
Under review as a conference paper at ICLR 2023

LEARN TOGETHER, STOP APART:
AN INCLUSIVE APPROACH TO ENSEMBLE PRUNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Gradient Boosting is the most popular method of constructing ensembles that
allows to get state-of-the-art results on many tasks. One of the critical parameters
affecting the quality of the learned model is the number of members in the ensemble
or the number of boosting iterations. Unfortunately, the problem of selecting the
optimal number of models still remains open and understudied. This paper proposes
a new look at the optimal stop selection problem in Gradient Boosting. In contrast
to the classical approaches that select a universal ensemble size using a hold–
out validation set, our algorithm takes into account the heterogeneity of data in
the feature space and adaptively sets different number of models for different
regions of data, but it still uses the same common ensemble trained for the whole
task. Experiments on SOTA implementations of Gradient Boosting show that
the proposed method does not affect the complexity of learning algorithms and
significantly increases quality on most standard benchmarks up to 2%.

1 INTRODUCTION

There are still many areas where classical machine learning algorithms prevail over deep neural
networks despite the dramatic growth of their usage in artificial intelligence research and industry.
One of such classical algorithms is Gradient Boosting (GB) (Friedman (2001)). It allows to obtain
high-quality models on table data with no multimedia (e.g., images, audios, videos), with categorical
features, noisy features and labels, and missing data (Zhang & Haghani, 2015; Li et al., 2007;
Babajide Mustapha & Saeed, 2016). Also, the undoubted advantage of the boosting method is the
relatively low computational cost of training and inference (Deng et al., 2018). For these reasons,
Gradient Boosting is widely used in ranking (Chapelle & Chang, 2011), recommender systems
(Cheng et al., 2014), automatic machine learning (LeDell & Poirier, 2020), and many other tasks
(Touzani et al., 2018; Trofimov et al., 2012; Ling et al., 2017).

In recent years, different new options and hyperparameters have been proposed for GB influencing
its performance (Ke et al., 2017; Ibragimov & Gusev, 2019). However, the learning rate and the
size of the ensemble are still the key parameters. Large models reveal complex dependencies in the
data but require more time for training and inference (Friedman, 2002). Moreover, they are prone
to overfitting on noisy datasets with simple dependencies, while smaller models perform better on
such data. The standard approach to select an optimal number of models in the ensemble is the early
stopping method based on a hold-out validation set. The idea is to set a large enough model size and
choose the value of the size (overfitting point) where the validation score stops growing and begins
going down.

The standard early stopping method has a significant and surprisingly understudied weakness. The
approach assumes the existence of a universal ensemble size equally effective for any data point.
However, the learning task can consist of different subtasks corresponding to different regions in the
input space and functional dependencies. Some regions can have complex surfaces for training where
many boosting rounds are required until convergence, and some regions can reveal simple but noisy
dependencies, where overfitting begins much earlier. In such a situation, the standard early stopping
is a compromise between simple and complex areas, and it can provide models with a composition of
overfitted and underfitted regions.

To handle this issue, we propose a new approach to early stopping in GB based on an adaptive
choice of the optimal size of the ensemble. As in the standard version of GB (Friedman, 2001), we

1

Under review as a conference paper at ICLR 2023

train one sequence of learners in an ensemble. However, at inference, we apply different number of
learned models to different regions in the dataset. Namely, we build an additional partition model
that sequentially divides the input space into regions of presumably homogeneous complexity and
representativity of data and, at the same time, optimizes the size of the trained ensemble to each region
individually. It turns out that building such a model is not an easy task, and that is the reason why
such an algorithm was not implemented earlier in the main GB libraries. In particular, straightforward
approaches such as direct prediction of the best iteration have fundamental drawbacks and do not
work. Besides, the non-trivial problem is controlling the new hyper-parameters: partition’s complexity
and generalization ability of the partition model. These are, in some sense, meta-hyper-parameters
over hyper-parameters, since the partition model defines ensemble sizes. We develop a specific
two-level cross-validation scheme to control the whole construction.

Despite the apparent complexity, the proposed methods incur meager computational costs and can be
easily incorporated into any existing learning pipeline and applied to any learning task with arbitrary
loss. We apply the proposed approach to state-of-the-art open-source GB algorithms, LightGBM
and CatBoost, and demonstrate its ability to outperform consistently on standard publicly available
benchmarks for GB. We show that the described problem of the universal stopping moment highly
affects the quality of trained models. To the best of our knowledge, this is the first research devoted
to effective adaptive early stopping in GB, and we hope this paper will encourage further research of
the GB algorithm.

2 RELATED WORK

2.1 ENSEMBLE PRUNING

Pruning often refers to various techniques for compressing models for more efficient storage and
inference complexity. The classic work on this task (Margineantu & Dietterich, 1997) compared five
different pruning methods applied to boosting algorithm. In most cases, pruned models were able
to maintain and increase the original quality with a moderate reduction in size. Most of the modern
pruning techniques are based on the fact that similar learners in the ensemble duplicate the information
about the dataset so that they can be eliminated from a model sequence (Cavalcanti et al., 2016;
Li et al., 2012). There also have been attempts to formulate ensemble pruning as an optimization
problem and apply genetic algorithms (Zhou & Tang, 2003) or semi-definite programming (Zhang
et al., 2006) to find a solution.

Several papers (Cruz et al., 2015; 2018) addressed the problem of adaptive online pruning in Multiple
Classifier Systems settings, where classifiers are learned independently and selected via meta-learning
approaches. Also, (Oliveira et al., 2017) and (Hernández-Lobato et al., 2008) propose an instance–
wise pruning methods that allow for halting some models at inference time, while in (Soto et al.,
2014) both static (training time) and dynamic (inference time) pruning in AdaBoost are investigated.

