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Phys2Real: Physically-Informed Gaussian Splatting for
Adaptive Sim-to-Real Transfer in Robotic Manipulation

Maggie Wang1, Stephen Tian2, Jiajun Wu2, and Mac Schwager1

Abstract—Learning robotic manipulation policies directly in
the real world can be expensive and time-consuming, moti-
vating the use of simulation for scalable training. However,
effective sim-to-real transfer remains a central challenge in
reinforcement learning for robotic manipulation, particularly
for tasks that require precise physical dynamics. We present
Phys2Real, a real-to-sim-to-real pipeline that generates object-
centric digital twins using geometry from 3D reconstructions and
physical priors inferred from vision-language models (VLMs).
Our approach combines 3D Gaussian Splatting (GSplat) for high-
fidelity geometric reconstructions with VLM-based estimates of
physical parameters, such as friction and center of mass (CoM).
Unlike domain randomization, which trains policies to be robust
across broad parameter ranges and often results in averaged
behaviors that may not account for object-specific dynamics,
Phys2Real conditions reinforcement learning (RL) policies on
known physical parameters during training and VLM-inferred
parameter estimates at test time. This conditioning enables
precise adaptation to novel objects. We evaluate our method
on two planar pushing tasks: a T-block with low friction and a
hammer with off-center mass distribution, showing improvement
in accuracy, success rate (100% vs 60%), and task completion
time compared to domain-randomization baselines. Phys2Real
offers a step toward more adaptable manipulation systems that
integrate visual reconstruction, physical reasoning, and adaptive
control.

Index Terms—sim-to-real, reinforcement learning, robotics

I. INTRODUCTION

DEPLOYING robotic manipulation policies trained in
simulation to the real world remains a fundamental

challenge, especially for tasks requiring fine-grained physical
dynamics. Robots must adapt to varying object properties such
as friction, mass distribution, and compliance, which signifi-
cantly affect manipulation outcomes but are difficult to model
precisely. While learning from demonstrations has shown
significant promise, it often lacks the physical grounding and
reasoning needed to adapt to novel objects. Reinforcement
learning (RL) provides a mechanism for real-time adaptation,
but bridging the sim-to-real gap remains a critical obstacle.

Domain randomization (DR) has been the dominant ap-
proach for sim-to-real transfer when training robotic policies
with RL. By training policies across randomized simulation
parameters, DR aims to develop policies robust to real-world
variations [1], but they may generalize poorly to out-of-
distribution object physical properties. Even when dynamics
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lie within range, policies often default to averaged behaviors
that may not account for object-specific variations.

In this work, we leverage object-centric digital
twins—simulation assets that replicate real-world object
geometry—to create realistic training environments for
learning manipulation policies. However, most digital twins
capture only shape or appearance, not physical properties.
This motivates the question: Can using more accurate digital
twins, where the policy is conditioned on its physical
properties, improve robot manipulation performance in
real-world environments after training in simulation?

Human manipulation capabilities offer inspiration for ad-
dressing this challenge. When encountering a new object,
humans form initial judgments about its physical properties
from visual appearance, then refine these estimates through
interaction. This integration of perception and physical rea-
soning enables humans to adapt their manipulation strategies
to specific object properties without requiring extensive expe-
rience with each new object. Our approach seeks to provide
robots with a similar ability to estimate and adapt to physical
properties.

We propose Phys2Real, a framework that bridges the sim-
to-real gap by creating physically-informed digital twins
from real-world observations. Phys2Real comprises three
stages: (1) real-to-sim reconstruction, (2) physics-conditioned
policy learning, and (3) sim-to-real transfer using VLM-based
parameter estimation. To our knowledge, our approach is
the first to combine 3D Gaussian Splatting (GSplat) recon-
structions with vision-language model (VLM)-based physical
parameter estimation to create physics-informed digital twins
for robotic manipulation. By conditioning RL policies on
these estimated parameters, where the parameter comes from
simulation during training and the VLM during test time,
Phys2Real enables object-specific adaptation that outperforms
conventional domain randomization. The VLM provides a
“warm start” estimate from visual input, and future work will
explore refining these estimates online through interaction.

We evaluate our approach on two planar pushing tasks, a
class of non-prehensile tasks that require an understanding
of friction, mass distribution, and contact dynamics. Our
experiments focus on (1) T-block pushing, where the object’s
friction affects its rotational dynamics, and (2) Hammer
pushing, where the object’s off-center center of mass (CoM)
results in complex motion dynamics.

