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ABSTRACT

Comparison of fine-tuning models with reinforcement learning (RL) and super-
vised fine-tuning (SFT) reveals that, despite similar performance at a new task,
RL preserves prior knowledge and capabilities significantly better. We find that
the degree of forgetting is determined by the distributional shift, measured as the
KL-divergence between the fine-tuned and base policy evaluated on the new task.
Our analysis reveals that on-policy RL is implicitly biased towards KL-minimal
solutions among the many that solve the new task, whereas SFT can converge
to distributions arbitrarily far from the base model. We validate these findings
through experiments with large language models and robotic foundation models
and further provide theoretical justification for why on-policy RL updates lead to
a smaller KL change. We term this principle RL’s Razor: among all ways to solve
a new task, RL prefers those closest in KL to the original model.
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Figure 1: Bias toward KL-minimal solutions reduces forgetting. Left: Among policies that solve
the new task, RL converges to those closest in KL to the base model. Right: This KL bias yields
higher prior-task retention at matched new-task performance compared to SFT.

1 INTRODUCTION

Foundation models have rapidly become the backbone of modern AI, powering applications in
language, vision, robotics, and beyond. Despite their remarkable capabilities, today’s models are
largely static once deployed: they excel at tasks learned during pre-training or post-training, but are
not designed to self-improve and continually acquire new capabilities. We imagine a future where
deployed models are long-lived agents assisting humans in the long-term and continuously adapting
to new needs. As such, models must improve and adapt to new data, environments, and objectives
Gao et al. (2025); Dao & Le (2025); Moradi et al. (2025); Li et al. (2025b); Simonds & Yoshiyama
(2025); Zweiger et al. (2025).

A central challenge to this vision is catastrophic forgetting—the tendency for models to lose previ-
ously acquired capabilities when trained on new tasks McCloskey & Cohen (1989); French (1999);
Kirkpatrick et al. (2017); Luo et al. (2023). Although scaling model size and pre-training data
improves robustness Ramasesh et al. (2021); Luo et al. (2023); Cossu et al. (2024), catastrophic
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forgetting remains a persistent obstacle, undermining the promise of continual improvement Bom-
masani (2021); Guo et al. (2025b); Zweiger et al. (2025). To enable foundation models to serve as
long-term agents, we need to develop post-training methods that allow models to acquire new skills
without erasing old ones.

To further this goal, we analyze the performance of two widely used post-training schemes of su-
pervised fine-tuning (SFT) and reinforcement learning (RL). Our experiments reveal a surprising
finding: even when SFT and RL achieve the same performance on the new task, we observe that
SFT often achieves new-task gains by erasing prior knowledge, while RL better preserves old
skills. Figure 1 (right) illustrates this tradeoff: although both methods can reach high performance
on the new task, RL maintains substantially higher performance on prior tasks compared to SFT.

This striking empirical gap raises the question: what underlying mechanism allows RL to improve
on new tasks, but unlike SFT, minimally impacts the model’s prior knowledge?

Previous approaches to catastrophic forgetting targeted specific factors such as constraining weight
updates (Kirkpatrick et al., 2017; Aljundi et al., 2018; Zenke et al., 2017), preserving learned features
(Rannen et al., 2017; Hou et al., 2019), or regularizing shift in output distribution (Li & Hoiem, 2017;
Stiennon et al., 2020). While these methods can reduce forgetting, they focus on its effects rather
than its underlying cause. Consequently, it remains unclear what truly governs forgetting or why
different training algorithms behave so differently. Some prior work claimed that forgetting can be
determined by how much the model’s distribution shifts on past tasks (Rebuffi et al., 2017; Castro
et al., 2018; Chaudhry et al., 2018; Wu et al., 2019). Yet in practice, this is infeasible to measure
in foundation models, where the set of prior tasks is vast or even unbounded. To search for a more
useful principle, we systematically ablated many candidate variables. Surprisingly, we find that
forgetting can instead be predicted using only the new task distribution. Specifically, we uncover an
empirical forgetting law: When fine-tuning a model π on a new task τ , the degree of forgetting
is accurately predicted by Ex∼τ

[
KL(π0||π)

]
, the KL divergence between the fine-tuned and base

policy evaluated on the new task. This law is practically useful since it can be measured, and even
influenced, during fine-tuning, without requiring access to past-task data. Although the mechanism
remains to be fully understood, the consistency of this law across models and domains suggests it
reflects a fundamental property of forgetting.

This law also clarifies the surprising difference between SFT and RL. Our analysis reveals a simple
but powerful principle we call RL’s Razor: among the many high-reward solutions for a new
task, on-policy methods such as RL are inherently biased toward solutions that remain closer
to the original policy in KL divergence. Figure 1 (left) highlights this effect: among the many
policies that reach a high success rate on the new task, RL is biased toward KL-minimal solutions,
while SFT can converge to distant ones. This bias arises directly from RL’s on-policy training:
by sampling from the model’s own distribution at every step, RL constrains learning to outputs
already given non-negligible probability by the base model. To improve reward, these samples are
reweighted and used to update the model, which gradually shifts the policy rather than pulling it
toward an arbitrary distribution. Thus, when multiple equally good solutions exist for a new task,
RL tends to find solutions close to the original policy, while SFT can converge to solutions much
farther away, depending on the provided labels. Theoretical analysis in a simplified setting confirms
this view, showing that policy gradient methods converge to KL-minimal solutions even without
explicit regularization.

Finally, to validate the KL hypothesis, we construct an “oracle SFT” distribution that provably mini-
mizes KL divergence while achieving perfect accuracy. Training on this oracle distribution produces
even less forgetting than RL itself. This demonstrates that RL’s advantage does not stem from be-
ing inherently different, but from its implicit KL minimization. Whenever training is biased toward
KL-minimal solutions, forgetting is reduced.

Our main contributions are:

• We show that RL fine-tuning forgets less than SFT, even when both reach the same performance
on new tasks.

• We uncover an empirical forgetting law: the KL divergence to the base policy, measured on the
new task, as a strong predictor of catastrophic forgetting across objectives and hyperparameters.
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• We provide empirical and theoretical evidence that the on-policy nature of policy gradient methods
leads to smaller KL shifts and explains RL’s advantage.

Together, these findings suggest a new perspective on post-training: to achieve continual adapta-
tion without forgetting, algorithms should explicitly aim to minimize KL divergence from the base
model. This principle opens the door to designing future training methods that combine RL’s ability
to preserve prior knowledge with the efficiency of SFT, enabling foundation models that can truly
learn for life.

2 RELATED WORK

Foundation Models and Post-training In modern deep learning, large-scale models pre-trained
on broad, diverse datasets (usually termed Foundation models) serve as general-purpose back-
bones (Radford et al., 2021; Achiam et al., 2023; Touvron et al., 2023; Hu et al., 2023; Li et al.,
2024a) with broad domain knowledge and some zero-shot learning abilities (Radford et al., 2018;
Brown et al., 2020). However, pre-trained models may not directly meet the requirements of specific
applications or align with domain-specific constraints. Post-training methods address this gap by
adapting foundation models to downstream tasks through supervised fine-tuning on curated datasets
(Howard & Ruder, 2018; Dodge et al., 2020; Wei et al., 2021; Chung et al., 2024), reinforcement
learning from human or automated feedback (Ziegler et al., 2019; Ouyang et al., 2022; Guo et al.,
2025a; Zhai et al., 2024), and other techniques (Rafailov et al., 2023). In this work, we study how
different post-training methods affect forgetting, focusing on supervised fine-tuning and reinforce-
ment learning.

