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Abstract

Voting systems have a wide range of applications including recommender systems,
web search, product design and elections. Limited by the lack of general-purpose
analytical tools, it is difficult to hand-engineer desirable voting rules for each use
case. For this reason, it is appealing to automatically discover voting rules geared
towards each scenario. In this paper, we show that set-input neural network archi-
tectures such as Set Transformers, fully-connected graph networks and DeepSets
are both theoretically and empirically well-suited for learning voting rules. In
particular, we show that these network models can not only mimic a number of ex-
isting voting rules to compelling accuracy — both position-based (such as Plurality
and Borda) and comparison-based (such as Kemeny, Copeland and Maximin) —
but also discover near-optimal voting rules that maximize different social welfare
functions. Furthermore, the learned voting rules generalize well to different voter
utility distributions and election sizes unseen during training.

1 Introduction

Voting systems are highly prevalent in our daily lives. Examples range from large scale demo-
cratic elections to company or family-wide decision making, recommender systems and product
design [Boutilier et al., 2015].

As with any social decision-making process, the goal of designing voting rules is to reconcile
differences and maximize some collective objective. The area of research that studies different voting
rules and the approaches to designing them is called voting theory.

A vast number of voting rules have been proposed over the years. Among them is the widely applied
plurality rule. Despite being simple and intuitive, the plurality rule is very limited in that it does
not consider the strength of voters’ preferences. Other examples of voting rules, such as Borda and
Copeland, take into consideration the ranked preferences of the voters.

Voting theorists have developed different approaches to designing voting rules. For example, the
axiomatic approach constrains the voting rules to satisfy certain desired properties (axioms) such as
anonymity (treating all voters equally) and neutrality (treating all candidates equally). The utilitarian
approach, on the other hand, aims to maximize a pre-defined notion of social welfare — a scalar
quantity that measures the quality of the elected candidate in the eyes of the electorate.

There are major hurdles to overcome in the traditional way of designing and implementing voting
rules. First, the celebrated Arrow’s Theorem states the nonexistence of non-dictatorship voting
rules that simultaneously satisfy a set of seemingly sensible axioms [Arrow et al., 1951]. Second,
for some voting rules such as the ones based on pairwise comparisons, finding the winner can be
computationally expensive, making them infeasible for large-scale applications. Last but not least,
for the utilitarian approach, it is not obvious how to design voting rules that maximize a given notion
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of social welfare.2 There might be a diverse set of social welfare functions of interest, but theory is
lacking in finding their corresponding optimal voting rules.

In this paper, we aim to tackle the latter two limitations using neural networks. While doing so, we
also seek to preserve certain desired properties such as voter anonymity. In particular, we identify
three permutation-invariant neural network (PIN) architectures: DeepSet [Zaheer et al., 2017], Set
Transformer [Lee et al., 2019], and Graph Isomorphism Network (GIN) [Xu et al., 2018], and apply
them to learn the voting rules. As compact and universal function approximators, such trained neural
networks not only address the computational burden of some voting rules, but also provide a flexible
approach to maximize a diverse set of social welfare functions.

The main contributions of this paper include:

• We show that PIN architectures are theoretically and empirically well-suited for learning to
represent voting rules. Theoretically, we show that the three PIN architectures are universal
approximators in the space of permutation-invariant functions. This includes a novel proof
on the universality of Graph Isomorphism Networks with fully-connected graphs (as in
learning voting rules).

• We apply the aforementioned PIN models to mimic five classical voting rules: plurality,
Borda, Copeland, Maximin and Kemeny. We show that they can mimic these voting rules to
compelling accuracy and can generalize seamlessly to unseen real datasets and elections
with an unseen number of voters.

• We train the networks to maximize two different social welfare functions — utilitarian and
egalitarian — on elections sampled using three different underlying voter utility distributions.
We show that the PIN models discover novel voting rules that maximize social welfare better
than classical voting rules. In cases where theoretical optimal voting rules are known (i.e.
for the utilitarian social welfare function), the PIN models match the optimal performance.