Our results indicate that policies conditioned on physical
parameters from the VLM improve sim-to-real transfer in ex-
ecution time, accuracy, and success rate, compared to standard
DR. This work highlights the potential of combining physical
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Fig. 1: Phys2Real Overview: We reconstruct real-world objects using GSplats to generate simulation-ready, object-centric
meshes. During training, the policy is conditioned on known physical parameters (e.g., friction, center of mass) in simulation.
At test time, a vision-language model estimates these parameters from images, enabling sim-to-real transfer with object-specific
physical priors.

priors, visual perception, and structured simulation to enable
more general and adaptive robotic manipulation.

II. RELATED WORK

Our approach bridges multiple research directions in
robotics and AI: sim-to-real transfer methods, policy adap-
tation techniques, digital twin reconstruction, and physical
reasoning with foundation models. While prior work has ex-
plored these areas individually, Phys2Real uniquely combines
high-fidelity 3D reconstructions with VLM-based physical
parameter estimates to create physics-informed digital twins
for robotic manipulation.
A. Sim-to-real transfer

The sim-to-real gap remains a fundamental challenge for
deploying policies learned in simulation to real-world environ-
ments. Domain randomization (DR), introduced by Tobin et al.
[1], addresses this gap by randomizing simulation properties
during training to develop policies robust to a wide range
of environmental variations. This approach was extended to
Automatic Domain Randomization (ADR), which was key to
OpenAI’s successful manipulation of a Rubik’s cube with a
robotic hand [2].

Despite its popularity, DR suffers from significant limita-
tions. DR policies typically default to averaged behaviors that
sacrifice performance for robustness, failing to adapt to object-
specific variations. Even when successful, a policy trained with
DR may generalize broadly but cannot actively compensate for
specific sim-to-real discrepancies during deployment, leading
to suboptimal performance when real-world objects deviate
significantly from the training distribution, as shown in our
experiments in Section IV.

An alternative approach is system identification [3], which
explicitly calibrates simulation parameters to match real-world
observations. However, these methods often require manual
parameter tuning and yield static models that cannot adapt
to varying conditions. Our work combines elements of both

approaches by first estimating physical parameters via VLMs
and then enabling adaptation through policy conditioning.

B. Policy adaptation

Rapid Motor Adaptation (RMA) [4], initially demonstrated
for legged locomotion, trains an RL policy with an adaptation
module that uses privileged information during simulation
training and infers environmental properties through using
history during runtime. Liang et al. introduce RMA for ma-
nipulator arms [5], showing improved generalization to novel
objects and disturbances.

While RMA and similar policy adaptation frameworks en-
able robots to adjust to new conditions, they typically rely
on learning adaptation strategies from data without explicit
physical grounding. In contrast, Phys2Real conditions policies
directly from physically interpretable parameters (such as
friction and CoM) estimated from visual observations, creating
an interpretable adaptation mechanism that leverages prior
knowledge about physical dynamics.

C. Digital twin simulations and photorealistic rendering

Recent advances in neural scene reconstruction have en-
abled the creation of photorealistic digital twins for robotics.
Neural Radiance Fields (NeRF) [6] and Gaussian Splatting
(GSplat) [7] can reconstruct 3D scenes from a series of images,
reducing the visual sim-to-real gap. Frameworks including
SplatSim [8], RoboGSim [9], and RL-GSBridge [10] have
demonstrated GSplat’s effectiveness as a simulation renderer.

However, current digital twin approaches focus primarily
on visual fidelity while neglecting object physical properties.
They create visually realistic environments, but rely on con-
ventional physics engines with default parameters that may
not match real-world dynamics. Torne et al. addressed this
limitation in RialTo [11] by enabling users to specify phys-
ical properties for scanned environments, but their approach
requires manual annotation rather than automatic estimation.
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Phys2Real advances this field by creating digital twins
that are both visually accurate and physically grounded. We
leverage GSplats for high-fidelity visual reconstruction to
generate simulation assets and augment these digital twins
with estimated physical parameters during test time.
D. VLMs for physical reasoning

Recent work has demonstrated that large vision-language
models (VLMs) show capability for physical reasoning.
PhysObjects [12] fine-tunes InstructBLIP to estimate physical
attributes such as material properties, weight, and fragility
from visual inputs. However, this work focuses primarily on
using these estimates for high-level planning rather than low-
level control.