Catastrophic Forgetting. While fine-tuning primarily aims to improve performance on a new
specific task, preserving the model’s pre-existing general capabilities is equally critical. Unfortu-
nately, fine-tuning often leads to catastrophic forgetting—a phenomenon where learning new in-
formation significantly deteriorates previously acquired knowledge McCloskey & Cohen (1989);
French (1999); Kirkpatrick et al. (2017); Ouyang et al. (2022); Luo et al. (2023). Many works have
sought to reduce forgetting by constraining updates, for example, by penalizing the magnitude of
change in the model parameters, features, or matching the output on previous tasks/datasets (Wang
et al., 2024). These methods are effective heuristics, but they address the symptoms of forgetting
rather than explaining its cause. Our aim is to identify a simple and predictive metric that explains
when and why forgetting occurs across different training algorithms.

We do not introduce a new training algorithm, but instead identify a simple empirical forgetting
law: the KL divergence between the fine-tuned and base policy, measured on the new task, reliably
predicts the degree of forgetting. The law also sheds light on why some mitigation strategies work.
For example, methods like Elastic Weight Consolidation (Kirkpatrick et al., 2017) can be seen as
approximations to KL minimization (Chaudhry et al., 2018). Interestingly, practitioners have also
observed that KL regularization used in RL fine-tuning of LLMs as a heuristic for stabilizing opti-
mization or preventing reward hacking Stiennon et al. (2020); Gao et al. (2023), also helps reduce
catastrophic forgetting (Ouyang et al., 2022). Our contribution is to show that KL divergence is not
merely a useful heuristic, but a reliable predictor of forgetting across settings.

SFT versus RL. Prior comparisons between SFT and RL have focused on new task performance.
A seminal result in sequential decision making is that on-policy learning can achieve stronger per-
formance even when the expert providing supervision is the same one used to generate the offline
dataset (Ross et al., 2011). Recent empirical studies have also found that RL fine-tuned models often
exhibit superior generalization beyond the training distribution Han et al. (2025); Chu et al. (2025);
Li et al. (2025a) and transfer more effectively to related tasks Huan et al. (2025) compared to SFT.
However, prior works haven’t examined the relative susceptibility of RL and SFT to catastrophic
forgetting, which is the focus of our study.

Concurrently, Lai et al. (2025) reports that RL forgets less than SFT, but ascribes RL’s advantage
to learning from negative examples and not to the on-policy nature of RL. Results in Section 5
contradict their explanation of why RL forgets less, showing that the on-policy nature of RL is key.
We also contribute the empirical forgetting law, the RL Razor, and its theoretical justification.
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Figure 2: Pareto frontiers of RL and SFT. Comparing the performance of a fine-tuned model on
the new task (x-axis) and prior task (y-axis). Each point corresponds to a model trained with a
different set of hyperparameters, and the curves trace the Pareto frontiers for the two methods. RL
achieves new-task improvements while maintaining prior knowledge, whereas SFT improves new-
task performance at the expense of forgetting the prior task.

3 REINFORCEMENT LEARNING FORGETS LESS THAN SFT

We report results comparing the degree of catastrophic forgetting against new-task performance
induced by RL and SFT on various large language model (LLM) and simulated robotic tasks.

3.1 PERFORMANCE TRADE-OFFS

Experimental Setup. For each new task, we fine-tuned models using the same set of prompts. One
group of models was trained with SFT, and another with RL using GRPO Shao et al. (2024). In RL
training, we used only a binary success indicator as the reward, without explicit KL regularization.
Evaluation was performed along two axes:

• New task Performance: We measured performance on the held-out test set of the newly introduced
task to assess the performance gain from the training.

• Previous tasks Performance: We measured performance on a diverse set of unrelated benchmarks.
A drop in these benchmarks was taken as a measure of catastrophic forgetting.

Since different hyperparameters can lead to varying trade-offs between learning and forgetting, we
trained dozens of models under diverse hyperparameter settings for both SFT and RL. To compare
methods fairly, we identify the Pareto frontier in the two-dimensional plane of new-task performance
versus previous-task performance. The Pareto frontier represents the set of models for which no fur-
ther improvement on the new task is possible without incurring greater forgetting. Figure 2 (right)
reports these frontiers: each point corresponds to a trained model with a different set of hyperpa-
rameters, and the Pareto-frontier curve indicates the best achievable trade-off for each method.

Tasks and Datasets. We perform experiments across three LLM and a single robotic tasks:

• LLM, Math reasoning: Qwen 2.5 3B-Instruct (Qwen et al., 2025) trained on math questions from
the Open-Reasoner-Zero dataset (Hu et al., 2025).

• LLM, Science Q&A: Qwen 2.5 3B-Instruct trained on Chemistry L-3 subset of SciKnowEval (Feng
et al., 2024).

• LLM, Tool use: Qwen 2.5 3B-Instruct trained on ToolAlpaca dataset (Tang et al., 2023).

• Robotics, Pick and Place: OpenVLA 7B (Kim et al., 2024) trained in the SimplerEnv environment
(Li et al., 2024b) on the task of picking up a can.

To measure forgetting, we evaluated the finetuned models on established benchmarks covering di-
verse prior capabilities. For LLMs, we used Hellaswag (Zellers et al., 2019), TruthfulQA (Lin et al.,
2021), MMLU (Hendrycks et al., 2020), IFEval (Zhou et al., 2023), Winogrande (Sakaguchi et al.,
2021), and HumanEval (Chen et al., 2021). For robotic policies, we evaluated on the open/close
drawer SimplerEnv tasks, excluding the one used for fine-tuning. These benchmarks act as prox-
ies for prior skills that should be preserved during adaptation. Full details on SFT data sources,
hyperparameters, and training/evaluation protocols are provided in Appendix C.
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Figure 3: KL divergence predicts catastrophic forgetting. (Left) Learning-Forgetting Trade-offs.
SFT outperform RL only when an oracle distribution is used as a source of annotation. (Middle)
Forgetting aligns to a single curve when plotted against KL divergence, showing KL as a strong
predictor across methods. (Right) RL improves new-task accuracy with much smaller KL shifts
than SFT, highlighting the conservativeness of on-policy updates.

Results. Figure 2 reports the trade-off between new-task performance and retention of prior abili-
ties. For RL, as accuracy on the new task increases, performance on previous benchmarks remains
nearly unchanged. In contrast, SFT improvements on the new task consistently come at the cost
of substantial forgetting. This difference is most pronounced in Math, where even small gains on
the fine-tuned task correspond to a sharp reduction in prior-task performance. In Science Q&A and
Tool Use, SFT retains some ability on prior tasks at lower accuracy levels for the new task, but
performance deteriorates rapidly as the model approaches higher accuracy on the new task.

Takeaway 1

RL is able to learn new tasks while incurring minimal forgetting, whereas SFT reaches
similar new-task performance only by sacrificing prior knowledge.