The organization of this paper is as follows. Section 2 provides background on voting theory.
Section 3 describes our method of using PINs to learn voting rules. Specifically, we introduce the
permutation-invariant network architectures (Section 3.1), show the universality results (Section 3.2),
and describe the proposed the training procedure for learning voting rules in detail. In Section 4, we
show comprehensive experiment results on the effectiveness of PIN models in learning voting rules.
We discuss related works in Section 5, limitations in Section 6 and conclude with Section 7.

2 Background

2.1 Voting theory preliminaries

We adopt the formalism used by Boutilier et al. [2015]. Let N = {1, . . . , n} be a set of voters,
A = {a1, . . . , am} be a set of candidates and R = {1, . . . ,m} be the integer rankings each voter
can assign to a candidate. Each vote i is represented as a bijection from candidates to rankings:
σi : A 7→ R. The vector of candidate preferences #�σ = (σi, . . . , σn) ∈ (Sm)n is called a preference
profile. A voting rule f : (Sm)n 7→ A maps preference profiles to candidates.

The utilitarian approach to voting makes the assumption that voters have utility functions (u : A 7→
R+) over the alternatives which quantify how much a voter prefers a candidate. Utility functions are
consistent with the rankings — that is, candidates with higher utilities are ranked higher by voters.
The vector of all voters’ utility functions #�u = (u1, . . . , un) is called a utility profile. The social
welfare of an alternative sw(a, ~u) : A× Rn×m 7→ R quantifies the “desirability" of a candidate a
under a given preference profile ~u. The utilitarian approach posits that the ultimate goal of a voting
rule is to pick the candidate that maximizes social welfare. Note that since voting rules only have
access to rankings and not the utilities, this is often impossible to achieve without further assumptions.

A popular notion of social welfare is the utilitarian social welfare function, which computes the sum of
all the utilities the voters assign a candidate swutil(a, ~u) =

∑
i∈N ui(a). There exists, however, many

different social welfare functions. For example, the Rawlsian social welfare function aims to make
even the least happy voter as happy as possible: swrawl(a, ~u) = mini ui(a), and the egalitarian social

2We consider average-case social welfare maximization, unlike the worst-case analysis in the distortion
literature [Boutilier et al., 2015, Caragiannis et al., 2017].
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welfare function aims to maximize the utilitarian welfare, regularized by a penalty term promoting
equality: swegal(a, ~u) =

∑
i∈N ui(a)− λ

∑
i∈N (ui(a)−minj(uj(a))) [Allcott, 2011]. It is up to

the designer of the voting system to pick a notion of social welfare best suited for the task at hand.

2.2 Classical voting rules

Most classical voting rules can be classified under two groups: score based rules and comparison based
rules. Score based rules (also called scoring functions) are defined by a score vector ~s = (s1 . . . sm).
Each candidate a ∈ A is assigned the score

∑
i∈N sσi(a) and the candidate with the largest score

is picked as the winner [Boutilier et al., 2015]. Famous examples include Plurality (with a score
vector of ~splr = (1, 0, . . . , 0)) and Borda (with a score vector of ~sborda = (m − 1,m − 2, . . . , 0)).
Comparison based rules operate using pairwise comparison matrices R ∈ Rm×m whose entries are
filled based on how candidates fare against each other in pairwise comparisons. Well-known examples
include the Copeland, Maximin and Kemeny rules. The Copeland rule picks the candidate who fares
better in pairwise comparisons the largest number of times: argmaxi(

∑
j rij) where rij stands for

the number of times candidate i fares better against candidate j in the voter preferences. Maximin,
also known as Simpson’s rule, picks the candidate for whom the candidate who fares the best against
him/her in pairwise comparisons has the least pairwise score: argmini(maxj rji) [Bubboloni et al.,
2020]. The Kemeny rule [Kemeny, 1959] first computes a ranking that maximizes the sum of all
pairwise wins: σ∗ = argmaxσ

∑
i�σj rij , where i �σ j means that candidate i is preferred against

j according to ranking σ. The Kemeny winner is the candidate that ranks the first in σ∗. Note that
computing the Kemeny ranking or Kemeny winner is NP-hard [Bartholdi et al., 1989].

