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Abstract

Multimodal few-shot learning is challenging due to the large domain gap between
vision and language modalities. As an effort to bridge this gap, we introduce a
meta-learning approach for multimodal few-shot learning, to leverage its strong
ability of accruing knowledge across tasks. The full model is based on frozen
foundation vision and language models to benefit from their already learned ca-
pacity. To translate the visual features into the latent space of the language model,
we introduce a light-weight meta-mapper acting as a meta-learner. By updating
only the parameters of the meta-mapper, our model learns to quickly adapt to
unseen samples with only a few gradient-step updates. Unlike prior multimodal
few-shot learners, which need a hand-engineered task induction, our model is able
to induce the task in a completely data-driven manner. Experiments on recent
multimodal few-shot benchmarks demonstrate that compared to its counterparts
our meta-learning approach yields better multimodal few-shot learners, while being
computationally more efficient.

1 Introduction

Learning quickly from a few observations in a multimodal environment is an integral part of human
intelligence [1, 2]. Yet, it is quite challenging for current foundation vision and language models
to perform multimodal few-shot learning [3, 4] due the limited number of labeled samples. The
challenges arise from the fact that current vision-only and language-only models are trained sep-
arately on different datasets and optimize different objectives, which results in inconsistent latent
representations. The Frozen model [3] is the first multimodal few-shot learner, trying to bridge the
gap between these models, by taking inspiration from how language models [5] perform in-context
learning. This requires prompting of the language model with a hand-engineered task description,
followed by a few demonstrations of the task. While being a good approach for simpler tasks, like
binary decisions, it is not optimal to hand-engineer the prompt each time [6], especially when it
comes to more complex multimodal tasks involving reasoning [3, 4].

Meta-learning or learning to learn [1, 7, 8] comes as a natural solution to any few-shot settings.
Notably, it can be deployed to accrue shared knowledge from related tasks and rapidly learn new
tasks by observing only limited labeled data. While it has been extensively studied in unimodal
settings, particularly for few-shot image classification [9, 10, 11, 12, 13], meta-learning remains
almost unexplored for multimodal few-shot settings. We hypothesize that empowering a multimodal
few-shot learner with the ability to do meta-learning would assist in building internal representations
broadly suitable for many tasks, while inducing the task in a data-driven manner could fill in the gap
between the different foundation models.

Motivated by this, we define a novel multimodal few-shot meta-learning approach, illustrated in
Figure 1. Instead of training foundation models from scratch, our architecture, shown in Figure 2,
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Figure 1: Multimodal few-shot meta-learning task for an example of a 2-way 1-shot setting, with two
categories (ways) present in the support set, each represented with one sample (shot).

adopts a pre-trained vision encoder [14] and language model [5], which are kept entirely frozen
during training, in order to not distort their learned parameters [15, 16, 17, 18]. Another major reason
for smartly re-using trained models instead of training them, is the huge computational burden they
create during training, and their dependency on large-scale datasets. The multimodal bridge between
the frozen vision and language backbones is defined as a light-weight meta-mapper and built entirely
from self-attention layers. By updating only the meta-mapper during meta-training, the model learns
to map the visual features into a visual prefix corresponding to the latent space of the language
model. This diminishes the need for fixed task inductions, since the model is able to accrue shared
meta-knowledge from related tasks and induce the task for the query samples in a data-driven manner.

To summarize, our contributions are as follows: (i) We introduce meta-learning to perform multimodal
few-shot learning, which enables fast adaptation and efficient learning of multimodal few-shot tasks.
(ii) We present a multimodal few-shot meta-learner, which bridges a frozen vision encoder with
a language model by using a light-weight meta-mapper, aiming to meta-learn a learnable visual
prefix. (iii) We design a new multimodal meta-learning setting and experimentally demonstrate on
existing multimodal few-shot benchmarks that our model yields a strong performance, while being
computationally very efficient.

2 Methodology

Our objective is to train a model that can learn and quickly adapt to new multimodal tasks with
limited labeled data. First, we define the multimodal meta-learning setting, then we explain our
architecture in details, and finally how it used during training and at inference time.

