult, as tile-based approaches fragment global tissue context and current
architectures struggle with multi-scale learning. Evaluation further complicates progress, as tasks
span classification, retrieval, segmentation, and generation, yet lack standardized benchmarks and
consistent protocols, making systematic comparison across datasets and institutions elusive.

3 Pre-training Datasets in CPathFMs

Although early CPathFMs used relatively small and homogeneous pre-training datasets, recent studies
have shown that higher quality, larger scale, and more diverse pathology pre-training datasets are
more beneficial for adapting the foundation models trained on natural image datasets or existing SSL
frameworks to the pathology domain [50]. Therefore, summarizing the datasets used for pre-training
CPathFMs can provide valuable insight into requirements for future research on CPathFMs. Appendix
Table 2] provides a summary of pre-training datasets utilized by each method discussed in Section 4}



Table 1: Overview of architecture and adaptation strategies of CPathFMs

Model Reference SSL Backbone [# Param.]T Input Pre-training Strategyi Model
Framework Vision Language Images Vision Language Availability
CTransPath 139] MoCo v3* Swin Transformer [ 1 - Tiles S -
REMEDIS 13l SimCLR ResNet-152 (2X) [ ] - Tiles D -
Lunit DINO  [24] DINO ViT-S/(8,16) [ 1 - Tiles S -
Phikon [16] iBOT VIiT-B/16 [ 1 - Tiles S - X
Virchow 1371 DINOv2 VIiT-H/14 [ 1 - Tiles S -
. ) ?ﬁg ViT-$ [ViT_L]’[V‘T B][ ! i Tiles S i x
RudolfV (151 DINOv2 VIiT-L/14 [ 1 - Tiles D - X
Kiko 0 g,y e : Tiles D .
3 PLUTO 231 DINOv2* FlexiViT-S [ 1 - Tiles S -
E GigaPath [431 DINOv2* VIiT-G/14 [ 1 & LongNet [ 1 - WSIs S, S -
5 Hibou 28] DINOv2 ViT-B/14 [ 1, ViT-L/14 [ 1 - Tiles S -
BEPH 441 BEiTv2 VIiT-B/16 [ 1& VQ-KD [ 1 - Tiles D,D -
GPFM 1271 DINOv2* ViT-L [ 1 - Tiles S -
Virchow?2 1501 DINOv2* ViT-H/14 [ 1 - Tiles S -
Phikon-v2 7] DINOv2 VIiT-L/16 [ 1 - Tiles S - X
UNI 191 DINOv2 VIiT-L/16 [ 1 - Tiles S -
H-optimus-0  [34] DINOv2 VIiT-G/14 [ 1 - Tiles S -
Atlas 21 DINOv2 ViT-H/14 [ 1 - Tiles D X
PLIP [19] CLIP ViT-B/32 [ ] Transformer Layers [ 1 Tiles D D
PathCLIP 136] CLIP ViT-B/32 [ 1 Transformer Layers [ 1 Tiles D D X
QuiltNet 20) CLIP ViT-B/(16,32) [36M] GPT-2 [1.55] & PubMedBERT [ ] Tiles D D
CONCH 126] CoCa, iBOT ViT-B/16 [ ] Transformer Layers [ 1 Tiles S D
PRISM 133] CoCa ViT-H/14 [632M] & Perceiver Net. [ ] BioGPT [ ,172M] WSIs  FS D,F
:: CHIEF [40] CLIP* Swin Transformer [ 1 Transformer Layers [ 1 WSIs D D
E  kep [49] CLIP* VIT-B/(16,32) [86M] PubMedBERT [ ] Tiles D S
==I TITAN [14] CoCa, iBOT* ViT-B/16 [86M] & ViT-S [ 1 Transformer Layers [ 1 WSIs ES D
= KEEP [48] CLIP* ViT-L [ 1 PubMedBERT [ 1 Tiles D S
MUSK [42]  CoCa*, BEiT-3 V-EFN[ ! L-FFN [ ! Tiles S S

Shared Attention Layers [ 1

* Made domain-specific improvements or extensions to the SSL framework for pathology.