2.3 Average-case optimal voting rules

In cases where the social welfare function takes a very simple algebraic form, it might be possible to
derive the voting rule that achieves the largest expected social welfare under a given utility distribution
Pu. For example, it is known that the average-case optimal voting rule for the utilitarian social welfare
funtion is a score-based voting rule with the score vectors s∗k = Eu∼Pu [u(a)|(σ(u))(a) = k] (or, the
average utility of the candidates that are ranked at kth position) [Boutilier et al., 2015].

3 Permutation-Invariant Networks (PINs) to learn set-input functions

We review the fundamentals of learning set-input functions through the use of permutation-invariant
networks (PINs). Learning set-input functions is desirable in the context of learning voting rules: 1)
it enables processing elections of varying sizes (i.e. different number of voters) 2) it makes it possible
to satisfy desirable properties such as anonymity (invariance to the shuffling of voter identities)
through architectural constraints. We review three permutation-invariant architectures (DeepSets,
fully-connected graph networks and Set Transformers) and show that they’re universal approximators
of set-input functions. We also detail the training procedure for learning voting rules.

3.1 Constructing permutation-invariant architectures

Functions defined on sets are by definition permutation-invariant [Zaheer et al., 2017].

Property 1. Let 2X represent the powerset of X . Any set-input function f : 2X 7→ Y must be invari-
ant to the reordering of its inputs by any permutation σ: f({x1, . . . , xM}) = f({xσ(1), . . . , xσ(M)})

Zaheer et al. [2017] showed that one can practically train expressive set-input neural networks by
chaining together a permutation-equivariant feature extractor (encoder) and a permutation-invariant
decoder.3 permutation-equivariance is the property that when the inputs of a function are permuted,
the outputs get permuted the same way:

Property 2. A function f : RM×din 7→ RM×dout is permutation-equivariant if
f([xσ(1), . . . , xσ(M)

]) = [fσ(1)(x), . . . , fσ(M)
(x)]

3Composition of permutation-equivariant and permutation-invariant functions results in permutation-invariant
functions.
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All of the architectures described below follow the central design principle of composing permutation-
equivariant building blocks with permutation-invariant ones to build expressive set-input networks.

DeepSets [Zaheer et al., 2017] This architecture first encodes each element of the set independently
using an encoder network (e.g. a multilayer perceptron), pools the outputs of the encoder (e.g. using
sum, max or mean pooling) and finally passes the result through a decoder network (e.g. another
multilayer perceptron). Since the encoder treats the elements of the set independently to achieve
permutation-equivariance, the pooling operation is the only step that can model interactions between
the elements in the set.

(Fully-connected) graph neural networks (GNNs) Instead of achieving permutation-equivariance
through the independent processing of the set elements, we can instead view the input set as a
fully-connected graph and build a GNN-based [Scarselli et al., 2008] encoder that takes into account
all of the interactions between different elements of the set. Each GNN layer transforms the nodes in
the graph by concatenating a permutation-invariant aggregation of features of the neighbour nodes
and a transformation that produces the next-layer features given the current-layer features and the
result of aggregation. A GNN consists of multiple GNN layers, and the graph-level embedding is
obtained by pooling all the node features using a permutation-invariant function. In our experiments,
we use a powerful variant of GNN — the Graph Isomorphism Network (GIN) [Xu et al., 2018].
Detailed background on GNNs and GIN can be found in Supplementary Material.

For a fully-connected graph, the graph structure remains unchanged under node permutation. Since
both the neighbourhood aggregation and the graph-level pooling operations are permutation-invariant,
the whole GNN represents a permutation-invariant function.

Set Transformers [Lee et al., 2019] The computational building block of set-transformers is the
Query-Key-Value (QKV) attention [Vaswani et al., 2017], which can be interpreted as a differentiable
dictionary retrieval operation. The neural network controls both the input and output space of the
QKV operation using multihead attention, which multiplies all the input and output tensors by
learnable weight matrices.

The multihead attention possess desirable permutation-equivariance/invariance properties for learning
set-input functions. Set Transformer builds highly expressive encoder-decoder architecture with
multiple multihead attention blocks, resulting in the overall permutation-invariance [Lee et al., 2019].
Detailed background and the full encoder-decoder architecture are found in Supplementary Material.

