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Abstract

Graph self-supervised learning aims to learn the intrinsic graph representations
from unlabeled data, with broad applicability in areas such as computing networks.
Although graph contrastive learning (GCL) has achieved remarkable progress by
generating perturbed views via data augmentation and optimizing sample similar-
ity, it performs poorly in heterophilic graph scenarios (where connected nodes are
likely to belong to different classes or exhibit dissimilar features). In heterophilic
graphs, existing methods typically rely on random or carefully designed augmenta-
tion strategies (e.g., edge dropping) for contrastive views. However, such graph
structures exhibit intricate edge relationships, where topological perturbations may
completely alter the semantics of neighborhoods. Moreover, most methods focus
solely on local contrastive signals while neglecting global structural constraints. To
address these limitations, inspired by graph coloring, we propose a novel Coloring
learning for heterophilic graph Representation framework, CoRep, which: 1)
Pioneers a coloring classifier to generate coloring labels, explicitly minimizing
the discrepancy between homophilic nodes while maximizing that of heterophilic
nodes. A global positive sample set is constructed using multi-hop same-color
nodes to capture global semantic consistency. 2) Introduces a learnable edge eval-
uator to guide the coloring learning dynamically and utilizes the edges’ triplet
relations to enhance its robustness. 3) Leverages Gumbel-Softmax to differentially
discretize color distributions, suppressing noise via a redundancy constraint and
enhancing intra-class compactness. Experimental results on 14 benchmark datasets
demonstrate that CoRep significantly outperforms current state-of-the-art methods.

1 Introduction

Self-supervised graph representation learning aims to extract effective low-dimensional representa-
tions from graphs without label supervision, which has been widely applied in various fields, such as
bioinformatics, social networks, and computing networks [48, 33]. In recent years, graph contrastive
learning (GCL) has been identified as one of the most promising self-supervised graph learning
methods [8, 32]. GCL primarily consists of two core components: data augmentation and contrastive
loss. The former employs various augmentation techniques to create perturbed views for an anchor

*Corresponding author.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).



graph, while the latter maximizes the similarity between two views of the same anchor (i.e., positive
pairs) and minimizes the similarity between two views from different anchors (i.e., negative pairs).

Although effective for graphs with strong homophily (where adjacent nodes commonly share similar
labels or features) [50], these methods fall short when applied to heterophilic graphs. In heterophilic
graphs, connected nodes may belong to different classes or exhibit dissimilar attributes [3, 30]. This
property is prevalent in many real-world graph structures. For example, in molecular networks,
protein structures are typically formed by covalently bonded amino acids of various types [47].
Similarly, in online transaction networks, fraudsters tend to establish links with legitimate users [36].
Recent studies have increasingly focused on graph contrastive learning under heterophily. Existing
methods typically explore two main directions: structural decoupling and adaptive augmentation
strategies. Structure decoupling-based approaches [27, 48] explicitly separate homophilic and
heterophilic structures within the graph based on node or topological similarity, and apply random
perturbations (e.g., edge dropping) to each type of structure to construct contrastive views. In contrast,
adaptive augmentation-based approaches [44, 7, 6] aim to generate augmented views through carefully
designed strategies or learnable generators to better preserve heterophilic connection patterns.

(a) An online transaction net-
work with brown fraudsters
and blue users.

(b) Topological perturbations
disrupt the key connections.

Figure 1: Illustrations of an
online transaction network.

However, the approaches above still suffer from two inherent limita-
tions. First, they heavily rely on random or carefully designed aug-
mentation strategies. However, for heterophilic graphs with complex
adjacency structures, such augmentation is challenging and fragile, as
it may drastically alter the semantics of the neighborhood. For exam-
ple, in an online transaction network (as illustrated in Figure 1(a)),
fraudsters (brown nodes) tend to establish connections with legitimate
users (blue nodes). Applying topological perturbations to such a highly
heterophilic structure (as shown in Figure 1(b)) may weaken the sparse
yet crucial intra-group connections among fraudsters (brown-brown
connections), thereby concealing their collaborative behavior. More-
over, it may mistakenly introduce connections among users (blue-blue
connections), disrupting the clear fraud patterns. Such alterations can
significantly destroy the semantics of neighborhoods and hinder the
model from identifying the underlying behaviors of fraudsters. Sec-
ond, most approaches concentrate solely on local signals to enforce
node-level alignment, which neglects global structural constraints. Con-
sequently, models may overemphasize the consistency of the same node
across views while overlooking important relationships among semanti-
cally related nodes, thereby sacrificing overall intra-class cohesiveness and inter-class discrimination.