2.1 Multimodal Meta-learning Setting

Different from standard supervised learning, in meta-learning settings we are dealing with a collection
of meta-datasets split into disjoint partitions, namely, meta-training and meta-test. Both partitions
consist of meta-datasets Di containing a pair of a separate inner-train set Dtri i.e. a support set and
an inner-test set Dtsi , i.e. a query set, meaning {(Dtr1 ,Dts1 ), . . . (Dtrn ,Dtsn )}. Each pair (Dtr

i , Dts
i ) is

referred to as a meta-task Ti, following [11].

When considering a k-shot, N -way setting, a single support set Dtri consists of k labeled samples
for each of the N -ways, where N is the number of object categories. This means that Dtri =
{(xi1, yi1) . . . (xik, yik)}, where xij represents the image and yij represents the corresponding caption.
The query set Dtsi is similarly defined, but has more samples than the support set, as they are needed
for the inner-optimization step, as described in the next sections.
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Figure 2: The architecture of the multimodal meta few-shot learner. It consists of three parts: frozen
vision encoder vϕ; a meta-mapper fθ with trainable meta-parameters θ; frozen language model with
a text embedder gψ and a generator gω;

2.2 Model Architecture

Vision encoder The vision encoder is defined as a function vϕ, with fixed parameters ϕ ∈ Rdv .
The input is a raw image x and the outputs are the extracted visual features x1, . . . xn = vϕ(x).

Meta-mapper To map the visual features x1, . . . xn into the language space, we use a set of l
learnable parameters pi ∈ Rde , namely the visual prefix for the language model. We prepend
these learnable parameters to the visual features, and we view it as an ordered set of elements:
[p1 . . . pl, x1, . . . xn]. Then we employ multi-head self-attention to simultaneously encode the whole
set [19], i.e., MetaMapθ(Q,K, V ) = σ(QKT ) ∗ V . The pairwise dot-product QKT measures the
similarity amongst features, and is used as feature weighting computed through an activation function
σ. The output of the meta-mapper are the learned parameters i.e. the visual prefix p∗1 . . . p

∗
k, meaning

that p∗1 . . . p
∗
l = MetaMapθ([p1 . . . pl, x1, . . . xn]).

Language model The language model uses an embedding function gψ to embed each generated
token into a word embedding ti, followed by a Transformer decoder defined as a function gω, to
perform the text generation. During the meta-training, the language model receives the visual prefix
p∗1 . . . p

∗
k concatenated with the token embeddings t1, . . . tm, and outputs the next token conditioned

on the prefix: ti+1 = gω([p
∗
1 . . . p

∗
l , t1, . . . ti]), i < m, in an autoregressive manner.

2.3 Meta-Training & Inference

First, for simplicity, we assume that our full architecture described in 2.2 is defined as a function fθ,
which receives an image x as input and produces y as output. The loss function, optimized per task
during training, is a cross-entropy loss LTi

(fθ), defined as:

LTi
(fθ) =

∑
xj ,yj∼Dtr

i

yj log fθ(x
j) + (1− yj) log(1− fθ(x

j)). (1)

When adapting to a new task Ti, the trainable model parameters θ become task-specific parameters,
namely θ̂i. These task-specific parameters are computed with n gradient-step updates, with the
following rule for one gradient update: θ̂i = θ − α∇θLTi(fθ), which is the inner-loop update and
α is the hyperparameter for the step size. Next, the model meta-parameters θ are optimized for the
performance of fθ̂i , using the query set Dts

i and the task-specific parameters θ̂i as initialization of the
model:

min
θ

∑
xj ,yj∼Dts

i

LTi
(fθ̂i) =

∑
xj ,yj∼Dts

i

LTi
(fθ−α∇θLTi

(fθ)), (2)

akin to [11] but in a multimodal setting. The meta-optimization across all tasks Ti is performed using
the stochastic gradient descent update rule, as follows: θ ← θ − β∇θ

∑
xj ,yj∼Dts

i
LTi(fθ̂i

), where β

is the step size hyperparameter.