3.2 Universality results

An important property that we would like these neural network architectures to possess is universal
approximation in the space of permutation-invariant functions. Since any anonymous voting rule
can be expressed as a permutation-invariant function without the presence of ties, a universal
approximating network has the maximum representational power over these voting rules.

Throughout this section, we assume that the input feature space X is countable. We also assume that
the output space is R. These assumptions are appropriate in the case of approximating voting rules.4

The universal approximating properties of DeepSets and the Set Transformer have been estab-
lished [Zaheer et al., 2017, Lee et al., 2019]. We establish the universal approximating results of GIN
in the following subsection.

3.2.1 Universality of GIN

Xu et al. [2018] showed that the representational power of GIN is equal to the power of the Weisfeiler-
Lehman (WL) graph isomorphism test [Weisfeiler and Leman, 1968]. We extend their result to
show that in the case of fully-connected graph structures (as in learning voting rules), GIN has equal
representational power as the full graph isomorphism testing. We state this result formally below:

Theorem 1. Let G1, G2 ∈ G be any two non-isomorphic fully-connected coloured graphs. Let
A : G → Rd be a GNN that maps any two graphs that the Weisfeiler-Lehman test of isomorphism
decides as non-isomorphic to different embeddings in Rd. Then A maps G1 and G2 to different
embeddings.

4Even though the networks output logits in Rm, it is sufficient to show the networks are universal in
representing a scalar function with a maximum on the logits.
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Algorithm 1: Supervised Learning of Voting Rules
Inputs :Utility distribution Pu,

Existing voting rule or oracle f
Initialize the weights of model fW
while loss not converged do

Sample voter utilities: ~u ∼ Pu
Compute preference profiles: ~σ(~u)
Get target winner y = f(~σ) (existing rule)

or y = f(~u) (oracle)
Get predicted winner ŷ = fW(~σ)
Compute prediction loss: l = l(ŷ, y)
Compute gradients ∂l

∂W and update weightsW
end
return Learned rule fW

The proof hinges upon the observation that when applied to fully-connected coloured graphs, the
Weisfeiler-Lehman iterations do not alter the colouring of nodes. We defer the formal proof to
Supplementary Material.

In order to establish universality results from Theorem 1, we refer to Chen et al. [2019], who estab-
lished the equivalence between graph isomorphism and the universal approximation of permutation-
invariant functions. In particular, Chen et al. [2019] proved that if a GNN is graph isomorphism-
discriminating, then the GNN with additional two feed-forward layers is universal approximating.

3.3 Learning voting rules

We would like to train neural networks to represent voting rules — the network takes in the voter
preference profile, and outputs the predicted winner.5 In this paper, we are interested in training
networks to perform two tasks: 1) to mimic existing voting rules, and 2) to discover novel voting rules
that maximize some notion of social welfare. The training data for the first task naturally provides
input-label pairs, making it suitable for supervised learning. For the second task, different learning
approaches are possible.

Maximizing social welfare Under the utilitarian framework, the social welfare is a function of the
underlying utilities that voters assign to the candidates. In reality, neither the voter utilities nor the
social welfare quantity are easily accessible. However, if we make assumptions on the distribution
from which the voter utilities are generated, we can generate synthetic training data and get access to
the utility information.

It is possible to frame the social welfare maximization as a reinforcement learning (RL) problem,
or more specifically, as a contextual bandits problem. The network would learn to maximize the
reward (social welfare) by choosing an action (the winner candidate) from a discrete set, given some
situation or context (the voter preference profile).

A more straightforward alternative is to use supervised learning. Since we have access to the utilities
at training time, we can define an oracle “voting rule” that takes in the utilities and outputs the winner
that maximizes social welfare.6 We can then train the networks using supervised learning, with the
oracle output as the target. This approach is also called behaviour cloning. Compared to RL, it
has the weakness of penalizing all wrong predictions equally. However, it is easier to optimize and
empirically yields strong results (Section 4). We leave the RL approach to future work.