To address the challenges, we propose a novel Coloring learning for heterophilic graph Representation
framework (CoRep) that aims to assign colors to nodes within the graph such that the colors of
adjacent nodes reflect their type differences. Specifically, unlike GCL approaches that depend on data
augmentation, CoRep proposes to employ a coloring classifier to generate similar coloring labels to
homophilic nodes to explicitly encourage their representations to be close, while assigning different
coloring labels to heterophilic nodes to push their representations apart. To dynamically guide the
coloring learning, we introduce a learnable edge evaluator that integrates feature and structural
information to identify the property of node pairs, while utilizing the edges’ triplet relationship
to enhance its robustness. Furthermore, we use the Gumbel-Softmax technique for differentiable
discretization of color distributions, combined with a sparsity-inducing redundancy constraint to
suppress noise and enhance intra-class compactness. To capture global structural consistency, we
construct the positive sample set using multi-hop same-color neighbors, thereby ensuring that distant
yet semantically related nodes are aligned. Our main contributions can be summarized as follows:

• We propose a CoRep framework for heterophilic graph representation learning through the gener-
ated coloring labels, which effectively captures both local and global structures without relying on
delicate augmentation strategies.

• CoRep leverages a learnable edge evaluator and a global positive sample set to capture homophily
and heterophily more precisely. Moreover, it utilizes a Gumbel-Softmax trick for differentiable
discretization, along with a sparsity constraint to enhance intra-class compactness.

• We conduct extensive experiments on 14 benchmark datasets, ranging from relatively citation
networks to Wikipedia networks. Experimental results demonstrate that CoRep consistently
surpasses state-of-the-art homophilic and heterophilic graph learning methods.
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2 Related Work

Graph Neural Networks with Heterophily. Heterophilic graphs have been widely observed in
various scenarios, such as dating networks, online transaction networks, and molecular networks
[16, 36, 47, 45]. To better model heterophily structures, recent approaches have proposed a series of
Graph Neural Network (GNN) models [25] based on different aggregation mechanisms, including
adaptive message propagation [9, 49, 43, 26], high-frequency signal exploration [4, 13, 23], ego
and neighbor separation [57, 58], and latent neighbor discovery [20, 54, 10]. Despite their success,
these methods often rely on external supervision signals. However, high-quality labels are often
scarce in real-world settings. Unlike these methods, this paper focuses on self-supervised learning for
heterophilic graphs, aiming to generate discriminative node representations without label supervision.

Self-supervised Learning on Graphs. Graph self-supervised learning (SSL) has been a promising
paradigm for learning representations without labels [46, 12, 11]. Early studies often utilize random
walks or graph reconstruction [51, 1] for graph embedding, but they may lose topological information.
GCL methods [18, 59, 53] have attracted considerable attention, aiming to maximize similarity
between positive pairs. However, such methods are built upon a strong homophily assumption and
perform poorly under heterophily. Until recently, people started to explore SSL on heterophilic
graphs. These methods generate perturbed views by leveraging random [27, 48, 56] or carefully
designed augmentation strategies [44, 7, 6], then align the augmented positive pairs. However, they
heavily rely on effective augmentations, where perturbations to the topology may significantly alter
the semantic relationships of neighbors. Differentially, we perform SSL by assigning distinct colors
to different types of nodes, fully preserving the structural properties of heterophilic graphs. See
Appendix A.1 for more details.