Phys2Real builds on these insights by using VLMs to
estimate physical parameters from images. Unlike previous
work that uses VLMs primarily for high-level planning, we
directly incorporate VLM-estimated physical parameters into
the control policy, enabling more accurate manipulation per-
formance.

In summary, Phys2Real represents a novel integration of
structured 3D reconstruction, physical parameter estimation
via VLMs, and adaptive policy conditioning. By combin-
ing these components, we create a system that generates
physically-grounded digital twins from real-world observa-
tions and leverage them for improved sim-to-real transfer in
robotic manipulation tasks.

III. METHODS

Phys2Real consists of three stages, as illustrated in Figure 1:
real-to-sim reconstruction, physics-informed policy learning,
and sim-to-real transfer with VLM-based parameter estima-
tion. Physical information is incorporated during policy learn-
ing and test-time adaptation to improve transfer performance.
A. Real-to-sim reconstruction

Our reconstruction pipeline transforms real-world objects
into simulation-ready assets. As shown in Figure 3, images
of real-world objects are segmented with SAM-2 [13] and
reconstructed into object-centric GSplats using SuGaR [14].
We mirror the GSplat across its primary axis of symme-
try and apply the Marching Cubes algorithm to extract a
clean, watertight mesh. While this pipeline works well for
approximately symmetric objects like T-blocks and hammers,
mirroring can distort the true shape and mass distribution of
asymmetric objects. Extending to asymmetric objects would
require alternative meshing strategies to preserve geometric
fidelity.
B. Policy learning

We train our policy using Proximal Policy Optimization
(PPO) [15] with 4096 parallel environments and an asym-
metric actor-critic architecture in IsaacLab [16]. As shown in
Figure 2, the actor is conditioned on object pose, end-effector
position, and object physical properties (e.g., friction, CoM).
The critic receives privileged observations including object
velocity and pose. Both actor and critic share a feedforward
MLP with hidden layers of size [128, 64] and ELU activations.

During training, the policy is conditioned on known physical
properties in simulation. During evaluation, we use GPT-
4o [17] to predict these parameters from images, enabling

Fig. 2: Overview of the Phys2Real policy training setup.
The actor is conditioned on object physical properties (e.g.,
friction, CoM), while the critic uses privileged ground-truth
information in simulation to estimate advantage values and
compute reward. During training, the physical properties are
provided directly from the simulator. At test time, these values
are estimated by a vision-language model (VLM) from visual
input.

Fig. 3: Real-to-sim mesh reconstruction pipeline. Starting from
a video of the object, we extract frames and segment the target
object using SAM-2. We then train a GSplat and convert the
reconstruction into a surface-aligned object-centric mesh using
SuGaR [14]. Finally, we generate a clean, watertight mesh,
resulting in a simulation-ready asset.

physical adaptation during sim-to-real transfer. We compare
against domain randomization and LSTM-based baselines.
C. Sim-to-real transfer with physical parameter estimation

An image from the reconstruction is passed into a VLM
(GPT-4o) to estimate relevant physical parameters. We esti-
mate task-relevant physical parameters for each object using
prompts that are designed to elicit numerical estimates. The
prompts can be found in Appendix A. For the T-block, we esti-
mate the friction coefficient, which affects rotational dynamics
during pushing. For the hammer, we estimate the CoM along
the primary axis, which affects its motion dynamics during
manipulation.

We demonstrate our approach on planar pushing tasks using
a 6-DOF UFactory xArm robotic arm in simulation and real-
world evaluation. The robot uses a cylindrical end-effector to
push objects on a table, with observations including object
pose, robot state, and estimated physical parameters, while
actions are the end-effector xy positions.

For real-world evaluation, we use motion capture to track
object poses and evaluate performance. While the current setup
relies on motion capture for accurate pose estimation, the
pipeline is designed to work with visual inputs alone, and we
aim to replace motion capture with perception-based tracking
in future work.
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TABLE I: Performance comparison on the T-block pushing task in a low-friction regime, where both the object and table surface
are covered in plastic. We compare Phys2Real, which uses a VLM-estimated friction coefficient of 0.3, against standard domain
randomization (DR) and a DR+LSTM baseline. Metrics include success rate over five trials, final position error, orientation
error, and task completion time. Dashes indicate that the policy failed to complete the task, so those metrics were not recorded.