Since the training procedure is identical to that of the first task (except that we mimic the oracle
instead of an existing voting rule), we summarize the training procedure for both tasks in Algorithm 1.

5For detailed discussion about the input and output representations, see Supplementary Material.
6The oracle is not an actual voting rule, as it uses information (utilities) that is not accessible to voting rules.
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Architect. Mimicking Accuracy

Plurality Borda Copeland Maximin Kemeny

Set Trans. 1.0 0.99 0.82 0.80 0.94
GIN 1.0 0.99 0.81 0.77 0.82
DeepSets 1.0 0.96 0.83 0.78 0.89
MLP 1.0 0.95 0.81 0.75 0.76

Table 1: Voting rule mimicking accuracy of learned voting rules. The entries represent the proportion
of times the learned voting rule successfully predicts the output of the Plurality, Borda, Copeland,
Maximin and Kemeny rules (higher is better). Permutation-invariant architectures achieve near
perfect accuracy in approximating score-based voting rules (Plurality and Borda) and compelling
accuracy in comparison-based rules (Copeland, Maximin and Kemeny).

4 Experiments

In this section, we investigate the effectiveness of PIN models on 1) mimicking classical voting rules
(Section 4.1) and 2) discovering novel voting rules that maximize social welfare (Section 4.2).

Training data generation We used synthetically generated elections to train the networks. In our
experiments, we sampled elections with numbers of voters and candidates ranging between 2 to 99
and 2 to 29 respectively (except for mimicking the Kemeny rule, where we sampled 3 to 10 candidates
due to solver and computation constraints). We sampled the (normalized) voter utilities from the
Dirichlet distribution with concentration parameters α ∈ Rnc , where nc is the number of candidates.
Sampling from the Dirichlet distribution ensures that the sampled utilities are non-negative and sum
up to one. Different Dirichlet parameters lead to qualitatively different elections. We consider the
following cases where the utility distribution is symmetric to each candidate, i.e. α = [α0 . . . α0].7
Specifically, we used α0 = 0.5 and 2 for “polarized” and “indecisive” in our experiments, respectively.

• “Polarized” (0 < α0 < 1): each voter likely strongly prefers a candidate.
• “Uniform” (α0 = 1): all utility profiles are assigned equal probability.
• “Indecisive” (α0 > 1): voters likely have no strong preference for the candidates.

We then used the generated utilities to compute the voter preference profiles. We also computed the
target winner either based on an existing voting rule8 (Section 4.1) or an oracle that maximizes social
welfare based on the utilities (Section 4.2). The neural networks attempt to predict the winner using
only the voter preference profiles (pre-processed with the one-hot candidate id function described in
Supplementary Material).

To evaluate the diversity of the synthetically generated data, we empirically estimated the probability
of pairs of traditional voting rules producing the same winner, using the “uniform” utility distribution
(Table 5 in Supplementary Material). We conclude that the synthetically generated elections are
diverse, hence can differentiate the voting rules.

Network architecture details We compared the performance of DeepSets [Zaheer et al., 2017],
Graph Isomorphism Networks [Xu et al., 2018] and Set Transformers [Lee et al., 2019]. To make
the results as comparable as possible, we constructed all architectures to have roughly 10 million
parameters and comparable depth. We also used the same normalization layer (LayerNorm [Ba et al.,
2016]) in all of the architectures. We additionally trained similar-sized multilayer perceptrons (MLP)
as baseline. Further details of the architectures are described in Supplementary Material.

Training setup We used the Lookahead optimizer [Zhang et al., 2019] to train the DeepSet models,
and the Adam optimizer [Kingma and Ba, 2015] to train the other networks. We tuned the learning
rate for each architecture. We used the cosine learning rate decay schedule with 160 steps of linear
warmup period [Goyal et al., 2017]. We used a sample size of 64 elections per gradient step. We
trained each PIN model for 320,000 gradient steps. We trained each MLP model for three times as
long (960,000 gradient steps), as MLP models are observed to learn more slowly. Additional details
for the training setup are included in the Supplementary Material.