Graph Coloring. Graph coloring problem (GCP) is one of the most classical problems in graph
theory [15, 24], and has received much attention in many real-world applications, e.g., air traffic
flow management [2], register allocation [55], and job scheduling [5]. Its objective is to find a
way to assign colors (i.e., coloring labels) to the nodes of a graph such that no two adjacent nodes
share the same color while using as few colors as possible. Schuetz et al. [37] proposes to treat
graph coloring as a multiclass node classification task and utilize a Potts model for unsupervised
learning. In our work, the notion of coloring is used as a heuristic inspiration rather than solving the
classical GCP directly. Instead of enforcing distinct colors for adjacent nodes, we extend the coloring
concept to heterophilic graph learning: nodes are encouraged to share the same or different colors
according to their homophilic or heterophilic relations. This relaxation, combined with a learnable
edge evaluator, allows us to capture both affinity and disparity between nodes, thereby facilitating
effective representation learning on heterophilic graphs. See Appendix A.2 for more details.

3 Methodology

In this section, we elaborate on our Coloring learning for heterophilic graph Representation (CoRep).
The core design of CoRep is illustrated in Figure 2, which comprises three key components: edge
evaluation, edge-aware coloring matching learning, and multi-hop neighborhood contrastive learning.
In edge evaluation module, we introduce a learnable edge evaluator that evaluates the properties of
node pairs to dynamically guide the coloring learning (Section 3.3). In edge-aware coloring matching
learning module, we learn a coloring classifier to generate coloring labels that explicitly encourage
similarity between homophilic nodes and dissimilarity between heterophilic nodes (Section 3.4). In
edge-aware coloring matching learning module, we construct the positive sample set using multi-hop
same-color neighbors to capture global structural consistency (Section 3.5).

3.1 Notations and Problem

Let G = (V, E) denote an undirected graph, where V = {v1, . . . , vn} represents the set of n nodes
and E ⊆ V × V represents the set of edges. The adjacency matrix and the node feature matrix are
denoted as A ∈ {0, 1}n×n and X ∈ Rn×d, respectively, where Aij = 1 if (vi, vj) ∈ E , xi ∈ Rd

is the raw feature of node vi ∈ V , and d is the input feature dimension. The normalized graph
Laplacian matrix is defined as L = In−D−1/2AD−1/2, where D ∈ Rn×n is a diagonal degree matrix
with Di,i =

∑
j Ai,j and In denotes the identity matrix. Let JnK = {1, . . . , n} ⊂ N. For node vi,

N (vi) = {vj ∈ V|(vi, vj) ∈ E} is its neighbors, and D(vi) := |N (vi)| is its degree. We define | · |
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Figure 2: A framework of CoRep.

as the number of elements, [· ∥ ·] represents the concatenation operation. In this work, we focus on
solving the node-level self-supervised graph representation learning problem. Given G = (V, E), we
aim to learn an encoder fθ : G → Rn×d†

(d† ≪ d) in an unsupervised manner to map the nodes
in G into the d†-dimensional representations, where θ denotes the parameter of the encoder. These
representations preserve graph structures, which can be utilized for downstream tasks, like node
classification.

3.2 Coloring Matching Learning

In general, obtaining distinguishable node representations in heterophilic graphs without externally
supervised signals is a challenging problem. The primary reason lies in the intricate and interwoven
connections within heterophilic graphs. Previous GCL methods [27, 48, 44, 7, 6] typically rely
on either random or carefully designed augmentation strategies, which tend to cause a complete
alteration of neighborhood semantics. For instance, as illustrated in Figure 1, disconnecting links
between fraudsters can obscure fraudulent group behaviors. A natural idea is to leverage the inherent
properties of heterophilic graphs for representation learning. Fortunately, graph coloring, which
assigns different colors (i.e., coloring labels) to adjacent nodes, offers an effective way for our purpose.
Inspired by this, we propose a coloring matching learning scheme as a preliminary exploration of
coloring learning for heterophilic graph representation. We first encode the structural information of
the graph, and then leverage coloring matching to prompt the model to learn distinct coloring labels
for adjacent nodes of different types, thereby better adapting to the heterophily structure.