4 SMALLER KL DIVERGENCES LEAD TO LESS FORGETTING

As shown in Section 3, RL fine-tuning achieves comparable new-task performance to SFT while
consistently forgetting less. Explaining this gap requires identifying a variable that determines the
degree of forgetting across methods. We therefore searched for a predictor that could account for
forgetting independently of the training algorithm or hyperparameters. Such a predictor would both
explain the empirical difference between RL and SFT and offer a unifying principle for catastrophic
forgetting. Prior work has proposed candidates such as the magnitude of weight changes, sparsity
of updates, or gradient rank. Across our experiments, however, none of these variables consistently
aligned with the observed forgetting behavior (see Section 6). What did emerge was an empirical
forgetting law: the KL divergence between the fine-tuned model and the base model, measured
on the new task, reliably predicts the degree of forgetting.

Testing this hypothesis in large LLMs is challenging, since RL training is computationally expensive
and cannot easily be run to convergence. Moreover, the search for predictors requires repeating fine-
tuning many times under diverse conditions. To address these limitations, we designed a controlled
toy setting, ParityMNIST, that allows us to replicate the RL–SFT gap under full convergence and
perform systematic ablations.

ParityMNIST is derived from MNIST (Deng, 2012), but reframes the task as predicting parity (even
vs. odd). An image of an even digit is correctly classified if the model predicts any even digit label,
and likewise for odd digits. Multiple output distributions are thus equally valid, mirroring a key
property of the generative tasks we studied in section 3: many distinct policies can achieve the same
performance.

We pretrained a 3-layer MLP jointly on a subset of ParityMNIST and FashionMNIST (Xiao et al.,
2017), then fine-tuned only on ParityMNIST while measuring forgetting on FashionMNIST. This

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

design provides a minimal, tractable setting for investigating predictors of forgetting. To parallel the
main experiments:

• In the SFT setting, the model was trained on labels sampled from a single arbitrary distribution
out of the many possible correct ones.

• In the RL setting, the reward was correctness with respect to parity, leaving the model free to
converge to any valid distribution.

For more details, see Appendix C.3. This design allowed us to replicate the phenomenon where RL
reached high accuracy on the new task with substantially slower degradation of prior knowledge,
while SFT exhibited a steeper trade-off (Figure 3, left). Importantly, reproducing the effect in this
simple MLP setting shows that it is not specific to large scale transformers, but a more general
property of fine-tuning deep generative models.

KL as Predictor. Plotting forgetting against the KL divergence from the base model on ParityM-
NIST reveals a single functional relationship across both RL and SFT (Figure 3, middle). This
indicates that forgetting is determined by KL divergence, not by the choice of training algorithm. A
quadratic fit achieves R2 = 0.96 in this setting, underscoring the strength of the relationship. To test
robustness, we repeated the experiment with two different arbitrary SFT labelings. Although their
Pareto frontiers differed, the forgetting–KL curves coincided, confirming that KL consistently pre-
dicts forgetting irrespective of training method or label distribution. The same correlation appears
in our LLM experiments, with a quadratic fit achieving R2 = 0.71 (Figure 12). While weaker, the
residuals are mean-zero and can be attributed to noise from approximate KL and accuracy estima-
tion.

Optimal SFT Distribution. To validate that KL divergence is the predictor variable, we con-
structed an oracle SFT distribution. In ParityMNIST, the simplicity of the task allows us to analyt-
ically identify the labeling that minimizes KL divergence to the base model among all distributions
achieving 100% accuracy (Appendix C.3). If KL divergence fully determines forgetting, then train-
ing SFT on this oracle distribution should yield the optimal accuracy–forgetting trade-off. The
results in Figure 3 confirm this prediction—SFT trained on the oracle distribution retained more
prior knowledge than RL, achieving the best trade-off observed. RL performs well because its on-
policy updates bias the solution toward low-KL regions, but when SFT is explicitly guided to the
KL-minimal distribution, it can surpass RL. As an additional validation, we trained an SFT model
on data generated by an RL-trained model. The distilled SFT matched RL’s accuracy–forgetting
trade-off (Figure 10), reinforcing that the distribution learned, rather than the optimization algo-
rithm, governs forgetting. Finally, we also added KL regularization to SFT, and found that it only
minimally improves the forgetting-learning Pareto frontier (Appendix A).

Takeaway 2

Catastrophic forgetting in both SFT and RL is predicted by the KL divergence between the
fine-tuned and base models on the new task.

5 ON-POLICY METHODS LEADS TO SMALLER KL DIVERGENCE

Having established that the KL divergence between the trained model and its base distribution on
the new task predicts catastrophic forgetting, we now ask: why are RL fine-tuned models able to
achieve strong task performance while moving less in KL than SFT models?

5.1 EXPERIMENTAL EVIDENCE

To understand the difference in KL behavior, it is useful to contrast the training objectives of SFT
and RL. For discrete outputs, SFT minimizes cross-entropy against a supervision distribution πβ

over a distribution of inputs D:

LSFT(π) = −Ex∼D,y∼πβ
[log π(y|x)]

6
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Figure 4: Comparison of algorithm classes. (Left) The four quadrants illustrate algorithm types,
defined by whether they are on-policy or offline and whether they incorporate negative gradients.
(Middle) On-policy methods retain prior knowledge more effectively. (Right) Both GRPO and 1-0
Reinforce achieve higher new-task accuracy while incurring smaller KL shifts from the base model,
showing that on-policy methods consistently induce more conservative KL updates.

In contrast, RL with policy gradients optimizes*:

LRL(π) = −Ex∼D,y∼π [A(x, y) log π(y|x)]
where A(x, y) is an Advantage function, which is the reward of y normalized with respect to other
rewards for the same x. Two features distinguish this from SFT:

1. Sampling Distribution. While in RL the training was done on outputs drawn from the model’s
own distribution, in SFT they come from fixed external annotations.

2. Negative Examples. While sampling from π, some of the responses will be incorrect. These are
usually assigned a negative coefficient A(x, y). This pushes probability mass away from poor
outputs, a mechanism absent in SFT.

Our hypothesis is that one of these two differences is what causes RL’s resistance to forgetting. To
examine our hypothesis, we perform experiments with four different objectives:

• GRPO. An on-policy objective that utilizes negative examples. Here, A(x, y) is the normalized
reward.

• 1–0 Reinforce. An on-policy algorithm that does not use negative examples. Here, A(x, y) = 1
for correct responses and 0 for incorrect ones. This is equivalent to sampling from the model and
performing SFT on correct answers only.

• SFT. An offline objective that does not use negative examples.
• SimPO. An offline objective that utilizes negative examples. We create negative examples by

sampling incorrect responses from an external model, and use the SFT data for positive examples.
The SimPO (Meng et al., 2024) loss compares correct and incorrect outputs via a logistic term:

LSIMPO(π) = −Ex∼D,yw∼πβ+ ,yl∼πβ− [log σ (log π(yw|x)− log π(yl|x)− 1)]

where πβ+ and πβ− denote distributions for correct and incorrect responses, respectively. We used
SimPO rather than naı̈ve likelihood/negative likelihood because the latter was unstable to train.

We compared the four objectives on the Science Q&A task, measuring their learning–forgetting
trade-offs as in Section 4. The results, shown in Figure 4, reveal that 1–0 Reinforce behaves similarly
to GRPO, while SimPO resembles SFT. Thus, the critical factor is not the presence of negative
gradients but the use of on-policy data. Plotting KL divergence confirms this conclusion: on-policy
methods (GRPO and 1–0 Reinforce) reach the same task performance with significantly smaller KL
divergence from the base model than offline methods (SFT and SimPO).