7The outcomes of these elections are difficult to predict, as no candidate is obviously preferred.
8For the mimicking tasks, we removed elections that have tied winners except for the Kemeny rule, in which

case the integer programming solver we used does not efficiently detect the existence of ties.
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4.1 Mimicking classical voting rules

Are Permutation-Invariant Networks (PIN) expressive enough to represent a number of classical voting
rules? How does their performance vary as we move from computationally cheap position-based
voting rules, such as Plurality and Borda, to more computationally demanding comparison-based
ones, such as Copeland, Maximin and Kemeny? We generated synthetic data with the “uniform”
utility distribution, and trained PINs to mimic these aforementioned voting rules. We then tested
the robustness of the learned voting rules by computing how their mimicking performance varies on
elections with different number of voters and candidates, elections from different data distributions
and elections sampled from real world datasets.

Architect. Mimicking Accuracy for
Different Number of Voters

(within-domain) (out-of-domain)
2-49 50-99 100-149 150-199

Set Trans. 0.99 0.99 0.99 0.99
GIN 0.99 0.99 0.98 0.98
DeepSets 0.97 0.96 0.95 0.95
MLP 0.96 0.93 N/A N/A

Table 2: The accuracy of permutation-invariant networks on
predicting the Borda winner (higher is better). Even though
the networks were trained on elections with less than 100
voters, the learned rules generalize seamlessly to unseen num-
bers of voters much larger than encountered during training.

Mimicking accuracy The perfor-
mance of all architectures on mim-
icking the Plurality, Borda, Copeland,
Maximin and Kemeny rules are pre-
sented in Table 1. For each value
in Table 1, we sample 16,384 elec-
tions from the training distribution. A
first observation is that PINs achieve
near perfect accuracy in approximat-
ing score-based voting rules. This is
a significant result, as many theoreti-
cally optimal voting rules are known
to be score-based [Boutilier et al.,
2015, Young, 1975]. Secondly, PINs
outperform MLP models in all cases
(except for Plurality, which all models
learned perfectly). We would like to highlight that PINs achieve high accuracy in mimicking the
Kemeny rule (significantly better than the MLP baseline), which is NP-hard to compute exactly. This
shows that PINs have high potential as efficient approximate solutions for computationally expensive
voting rules.9

Generalization to unseen numbers of voters Can PINs generalize to elections with a number of
voters bigger than that encountered during training? We tested the PIN models on elections with
voters between 2 and 199 (the models are trained on maximum 99 voters). We report the results
in mimicking Borda in Table 2. Similar results for mimicking Plurality, Copeland, Maximin and
Kemeny can be found in Supplementary Material. This confirms that the PIN models have indeed
learned proper set-input functions, instead of overfitting to the election sizes observed during training.
Note that it is impossible to test the MLP models on elections with more than 99 voters due to the
fixed input size. Scaling up an MLP model to fit elections with up to 199 voters would require
doubling its input size, increasing its number of parameters and retraining. This is a major advantage
that PINs have over MLP models. We leave a thorough investigation of PIN models under drastic
distribution shifts (such as elections that are orders of magnitude larger) to future work.

Generalization to real-world datasets We trained the networks on synthetic data to mimic the
classical voting rules, and tested them on three real-world datasets: the Sushi dataset [Kamishima,
2003] (10 candidates), the Mechanical Turk Puzzle dataset [Mao et al., 2013] (4 candidates) and
a subset of the Netflix Prize Data [Bennett et al., 2007] (3-4 candidates). We randomly sampled
elections from these datasets with number of voters from 2 to 99 for testing. Details of the testing
data can be found in Supplementary Material.

The results (Table 4) show that PINs have learned voting rules that generalize well to real datasets,
and slightly outperform those learned by the MLP. Interestingly, the mimicking accuracy on the real
datasets is higher than that on the synthetic training data (Table 1). This likely indicates that the
winners for synthetic elections generated by the uniform Dirichlet distribution are harder for the
networks to determine than most real-world scenarios. While we found that it was not necessary in
our experiments, it is also feasible to fine-tune synthetically trained networks on real data to further
adapt to unseen distributions.