Structural Encoding. We first employ an adaptive GNN [4] as the graph encoder fθ : G → Rn×d†
to

extract node representations. fθ utilizes an attention mechanism to adaptively capture both low- and
high-frequency signals in G, enabling the effective aggregation from different neighbors. Considering
the importance of positional information in recognizing heterophily, we introduce the positional
encoding [14] into the attention mechanism to enhance global structural awareness. Each node vi
receives a d♯-dimensional position encoding pi through d♯ steps random walk-based diffusion:

pi =
[
Ti,i,T

2
i,i, . . . ,T

d♯

i,i

]
∈ Rd♯

(1)

where T = AD−1 represents the diffusion transition matrix. See Appendix F.4 for additional details
regarding positional encoding. The attention mechanism is defined as:

ǎ
(l)
i,j = tanh

(
g⃗(l)⊤

[
ψ1

(
h̃
(l)
i

)
∥ ψ1

(
h̃
(l)
j

)])
(2)

where h̃(l)i = h
(l)
i + pi, h

(l)
i ∈ Rd†

is the representation of vi at the l-th iteration, ψ1 : Rd†+d♯ → Rd†

is a nonlinear mapping layer, g⃗(l) denotes a weight vector, and tanh(·) is an activation function. The
node representation h

(l+1)
i of vi at the (l+ 1)-th iteration is updated in a message-passing manner as:

h
(l+1)
i = ξh

(0)
i +

∑
vj∈N (vi)

ǎ
(l)
i,j√

D(vi)D(vj)
h
(l)
j (3)
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where h
(0)
i = ψ2(xi) denotes a transformed node feature by applying a nonlinear mapping layer

ψ2 : Rd → Rd†
, N (vi) is the neighbors of node vi, D(vi) is the degree of vi, and ξ is a scaling

hyperparameter. The output of the last layer h(L)
i is denoted as h⃗i, where L is the number of layers.

Coloring Matching. After obtaining the node representations, our objective is to ensure they are
well-suited to the heterophily property. Excitingly, we observe that the objective of the graph coloring
problem is highly aligned with our learning goal, providing a novel insight for addressing structural
heterophily. Graph coloring aims to assign different colors to adjacent nodes while minimizing
the number of colors. Let χG ∈ N denote the number of available colors, the coloring function
ζcol : V → JχGK assigns a color to node vi, where JχGK = {1, . . . , χG}. To evaluate the validity of a
coloring scheme, the conflict function ςG : V × V → {0, 1} is defined as follows:

ςG(vi, vj) =

{
1, if ζcol(vi) = ζcol(vj) and (vi, vj) ∈ E
0, otherwise

(4)

The objective of graph coloring is to learn a coloring function ζcol that minimizes the total conflicts
E[ςG(vi, vj)] while reducing the number of used colors χG . However, this solution fails to address two
fundamental issues: 1) The inherent diversity of relational patterns. Heterophilic graphs commonly
encompass both heterophilic and homophilic connections, yet this solution cannot distinguish these
connection patterns and semantic relationships effectively. 2) The intractability of direct optimization.
The graph coloring task is inherently a computationally complex combinatorial optimization task,
making its direct application to heterophilic graph representation learning difficult to solve in practice.

3.3 Edge Evaluation

To address the challenge posed by diverse relational patterns, this section introduces an edge evaluation
module. Its core idea lies in the accurate identification of homophilic and heterophilic edges, thereby
providing dynamic guidance for the coloring learning process. To achieve this, we introduce a
learnable edge evaluator fε : G → Rn×n that integrates feature and structural information to
estimate the homophily probability of node pairs [27], where ε denotes the parameter of the evaluator.
Specifically, in heterophilic graphs, relying solely on raw features is insufficient to distinguish node
relationships, while positional encodings provide complementary global structural information that
enhances node distinguishability. Thus, they are fed into two nonlinear feature mapping layers
ϕ1 : Rd+d♯ → Rd◦

and ϕ2 : R2d◦ → R to estimate the homophily probability ωi,j for (vi, vj):

x′i = ϕ1([xi ∥ pi]), x
′
j = ϕ1([xj ∥ pj ]),

ωi,j =
(
ϕ2([x

′
i ∥ x′j ]) + ϕ2([x

′
j ∥ x′i])

)
/2

(5)

where x′i ∈ Rd◦
denotes a transformed feature, where d◦ is mapping dimension. To more accurately

represent edge properties, we aim to sample from ωi,j to obtain a discriminative result. However,
this process introduces a non-differentiability issue. To address this, we adopt the Gumbel-Max
reparameterization trick [28, 19] to provide a smooth approximation of the sampling process:

ω̂i,j = Sigmoid ((ωi,j + logϖ − log(1−ϖ))/τm) (6)

where ω̂i,j is the homophily score on (vi, vj). A higher value implies a higher homophily between vi
and vj , while a lower value indicates higher heterophily. ϖ ∼ Uniform(0, 1) denotes the sampled
Gumbel random variate, Sigmoid(·) is the activation function, and τm denotes the temperature
hyperparameter. As τm approaches 0, samples from the Gumbel-Max distribution become binary.