During inference, or the meta-test stage in meta-learning parlance, we are given new multimodal
few-shot tasks with previously unseen objects. The support set is used for fast adaptation of the meta-
parameters θ to the new task, followed by measuring the performance on the query set. Conditioned
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Table 1: Comparison with the Frozen [3] baselines on Real-Name and Open-Ended miniImageNet 2-
and 5-way setting; expressed in accuracy(%). The episodically trained models are outperforming the
Frozen baselines, both for cross-domain and in-domain few-shot settings.

Real-Name 2-way Open-Ended 2-way Real-Name 5-way Open-Ended 5-way
Methods episodic cross-domain 1-shot 5-shots 1-shot 5-shots 1-shot 5-shots 1-shot 5-shots

Frozen w/o task ind ✗ ✓ 1.7 - 29.0 - 0.9 - 18.0 -
Frozen w/ task ind ✗ ✓ 33.7 66.0 53.4 58.9 14.5 33.8 20.2 21.3

Ours

✗ ✗ 35.6 65.7 50.2 57.5 15.2 39.6 18.9 22.0
✗ ✓ 37.3 66.0 52.5 59.0 19.2 40.3 20.9 25.0
✓ ✓ 45.3 69.8 53.6 63.4 24.7 41.8 24.8 28.5
✓ ✗ 48.2 72.3 58.7 65.8 29.0 43.2 25.1 29.6

ANIL upper-bound - - 73.9 84.2 - - 45.5 62.6 - -

Table 2: Comparison with the Frozen baseline [3] on Real-Fast VQA and Fast-VQA 2-way settings,
in accuracy(%). Our episodically trained models outperform their counterparts, both for cross-domain
and in-domain few-shot settings.

Real-Fast VQA Fast-VQA
Methods episodic cross-domain 1-shot 5-shots 1-shot 5-shots

Frozen ✗ ✓ 7.8 10.5 2.8 7.9

Ours

✗ ✗ 5.4 9.1 2.5 7.1
✗ ✓ 6.9 10.7 3 8
✓ ✓ 8.5 13 5.2 8.6
✓ ✗ 9.7 13.2 5.7 9.3

on the context, the generation of the answer for each query sample is done in an open-ended
autoregressive manner, by using top-k nucleus sampling [20] for sampling words from the language
model. To obtain the final performance, we take the average of the accuracy over all query samples
from all meta-test tasks.

3 Experiments

We conduct systematic experiments to evaluate how a meta-learned model performs in multimodal
few-shot settings. Specifically, we test the ability of fast adaptation as a main characteristic of
meta-learning [11] by quantifying the fast binding of visual concepts and words and visual-question
answering with limited examples.

3.1 Experimental Setup

Datasets & Settings To design a meta-learning setting for multimodal few-shot learning, the
datasets have to be structured into sequences of tasks, as explained in 2.1. In practise, any dataset
can be suited for few-shot meta-learning, as long as there is an available object information based
on which the tasks can be constructed. For meta-training, we use the COCO2017 captioning dataset
[21] and restructure it to construct tasks in N -way, k-shot manner based on the N object categories
present in the support set. Then, for meta-test we use the four datasets introduced in [3], namely,
Real-Name and Open-Ended miniImageNet; and Real-Fast and Fast-VQA. This is an example for
cross-domain few-shot learning setting. We also consider in-domain few-shot setting, where the
meta-training and meta-test partitions are entirely derived from the mentioned multimodal few-shot
datasets [3]. Additionally we experiment with two different training procedures: the proposed
episodic meta-learning and a standard mini-batched, non-episodic one.

Implementation Details The vision encoder is implemented as CLIP [14] with the Vision Trans-
former (ViT/B-32) [22] as a backbone model, yielding visual features of size 512. The language
model is implemented as GPT-2 [23], with word embeddings of size 768, which is also the size of the
visual prefix. The meta-mapper is initialized following Xavier uniform initialization [24]. For the
meta-learning specific hyperparameters, we empirically determined to have five gradient-update steps
with a learning rate of 0.01. The meta-update is performed with AdamW [25] with a meta-learning
rate of 0.001 and 4 tasks in each meta-batch. The model is trained end-to-end on one NVIDIA GTX
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Figure 3: Examples of query set images from Real-Name miniImageNet (first two) and Real-Fast
VQA (last two), with their question (Q), ground-truth (GT) and answers generated by our model
(Ours).