2.2 GRADIENT BOOSTING EARLY STOPPING

Unlike some other ensemble methods (including bagging), GB suffers from overfitting when the
ensemble size is large. Therefore, the control of the number of boosting steps is primarily a
regularization technique (Fan et al., 2002). In particular, the original paper (Friedman, 2001) contains
direct guidance to tune the number of models in the ensemble (Section 5):" For additive expansions
(2) a natural regularization parameter is the number of components M".

Since the GB size is responsible for the expressiveness of the ensemble, one of the ideas proposed
in the literature (Chang et al., 2010; Mayr et al., 2012) is to penalize the complexity of the models,
e.g., via AIC-based methods by approximating the ensemble’s degrees of freedom. Some works
use generalization bounds of the algorithm employing VC-dimension (Freund & Schapire, 1997),
Rademacher complexity (Cortes et al., 2019), or in the PAC setting (Yao et al., 2007; Wei et al., 2017).
These methods do not require separate validation control but, in most cases, are not applicable in
real-world tasks since the obtained bounds are distribution–agnostic.

The standard approach of early stopping used in all modern GB implementations utilizes the simple
"waiting" idea. If the validation quality does not improve for some "reasonable" number of iterations,
then the training must be stopped (see, e.g., (Click et al., 2016)). In this paper, we adopt a standard

2

Under review as a conference paper at ICLR 2023

early stopping scheme described in (Margineantu & Dietterich, 1997): shrink the model to the first
M learners that give the best validation score. Nevertheless, unlike all previous works on Gradient
Boosting, instead of a universal constant, we strive to select this number adaptively for different
regions of the input space, taking into account the training data distribution.

3 BACKGROUND

In this section, we introduce necessary notations and briefly discuss basic concepts concerning
Gradient Boosting and cross-validation for independent reading reasons.

3.1 GRADIENT BOOSTING

Let S = {xi, yi}ni=1 be a sample from some fixed but unknown distribution P (x, y), where xi =
(x1i , ..., x

m
i) ∈ X is an m-dimensional feature representation and yi ∈ Y is a target value of

the i-th observation. We consider the learning problem that consists in constructing a function
F : X→ Y minimizing the expected target prediction error, which is calculated using a loss function
L : Y× Y→ R+: L(P, F) := E(x,y)∼P [L(F (x), y)]→ min

F
. Since the distribution P is not given,

the task reduces to empirical risk minimization problem:

L̂(S, F) = Ê(x,y)∼S [L(F (x), y)] =
1

n

n∑
i=1

L(F (xi), yi)→ min
F

The ability to achieve the smaller value of the empirical risk is bounded by the complexity of the
set F from which the desired function F ∈ F is selected. Gradient Boosting (GB) increases the
expressiveness of the learned model by building a composition (or an ensemble) FB of size B as a
weighted sum of base functions {f1, f2, ..., fB} ⊂ F :

FB(x) =

B∑
i=1

αifi(x) (1)

When the set of available ba The approximate solution of the latter equation in GB is usually
constructed as follows. Algorithm calculates first and second order derivatives of L̂ at the point Ft−1

w.r.t. predicted values ŷ: gti = ∂L(ŷi,yi)
∂ŷi

∣∣∣∣
ŷi=Ft−1(xi)

, hti = ∂2L(ŷi,yi)
∂ŷ2

i

∣∣∣∣
ŷi=Ft−1(xi)

, and selects a least

squares estimator to Newton’s gradient step in the functional space:

ft = arg min
f∈F

N∑
i=1

hti(~xi, yi)
(
f(~xi)−

(
− gt

i(~xi,yi)
ht
i(~xi,yi)

))2
, see (Chen & Guestrin, 2016) for details.

3.2 MODEL SELECTION AND EARLY STOPPING VIA CROSS-VALIDATION

Since the quality estimation based on a train set used in the learning process is biased (Prokhorenkova
et al., 2017), it is conventional to use a separate independent set, called validation set, to control the
generalization ability of the algorithm. The whole dataset S is split into two disjoint sets Strain and
Svalid, where the first one is used for learning and the latter one for quality estimation.

The final result of this procedure is often highly dependent on the particular train-validation split
and, therefore, quality estimation can be noisy. A common way to tackle this issue is to use cross-
validation (Stone, 1974) method: split the data S into k disjoint subsets or folds (S1,S2, ...,Sk) of

approximately equal size s.t. S =
k⊔

i=1

Si and perform k rounds of training–evaluation cycle using

S−i := S \ Si as the training set and Si as the validation data for each i ∈ {1, 2, ..., k}. In this way,

we get k different B-sized models {F j
B(x) =

B∑
i=1

αf ji (x)}kj=1 learned by k training sets {S−j}kj=1.

3

Under review as a conference paper at ICLR 2023

Algorithm 1 Adaptive stopping procedure
Input: S = (X,y)
folds← (S1,S2, ...,Sk)← CvSplit(k,S)
cvPred← CvPredict(folds)
partition← (D1,D2, ...,DC)← GetPartition(S)
bestIter ← EvalBestIter(folds, cvPred, partition)
finalModel← Train(X,y, partition, bestIter)
return finalModel

At j-th cross–validation step, we apply all the prefixes F j
i of the model F j

B to validation set Sj and

obtain quality estimators lj = (l
(1)
j , l

(2)
j , ..., l

(B)
j), where l(b)j = 1

|Sj |
∑

(x,y)∈Sj
L
(
F j
b (x), y

)
. The

aggregated estimator l = 1
k

∑
lj is further used to define B̂ := arg min

1≤b≤B
l(b). The model shrinked to

the first B̂ iterations provides an estimator with the test quality close to min
1≤b≤B

E(x,y)∼P [L(Fb(x), y)].