T For simplicity, we have streamlined some expressions. For example, “/8" denotes a patch size of 8 X 8 pixels, and “/(8,16)" represents “/8" and /16", respectively.
The color in [ ] represents the parameters that are being trained or tuned, while the blue color represents the frozen parameters.

¥ Pre-training strategies: F: Frozen, S: From Scratch, D: Domain-Specific Tuning.

Most CPathFMs construct large and diverse pre-training datasets from multiple sources, including
public repositories such as TCGA [41], GTEx [12], and PMC OA [26], as well as internet-scale
collections like Quilt-1M [20]], or newly released datasets such as OpenPath [19] and PathCap [36].
The diversity of sources requires careful curation, typically involving subfigure detection and segmen-
tation, image resizing, text refinement with LLMs, alignment of figures with captions or reports, and
filtering to retain relevant pathology data. In terms of data types, uni-modal CPathFMs generally rely
on WSIs and extracted tiles, while multi-modal models use task-specific inputs, with tile—caption pairs
supporting tile-level training and WSI-report pairs used at the slide level; for example, CHIEF [40]
employed anatomical site labels as textual features to construct WSI—text pairs.

4 Adaptation Strategies in CPathFMs

SSL has been widely applied in the development of CPathFMs to address the lack of labels. These
models typically adapt SSL frameworks that have proven successful in natural images, and perform
pre-training on carefully curated pathology datasets. Depending on the type of pathology data they
used, these approaches can be categorized into uni-modal and multi-modal methods, as introduced in
Table[Il

4.1 Uni-Modal CPathFMs

Uni-modal CPathFMs are generally trained on large, domain-specific pathology datasets using SSL
frameworks to learn robust representations of pathological images without labeled data. Although
there are some MIM-based methods, self-supervised contrastive learning methods play a dominant



role. Similar to the development of contrastive learning in natural images, CPathFMs were initially
proposed within the MoCo [11] and SimCLR [10] frameworks. Following a transition through the
DINO, DINOv2 was established as the leading framework, serving as the foundation for numerous
subsequent studies.

DINO-based CPathFMs. As a successful application of SSL on ViT, DINO has been adopted as a
framework for training CPathFMs. Campanella et al., [6] compared the performance of DINO and
MAE on different scales of pathology datasets, ultimately demonstrating the superiority of DINO for
pre-training CPathFMs. Kang et al., [24] focused on domain-aligned pre-training and proposed data
augmentation and curation strategies specifically for pathological images.

DINOv2-based CPathFMs. Most studies using DINOv2, such as UNI [9], focus on larger ViT
models and diverse pre-training datasets, with RudolfV [[15] incorporating pathologist knowledge
in dataset construction. Some methods adapt DINOv2 to pathology tasks: Kaiko [[1] introduces
Online Patching for high-throughput patch extraction, Virchow?2 [50] replaces the entropy estimator
with KDE, PLUTO [23]] augments the loss with MAE and Fourier terms, and GPFM [27]] builds a
unified framework via Expert Knowledge Distillation. Distinct from these, GigaPath [43] targets
whole-slide representation by treating tiles as visual tokens learned with DINOv?2 and feeding them
into LongNet [13]] with Dilated Attention for efficient slide-level modeling.

Other Uni-Modal CPathFMs. While the majority of uni-modal methods focus on DINO and
DINOV2, some methods employ other SSL frameworks. CTransPath [39] adds a branch to MoCov3
to generate queries that retrieve semantically similar samples from the memory bank as positive
samples, thus guiding the network’s training with a semantically relevant contrastive loss. REMEDIS
[3]] transfers a ResNet model, pre-trained on large-scale natural images, to the SimCLR framework for
self-supervised training on pathological images. Additionally, Phikon [[16] and BEPH [44] directly
train a ViT model within the MIM-based SSL framework iBOT and BEiTv2, respectively.