1080Ti GPU, in less than 2 hours, which shows the benefit of the light-weight framework. The total
number of trainable parameters of our model is less than two million, which is orders of magnitude
lower than Frozen.

3.2 Results & Discussion

Fast binding of visual concepts to words The experiments on Real-Name and Open-Ended
miniImageNet measure to what extent the multimodal meta-learner is able to bind visual concepts
to words. Table 1 shows the 2-way and 5-way accuracy in 1 and 5 shots on both datasets. From
the tables, we observe that our multimodal meta-learner is able to largely outperform Frozen [3],
even without using a fixed task induction. This shows the advantage of having a meta-learned
visual prefix, in contrast to just reshaping the vision encoder output as a prefix to language models.
Specifically, the meta-learned prefix is able to collect shared meta-knowledge from related instances
in the tasks, which is useful for narrowing down the search space in a learnable manner, instead of
using a hand-engineered task induction. We believe that the open-ended approach is more promising
due to its flexibility in reasoning about visual concepts, instead of relying on a pre-defined closed set
of concepts. However, due to the magnitudes larger search space in text generation, compared to the
one of conventional classifiers, it is still not possible to compete with their performance. Therefore,
we use results from ANIL [12] as a reference upper bound to our approach.

VQA with limited labeled context The aim of the experiments on the Real-Fast and Fast-VQA
2-ways benchmarks is to evaluate the abilities of the multimodal meta-learner to answer more complex
questions about the objects in the image. There is an implicit testing of the binding of visual concepts
and words, since the query samples are designed in such a way to contain both categories from
the support set in the query image, while the question is addressed to one of them. As we observe
from the results in Table 2 with different number of shots, our multimodal meta-learner achieves
improvements over Frozen [3], showing once more the benefit of the meta-knowledge and the ability
to adapt fast to new tasks.

Qualitative results In Figure 3, we show examples of query images with the questions and answers
at inference time. The capability of the multimodal meta-learner to bind visual concepts to words
is apparent: the model is able to connect the visual concepts in the image not only to dalmatian as
stated in the ground-truth, but also to the word barking. This observation suggests that the model can
leverage visual concepts, not necessarily represented by the ground-truth sentence, which are still
accurate and in many cases capture the image contents even better.

4 Conclusion

In this paper, we present a novel meta-learning approach for multimodal few-shot learning. Partic-
ularly, we introduce a light-weight meta-mapper which acts as a bridge between frozen vision and
language models, and is trained in a meta-learning manner. The meta-mapper accrues shared meta-
knowledge from related tasks into a learnable visual prefix, which is used to steer the language model
into generating relevant outputs, without using a hand-engineered task induction. Our experiments
verify the effectiveness of our method by outperforming the baseline on several multimodal few-shot
benchmarks, fostering further research in multimodal few-shot meta-learning.

5



Acknowledgement

This work is financially supported by the Inception Institute of Artificial Intelligence, the University
of Amsterdam and the allowance Top consortia for Knowledge and Innovation (TKIs) from the
Netherlands Ministry of Economic Affairs and Climate Policy.

References
[1] Jürgen Schmidhuber. Evolutionary principles in self-referential learning, or on learning how to

learn: the meta-meta-... hook. PhD thesis, Technische Universität München, 1987.

[2] Y. Bengio, S. Bengio, and J. Cloutier. Learning a synaptic learning rule. In IJCNN-91-Seattle
International Joint Conference on Neural Networks, volume ii, pages 969 vol.2–, 1991.

[3] Maria Tsimpoukelli, Jacob L Menick, Serkan Cabi, SM Eslami, Oriol Vinyals, and Felix Hill.
Multimodal few-shot learning with frozen language models. Advances in Neural Information
Processing Systems, 34:200–212, 2021.

[4] Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson,
Karel Lenc, Arthur Mensch, Katie Millican, Malcolm Reynolds, et al. Flamingo: a visual
language model for few-shot learning. arXiv preprint arXiv:2204.14198, 2022.

[5] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

[6] Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation.
arXiv preprint arXiv:2101.00190, 2021.

[7] Sebastian Thrun and Lorien Pratt. Learning to learn. Springer Science & Business Media,
2012.