4 ADAPTIVE EARLY STOPPING

The problem with the standard early stopping method described in Section 3.2 is that the desired goal
should be to minimize E(x,y)∼P min

1≤b≤B
[L(Fb(x), y)] due to an obvious inequality:

E(x,y)∼P min
1≤b≤B

[L(Fb(x), y)] ≤ min
1≤b≤B

E(x,y)∼P [L(Fb(x), y)]. (2)

This simple mathematical fact convinces us that the existing early stopping scheme is ineffective.
Adaptive selection of individual ensemble sizes for specific areas can achieve better quality by
eliminating the theoretical gap given by inequality 2. In the following sections, we describe possible
approaches to adaptive iterations count selection and to control its effect.

4.1 MAIN IDEA

Suppose the input space D is divided into C disjoint regions (D1,D2, ...,DC) in such a way that
all samples in Di are close to each other in some sense (they follow the same latent distribution or
geometry). Note that this partition is unrelated to the split induced by cross-validation since the latter
split is done randomly, and there is no reason to expect the closeness of samples inside a single fold.
We assume that (D1,D2, ...,DC) is clustering in the sense that data points of the same cluster Di

behave similarly during the procedure of training an ensemble in the sense that the optimal number
of boosting iterations B̂i estimated for Di may differ a lot from the one estimated for Dj . Therefore,
by analogy with the inequality 2, we can conclude that ensemble size selection based on partition D,
where the size is chosen individually for each cluster Di, can have better quality compared to one
"universal" common size:

EDi∼D min
1≤b≤B

E[L(Fb(x), y)|Di] ≤ min
1≤b≤B

EP [L(Fb(x), y)]. (3)

Setting C = n may achieve the theoretical lower bound of the left-hand side of Equation 3. However,
the size B̂i of the ensemble will be optimized based on the empirical estimation of the loss, and the
growth in C is accompanied by the growth of the variance of this estimation for each region Di. So
the number of regions should be selected reasonably (we discuss it further in the text).

The upper-level training algorithm consists of 4 steps: 1) Cross-validated training of k models; 2)
Distribution-based partition (D1,D2, ...,DC) of the sample space; 3) Selecting optimal number of
iterations (B̂1, B̂2, ..., B̂C) for each region obtained on the step 2; 4) Train the final model on the
whole training data. The formal description is presented in the Algorithm 1.

4

Under review as a conference paper at ICLR 2023

4.2 OPTIMAL POINT REGRESSION

One of the most straightforward ideas towards adaptive stopping is to learn a regression model,
which predicts an optimal number of term in the trained ensemble to be applied to each example. In
terms of the general adapting stopping framework (Algorithm 1), GetPartition should be a function
assigning each data point to an individual cluster and EvalBestIter should train a mapping from
data points to the best number of iterations (obtained from cvPredictions matrix). This regression
model is further applied to test examples to estimate the early stopping moments.

Figure 1: GB: learning curve samples (test set) Figure 2: Distribution of relative shift of best
iteration predictions

Unfortunately, this simple idea does not work in practice. Training a separate GB regression model
with the same size as the primary model followed by applying it on the test sample and individual
pruning degrades the prediction logloss compared to the standard non-adaptive scheme for selecting
the number of trees by 1.5% on average.

This is because the best iteration is known to be a very noisy target as the Gradient Boosting training
process is complex and in some cases partially random (Friedman, 2002). Visualization of learning
curves (Figure 1) of test samples demonstrates that loss histories are very chaotic and look like
realizations of some random process. Therefore, each curve can accidentally reach the minimum
value at an arbitrarily late point. However, as practice shows, the general minimum point (following
the trend line) is bounded with some finite value. That is why training a good regressor is a challenging
task. Figure 2 demonstrates the results of best iteration regression via a separate Gradient Boosting
model. We take the trained regression model predictions and divide them by the actual best stopping
moment. From there, we can see that at least half of the samples are overestimated by about two
times, so selected stops are far suboptimal.

4.3 UNSUPERVISED PARTITION

As was mentioned at the beginning of this Section, the partition should reflect the internal structure
of the data to be sophisticated enough to select a fair number of models. Let us use a reasonable
assumption that close observations in the feature space are also close in their properties. Then we
can use one of clustering algorithms (e.g., KMeans (Lloyd, 1982), EM (Dempster et al., 1977),
agglomerative method (Sibson, 1973)) to get data partition (function GetPartition in Algorithm 1).

It is essential to preserve the initial geometry of the input space since most of the modern implementa-
tions of Gradient Boosting use Decision Tree (Breiman et al., 2017) as a base learner. Decision Tree
constructs piecewise-constant approximations at each step, and it is more likely for close instances to
get into the same leaves during training and inference, so they tend to fit equally. The unsupervised
partition method allows controlling the number of partition regions and their sizes via setting the
desired number of clusters, and minimal samples count in each cluster.

This method applied to real data exhibits several disadvantages. First, clustering does not work well
with data with non-numeric categorical features. Numeric encoding of high-cardinality categorical
features leads to sparse input space and dramatically affects clusterization’s capacity. Second,
unsupervised partition does not consider the labels of the data points, although they may contain

5

Under review as a conference paper at ICLR 2023

Figure 3: Clustering obtained via decision tree trained with Eq. 4 as split scoring function (DSP),
validation and test results. The number after "test" is test samples count per cluster.)

valuable information about the required number of boosting steps. Last, some advanced clustering
algorithms require high computational costs, becoming a bottleneck when training a model.

To validate the statements and assumptions above, we use large numeric datasets Higgs and HEP-
MASS and compare KMeans clustering with the algorithm proposed in this paper. The unsupervised
approach turns out to be a good choice for adaptive pruning strategy but, at the same time, strictly
worse (see experiments Section 6) than the supervised one described in the following subsection.

4.4 DIRECT SUPERVISED PARTITION (DSP)

To avoid issues described in the previous paragraph, the partition unit (function GetPartition in Al-
gorithm 1) should be scalable, interpretable in terms of built subspaces, and tolerant to heterogeneous
feature input. We find the Decision Tree model to be a suitable candidate since it satisfies all the
listed properties: the training algorithm is parallelizable and not memory consuming (Sharp, 2008),
cluster manifolds are similar to the ones built by base learners, and there are efficient categorical
feature supporting methods (Prokhorenkova et al., 2017).