5.2 THEORETICAL PERSPECTIVE

*Notice that in practice, the policy gradient trick (Sutton et al., 1998) ensures gradients are taken only
through the log-probability term, not through the sampling distribution inside the expectation.

7
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Figure 5: KL-minimal path to opti-
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Beyond the empirical results, it is useful to ask why on-
policy methods naturally induce smaller KL shifts. One
way to see this is through the lens of projection in prob-
ability space: policy gradient methods can be understood
as a conservative projection that keeps the policy close to
its starting point while reweighting toward higher-reward
outcomes. At each step, the policy samples outputs it al-
ready finds likely, then re-weights those samples accord-
ing to reward, shifting probability mass toward higher-
reward outcomes while suppressing lower-reward ones.
Crucially, because updates are defined relative to the
model’s own distribution, they nudge the policy toward
a nearby re-weighted distribution, rather than pulling it
toward a potentially distant external distribution (as in
SFT). This explains why policy gradient methods tend to
remain close to the base model in KL divergence.

This perspective can be formalized by observing that, in the binary-reward case, the re-weighted
distribution targeted by policy gradient is exactly the minimum-KL projection of the current policy
onto the set of optimal ones.
Lemma 5.1. Let p be a distribution over a finite set Y , and let R : Y → {0, 1} be a reward
function. Rejection sampling from p with acceptance condition R(y) = 1 yields a distribution qRS.
This distribution can be equivalently characterized as the solution to:

qRS = argmin
q

DKL(q||p) s.t Ey∼q[R(y)] = 1

Building on this, we show that policy gradient converges to the KL-minimal optimal policy within
the representable family. A detailed version with proofs is provided in Appendix B.
Theorem 5.2. Let Y be a finite set and let Π ⊆ ∆(Y ) be a convex family of feasible policies (e.g.,
an exponential family). Let R : Y → {0, 1} be a binary reward function and P ∗ = {q : Eq[R] = 1}
the set of optimal policies. Then, under suitable regularity conditions, solving the reinforcement
learning objective with policy gradient converges to

π† = arg min
π∈P∗∩Π

DKL(π ∥π0),

where π0 is the initialization. In other words, policy gradient selects, among all optimal repre-
sentable policies, the one closest in KL-divergence to the starting policy.

Takeaway 3

On-policy training explains why RL maintains smaller KL divergence than SFT. Sampling
from the model’s own distribution keeps it close to the base model, while SFT pushes it

toward arbitrary external distributions.

6 ALTERNATIVE HYPOTHESIS

Science advances not only by identifying the right explanations, but also by eliminating incorrect
ones. To this end, we systematically evaluated alternative variables as potential predictors of catas-
trophic forgetting, grouped into four categories:

• Weight-level changes. Many prior work tried to mitigate forgetting by constraining the change
in parameter space (Kirkpatrick et al., 2017; Aljundi et al., 2018; Zenke et al., 2017). We mea-
sured parameter changes under L1, Fisher-weighted L2, and spectral norm metrics. The Fisher
matrix was computed on the basis of the model parameters, with expectation over inputs from the
previous task. These metrics correlated only weakly with forgetting: large parameter shifts could
occur without forgetting, and conversely, forgetting sometimes occurred despite small parameter
movement.

• Representation-level changes. Some other papers focused on maintaining the previous features
(Jung et al., 2018; Hou et al., 2019; Dhar et al., 2019). We examined hidden activation shifts
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(L1 and L2 distances) as proxies for changes in internal representations. Although we found that
there is representation drift during training (see Appendix D.1), the curves were distinct between
training objectives, meaning that it is not a good predictor.

• Sparsity and rank of updates. Motivated by Mukherjee et al. (2025), who argue that RL updates
are sparse while SFT weight updates are dense, we explicitly tested this hypothesis. We found
that the reason for the observed sparsity was the use of bfloat16 for model training. Since
bfloat16 has a limited mantissa, small parameter updates (such as those produced by RL)
can fail to cross the representational threshold, effectively causing no update at all. Performing
the same training with float32 resulted in models with identical performance but without any
sparsity in their weight updates. The rank of all weight updates was full.

• Distributional distances. We considered multiple measures of output distribution change, all
measured over inputs from the new task τ : Forward KL (Ex∼τ

[
KL(π0||π)

]
), Reverse KL

(Ex∼τ

[
KL(π||π0)

]
), Total Variation, and L2 distance between distributions.

Table 1 summarizes these results for the MNIST task. Across all candidates, KL divergence (both
forward and reverse) between the fine-tuned and base model evaluated on the new task emerges as
the only consistent and high-fidelity predictor of catastrophic forgetting.

Variable R2 (2nd deg. polynomial)

KL, forward 0.96 ± 0.01
KL, reverse 0.93± 0.01
TV 0.80± 0.01
Distribution change, L2 0.56± 0.02
Weight change, L1 0.34± 0.02
Weight change, Fisher Weighted L2 0.58± 0.02
Weight change, spectral norm 0.58± 0.02
Sparsity of weight change N/A
Rank of weight change N/A
Activation change, L1 0.52± 0.02
Activation change, L2 0.55± 0.02

Table 1: Predictive power of alternative variables compared to KL.

7 DISCUSSION AND CONCLUSION

Our study reveals that catastrophic forgetting is governed not by the choice of training algorithm,
but by the KL divergence from the base policy evaluated on the new task. This explains why RL
forgets less than SFT, as on-policy training naturally biases updates toward KL-minimal solutions,
preserving prior knowledge while acquiring new skills.

However, we still lack a mechanistic account of why larger KL shifts on the new task disrupt prior
knowledge—whether through representational interference, implicit capacity limits, or other dy-
namics. Moreover, while we demonstrate the KL–forgetting link across moderate-scale LLMs and
toy models, its behavior at frontier scales and in more diverse generative domains remains unknown.
In addition, we didn’t study online but off-policy algorithms, which are popular in RL. Addressing
these gaps will be essential for grounding the principle and extending it to real-world deployment.

Taken together, our results motivate a new design axis for post-training research: algorithms should
be judged not only by how well they optimize new tasks, but also by how conservatively they move
in KL relative to the base model. Importantly, this does not mean offline data cannot help, but that
continual learning requires updates to keep learning close to the KL-minimal path. Embracing this
principle may allow us to build agents that not only learn new skills, but also truly learn for life.

8 USE OF LANGUAGE MODELS

The authors used large language models to polish and revise the writing of the manuscript. The
models were not used to generate ideas, perform analysis, or produce original scientific content.
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A THE EFFECT OF KL REGULARIZATION

In our main experiments, we did not employ explicit KL regularization. Nevertheless, our finding
that forgetting is closely predicted by the KL divergence to the base model naturally raises the
question: can directly regularizing KL divergence mitigate forgetting? This is especially relevant
given that KL penalties are widely used in reinforcement learning fine-tuning of large language
models (Stiennon et al., 2020; Ouyang et al., 2022; Vieillard et al., 2020).
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Figure 6: explicit KL regularization
helps RL retain prior skills, but barely
affects SFT training.