Method Success Rate (%) Pos. Error (m) Orient. Error (deg) Time (s)

Phys2Real [0.3] 100 0.0107 1.258 42.92
DR [0.3, 1.5] 60 0.0057 1.807 70.03
DR [0.3, 1.5] + LSTM 0 – – –

TABLE II: Performance comparison on the hammer pushing task. Phys2Real is conditioned on a VLM-estimated CoM located
at 0.09m along the hammer’s main axis. The DR baseline uses a parameter range of [–0.11, 0.11]m, chosen to span the full
possible variation in CoM along the hammer’s 0.22m length. All DR baseline trials failed to complete the task, so no error or
timing metrics are reported.

Method Success Rate (%) Pos. Error (m) Orient. Error (deg) Time (s)

Phys2Real [0.09] 100 0.0182 1.918 40.798
DR [-0.11, 0.11] 0 – – –

IV. RESULTS

We evaluate Phys2Real on two non-prehensile manipulation
tasks that require accurate physical modeling for successful
execution:

• T-block pushing: This task tests adaptation to varying
friction coefficients, which impacts the block’s rotational
dynamics during pushing.

• Hammer pushing: The off-center CoM creates complex
motion dynamics that must be accounted for during
manipulation.

For both tasks, we measure four performance metrics:
(1) success rate, (2) final position error in meters, (3) final
orientation error in degrees, and (4) task completion time
in seconds. We define success as achieving less than 3cm
positional error and less than 20° orientation error relative to
the target pose. Each method was evaluated over 5 trials.
A. T-block pushing

Table I compares the performance of Phys2Real against
two baselines: standard domain randomization (DR) across the
range of [0.3, 1.5] and DR with an LSTM-based adaptation
module. The results show that Phys2Real achieved a success
rate of 100% compared to 60% for standard DR and 0%
for the LSTM approach. While the DR baseline achieved a
slightly lower positional error when successful, Phys2Real
shows better orientation accuracy and reduced task completion
time. The failure of the LSTM adaptation approach suggests
that naive adaptation mechanisms struggle to transfer from
simulation to the real world when the object dynamics differ
from training.
B. Hammer pushing

The hammer pushing task highlights the limitations of DR
when applied to objects with asymmetric mass distributions.
As shown in Table II, Phys2Real achieved a 100% success rate
by explicitly conditioning on the estimated CoM (9 cm offset
from the object’s center), while the DR baseline fails entirely.
The failure of the DR baseline demonstrates its inability to
handle the dynamics of objects with off-center mass.

Fig. 4: Comparison of two real-world T-block pushing tra-
jectories using Phys2Real (blue) and the DR baseline (red).
Each dashed line shows the object’s trajectory, with the lines
indicating the end-effector paths. Final object poses are filled
(with the star marking the target final position), and initial
poses are outlined. The Phys2Real policy completes the task
with a shorter end-effector trajectory (2.54m) compared to the
DR policy (4.63m), leading to a faster policy execution.

V. CONCLUSION

We present Phys2Real, a real-to-sim-to-real pipeline that
improves robot manipulation by using physical properties,
such as friction and CoM, estimated from VLMs. To our
knowledge, this is the first approach to combine 3D Gaussian
Splatting reconstructions with VLM-based physical parameter
estimation for robotic manipulation, showing that VLMs can
help bridge the physical sim-to-real gap.

This work moves toward building world models that inte-
grate visual geometry, semantic reasoning, and physical priors,
offering a step toward more general and adaptive robotic sys-
tems that learn from both perception and physical interaction.
Future work will explore integrating learning-based adaptation
methods such as Rapid Motor Adaptation (RMA) [4] to refine
physical estimates in real time, and extending our framework
to prehensile manipulation and deformable objects.
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APPENDIX A
VLM PROMPTS

We input the following prompts to GPT-4o to estimate task-
relevant physical parameters. Although we did not conduct
a full prompt ablation study, the estimated values remained
consistent across semantically similar prompts and produced
stable control behavior when used for policy conditioning.

• T-block: “On a scale of 0 to 1, estimate the coefficient of
kinetic friction for the object in this image. On this scale,
0 is ice, and 1 is rubber. Use visual details of the object
as well as the surface that it is on to reference online
material and make your estimate. Respond with ONLY a
numerical estimate.”

• Hammer: “Given this image of a hammer, can you help
me estimate the normalized location of its center of
mass (CoM) along the main axis of motion, where 0
corresponds to the leftmost end and 1 to the rightmost
end? Please take into account the materials of each part
of the hammer when calculating the CoM.”

These VLM outputs are then used to condition the RL policy
at test time.
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