Since we aim to find data regions with similar training properties, we can utilize the validation
learning curves to split the dataset. So the idea is to train a decision tree that divides the feature space
into regions (leaves) using the learning curves as a target. However, the naive multi-regression tree
based on the MSE loss may find similar learning curves, chosen clusters do not necessarily have
diversified stopping moments. The true goal is to find a partition that will most benefit from assigning
individual stops to each cluster. Formally speaking, at each node of the tree, we seek for a split L,R
which maximizes the following score (minimizes loss):

S(L,R) := −

(
min

1≤b≤B

∑
i∈L

li,b + min
1≤b≤B

∑
i∈R

li,b

)
, (4)

where li,b := L(Fb(xi), yi). Figure 3 demonstrates how this partitioning works. It is also worth
noting that it is possible to optimize any quality metric rather than loss function. In the general case,
it is sufficient to store predictions from prefixes of the ensemble and use them to calculate a particular
metric function in each split. In particular, storing predictions instead of learning curves can help
directly optimize the ROC −AUC score, an example of a non-summable metric.

The complexity of calculating the score above is linear on the ensemble’s whole (unpruned) size,
so the full tree growing complexity is O(nmBd), which is similar to the GB training complexity.
Also, the method requires storing learning histories of size B for each validation point. Since
these costs are inappropriate in many real-world tasks (e.g., where large ensembles are needed), we
propose to use values from some chosen iterations, e.g., 1, 2, 4, 7, 11, ... (the step increases by one),
which reduces the complexity by a factor of

√
B. Here we assume that as the number of iterations

increases, predictions change less, so points from earlier iterations carry more information about the
curves. Besides, the proposed scheme dramatically reduces time

(
O(nm

√
Bd)

)
and memory costs(

O(n
√
B)
)

, making them moderate compared to the GB training algorithm.

6

Under review as a conference paper at ICLR 2023

4.5 INDIRECT SUPERVISED PARTITION (ISP)

Let us take the idea from the previous section and set the number of iterations that are used to build a
clustering tree to 1. We will get an extreme case of the method described earlier, which will depend
only on the dataset’s characteristics. In other words, the partition procedure boils down to training a
single decision tree on the initial training samples and targets. Then, we denote each leaf as a separate
data cluster forming the partition. Since the tree learning process utilizes both geometry of feature
space and target distribution in leaves to split the data, this method is encouraged to find the regions
similar by feature representation and label. In other words, it uses all available static information
about the data.

This partition tree may be trained separately from the primary boosting model and be the first booster
in the ensemble. The latter means that this step does not affect the training time. However, since
Gradient Boosting usually consists of hundreds and thousands of trees, the effect on time costs of
using a separate partition model is negligible.

The practice shows that these clusters are good enough to find regions with diversified optimal stops
and increase the final quality of the model (Section 6 for the details).

5 VALIDATION PROTOCOL

Proposed methods introduce additional hyperparameters, which can be tuned: cluster count and mini-
mal size of clusters. Since both DSP and ISP algorithms utilize a decision tree, those hyperparameters
are controlled by limiting the maximum number of leaves and the minimal size of each leaf.

Let us denote Di,j = Di ∩ Sj the set of observations from the j-th fold belonging to the cluster Di

and ni,j = |Di,j |. Naive approach of evaluation consists of applying cross–validation model trained
on the sample S−j to the validation set Sj for any j, obtaining quality estimators li,j :

l
(b)
i,j =

1

ni,j

∑
(x,y)∈Di,j

L
(
F j
b (x), y

)
.

The resulting estimator Li for each cluster i is a weighted sum of corresponding cluster estimators

over all folds: L(b)
i =

∑k
j=1 ni,j ·l(b)i,j∑k

j=1 ni,j
, then B̂i := arg minLi and the cross–validation score of cluster

i equals to minLi. The total complexity of the described procedure is O(C(B + k) + nB), which is
meager compared to the ensemble training complexity, which is at least O(nmdB) (Friedman, 2001)
(for m binary features and trees of depth d).

The quality assessment obtained in the way described above is biased and always gives an optimistic
estimate. It is especially impossible to use this quality estimator to determine an optimal number
of clusters, as it always monotonically increases with finer clustering. To avoid this issue in the
DSP case, we conduct an additional validation step to verify that the partition will be profitable by
training the early stopping model and applying it to a separate hold-out sample. In particular, if
cross-validation is used during GB tuning, we have a learning curve for each train instance, so the
whole sample can again be used. Also, DSP can use the minimal gain criterion - if the resulting score
after split is not significantly better than the current score, tree growth should stop.

For the ISP case, when the first booster of the full model is used, and there is no possibility to retrain
the clustering tree (or retraining is considered costly), we suggest using the following cross-validation
evaluation procedure (formal description may be found in Supplementary Materials), which does not
allow target leakage and strong bias. For each fold Sq , we compute an optimal stopping moment for
cluster i by averaging evaluation metrics for all observations from cluster i that do not belong to fold

Sq. More formally, we compute Li,−q as L(b)
i,−q =

∑
j 6=q ni,j ·l(b)i,j∑

j 6=q ni,j
, by applying EvalBestIter to all

folds except the q-th one (ignoring Sq from folds). After this step, we have (B̂q
1 , ..., B̂

q
C) estimated

on S−q . Then we use Sq as a set validating the quality of predicted (B̂q
1 , ..., B̂

q
C). After averaging the

obtained results over folds Sq , we get a more accurate estimation of the quality of clustering, which is
used to select the number and size of clusters and to estimate the possible profit of applying adaptive

7

Under review as a conference paper at ICLR 2023

stopping procedure, all this with a minor additional time consumption relative to the training time of
the ensemble model. There is still some bias because fold Sq is used both to train models applied to
S−q and to estimate the performance of stopping points. However, the desired property of not using
the same set for both tuning and evaluating B̂ is satisfied and allows us to get useful estimations.