Empirical observations. We revisited the ParityM-
NIST setup from Section 4, this time adding explicit KL
penalties to both SFT and RL training. For each method,
we conducted a hyperparameter sweep and varied the reg-
ularization coefficient over 0.1, 0.2, 0.5. Figure A reports
the resulting Pareto frontiers of the learning–forgetting
trade-off. The effect is strikingly asymmetric:

In RL, KL regularization substantially improves the
trade-off. By explicitly discouraging large deviations
from the base model, it amplifies RL’s inherent bias to-
ward KL-minimal solutions, enabling gains on the new
task while preserving performance on prior tasks.

In SFT, KL regularization has only marginal effect. While
it slightly restrains the model from drifting too far, the op-
timization remains tied to external supervision distribu-
tions, which may themselves be far from the KL-minimal
solution. As a result, the overall frontier is essentially un-
changed.

These results suggest that explicit KL regularization cannot rescue SFT from its fundamental limita-
tion: SFT is forced to imitate whatever distribution is provided, and cannot search for new solutions.

Theory This intuition can be formalized. RL with KL regularization effectively restricts opti-
mization to policies achieving a given reward level and then selects the KL-minimal one. Thus,
whenever the optimal reward is attainable, RL with a sufficiently small KL penalty converges to the
minimum-KL optimal policy. By contrast, SFT with KL regularization minimizes cross-entropy to
a fixed annotator distribution plus a KL penalty, and in general cannot guarantee alignment with the
minimum-KL solution. Formally:

Theorem A.1. Let ∆ be the set of probability measures on Y , and Π ⊆ ∆ a nonempty feasible
policy class. Fix a base policy π0 ∈ Π and a reward R : Y → R. let

Rmax = sup
π∈Π

Eπ[R], P ∗ = {π ∈ Π : Eπ[R] = Rmax}

For β > 0 consider the RL with KL regularization objective:

πRL
β = argmax

π∈Π
Eπ[R] − βKL(π∥π0)

if Rmax is attainable by the policy class then there exists β̄ > 0 such that for all β ≤ β̄,

πRL
β ∈ arg min

π∈P∗
KL(π∥π0)

Now, define annotator distribution q ∈ ∆. For β > 0, consider the SFT with KL regularization
objective:

πSFT
β = argmin

π∈Π
−Ey∼q[log π(y)] + βKL(π∥π0)

In general, there is no β > 0 for which πSFT
β equals the minimum-KL optimal policy, even when q

itself is optimal (Eq[R] = Rmax).
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B THEORY

B.1 IMPLICIT BIAS OF ON-POLICY RL

Lemma B.1 (Rejection sampling as an I-projection). Let p be a distribution over a finite set Y , and
let R : Y → {0, 1} be a reward function. Rejection sampling from p with acceptance condition
R(y) = 1 yields a distribution qRS. This distribution can be equivalently characterized as the
solution to:

qRS = argmin
q

DKL(q||p) s.t Ey∼q[R(y)] = 1

Equivalently, qRS is the I-projection of p onto the set {q : Eq[R] = 1}

Proof. Let S = {y ∈ Y : R(y) = 1}. Rejection sampling produces the conditional distribution

qRS(y) =

{
p(y)
p(S) y ∈ S,

0 y /∈ S,

where p(S) =
∑

y∈S p(y) and we assume P (S) > 0.

Now consider the optimization problem. The constraint Eq[R] = 1 means∑
y∈Y

q(y)R(y) =
∑
y∈S

q(y) = 1

so q must put all of its mass on S. Thus the feasible set is exactly all distributions supported on S.

For any q supported on S, we can write p(y) = p(S) p(y|S) for y ∈ S, and then

DKL(q∥p) =
∑
y∈S

q(y) log
q(y)

p(y)
=
∑
y∈S

q(y) log
q(y)

p(y | S)
− log p(S)

∑
y∈S

q(y)

= DKL

(
q∥p(· | S)

)
− log p(S)

where we used
∑

y∈S q(y) = 1 in the last step. The second term is constant in q, so minimizing
DKL(q||p) is the same as minimizing DKL(q||p(·|S)). By strict convexity of DKL(·∥·) in its first
argument, the unique minimizer is q = p(· | S) = qRS.

Lemma B.2 (Policy gradient as an M-projection). Let Y be a finite set and let Π ⊆ ∆(Y ) be a
set of admissible policies (distributions over Y ). Consider the single-step reinforcement learning
objective

max
π

Ey∼π[R(y)]

where R : Y → R≥0 is a reward function. By the policy gradient theorem, this objective is equiva-
lently optimized by

max
π

Ey∼π̄

[
R(y) log π(y)

]
where π̄ indicates that gradients are not propagated through the sampling distribution. Define the
distribution

q(y) =
π(y)R(y)

Z
, Z =

∑
y∈Y

π(y)R(y)

Then taking a policy gradient step is equivalent to taking a gradient step on the following objective:

min
π
−Ey∼q[log π(y)]

In other words, optimizing the RL objective using policy gradient is equivalent to finding the M -
projection of q onto the set of feasible policies π using gradient descent.

Proof. Expanding the policy gradient objective gives

Ey∼π̄[R(y) log π(y)] =
∑
y∈Y

π(y)R(y) log π(y)
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Let Z =
∑

y∈Y π(y)R(y). Define q(y) = π(y)R(y)/Z. Then the above becomes∑
y∈Y

π(y)R(y) log π(y) = Z
∑
y∈Y

q(y) log π(y) = Z Ey∼q[log π(y)]

Since Z does not depend on π in the gradient computation (it is treated as a constant in the π̄ sense),
maximizing the original objective is equivalent to maximizing Ey∼q[log π(y)].

Finally, recall that the M -projection of a distribution q onto a set of distributions Π is given by

min
π∈Π

KL(q∥π) = Eq[log
q

π
] = Eq[log q] − Eq[log π]

since Eq[log q] does not depend on π, the maximizer of Eπ̄[R log π] over Π coincides with
argminπ∈Π KL(q∥π). Thus, the policy gradient update corresponds to the M -projection of q onto
the policy class.

Theorem B.3 (RL with binary reward as an EM algorithm). Let Y be a finite set and let Π ⊆ ∆(Y )
be a set of feasible policies. Let R : Y → {0, 1} be a binary reward function and P ∗ the set of
all optimal policies P ∗ = {q : Eq[R] = 1}. Then, solving the Single-step reinforcement learning
objective using policy gradients is equivalent to performing the following optimization procedure:

qt = arg min
q∈P∗

KL(q∥πt), πt+1 = argmin
π∈Π

KL(qt∥π)

This procedure is also known as EM with information projection.

Proof. Sampling y ∼ π and accepting iff R(y) = 1 is exactly rejection sampling onto the event
S = {y ∈ Y : R(y) = 1}. The resulting distribution is π(·|S). By Lemma A.1 with p ← π, this
π(·|S) solves

min
q

DKL(q∥π) s.t. Eq[R] = 1

establishing the I-projection. Applying Lemma A.2 on the RL objective gives us the M-projection.