[8] Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau, Tom
Schaul, Brendan Shillingford, and Nando De Freitas. Learning to learn by gradient descent by
gradient descent. Advances in neural information processing systems, 29, 2016.

[9] Oriol Vinyals, Charles Blundell, Timothy Lillicrap, Daan Wierstra, et al. Matching networks
for one shot learning. Advances in neural information processing systems, 29, 2016.

[10] Sachin Ravi and H. Larochelle. Optimization as a model for few-shot learning. In ICLR, 2017.

[11] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adap-
tation of deep networks. In International conference on machine learning, pages 1126–1135.
PMLR, 2017.

[12] Aniruddh Raghu, Maithra Raghu, Samy Bengio, and Oriol Vinyals. Rapid learning or feature
reuse? towards understanding the effectiveness of maml. In International Conference on
Learning Representations, 2019.

[13] Han-Jia Ye, Hexiang Hu, De-Chuan Zhan, and Fei Sha. Few-shot learning via embedding
adaptation with set-to-set functions. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 8808–8817, 2020.

[14] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International Conference on Machine Learning,
pages 8748–8763. PMLR, 2021.

[15] Ron Mokady, Amir Hertz, and Amit H Bermano. Clipcap: Clip prefix for image captioning.
arXiv preprint arXiv:2111.09734, 2021.

[16] Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Conditional prompt learning
for vision-language models. In CVPR, 2022.

6



[17] Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie, Bharath Hariharan,
and Ser-Nam Lim. Visual prompt tuning. arXiv preprint arXiv:2203.12119, 2022.

[18] Yoad Tewel, Yoav Shalev, Idan Schwartz, and Lior Wolf. Zero-shot image-to-text generation
for visual-semantic arithmetic. arXiv preprint arXiv:2111.14447, 2021.

[19] Juho Lee, Yoonho Lee, Jungtaek Kim, Adam Kosiorek, Seungjin Choi, and Yee Whye Teh.
Set transformer: A framework for attention-based permutation-invariant neural networks. In
International Conference on Machine Learning, pages 3744–3753. PMLR, 2019.

[20] Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural
text degeneration. arXiv preprint arXiv:1904.09751, 2019.

[21] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In European
conference on computer vision, pages 740–755. Springer, 2014.

[22] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image
recognition at scale. In International Conference on Learning Representations, 2021.

[23] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. 2019.

[24] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward
neural networks. In Yee Whye Teh and Mike Titterington, editors, Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics, volume 9 of Proceedings of
Machine Learning Research, pages 249–256, Chia Laguna Resort, Sardinia, Italy, 13–15 May
2010. PMLR.

[25] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International
Conference on Learning Representations, 2018.

[26] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[27] Dzmitry Bahdanau, KyungHyun Cho, and Yoshua Bengio. Neural machine translation by
jointly learning to align and translate. ICLR, 2015.

[28] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. Proceedings of the 2019 Conference of
the North, 2019.

[29] Xiaohua Zhai, Xiao Wang, Basil Mustafa, Andreas Steiner, Daniel Keysers, Alexander
Kolesnikov, and Lucas Beyer. Lit: Zero-shot transfer with locked-image text tuning. arXiv
preprint arXiv:2111.07991, 2021.

[30] Zirui Wang, Jiahui Yu, Adams Wei Yu, Zihang Dai, Yulia Tsvetkov, and Yuan Cao. Simvlm:
Simple visual language model pretraining with weak supervision. ArXiv, abs/2108.10904, 2021.

[31] Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-
Hsuan Sung, Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation
learning with noisy text supervision. In International Conference on Machine Learning, pages
4904–4916. PMLR, 2021.

[32] Jaemin Cho, Jie Lei, Hao Tan, and Mohit Bansal. Unifying vision-and-language tasks via text
generation. In International Conference on Machine Learning, pages 1931–1942. PMLR, 2021.

[33] Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient
prompt tuning. Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing, 2021.

7



[34] Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timothy Lillicrap.
Meta-learning with memory-augmented neural networks. In ICML, 2016.

[35] Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning.
Advances in neural information processing systems, 30, 2017.