6 EXPERIMENTS

Table 1: 0-1 loss / logloss, Average value, mean relative error change w.r.t. baseline. Zero-percent
improvements mean, that one cluster is the best option selected by validation protocol.

LightGBM CatBoost
Dataset (#samples/#features) Unpruned Baseline DSP ISP Unpruned Baseline DSP ISP

Adult (49K/15) .1335 / .2944 .1269 / .2753 .1253/.2726
−1.27%/−0.99%

.1265/.2742
−0.30%/−0.39%

.1276 / .2755 .1266 / .2725 .1253/.2696
−1.05%/−1.07%

.1260/.2717
−0.48%/−0.28%

Amazon (33K/10) .0596 / .1663 .0529 / .1631 .0525/.1628
−0.75%/−0.21%

.0527/.1629
−0.46%/−0.12%

.0445 / .1404 .0448 / .1395 .0440/.1395
−1.68%/0%

.0444/.1391
−0.87%/−0.29%

Click (400K/12) .1592 / .4067 .1581 / .3964 .1578/.3964
−0.18%/0%

.1581/.3962
0%/−0.04%

.1577 / .3919 .1564 / .3916 .1563/.3914
−0.06%/−0.04%

.1564/.3914
+0.01%/−0.04%

Default (30K/23) .2011 / .4694 .1888 / .4518 .1878/.4504
−0.51%/−0.32%

.1862/.4497
−1.4%/−0.47%

.1833 / .4361 .1828 / .4328 .1821/.4324
−0.36%/−0.1%

.1798/.4323
−1.63%/−0.12%

HEPMASS (840K/25) .1337 / .2843 .1270 / .2791 .1238/.2754
−2.55%/−1.33%

.1267/.2780
−0.25%/−0.39%

.1309 / .2803 .1258 / .2768 .1245/.2753
−1.05%/−0.55%

.1256/.2764
−0.17%/−0.16%

Higgs (11KK/28) .2476 / .5021 .2381 / .4922 .2369/.4897
−0.5%/−0.51%

.2375/.4906
−0.27%/−0.33%

.2385 / .4864 .2364 / .4810 .2351/.4794
−0.57%/−0.34%

.2361/.4803
−0.14%/−0.14%

KDD Churn (50K/231) .0725 / .2342 .0725 / .2323 .0725/.2323
0%/0%

.0725/.2323
0%/0%

.072 / .2382 .0718 / .2326 .0715/.2326
−0.42%/0%

.0718/.2326
0%/0%

KDD Internet (10K/69) .0974 / .2334 .0989 / .2202 .0980/.2167
−0.92%/−1.58%

.0969/.2190
−1.98%/−0.53%

.0994 / .2199 .0984 / .2167 .0969/.2127
−1.55%/−1.85%

.0963/.2152
−2.17%/−0.68%

KDD Upselling (50K/231) .0495 / .1694 .0495 / .1669 .0492/.1670
−0.67%/+0.08%

.0495/.1669
−0.04%/0%

.0487 / .1677 .0489 / .1670 .0484/.1665
−1.01%/−0.28%

.0488/.1668
−0.10%/−0.13%

Kick (73K/36) .0987 / .3073 .0991 / .2956 .0987/.2939
−0.44%/−0.56%

.0987/.2949
−0.37%/−0.25%

.0953 / .2864 .0951 / .2855 .0949/.2849
−0.22%/−0.22%

.0948/.2850
−0.36%/−0.16%

Marketing (45K/16) .0941 / .2268 .0931 / .2044 .0919/.2035
−1.25%/−0.43%

.0931/.2040
0%/−0.20%

.0913 / .2032 .0911 / .1938 .0911/.1925
0%/−0.68%

.0895/.1922
−1.78%/−0.80%

Average - - -0.82% / -0.53% -0.46% / -0.25% - - -0.72% / -0.47% -0.70% / -0.25%

In this section, we perform numeric experiments, analyze the effectiveness of the proposed frame-
work, and validate statements made in Section 4. We take two popular open–source Gradient
Boosting libraries, LightGBM (LightGBM, 2017) and CatBoost (CatBoost, 2017). In accordance
with Prokhorenkova et al. (2017), we tune each model using 5-fold cross–validation scheme via
50 iterations of hyperopt (Bergstra et al., 2013) (the set of parameters and the grid may be found
in Supplementary Materials). Every hyperopt iteration is followed by a greedy search of the best
number of trees (single stopping moment), so we optimize the quality of the pruned ensemble during
hyperparameter tuning. Models are tuned with a maximum number of boosting iterations B = 5, 000.
We use the tuned hyperparameters for further experiments, except for the total number of trees, which
we set to B′ = 2B = 10, 000 to be more confident that all the models are converged.

To compare the quality of the standard early stopping approach and those proposed in this paper,
we hold out 20% of samples from each dataset for the test. The 5–fold stratified cross-validation
is utilized to determine the optimal stopping moment. We use the standard pruning algorithm as
a baseline and compare it with the methods proposed in Section 4. For the DSP algorithm, we
store "sparse" learning histories (as in Section 4.4) for every data point and again perform 5-fold
cross-validation (5 clustering tree retrainings, not the whole ensemble) to tune the depth of the the
tree and minimal leaf size. In the ISP case, we follow the validation protocol from Section 5.

Datasets used in this investigation and their properties are listed in Table 1, and their links can be
found in references. We consider all datasets from (Prokhorenkova et al., 2017) and Ibragimov &
Gusev (2019) to compare our method with SOTA GB implementations.