Proposition B.4 (Convergence to minimum KL solution). Under the setting appear in theorem
B.3 and assume Π is an e-flat (exponential-family) model with full support, the optimal set P ∗ is
nonempty and realizable (i.e., Π ∩ P ∗ ̸= ∅). Then:

(1) If the M-projection is exact at every step, then (πt) converges to

π† = arg min
π∈P∗∩Π

DKL(π ∥π0)

(2) If the M-projection is inexact but, for some errors εt ≥ 0, it holds that

DKL(qt∥πt+1) ≤ min
π∈Π

DKL(qt∥π) + εt with
∞∑
t=0

εt <∞

then πt also converges to the same limit π†.

Proof. The I-step is always an exact I-projection (Lemma A.1). In the case of an exact M-step, the
iterative process is EM with information projections. The e-/m-flat geometry yields the Pythagorean
identities implying convergence to π† (Dempster et al., 1977; Csiszár, 1984; Amari & Nagaoka,
2000). When the M-step only ensures a (near-)minimization up to summable errors, the iteration is
GEM: monotone improvement and convergence follow from the GEM theory of Wu (1983) together
with generalized alternating minimization for Bregman divergences (Gunawardana et al., 2005),
which, under the same e-/m-flat assumptions, selects the same minimum-KL limit π†.
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Practical considerations. Our theoretical equivalence should be interpreted with the following
caveats:

• Beyond REINFORCE. In practice, many policy gradient algorithms such as GRPO and PPO re-
place the raw reward R(y) with an advantage estimate A(y). Since this substitution is a control
variate technique, it leaves the expected gradient direction unchanged while reducing its variance.
Thus, our projection-based interpretation continues to hold.

• The optimal policy set P ∗ defined by the linear constraint Eq[R] = 1 is an m-flat family, but the
representable policy set Π induced by a neural network parametrization is not in general e-flat.
This may prevent exact convergence to the minimum-KL solution described above. Nevertheless,
our theorem provides a principled explanation for the bias observed in practical RL algorithms.

B.2 KL REGULARIZATION

We will start by analyzing the setting of RL with KL regularization:
Theorem B.5 (The solution to RL with KL regularization). Let ∆ be the set of probability measures
on Y , and Π ⊆ ∆ a nonempty feasible policy class. Fix a base policy π0 ∈ Π and a reward
R : Y → R. For β > 0, consider the penalized problem

max
π∈Π

Eπ[R] − βKL(π∥π0), (1)

and let π⋆
β be any maximizer with value ηβ = Eπ⋆

β
[R]. Then π⋆

β also solves the constrained problem

min
π∈Π

KL(π∥π0) s.t. Eπ[R] = ηβ . (2)

Conversely, if π̂ solves equation 2 for some feasible target η, then there exists β > 0 such that π̂
solves equation 1 and Eπ̂[R] = η.

Proof. From Korbak et al. (2022) we know that if Π = ∆, the solution to Equation 1 is the expo-
nentially tilted distribution

qβ(y) =
π0(y)e

R(y)/β

Zβ
Zβ :=

∫
eR(y)/β π0(y)

For the more general case where Π ∈ ∆ whenever Zβ <∞, we can write for any π ∈ Π:

Eπ[R]− βKL(π∥π0) =

∫
Rπ − β

∫
log

(
π

π0

)
π

= −β
∫

log

(
π

eR/βπ0

)
π

= −β (KL(π∥qβ)− logZβ)

Hence maximizing equation 1 over Π is equivalent to

π∗
β = min

π∈Π
KL(π∥qβ).

By optimality, for every π ∈ Π,

KL(π⋆
β∥qβ) ≤ KL(π∥qβ).

Using the decomposition KL(π∥qβ) = KL(π∥π0)− β−1Eπ[R] + logZβ , we obtain for all π ∈ Π:

KL(π⋆
β∥π0)− 1

βEπ⋆
β
[R] ≤ KL(π∥π0)− 1

βEπ[R].

Rearranging,
KL(π⋆

β∥π0) ≤ KL(π∥π0)− 1
β

(
Eπ[R]− ηβ

)
∀π ∈ Π

Now, fix any π ∈ Π such that Eπ[R] = ηβ . Plugging this equality into the inequality above kills the
last term and yields

KL(π⋆
β∥π0) ≤ KL(π∥π0)
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i.e., among all π ∈ Π with Eπ[R] = ηβ , π⋆
β minimizes KL(·∥π0). This proves that π⋆

β solves
equation 2.

Now for the other direction. Suppose π̂ ∈ Π solves equation 2 at some feasible η. Consider the
Lagrangian:

Lλ(π) = KL(π∥π0) + λ(η − Eπ[R])

By the KKT conditions for the equality constraint, there exists λ⋆ > 0 such that π̂ minimizes Lλ⋆

over Π. Equivalently, π̂ maximizes Eπ[R] − βKL(π∥π0) over Π with β = 1/λ⋆, and necessarily
Eπ̂[R] = η holds at the maximizer. Thus π̂ solves equation 1.

Corollary B.6. Assume there exists π∗ ∈ Π achieving the maximal attainable expected reward
Rmax := supπ∈Π Eπ[R]. Let Πopt := {π ∈ Π : Eπ[R] = Rmax}. Then there exists β̄ > 0 such that
for every β ∈ (0, β̄], any maximizer π⋆

β of equation 1 satisfies Eπ⋆
β
[R] = Rmax and

π⋆
β ∈ arg min

π∈Πopt

KL(π∥π0).

In words: once the KL penalty is small enough that the optimal reward is still achievable, the KL-
regularized objective selects the minimum-KL optimal policy.

Now we will move to analyzing the setting of SFT with KL regularization:

Lemma B.7 (The solution to SFT with KL regularization). Let ∆ be the set of probability measures
on Y , and Π ⊆ ∆ a nonempty feasible policy class. Fix a base policy π0 ∈ Π and q as the
distribution producing the annotations for the SFT training. For β > 0, consider the following
objective:

min
π∈∆(Y)

−Ey∼q[log π(y)] + βKL(π ∥π0) (3)

Assume Π = ∆, then the unique minimizer π⋆
β is given by

π⋆
β(y) =

q(y)

βW
( q(y)

β A(β)π0(y)

) (4)

where W is the principal branch of the Lambert W function and the scalar A(β) > 0 is chosen to
satisfy the normalization

∑
y π

⋆
β(y) = 1.

If q(y) = 0 for some y ∈ supp(π0), the formula holds in the limit, yielding π⋆
β(y) → π0(y). If

π0(y) = 0 and q(y) > 0, the objective value is +∞ and no finite minimizer exists.

Proof. Write the Lagrangian

L(π, λ) = −
∑
y

q(y) log π(y) + β
∑
y

π(y) log
π(y)

π0(y)
+ λ

(∑
y

π(y)− 1

)
.

Stationarity ∂L/∂π(y) = 0 gives

− q(y)

π(y)
+ β

(
log

π(y)

π0(y)
+ 1

)
+ λ = 0 ⇐⇒ log

π(y)

π0(y)
=

q(y)

β π(y)
−
(
1 +

λ

β

)
.

Let A := exp(1 + λ/β) > 0. Then:

π(y) = π0(y)A
−1 exp

( q(y)
β π(y)

)
→ π(y) exp

(
− q(y)

β π(y)

)
= π0(y)/A

Setting uy := q(y)
β π(y) yields uye

uy = q(y)
βAπ0(y)

, whence uy = W
( q(y)
βAπ0(y)

)
and thus equation 4.