9PINs may be more efficient in computing the winner of a single election, and more importantly, batches of
elections can be parallelized very efficiently in PINs with GPUs. This is a property that traditional solvers lack.
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Arch. Mimicking Acc. (Netflix) Mimicking Acc. (Sushi) Mimicking Acc. (MTP)

P. B. C. M. K. P. B. C. M. K. P. B. C. M. K.

Set T. 1. 1. 1. 1. .99 1. 1. .98 1. .98 1. 1. 1. 1. 1.
GIN 1. 1. .98 .98 .97 1. 1. .98 .98 .96 1. 1. .98 .99 .99
DeepS. 1. 1. 1. 1. .99 1. 1. .98 .99 .97 1. 1. 1. 1. 1.
MLP 1. 1. .96 .97 .97 1. 1. .98 .98 .96 1. 1. .98 .98 .99

Table 4: Voting rule mimicking accuracy of networks trained on synthetic elections and tested on
three different real-world datasets. Compared to the synthetic data (Table 1), the performance of all
learned voting rules are substantially better when applied to real data. This compelling zero-shot
generalization performance suggests that training on diverse and difficult synthetic datasets is a
promising approach to overcome the sample inefficiency of training large neural networks.

Architect. Uniform Polarized Indecisive

Util. Egal. Util. Egal. Util. Egal.

Set Trans. 0.68 0.66 0.67 0.68 0.70 0.54
GIN 0.69 0.65 0.68 0.67 0.70 0.55

DeepSets 0.67 0.65 0.66 0.67 0.68 0.57
MLP 0.67 0.65 0.66 0.67 0.69 0.54

Plurality 0.42 0.40 0.47 0.46 0.39 0.31
Borda 0.56 0.58 0.50 0.51 0.61 0.53

Copeland 0.52 0.53 0.48 0.49 0.56 0.48
Maximin 0.50 0.50 0.46 0.47 0.53 0.45
Optimal 0.65 - 0.65 - 0.67 -

Table 3: The accuracy by which learned voting rules can
predict the candidate that maximizes the utilitarian and egal-
itarian social welfare functions on different utility distribu-
tions (“uniform", “polarized" and “indecisive") — higher is
better. The PIN models slightly outperform, and mostly are
on par with the MLP ones. All the neural network models
outperform classical voting rules.

Apart from real-world datasets, we
show in the Supplementary Material
(Table 6 and 7) that the learned voting
rules also generalize well to other syn-
thetic data distributions. The strong
generalization performance of synthet-
ically trained voting rules (including
the MLP baseline) is significant from
a sample-complexity perspective. Pro-
caccia et al. [2009] showed that po-
sitional scoring rules are efficiently
PAC learnable, but learning pairwise
comparison based voting rules in gen-
eral requires an exponential number
of samples. While training neural
networks requires large amounts of
data, our synthetic-to-real generaliza-
tion results suggest that training on
diverse and difficult synthetic datasets
can achieve compelling zero-shot gen-
eralization performance. This is especially significant for NP-hard voting rules such as Kemeny.

4.2 Maximizing social welfare

In almost all real elections, we only have access to voter preference profiles, but not the underlying
utilities. While the theoretically optimal voting rule is known assuming utilitarian social welfare
(Section 2.3), no theoretical results are yet established for general social welfare functions.

However, with PINs being general function approximators, we can train them to discover these
potentially unknown social welfare-maximizing voting rules. We define an oracle to be the “ideal”
voting rule that has access to the underlying utilities (possible on synthetic data), and computes the
winners that maximize some social welfare function. We then trained the neural networks to mimic
the oracles given only the voter preference profiles.

We experimented with two different social welfare functions (utilitarian and egalitarian) and three
different utility distributions (uniform, polarized and indecisive). We report the accuracy of the best
candidate predictions attained by the learned voting rules in Table 3. We compare these with the
performance achieved by classical voting rules (Plurality, Borda, Copeland and Maximin).10 For the
utilitarian social welfare, we report the performance of the theoretically optimal voting rule as well.