Does the validation protocol proposed in Section 5 have good generalization ability? For this
investigation we applied naive validation control, described in Section 5, and advanced evaluation
procedure to every dataset. As we can see from Figure 4 and Figure 5 naive validation protocol
monotonically decreases with the number of clusters, as was expected, and it gives no insight into the
optimal cluster count and possible improvement compared to the baseline. In contrast, the quality
estimation produced by the advanced approach is highly correlated with test quality. The quality
patterns for test and validation are repeated, and there is an opportunity to make an informed choice
of a cluster count and other parameters affecting clustering.

8

Under review as a conference paper at ICLR 2023

Figure 4: Marketing, validation Figure 5: Kick, validation

Does the proposed algorithm help to increase the quality of boosting models? In this paragraph,
we carry out an extensive search of the best partition in terms of two loss metrics (lower is better):
Logloss and 0-1 loss. For each cluster we get from DSP or ISP algorithm, we find the optimal
iteration count and apply the corresponding number of trees (boosters) to each test sample (as
in Algorithm 1). The described process is repeated ten times for each dataset with different CV
splits (random seeds). We calculate an average loss over all experiment runs and the mean relative
improvement (loss decrease). The comparison is presented in Table 1. The results show the superiority
of the proposed techniques over the classic early stopping in most settings. The improvements are
significant according to paired (ten pairs "baseline vs ours" for each dataset) Wilcoxon signed-rank
test, with p− value � 0.001, except for datasets Click and KDD Churn. Also, it is worth noting
that the relative magnitude of improvements is comparable to the one obtained by hyperparameter
tuning (50 cross-validated iterations of hyperopt). From this, we can conclude that modern Gradient
Boosting implementations do not use the full power of the models, limiting themselves to the shared
stopping moment for all examples. At the same time, the personalized selection of this parameter
allows significant improvements in the algorithm’s performance.

Does it make sense to use unsupervised clustering instead of the one proposed in the paper?
In Section 4.3 we discussed the disadvantages of the lack of information about targets when con-
structing a space partition, as well as the use of algorithms that do not use the geometry of learning
surfaces. To test these hypotheses, we conduct the same pool of experiments as described in the
previous bullet to Higgs and HEPMASS datasets with the only change of the clustering algorithm
to KMeans. The choice of datasets is due to the lack of categorical features. The results show
that unsupervised clustering can be effectively applied to the adaptive stopping problem (mean
improvements 0.1%/0.08% and 0.09%/0.1% respectively), performs significantly better than the
standard approach, but significantly worse than the one proposed in Section 4.5 (both due to paired
Wilcoxon signed-rank test).

7 CONCLUSION AND FUTURE WORK

In this paper, we discovered a problem of ensemble pruning previously uncovered in the literature.
We discussed possible problems that the simultaneous stopping rule brings to the modern boosting
models and proposed a cluster-based framework of early stopping that can be directly applied to
any implementation of Gradient Boosting (and possibly other ensemble methods) without harming
its quality and training/inference time. We proposed an evaluation protocol for our method, so it
is simple and at the same time computationally cheap to determine whether the adaptive stopping
works well for any particular data. Our experiments with the well-known implementation of boosting
demonstrate the validity of the assumptions and conclusions made in the paper and great potential for
applications and further research since this work still uncovers many problems.

REFERENCES

Ismail Babajide Mustapha and Faisal Saeed. Bioactive molecule prediction using extreme gradient
boosting. Molecules, 21(8):983, 2016.

9

Under review as a conference paper at ICLR 2023

James Bergstra, Dan Yamins, David D Cox, et al. Hyperopt: A python library for optimizing the
hyperparameters of machine learning algorithms. In Proceedings of the 12th Python in science
conference, volume 13, pp. 20. Citeseer, 2013.

Leo Breiman, Jerome H Friedman, Richard A Olshen, and Charles J Stone. Classification and
regression trees. Routledge, 2017.

CatBoost. Catboost library. https://github.com/catboost/catboost, 2017.

George DC Cavalcanti, Luiz S Oliveira, Thiago JM Moura, and Guilherme V Carvalho. Combining
diversity measures for ensemble pruning. Pattern Recognition Letters, 74:38–45, 2016.

Yuan-Chin Ivan Chang, Yufen Huang, and Yu-Pai Huang. Early stopping in l2boosting. Computa-
tional Statistics & Data Analysis, 54(10):2203–2213, 2010.

Olivier Chapelle and Yi Chang. Yahoo! learning to rank challenge overview. In Proceedings of the
learning to rank challenge, pp. 1–24. PMLR, 2011.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the
22nd acm sigkdd international conference on knowledge discovery and data mining, pp. 785–794,
2016.

Chen Cheng, Fen Xia, Tong Zhang, Irwin King, and Michael R Lyu. Gradient boosting factorization
machines. In Proceedings of the 8th ACM Conference on Recommender systems, pp. 265–272,
2014.

Cliff Click, Michal Malohlava, Arno Candel, Hank Roark, and Viraj Parmar. Gradient boosting
machine with h2o. H2O. ai, 11:12, 2016.

Corinna Cortes, Mehryar Mohri, and Dmitry Storcheus. Regularized gradient boosting.
In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Gar-
nett (eds.), Advances in Neural Information Processing Systems, volume 32. Curran Asso-
ciates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/
465636eb4a7ff4b267f3b765d07a02da-Paper.pdf.

R. M. Cruz, R. Sabourin, G. D. Cavalcanti, and T. I. Ren. Meta-des: A dynamic ensemble selection
framework using meta-learning. Pattern Recognition, 48:1925–1935, 2015.

Rafael MO Cruz, Robert Sabourin, and George DC Cavalcanti. Dynamic classifier selection: Recent
advances and perspectives. Information Fusion, 41:195–216, 2018.

Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from incomplete data
via the em algorithm. Journal of the Royal Statistical Society: Series B (Methodological), 39(1):
1–22, 1977.

Lei Deng, Juan Pan, Xiaojie Xu, Wenyi Yang, Chuyao Liu, and Hui Liu. Pdrlgb: precise dna-binding
residue prediction using a light gradient boosting machine. BMC bioinformatics, 19(19):135–145,
2018.