4.2 Multi-Modal CPathFMs

Multi-modal CPathFMs enhance the model’s understanding of pathological images by aligning paired
image-text data under the visual-language multi-modal SSL frameworks, such as CLIP and CoCa.
These methods typically train pre-trained uni-modal modules using uni-modal SSL frameworks before
performing joint visual-language pre-training, which has been shown to improve the performance of
downstream tasks [26]).

CLIP-based CPathFMs. The success of CLIP on natural images has motivated its adaptation
to pathology, where paired histopathological images and textual descriptions (e.g., reports and an-
notations) enhance model interpretability. PLIP [19], PathCLIP [36], and QuiltNet [20] fine-tune
pre-trained CLIP models on tile—caption datasets. CHIEF [40] extends this by encoding tile sequences
with CTransPath to obtain WSI-level features and combining them with anatomical site informa-
tion encoded by CLIP’s text encoder for richer multi-modal representations. To integrate domain
knowledge, Zhou et al. [49] introduce a pathology knowledge graph (KG) to guide visual-language
pretraining, while KEEP [48] builds a disease KG and uses knowledge-guided dataset structuring to
generate tile—caption pairs, incorporating positive mining and robust negative sampling strategies.

CoCa-based CPathFMs. The CoCa framework, with its multi-modal decoder, strengthens the
cross-modal capabilities of CPathFMs and has been adopted in several recent models. CONCH [26]
and PRISM [335]] both pre-train an image encoder on pathology datasets using iBOT and DINOv2,
respectively, before joint visual-language training with CoCa; PRISM further extends to the WSI-
level via a Perceiver network [21]] and incorporates clinical reports. MUSK [42]] separately trains
image and text encoders with masked data modeling in BEiT-3, then aligns them under CoCa.
Building on these, TITAN [14] develops a multi-modal whole-slide foundation model, training a slide
encoder in three stages: pre-training with iBOT and positional encoding, followed by CoCa-based
training at both tile- and WSI-levels to enable comprehensive vision—-language understanding.

5 Evaluation Tasks

CPathFMs do not target a specific task during the pre-training phase. Instead, a wide range of
evaluation tasks are employed after pre-training to assess the model’s ability to extract features
from pathology data. These tasks are diverse, and the evaluation tasks for each CPathFM are not
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Figure 3: Taxonomy of evaluation tasks for pre-trained CPathFMs. Uni-modal and multi-modal CPathFMs are
highlighted in purple and red, respectively.

standardized, making it challenging to establish a unified benchmark for CPathFMs. Therefore, we
provide a summary of the evaluation tasks along with the CPathFMs performing them, as illustrated
in Figure 3] We first categorized the evaluation tasks into six major perspectives based on their
application objectives, followed by a further subdivision according to their specific objectives (e.g.,
focusing on tile-level or WSI-level). On this basis, we also considered variations in task settings (e.g.,
supervised or zero-shot learning). Finally, we summarized which CPathFMs were used to evaluate
each type of task.

Evaluation tasks in CPath cover a wide range, with classification being the most common. These
tasks include cancer subtyping, biomarker detection, and mutation prediction, studied at both tile-
and WSI-level under supervised, few-shot, and zero-shot settings. WSI-level classification is often
weakly supervised with only global annotations, requiring aggregator networks to combine tile-level
features. Beyond accuracy, models are also evaluated on out-of-distribution generalization across
institutions, staining protocols, and rare disease settings. Other task types include retrieval, generation,
segmentation, prediction, and VQA, many of which assess cross-modal capabilities such as aligning
images with text. Some models (e.g., Virchow, RudolfV, BEPH, PLIP) also incorporate representation
analysis through dimensionality reduction and clustering to qualitatively assess learned features.