Table 3 shows that all the neural network models achieve better accuracy than the classical voting
rules. When the theoretical optimal voting rule is known (i.e. with utilitarian social welfare), the

10Due to the computational cost of generating training data with large numbers of candidates, we do not report
Kemeny results here.
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Figure 1: Normalized histogram of the ratio between the social welfare following different voting
rules and the optimal social welfare, for the utilitarian and egalitarian social-welfare functions. Data
are sampled from the “uniform” distribution.

neural networks match the accuracy of the optimal rule.11 This indicates that neural networks are
highly effective in discovering novel voting rules that maximize general social welfare functions.

Besides the prediction accuracy, we also evaluate the distribution of the resultant social welfare
following the baseline and the learned voting rules. Figure 1 shows the normalized histogram of the
ratio between the social welfare following a voting rule and the optimal social welfare:

sw(â, ~u)

maxa sw(a, ~u)
(â is the winner chosen by a voting rule).

The conclusion from Figure 1 is consistent with the accuracy results. The neural networks models are
better at maximizing social welfare than the classical voting rules, in that they achieve higher social
welfare values.

Note that although the performance of PINs in Table 3 and Figure 1 is on par with MLP, PINs
still have the fundamental advantage of respecting voter anonymity and being able to generalize to
arbitrary voter numbers, as discussed in Section 4.1.

5 Related works

Procaccia et al. [2009] showed that positional scoring rules are efficiently PAC learnable, but learning
pairwise comparison-based voting rules in general requires an exponential number of samples.
Boutilier et al. [2015] proved that the optimal voting rule that maximizes the average-case utilitarian
social welfare is a positional voting rule for any neutral utility distributions. Also, the line of work
in distortion focuses on developing and analyzing voting rules that are optimal for the worst-case
utilities [Boutilier et al., 2015, Caragiannis et al., 2017]. We focus on the average-case maximization of
social welfare, but without assumptions on the social welfare function or any given utility distribution.
Xia [2013] proposed a generic workflow towards designing social choice mechanisms using machine
learning and outlined approaches could take to incorporate desirable axioms. Armstrong and Larson
[2019] and Firebanks-Quevedo [2020] proposed using deep learning to learn voting rules that satisfy
desirable axioms.

Kujawska et al. [2020] and Burka et al. [2021] used several classical machine learning methods such
as support vector machines, gradient boosted trees and shallow MLPs to mimic existing voting rules
(including Borda, Kemeny and Dodgson). Compared to the models in Kujawska et al. [2020] and
Burka et al. [2021], our PIN models have fundamental advantages such as anonymity by construction
and generalization to unseen numbers of voters.

11Note that the theoretically optimal voting rule maximizes expected social welfare, not the accuracy by which
the optimal candidate is elected, which explains why its accuracy value may trail that of the learned voting rules.
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6 Limitations and future directions

Our work is currently limited to elections with complete rankings and strict orders, and to the single-
winner case. Future work should explore generalization to rankings that are incomplete and with
ties, and potentially to predicting rankings instead of a single winner. Moreover, we’re interested
in architectures that support an arbitrary number of candidates at test time by construction (for
PIN architectures, number of candidates encountered during test time is limited by the number of
candidates the network was trained on.) We would also like to explore the reinforcement learning
approach to maximizing social welfare rather than supervised learning (discussed in Section 3.3).

Last but not the least, we would like to raise two important points of considerations to the attention
of practitioners working on sensitive applications: 1) The neural networks architectures we discuss
in the paper are neither interpretable nor transparent by construction, and further effort is needed
to understand their inner workings. 2) There are no guarantees as to their worst case performance
and further empirical (and, is possible, theoretical) analyses is needed. Until the aforementioned
points of consideration are addressed, we caution against the direct application of our methods on
safety-critical and sensitive settings.

7 Conclusion

We show that PIN architectures are both theoretically and empirically well-suited for learning voting
rules. PIN models respect voter anonymity by construction and are universal approximators for
representing voting rules. After training on synthetic data, PIN models generalize seamlessly to
unseen real datasets and an unseen number of voters. They can also be trained to maximize social
welfare better than fixed classical voting rules. The flexibility and effectiveness of our approach
clears some of the hurdles in the design and implementation voting rules.
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