Wei Fan, Fang Chu, Haixun Wang, and Philip S Yu. Pruning and dynamic scheduling of cost-sensitive
ensembles. In AAAI/IAAI, pp. 146–151, 2002.

Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learning and an ap-
plication to boosting. Journal of Computer and System Sciences, 55(1):119–139, 1997. ISSN 0022-
0000. doi: https://doi.org/10.1006/jcss.1997.1504. URL https://www.sciencedirect.
com/science/article/pii/S002200009791504X.

Jerome H Friedman. Greedy function approximation: a gradient boosting machine. Annals of
statistics, pp. 1189–1232, 2001.

Jerome H Friedman. Stochastic gradient boosting. Computational statistics & data analysis, 38(4):
367–378, 2002.

10

https://github.com/catboost/catboost
https://proceedings.neurips.cc/paper/2019/file/465636eb4a7ff4b267f3b765d07a02da-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/465636eb4a7ff4b267f3b765d07a02da-Paper.pdf
https://www.sciencedirect.com/science/article/pii/S002200009791504X
https://www.sciencedirect.com/science/article/pii/S002200009791504X

Under review as a conference paper at ICLR 2023

Daniel Hernández-Lobato, Gonzalo Martinez-Munoz, and Alberto Suárez. Statistical instance-based
pruning in ensembles of independent classifiers. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 31(2):364–369, 2008.

Bulat Ibragimov and Gleb Gusev. Minimal variance sampling in stochastic gradient boosting. In
Proceedings of the 33rd International Conference on Neural Information Processing Systems, pp.
15087–15097, 2019.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan
Liu. Lightgbm: A highly efficient gradient boosting decision tree. Advances in neural information
processing systems, 30:3146–3154, 2017.

Erin LeDell and Sebastien Poirier. H2o automl: Scalable automatic machine learning. In Proceedings
of the AutoML Workshop at ICML, volume 2020, 2020.

Nan Li, Yang Yu, and Zhi-Hua Zhou. Diversity regularized ensemble pruning. In Joint European
conference on machine learning and knowledge discovery in databases, pp. 330–345. Springer,
2012.

Ping Li, Qiang Wu, and Christopher Burges. Mcrank: Learning to rank using multiple classification
and gradient boosting. Advances in neural information processing systems, 20:897–904, 2007.

LightGBM. Catboost library. https://github.com/microsoft/LightGBM, 2017.

Xiaoliang Ling, Weiwei Deng, Chen Gu, Hucheng Zhou, Cui Li, and Feng Sun. Model ensemble for
click prediction in bing search ads. In Proceedings of the 26th International Conference on World
Wide Web Companion, pp. 689–698, 2017.

S. Lloyd. Least squares quantization in pcm. IEEE Transactions on Information Theory, 28(2):
129–137, 1982. doi: 10.1109/TIT.1982.1056489.

Dragos D Margineantu and Thomas G Dietterich. Pruning adaptive boosting. In ICML, volume 97,
pp. 211–218. Citeseer, 1997.

Andreas Mayr, Benjamin Hofner, and Matthias Schmid. The importance of knowing when to stop.
Methods of Information in Medicine, 51(02):178–186, 2012.

Dayvid VR Oliveira, George DC Cavalcanti, and Robert Sabourin. Online pruning of base classifiers
for dynamic ensemble selection. Pattern Recognition, 72:44–58, 2017.

Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush, and Andrey
Gulin. Catboost: unbiased boosting with categorical features. arXiv preprint arXiv:1706.09516,
2017.

Toby Sharp. Implementing decision trees and forests on a gpu. In European conference on computer
vision, pp. 595–608. Springer, 2008.

Robin Sibson. Slink: an optimally efficient algorithm for the single-link cluster method. The computer
journal, 16(1):30–34, 1973.

Víctor Soto, Sergio García-Moratilla, Gonzalo Martínez-Muñoz, Daniel Hernández-Lobato, and Al-
berto Suárez. A double pruning scheme for boosting ensembles. IEEE transactions on cybernetics,
44(12):2682–2695, 2014.

Mervyn Stone. Cross-validatory choice and assessment of statistical predictions. Journal of the royal
statistical society: Series B (Methodological), 36(2):111–133, 1974.

Samir Touzani, Jessica Granderson, and Samuel Fernandes. Gradient boosting machine for modeling
the energy consumption of commercial buildings. Energy and Buildings, 158:1533–1543, 2018.

Ilya Trofimov, Anna Kornetova, and Valery Topinskiy. Using boosted trees for click-through rate
prediction for sponsored search. In In Proceedings of the Sixth International Workshop on Data
Mining for Online Advertising and Internet Economy, pp. 1–6, 2012.

11

https://github.com/microsoft/LightGBM

Under review as a conference paper at ICLR 2023

Yuting Wei, Fanny Yang, and Martin J Wainwright. Early stopping for kernel boosting algorithms: A
general analysis with localized complexities. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information Processing
Systems, volume 30. Curran Associates, Inc., 2017. URL https://proceedings.neurips.
cc/paper/2017/file/a081cab429ff7a3b96e0a07319f1049e-Paper.pdf.

Yuan Yao, Lorenzo Rosasco, and Andrea Caponnetto. On early stopping in gradient descent learning.
Constructive Approximation, 26:289–315, 08 2007. doi: 10.1007/s00365-006-0663-2.

Yanru Zhang and Ali Haghani. A gradient boosting method to improve travel time prediction.
Transportation Research Part C: Emerging Technologies, 58:308–324, 2015.

Yi Zhang, Samuel Burer, W Nick Street, Kristin P Bennett, and Emilio Parrado-Hernández. Ensemble
pruning via semi-definite programming. Journal of machine learning research, 7(7), 2006.