6 Future Directions

Future research on CPathFMs should focus on improving their trustworthiness, extending to new
imaging modalities, advancing multi-modal reasoning, and establishing standardized evaluation.
Building trustworthy CPathFMs requires fairness, explainability, security, and transparency to ensure
safe clinical deployment. Expanding to multiplex immunofluorescence (MxIF) imaging can provide
richer insights into the tumor microenvironment but demands solutions for its high dimensionality
and complex signal processing. Developing WSI-level multimodal large language models (MLLMs)
for pathology VQA could enable context-aware diagnostics by integrating WSIs with clinical text,
captions, and reports. Finally, standardized benchmarking datasets and evaluation metrics are needed
to ensure consistent assessment of robustness, fairness, and clinical utility. A detailed discussion of
these directions is provided in the Appendix Section[B]

7 Conclusion

Computational pathology foundation models have emerged as a powerful approach for analyzing
histopathological data, potentially playing a role in the development of robust and clinically applicable
Al-driven pathology solutions. This survey provides a review of existing computational pathology
foundation models, examining challenges in pre-training datasets, adaptation strategies, and evaluation
tasks, while offering a comparative analysis of their strengths and limitations. Finally, we have
identified key research gaps and proposed potential directions for future advancements.
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A Summary Table for Pre-training Datasets in CPathFMs

Table 2] provides a summary of pre-training datasets utilized by each method discussed in Section @]

@

Table 2: Statistics of pathology datasets used for pre-training CPathFMs. The
of relevant information.

symbol represents the absence

Reference Data Descriptionlr Input Image Size Field of View  Staining Types Data Sources Corresponding
# WSIs # Tiles (FoV) H&E THC Others Public Private Method
1391 322K 15.6M 1024 x 1024 20X X X TCGA, PAIP - CTransPath
131 29.0K 50.0M 224x224 20X X X TCGA JFT54 REMEDIS
1241 36.7K 32.6M 512x512 {20, 40} X X X TCGA TULIP Lunit DINO
[LL6] 6.1K 43.4M 224x224 20X X X TCGA - Phikon
1371 1.5M 2.0B 224x224 20X X X - MSKCC Virchow
161 423K 1.6B, 3.2B 224 X224 20X X X - MSHS -
[15] 134K 1.2B 256 X256 {20, 40, 80} x TCGA Proprietary RudolfV
(1 29.0K 256M 256256 {5, 10, 20,40} x X X TCGA - Kaiko
_ 1231 158.8K 195M 224 %224 {20, 40} x TCGA, etc. Proprietary PLUTO
£ @3 171K 1.4B 256 X256 20% X - PHS GigaPath
E 1281 1.1IM 512M, 1.2B 224x224 20X - Proprietary Hibou
S @ 117K 11.7M 224x224 20 X X TCGA - BEPH
1271 72.3K 190.2M 512x512 - X X TCGA, GTEXx, etc. - GPFM
150] 3.IM 2.0B 392x392 {5, 10, 20, 40} x X - MSKCC Virchow2
7] 58.0K 456M 224 %224 20X TCGA, GTEXx, efc. Proprietary x4  Phikon-v2
91 100K 100M 256 X256, 512X 512 20X X X GTEx MGH, BWH UNI
134] 500K+ 100M+ - - X X - Proprietary H-optimus-0
21 1.2M 3.4B 256 %256 {5, 10, 20, 40} x - Proprietary Atlas
[19] 208K Tile-Caption Pairs 224 %224 - - Twitter, PathLAION - PLIP
36 207K Tile-Caption Pairs - - X PMC OA LBC PathCLIP
1201 438K Tiles and 802K Captions Avg. 882X 1648 {10-40} x - YouTube, Twitter, efc. - QuiltNet
R T T
135] 587K WSIs and 195K Reports 224 x224 20 X X TCGA Proprietary PRISM
[40] 60K WSI-Label Pairs 256 %256 10X X X TCGA, GTEx, etc. _ Proprietary CHIEF
E A KG with 50.5K Pathology Attributes - - - - - OncoTree, etc. -
g 91 576.6K, 138.9K Tile-Caption Pairs 224x224 - - Quilt-1M, OpenPath - KEP
% 3§6K WSIS ) 512x512 20 X GTEx Propr@e[ary
s 14 423K Tile-Caption Pairs 8192x 8192 20 X GTEx Proprietary TITAN
183K WSI-Report Pairs 32768 X 32768 - X GTEx Proprietary
@s) A KG with 1§9K Disr.ease A}lributes - - - - - ) DO, UMLS - KEEP
143K Tile-Caption Pairs 224 x224 - - Quilt-1M, OpenPath -
@ 1B Text T_okens ax.1d SOM Tiles 384 %384 {10,20,40} x - X X PMC OA, TCGA - MUSK
IM Tile-Caption Pairs 384 x384 20 X X Quilt-1M, PathCap -