The normalizer A(β) is uniquely determined by
∑

y π
⋆
β(y) = 1. Strict convexity of equation 3 on

the simplex implies uniqueness.
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Theorem B.8 (SFT with KL reg. does not guarantee the minimum-KL optimal policy). Let R :
Y → R be a reward and Rmax = supy R(y). Define the minimum-KL optimal policy as the solution
of

min
π∈Π

KL(π∥π0) s.t. Eπ[R] = Rmax . (5)

Let π⋆
β denote the unique minimizer of equation 3 from Lemma B.7. Then, in general, there is no

β > 0 such that π⋆
β equals the minimum-KL optimal policy.

Proof. (Counterexample). Let Y = {1, 2, 3}, R(1) = R(2) = 1, R(3) = 0. Take π0 =
(0.6, 0.2, 0.2), hence πminKL = (0.75, 0.25, 0). Let q = (0.5, 0.5, 0), which is optimal
(q(S) = 1). We show that no β > 0 yields π⋆

β = πminKL.

Using the stationary condition from the proof of Lemma B.7, and assume π⋆
β = πminKL. We get

this set of equations:

− 0.5

0.75
+ β

(
log

0.75

0.6
+ 1

)
+ λ = 0, − 0.5

0.25
+ β

(
log

0.25

0.2
+ 1

)
+ λ = 0

which has no solution, thus a contradiction.

Counterexample. Take Y = {1, 2, 3} with R(1) = R(2) = 1, R(3) = 0. Let π0 = (0.6, 0.2, 0.2),
then the minimum-KL optimal policy is πminKL = (0.75, 0.25, 0). Choose an optimal annotator
q = (0.5, 0.5, 0).

Assume for contradiction that there exist β > 0 and λ ∈ R such that π⋆
β = πminKL. The first-order

condition from Lemma B.7 reads, for each y,

− q(y)

π(y)
+ β

(
log

π(y)

π0(y)
+ 1

)
+ λ = 0.

Plugging πminKL(1) = 0.75, πminKL(2) = 0.25, π0(1) = 0.6, π0(2) = 0.2, q(1) = q(2) = 0.5,
we get

− 0.5

0.75
+ β

(
log

0.75

0.6
+ 1

)
+ λ = 0,

− 0.5

0.25
+ β

(
log

0.25

0.2
+ 1

)
+ λ = 0.

Subtract the first equation from the second to eliminate λ. Using log 0.75
0.6 = log 0.25

0.2 = log(1.25),
the β-terms cancel and we obtain

−2−
(
− 2

3

)
= − 4

3 ̸= 0,

a contradiction. Hence no β > 0 yields π⋆
β = πminKL in this setting.

C TRAINING AND EVALUATION DETAILS

C.1 LLM EXPERIMENTS

Unless otherwise stated, all reinforcement learning experiments were conducted using GRPO (Shao
et al., 2024).

For the Math reasoning task, the training set provided final answers but lacked reasoning chains
required for SFT training. To obtain these, we queried DeepSeek R1 (Guo et al., 2025a), sampling
up to 16 responses per prompt and retaining a single response that matched the correct final answer.
This yielded valid annotations for 96% of the dataset. For the Science Q&A task, we applied the
same procedure with GPT-4o, obtaining correct annotations for the entire dataset.

To construct the learning–forgetting trade-off curves (e.g., Figure 2), we followed the protocol be-
low:

1. Hyperparameter sweep. We trained multiple models under a broad sweep of hyperparame-
ters (see Table 2).
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2. New-task evaluation. For Math and Science Q&A, accuracy was measured by comparing
the model’s final answer to the ground truth, ignoring intermediate reasoning chains. For
Tool Use, we extracted API calls from the output and matched them against ground-truth
calls via regular expressions.

3. Previous-task evaluation. We assessed performance on unrelated benchmarks as described
in Section 3.1, using the Language Model Evaluation Harness (Gao et al.,
2024).

4. Pareto filtering. From the trained models, we retained only those lying within 2 accuracy
points of the Pareto frontier.

5. Curve fitting. An exponential function was fit to the filtered points to produce the trade-off
curves.

Figure 7: Example for the process of creating the pareto frontier plots

Hyperparameter SFT / SIMPO RL
Base Model Qwen2.5 3B-Instruct Qwen2.5 3B-Instruct
Learning Rate {1e-5, 3e-5, 5e-5, 7e-5, 9e-5} {1e-5, 2e-5, 3e-5, 4e-5, 5e-5}
Optimizer adamw adamw
LR Scheduler {constant w. warmup, cosine w. warmup} constant w. warmup
Warmup steps 50 50
Epochs {1,2} 1
Batch Size {16,32,64,128} See Below
Max Grad Norm 1 1
bfloat16 True True
Weight Decay 0 0

GRPO-only hyperparameters
KL reg. 0
Group Size 64
Prompts per generation 8
num iterations (µ) {1,2}
Loss type Dr. GRPO (Liu et al., 2025)

Table 2: Hyperparameters used for the LLM experiments. Curly braces {} indicate a sweep over the
specified values. Additional parameters such as weight decay and max gradient norm were manually
ablated; since they showed no significant effect on results, they were not included in the final sweep.]

C.2 ROBOTIC EXPERIMENTS

We evaluated the RL–SFT forgetting gap in a robotic control setting using the OpenVLA-7B model
(Kim et al., 2024) as our base policy in the SimplerEnv environment (Li et al., 2024b). The fine-
tuning task was a pick-and-place scenario requiring the robot to grasp and lift a can, while forgetting
was measured on a distinct manipulation task of drawer opening/closing. This setting complements
our LLM results by probing whether the KL–forgetting relationship generalizes to embodied poli-
cies. To construct the pareto-frontier, we follow the same protocol as in the LLM experiments.
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Data Collection. Training data were collected by varying object placement over a 10× 10 grid of
initial positions: obj-init-x ∈ [−0.35− 0.12], obj-init-y ∈ [−0.02, 0.42]. For evaluation,
we sampled 100 random object locations uniformly in this area.

Supervised Fine-Tuning (SFT). For each grid point, we collected 10 successful trajectories using
the RT-1 (Brohan et al., 2022) model and filtered for successful trajectories. We trained models with
batch sizes {16, 32, 64} and learning rates {1×10−6, 3×10−6, 5×10−6, 7×10−6, 9×10−6, 1×10−5, 3×
10−5}. Other hyperparameters were: AdamW optimizer, 1 training epoch, max gradient norm of 1,
weight decay of 0, warmup of 10 steps, constant-with-warmup scheduler, and bfloat16 precision.

Reinforcement Learning (RL). For RL, we trained using REINFORCE with an reward normal-
ization baseline, without explicit KL regularization. At each iteration, 5 trajectories were collected
per grid point. Rewards were binary success indicators of task completion. RL training used the
same training config as SFT.

C.3 MNIST EXPERIMENTS

All MNIST experiments were conducted using a 3-layer MLP with input dimension 785, hidden
layers of sizes 512 and 256, and output dimension 10. The input consisted of a flattened 28 × 28
image concatenated with a binary indicator: +1 for ParityMNIST and −1 for FashionMNIST.

Pretraining. We pretrained the network jointly on ParityMNIST and FashionMNIST using small
subsets of the original datasets (500 images from each). For ParityMNIST, the label was chosen
uniformly at random among all digit labels with the correct parity.