[36] Erin Grant, Chelsea Finn, Sergey Levine, Trevor Darrell, and Thomas Griffiths. Recasting
gradient-based meta-learning as hierarchical bayes. In ICLR, 2018.

[37] Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang, Philip HS Torr, and Timothy M Hospedales.
Learning to compare: Relation network for few-shot learning. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 1199–1208, 2018.

[38] Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and Pieter Abbeel. A simple neural attentive
meta-learner. ICLR, 2018.

[39] Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timothy Lillicrap.
Meta-learning with memory-augmented neural networks. 2016.

[40] Tsendsuren Munkhdalai and Hong Yu. Meta networks. In ICML, pages 2554–2563, 2017.

[41] Tsendsuren Munkhdalai, Xingdi Yuan, Soroush Mehri, and Adam Trischler. Rapid adaptation
with conditionally shifted neurons. In ICML, 2018.

[42] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

8



Appendix

A Related Works

Large-scale vision and language models Large-scale language models emerged since the intro-
duction of Transformers [26] and the attention mechanism [27] to successfully deal with long-range
dependencies in sequences. The field has seen significant progress over the last years [28, 23, 5],
which also initiated the development of similar strategies for vision [14, 29, 22] and multimodal
models [30, 31, 18, 15, 4]. Unlike these approaches, which are trained with specific objectives and
tasks, our work focuses on unifying them through meta-learning with a single objective for text
generation [32]. Similarly as [3], our approach is modular and can accommodate any separately
pre-trained vision encoder and pre-trained language model. In few-shot scenarios, these large models
are steered into producing a desired output by using the idea of prompting [5, 3]. Standard prompting
prepends fixed task instructions and a few examples as prompt and then generates the output from
the language model. Instead of optimizing over a fixed set of examples, prefix tuning [6, 33] aims
to optimize the instruction as learnable embeddings. Motivated by this, and by the need to develop
an efficient way of bridging large models, we adopt a learnable visual prefix, which in our case is
meta-learned.

Meta-learning for few-shot image classification tasks Meta-learning for few-shot learning [10, 34,
11, 9, 35] addresses the fundamental challenge of generalizing across tasks with limited labelled data.
Meta-learning approaches for few-shot learning acquire inductive biases and adopt them for individual
tasks in different ways [36]. Existing meta-learning algorithms are typically categorized as follows:
(i) metric-based, focusing on learning a common embedding space and deriving prototypes as meta-
knowledge [9, 35, 37] (ii) memory-based, using an external memory module as meta-knowledge
to quickly adapt to new tasks [38, 39, 40, 41], and (iii) optimization-based, aiming to learn a good
model initialization across tasks as meta-knowledge, which can be used to efficiently adapt to new
tasks [10, 11, 11, 36]. Our approach is positioned in this last category, as it is modality-agnostic and
offers greater flexibility.

Multimodal few-shot learning Few-shot learning by combining both vision and language, has
only emerged recently with the introduction of the multimodal few-shot learner Frozen [3]. In
particular, Frozen is based on the idea of in-context few-shot prompting of language models, meaning
that the prompt consists of task induction and interleaved sequences of images and their captions,
representing the context. This in-context few-shot prompting paradigm is considered as one of the
possible approaches to deal with few-shot learning scenarios in language models [3, 5, 4]. A recently
proposed model [4], is following similar multimodal few-shot learning settings. However, they are
training a vision-language model of 70 billion parameters, which is proven to be successful due
to its scale and the amount of pre-training data. Our goals highly differ since our model aims to
handle a limited labeled space during training and to adapt to new tasks. In particular, we define
optimization-based meta-learning steps [10, 11, 11, 36], by using the context samples to fine-tune the
meta-mapper and evaluate on the query samples.

B Vision encoder details

For the pre-trained vision encoder we adopt CLIP [14], due to its already proven performance and
large web-scale multimodal pre-training. CLIP is considered as a multimodal architecture, as it
consists of 1) a vision encoder, which can be a ResNet [42] or a Vision Transformer (ViT) [22]
and 2) a text encoder implemented as a Transformer [23]. The pre-training is done in a contrastive
manner, on a large dataset of 400 million pairs of image-caption, with the aim to minimize the
distance of corresponding image-caption pairs in the embedding space and to maximize the distance
for non-corresponding pairs.