T The pre-training data for uni-modal CPathFMs primarily consists of the number of WSIs and tiles. However, the situation is more complex for multi-modal models, so
we provide a textual description for clarification.

B Future Directions

As CPathFMs continue to evolve in recent years, several critical research directions can further
enhance their reliability, applicability, and impact.

Trustworthy CPathFMs ensures fairness, explainability, security, and transparency. Fairness is
especially crucial, as predicted outcomes should be independent of sensitive attributes, such as race,
to avoid potential biases in clinical applications. Enhancing the explainability of CPathFMs is also
essential to gaining the trust of pathologists and clinicians, as deep learning models often operate
as black boxes. Furthermore, addressing security vulnerabilities in CPathFMs, such as adversarial
attacks, is necessary to prevent manipulation of model predictions. Finally, transparency in model
development, dataset curation, and evaluation procedures is crucial for reproducibility and regulatory
approval, ensuring CPathFMs can be safely deployed in clinical workflows.

Developing CPathFMs for MxIF Imaging. Unlike H&E and THC staining, MxIF captures spatial
distributions of multiple biomarkers simultaneously, offering richer biological insights into the tumor
microenvironment. However, training foundation models on MxIF images presents challenges,
including higher dimensionality, complex signal processing, and the need for precise biomarker
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alignment. Future research should focus on building CPathFMs that can effectively extract meaningful
representations from MxIF data while addressing these computational challenges.

Development of WSI-Level MLLLMs for Pathology VQA. A WSI-level MLLM would allow
context-aware analysis of entire whole-slide images while integrating clinical reports, pathology
captions, and other textual information. This could significantly improve Al-assisted diagnostics,
enabling models to generate pathology reports, answer clinician queries, and assist in complex
diagnostic decision-making.

Standardized Benchmarking Datasets and Evaluation Metrics for CPathFMs. The current
landscape lacks a uniform set of evaluation metrics that can systematically compare different models
across a wide range of pathology tasks. A standardized benchmark dataset incorporating diverse
tissue types, staining methods, and multi-institutional sources would significantly enhance model
generalization and comparability. Additionally, defining clear evaluation indicators would allow
the research community to assess the robustness, fairness, and clinical utility of CPathFMs more
effectively.

C Scope and Exclusions

This survey is centered on computational pathology foundation models (CPathFMs) developed
primarily for histopathology image analysis, with a particular focus on models pre-trained on
hematoxylin and eosin (H&E), immunohistochemistry (IHC), and multiplex immunofluorescence
(MxIF) images. Our emphasis is on methods that build generalizable visual or vision-language
representations from histopathological staining images and their associated clinical texts or captions.

In addition to the methods investigated in this work, there are other approaches that focus on multi-
modal data beyond text and images, such as chest X-ray images [46], genetic sequences [22], etc.,
which fall outside the scope of this survey focused on histopathology staining images. Moreover, some
works focused on developing multi-modal large language models (MLLMs) as generative foundation
Al assistants for pathologists [36] are not included, as these works typically align multi-modal
CPathFMs mentioned above with existing LLMs. The emphasis of these models is on enhancing
VQA capabilities rather than training a general feature extractor.
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