Fine-tuning methods. In our experiments, we evaluated five fine-tuning strategies:

1. GRPO.

2. GRPO + KL regularization with coefficient 0.1.

3. SFT 1: all even digits mapped to label 0, all odd digits to label 1.

4. SFT 2: even digits randomly mapped to {0, 4}, odd digits to {1, 5}.
5. SFT with oracle distribution: annotations drawn from the minimum-KL distribution consistent

with task correctness.

Oracle distribution. Motivated by the KL–forgetting connection, we define the oracle distribution
as the one that achieves perfect task accuracy while remaining closest (in KL divergence) to the
pretraining distribution π0. Concretely, for an input image x we compute π0(·|x) ∈ R10 and the
binary indicator vector R ∈ {0, 1}10 encoding which labels are correct given the digit’s parity. The
oracle distribution q∗ is the solution to:

q∗ = argmin
q

DKL(π0∥q) s.t. q⊤R = 1.

Since KL is convex and the constraint is linear, we can calculate a closed-form solution for every
image. We then sample from q∗ to produce SFT annotations.

Hyperparameter sweep. For each method we trained models across a sweep of 15 learning rates
logarithmically spaced between 3e− 6 and 1e− 3, using either a constant-with-warmup or cosine-
with-warmup scheduler, and training for 1 or 2 epochs. Including mid-training checkpoints, this
produced approximately 500 runs per method.

C.4 CENTERED KERNEL ALIGNMENT

Centered Kernel Alignment (CKA) (Kornblith et al., 2019) Given representations X,Y ∈
Rn×d, define kernels K = XX⊤, L = Y Y ⊤. Let H = I − 1

n11
⊤ be the centering matrix.

The centered kernels are
K̄ = HKH, L̄ = HLH.
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CKA is then computed as

CKA(K,L) =
⟨K̄, L̄⟩F
∥K̄∥F ∥L̄∥F

,

where ⟨A,B⟩F = tr(A⊤B).

CKA with k-NN Alignment (CKNNA) (Huh et al., 2024) Let α(i, j) ∈ {0, 1} indicate whether
i, j are mutual k-nearest neighbors in both X and Y . Define the masked inner product

⟨A,B⟩α =

n∑
i=1

n∑
j=1

α(i, j)AijBij .

CKNNA is then given by

CKNNA(K,L) =
⟨K̄, L̄⟩α√

⟨K̄, K̄⟩α ⟨L̄, L̄⟩α
.

When α(i, j) = 1 for all i ̸= j, CKNNA reduces to standard CKA.

D ADDITIONAL RESULTS

D.1 REPRESENTATION PRESERVATION

While benchmark accuracy provides an external measure of forgetting, it may conflate genuine loss
of capability with superficial effects such as formatting mismatch between tasks. To assess whether
fine-tuning alters the model more fundamentally, we analyzed changes to the model’s representa-
tions.

Experimental Setup. To study how representations change between models, we compare their
embeddings on a shared dataset. Following prior work, we compare the relative geometry of the
embeddings—that is, how different inputs relate to each other. This geometry can be summarized
by a kernel (similarity) matrix, which encodes pairwise relationships among input embeddings.
Centered Kernel Alignment (CKA) (Kornblith et al., 2019) is a standard measure for comparing
such kernels, providing a way to quantify representational similarity between models.
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Figure 8: CKA similarity to the base
model during training. Although SFT
and RL achieve comparable task per-
formance, SFT models diverge substan-
tially in their representations, whereas
RL models remain more closely aligned
with the base model.

For this analysis, we constructed kernels from random
Wikipedia paragraphs, ensuring that the probe data are
unrelated to the fine-tuning tasks. We then compared the
kernels of the base model and its fine-tuned variants using
CKNNA (Huh et al., 2024), a local-neighborhood vari-
ant of CKA (see Appendix C.4 for details). Comparisons
were made between SFT and RL models that achieved
similar final accuracy on the new task, isolating repre-
sentational differences due to training method rather than
task performance.

Results. Figure D.1 shows that RL-trained models re-
tain high representational similarity (CKNNA=0.94) to
the base model, with CKNNA scores remaining close
to one even after fine-tuning on the new task. In con-
trast, SFT-trained models exhibit substantial representa-
tional drift (CKNNA=0.56). These results indicate that
RL fine-tuning integrates new abilities while leaving the
overall representation space largely intact, whereas SFT
alters the geometry more extensively. Together with the
benchmark results, this suggests that RL is able to inte-
grate new abilities without disturbing the underlying rep-
resentational structure, while SFT incurs representational shifts that manifest as catastrophic forget-
ting.
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D.2 SCALING AND FORGETTING

Prior work has suggested that catastrophic forgetting diminishes as model size increases (Ramasesh
et al., 2021; Luo et al., 2023; Cossu et al., 2024). To evaluate this claim in our setting, we repeated
the SFT experiments from Section 3 using Qwen 2.5 models with 3B, 7B, and 14B parameters on
the Science Q&A task.
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Figure 9: Pareto frontiers for SFT on
Qwen 2.5 Instruct models of size 3B,
7B, and 14B on the Science Q&A task.
All sizes exhibit the same fundamental
trade-off—gains on the new task require
forgetting prior capabilities.

The results, shown in Figure 9, demonstrate that although
larger models start with better general capabilities, the
trade-off between new-task performance and prior-task
retention remains unchanged: across all model sizes, SFT
improves new-task accuracy at the expense of forgetting.
In particular, to reach high accuracy on the Science Q&A
task, substantial degradation occurs in performance on
prior benchmarks regardless of model scale.

D.3 OPTIMIZATION DYNAMICS

To examine the link between parameter updates and for-
getting, we analyzed the optimization trajectory at the
level of individual training steps. For each update, we
computed two quantities:

1. Forgetting direction. Using the FashionMNIST eval-
uation set, we calculated the gradient of the loss with
respect to model parameters. We then measured the
cosine similarity between this gradient and the actual
parameter update from the training step. A positive
cosine indicates that the update increases FashionM-
NIST loss (catastrophic forgetting), while a negative cosine indicates an update that reduces it.

2. KL shift. We measured the change in KL divergence
between the model’s output distributions on the Pari-
tyMNIST test set before and after the update.

Plotting per-step KL change against the cosine similarity (Figure 11) revealed a strong correlation:
steps producing larger KL shifts tended to align more with the forgetting gradient. This analysis
demonstrates that at the level of optimization dynamics, catastrophic forgetting is driven by updates
that induce larger distributional shifts on the new task.
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Figure 10: SFT distillation from an RL teacher. Accuracy trade-off between the new task
(MNIST) and the prior task (FashionMNIST). Sweeping student hyperparameters shows that SFT
can match the teacher within noise on both tasks. This suggests that what matters is not the opti-
mization path, but the distribution of the final model.
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Figure 11: Gradient similarity versus KL change. (Left) On the new training task (ParityMNIST),
gradient cosine similarity and KL change per step remain uncorrelated. (Right) On the prior task
(FashionMNIST), the gradient similarity is more correlated with the KL change per step on the
training task (ParityMNIST). Together, these plots show that taking a larger step on the current task
induces gradients that are more similar in direction that forgets the most.
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Figure 12: We plot the KL divergence between the base and fine-tuned model on the new task,
alongside the corresponding forgetting performance across methods.
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