In this work, we use the vision encoder stream with a base ViT backbone, comprised of 12 layers,
512-dimensions wide, each one with 12 attention heads. The size of the input images is 224× 224
and are split into image patches, each one with dimensions 32× 32, yielding 49 flattened patches
and one leading special token. We keep the backbone entirely frozen and use the special token as a
visual encoding, since it holistically represents the image.
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Algorithm 1 Meta-training the multimodal few-shot meta-learner

Require: p(T ): distribution over N-way, k-shot tasks
Require: θ ← random initialization

1: while not done do
2: Sample a batch of tasks Ti ∼ p(T ),
3: for all Ti do
4: Dtri ,Dtsi ← Ti
5: Evaluate ∇θLTi

(fθ) using Dtri .
6: for i = 1 to n do ▷ n is number of gradient steps
7: Compute adapted parameters θ̂i with a gradient-descent step θ̂i = θ − α∇θLTi

(fθ).
8: end for
9: Use adapted parameters θ̂i and Dtsi for meta-optimization.

10: end for
11: Update meta-parameters θ across all tasks Ti with θ ← θ − β∇θ

∑
xj ,yj∼Ti

LTi(fθ̂i
).

12: end while

Algorithm 2 Meta-test the multimodal few-shot meta-learner

Require: p(T ): distribution over N-way, k-shot tasks
Require: θ ← meta-learned parameters in the meta-training stage

1: while not done do
2: Sample a task Ti ∼ p(T ),
3: Dtri ,Dtsi ← Ti ▷ support set and query accordingly
4: Evaluate ∇θLTi

(fθ) using Dtri ▷ LTi
(fθ) is the cross-entropy loss

5: for i = 1 to n do ▷ n is number of gradient steps
6: Compute adapted parameters θ̂i with a gradient-descent step θ̂i = θ − α∇θLTi(fθ).
7: end for
8: Use adapted parameters θ̂i and Dtsi for computing the final accuracy
9: end while

C Language model details

The pre-trained language model that we employ is GPT-2 [23], particularly the small version with
117M parameters. Its architecture is following a Transformer decoder [26] with 12 layers and a word
embedding dimension of 768. The model is pre-trained on a very large corpus of English data in
a self-supervised fashion with a standard language modelling objective. Since the model performs
best at what it was pre-trained for, which is generating text from a given prompt in an autoregressive
manner, we employ it in a similar fashion. In particular, we use the word embedding layer to transform
each word token into a continuous word embedding, and the full stack of Transformer decoder layers
to parameterize the probability distribution over the vocabulary word tokens. To obtain the next word
token we sample from the probability distribution over the vocabulary with top-k nucleus sampling
as in [20]. To build a more efficient architecture, similar to the vision stream, the language model is
kept entirely frozen.

D Multimodal meta-learning details

To design a meta-learning setting for the multimodal few-shot learning, we re-purpose an image
captioning dataset, with available meta-data about the object categories, to fit the meta-learning
criteria [10]. In particular, we use either COCO2017 captioning dataset [21] to obtain cross-domain
experimental setup, or the multimodal few-shot datasets [3] for the standard in-domain meta-learning
setup. The partitioning into meta-training and meta-test tasks is illustrated in Figure 4. We start by
splitting the full dataset into task partitions according to the object categories in the images in the
scope of their own meta-training and meta-test partitions. The sampling of tasks for both stages is
straightforward due to the provided object information and the captions targeted for those objects.
Note that following [11] the samples in the query set during meta-training should be at least 15 per
category, since the optimization of the meta-parameters is done based on those samples.
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Figure 4: Example of the new multimodal few-shot meta-learning setting, illustrating the in-domain
2-way 1-shot problem with the Real-Name miniImageNet. The top represents the meta-training stage
and the bottom part is the meta-test stage. In meta-training, the blue box indicates the support set
samples which consist of an image-caption pair. The gray box indicates the query set samples.

The detailed optimization process in the meta-training stage is described in Algorithm 1. Similarly,
the adaptation stage using the meta-test partitions is described in Algorithm 2.
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