Zhi-Hua Zhou and Wei Tang. Selective ensemble of decision trees. In International workshop on
rough sets, fuzzy sets, data mining, and granular-soft computing, pp. 476–483. Springer, 2003.

A APPENDIX

A.1 ALGORITHMS

Algorithm 2 contains the formal description of an adaptive (cluster-based) optimal stops selection
procedure described in Section 4.1 (EvalBestIter from Algorithm 1).

In the Algorithm 3, we describe debiased clustering evaluation procedure we use for ISP hyperparam-
eters tuning (depth of the clustering tree and minimal leaf size).

Algorithm 2 Best Iteration Selection
EvalBestIter(folds, cvPred, partition) for Di ← partition do
Li ← ~0 {vector of B zeros}
ni ← 0
for Sj ← folds do
Di,j ← Di ∩ Sj
ni,j ← |Di,j |
∆i,j ← Eval(cvPred[Di,j]) · ni,j
Li ← Li + ∆i,j {elementwise vector sum}
ni ← ni + ni,j

end for
Li ← Li/ni
Mi ← arg minLi

end for
return {Mi}

Algorithm 3 Evaluation Procedure
Evaluate(folds, cvPred, p = partition) for Sq ← folds do
{Mq

i } ← EvalBestIter(folds \ Sq, cvPred, p)
predictionsq ← cvPred[Sq]
for Di ← p do

Shrink(predictionsq[Sq ∩ Di],M
q
i)

end for
Lq = Eval(predictionsq)

end for
return Mean({Lq})

12

https://proceedings.neurips.cc/paper/2017/file/a081cab429ff7a3b96e0a07319f1049e-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/a081cab429ff7a3b96e0a07319f1049e-Paper.pdf

Under review as a conference paper at ICLR 2023

A.2 EXPERIMENTAL SETUP

We set the single train/test split in the ratio of 4:1 and use train data for training and hyperparameter
search. Test data is used at the evaluation step only. For the initial hyperparameter tuning (baseline),
we perform 50 iterations of Tree Parzen Estimator from the Hyperopt library using LogLoss as a
target metric (lower-better). We consider the following list of hyperparameters to be tuned.

LightGBM:

• "num_leaves" - max number of terminal nodes. Loguniform grid from 1 to 105;

• "learning_rate" - the weight of each tree in the ensemble. Loguniform grid from 10−7 to 1;

• "min_data_in_leaf" - minimal number of data points in a leaf (node is not considered for
splitting). Loguniform grid from 1 to 106;

• "min_sum_hessian_in_leaf" - minimal value of sum of hessians in a leaf (node is not
considered for splitting). Loguniform grid from 0 to 105;

• "lambda_l1" - regularizing term multiplier for predictions in trees’ leaves. Loguniform grid
from 0 to 100;

• "lambda_l2" - regularizing term multiplier for predictions in trees’ leaves. Loguniform grid
from 0 to 100;

• "bagging_fraction" - SGB sampling ratio. Uniform grid from 0.5 to 1;

• "feature_fraction" - feature sampling ratio (random subspace). Uniform grid from 0.5 to 1;

• "n_estimators" - number of trees in the ensemble. Fixed constant 5000. The best value is
selected at the end by greedy search.

CatBoost:

• "depth" - max depth of each decision tree. Integer grid from 1 to 6;

• "learning_rate" - the weight of each tree in the ensemble. Loguniform grid from 10−5 to 1;

• "random_strength" - regularizing randomized term in the split scoring function. Integer grid
from 1 to 20;

• "one_hot_max_size" - use one-hot encoding for categorical features with number of unique
values less than given parameter. Integer grid from 0 to 25;

• "l2_leaf_reg" - regularizing term multiplier for predictions in trees’ leaves. Loguniform grid
from 1 to 10;

• "subsample" - SGB sampling ratio. Uniform grid from 0.5 to 1;

• "rsm" - feature sampling ratio (random subspace). Uniform grid from 0.5 to 1;

• "iterations" - number of trees in the ensemble. Fixed constant 5000. The best value is
selected at the end by greedy search.

A.3 CLUSTERING RESULTS

Here we report the results of the clustering algorithm DSP for the train set (used to predict optimal
stops in each cluster) and the test set.

13

Under review as a conference paper at ICLR 2023

Figure 6: Adult dataset. Clustering obtained via DSP, validation and test results. The number after
"test" is test samples count per cluster.)

Figure 7: Amazon dataset. Clustering obtained via DSP, validation and test results. The number after
"test" is test samples count per cluster.)

Figure 8: Click dataset. Clustering obtained via DSP, validation and test results. The number after
"test" is test samples count per cluster.)

14

Under review as a conference paper at ICLR 2023

Figure 9: Default dataset. Clustering obtained via DSP, validation and test results. The number after
"test" is test samples count per cluster.)

Figure 10: KDD Churn dataset. Clustering obtained via DSP, validation and test results. The number
after "test" is test samples count per cluster.)

Figure 11: KDD Internet dataset. Clustering obtained via DSP, validation and test results. The
number after "test" is test samples count per cluster.)

15

Under review as a conference paper at ICLR 2023

Figure 12: KDD Upselling dataset. Clustering obtained via DSP, validation and test results. The
number after "test" is test samples count per cluster.)

Figure 13: Kick dataset. Clustering obtained via DSP, validation and test results. The number after
"test" is test samples count per cluster.)

Figure 14: Marketing dataset. Clustering obtained via DSP, validation and test results. The number
after "test" is test samples count per cluster.)

16

	Introduction
	Related work
	Ensemble pruning
	Gradient Boosting early stopping

	Background
	Gradient Boosting
	Model selection and early stopping via cross-validation

	Adaptive early stopping
	Main idea
	Optimal point regression
	Unsupervised partition
	Direct Supervised Partition (DSP)
	Indirect Supervised Partition (ISP)

	Validation protocol
	Experiments
	Conclusion and future work
	Appendix
	Algorithms
	Experimental setup
	Clustering results