3.4 Edge-aware Coloring Matching Learning

The previous section establishes the foundation for our method, CoRep, by identifying the types
of node pairs in the graph. In the following, we will assign similar coloring labels to homophilic
node pairs to encourage their representations to be close, while assigning different coloring labels to
heterophilic node pairs to push them apart. However, as the second challenge discussed in Section 3.2,
the combinatorial optimization problem in coloring matching is difficult to solve directly. Motivated
by [37], we transform the optimization problem into a penalty-based loss function, and propose
a coloring matching loss and a coloring redundancy constraint to guide the model in generating
reasonable coloring labels, thus adapting to the complex structure of heterophilic graphs. Furthermore,
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based on the generated coloring labels, a triplet relation ranking loss is proposed to calibrate the edge
evaluator, enabling it to more accurately capture the relational properties of node pairs.

Coloring Matching Loss. We first propose to employ a coloring classifier fφ : Rd† → RχG that
maps each node to a latent label space, yielding soft coloring labels πi = fφ(⃗hi), where φ denotes the
parameter of the classifier. To quantify conflicts within the graph, we redefine the conflict function
ςG as a similarity metric function ∆ : RχG × RχG → [0, 1], which measures the similarity of pairs
of nodes in the label space. Based on the homophily score ω̂i,j , we encourage adjacent homophilic
nodes to share similar coloring labels, while heterophilic nodes are assigned dissimilar ones to reduce
overall conflicts in the graph. Accordingly, we propose a coloring matching loss as:

Lm =
1

n

∑
vi∈V

1

|N (vi)|
∑

vj∈N (vi)

(1− ω̂i,j) ·∆(πi, πj) (7)

where ∆(·, ·) denotes a similarity metric function, e.g., cosine similarity. This design in the Equation
(7) enables CoRep to directly capture the semantic relations between node pairs based on intrinsic
graph structure, leading to more discriminative node representations.

Coloring Redundancy Constraint. In practice, the coloring classifier may assign excessive or
semantically uninformative color classes when fitting heterophilic structures, leading to redundant
colors that introduce noise and reduce intra-class compactness. To mitigate this issue, we leverage
the Gumbel-Softmax trick [19] to approximate discrete color sampling in a differentiable manner,
allowing for more diverse color assignments, and propose a sparsity-inducing coloring redundancy
constraint that encourages each node to be confidently assigned to a more relevant color to suppres
diffuse and noisy color distributions:

Ld =
∑

j∈JχGK

Φmax

(
{C col

ij }i∈JnK
)
, C col

i =
exp ((log(πi) + ϱi)/τo)∑

j∈JχGK
exp ((log(πj) + ϱj)/τo)

(8)

where Φmax : Rn → R is a column-wise max pooling operator, C col
i denotes a node’s color, ϱi

denotes a sampled Gumbel random variate and τo is a temperature parameter. In our work, we set a
small τo to encourage C col

i to approach a one-hot vector. C col
i provides an effective way to explore

diverse color assignments to avoid deterministic selection that may lead to suboptimal local minima.

Triplet Relation Ranking Loss. The coloring learning process described above relies on the
reliability of edge relations. However, accurately evaluating these connections without supervision
signals is inherently difficult. To dynamically calibrate the edge evaluation, we design a triplet
relation ranking loss that controls the deviation between the homophily and heterophily degrees of
node pairs and the similarity of their assigned coloring labels, ensuring that the output of the evaluator
accurately reflects their relationships. Specifically, we randomly sample a node pair (vp, vq) from
the input graph and aim for all node pairs satisfy the following relationship: ∀ (vi, vj) ∈ E +

i,j ≽

(vp, vq) ≽ ∀ (vi, vj) ∈ E −
i,j , where ≽ represents an ordering relation such that ι0 ≽ ι1 means ι0 is

ranked before ι1, E +
i,j and E −

i,j represent the sets of homophilic and heterophilic edges:

E +
i,j =

{
(vi, vj) | (vi, vj) ∼ Πhomo (ω̂i,j)

}
, E −

i,j =
{
(vi, vj) | (vi, vj) ∼ Πhete (1− ω̂i,j)

}
(9)

where Πhomo (ω̂i,j) and Πhete (1− ω̂i,j) denote the probability distribution based on the scores ŵi,j

and 1− ŵi,j , respectively. Πhomo (ω̂i,j) is used to sample node pairs with higher homophily, while
Πhete (1− ω̂i,j) is used to sample node pairs with higher heterophily. By leveraging the above triplet
relation ranking to ensure that the similarity of node pairs with homophily is ranked higher than
randomly sampled node pairs, while the similarity of node pairs with heterophily is ranked lower than
randomly sampled node pairs, we can dynamically calibrate the joint optimization of edge evaluation
and representation learning. To enforce this ordering, we propose a triplet relation ranking loss to
penalize the ranking errors of node pairs:

Lr = −
∑

ei,j∈E
(1− ω̂i,j) log

(
σ
(
∆rnd

p,q −∆mat
i,j

))
+ ω̂i,j log

(
1− σ

(
∆rnd

p,q −∆mat
i,j

))
(10)

where ∆mat
i,j := ∆(πi, πj) and ∆rnd

p,q := ∆(πp, πq) denote the semantic similarity between (vi, vj)
and between (vp, vq), respectively.
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3.5 Multi-hop Neighborhood Contrastive Learning

Due to the inherent heterophily of the graph structure, semantically similar nodes are often distributed
in non-adjacent topological regions. Relying only on locally connected neighbors is insufficient to
capture the global semantic consistency. To address this, we design a robust multi-hop neighborhood
contrastive learning module that compels our model to preserve the semantic consistency of long-
range neighbor nodes. This module identifies multi-hop neighbors with the same semantics through
positive sample selection and aligns their representations using a contrastive loss.

Positive Sample Selection. To identify distant yet semantically related nodes, we propose to construct
the global positive sample set using multi-hop neighbor nodes that share the same colors. Specifically,
we leverage C col

i and C col
j to determine whether two nodes vi and vj are semantically related. Based

on this, the semantically related κ-hop neighbor nodes are selected as the positive sample set:

PG(vi) =
{
vj | vj ∈ N (κ)(vi), C col

j = C col
i

}
(11)

where N (κ)(vi) denotes the neighbor nodes of node vi within κ hops, which is defined as follows:
N (κ)(vi) = N (vi) if κ = 1; N (κ)(vi) = N (κ−1)(vi) ∪

(⋃
vk∈N (κ−1)(vi)

N (vk)
)

if κ > 1.

Multi-hop Neighborhood Contrastive Loss. Given the positive sample set above, we further
design a multi-hop neighborhood contrastive loss, which aims to bring distant yet semantically
related multi-hop neighbor nodes closer, while pushing apart other nodes. Specifically, we utilize a
projector fυ : Rd† → Rd♮

to map each node representation into a d♮-dimensional latent representation
zi = fυ (⃗hi) for a fair comparison, where υ denotes the parameter of the projector. Inspired by the
InfoNCE contrastive loss [59], the multi-hop neighborhood contrastive loss is defined as:

Lc = − 1

n

∑
vi∈V

1

|PG(vi)|
∑

vj∈PG(vi)

log
exp (sim(zi, zj)/τc)∑

vk∈V\PG(vi)

exp (sim(zi, zk)/τc)
(12)

where sim(·, ·) denotes consine similarity, and τc is a temperature hyperparameter.

3.6 Overall Loss

As the coloring label distribution approaches uniformity, node representations become less distin-
guishable. We introduce an entropy regularization term Le =

∑
i∈JnK π

T
i log πi to encourage the

generation of more definitive coloring labels. Hence, the overall loss is then formulated as:

L = Lm + αLd + βLr + γLc + ηLe (13)

where α, β, γ, and η are trade-off hyperparameters. We present the overall algorithm in Appendix B.

3.7 Complexity Analysis

In this section, we analyze the time complexity of CoRep. Let |V| and |E| be the number of nodes
and edges. For the computation of positional encodings and multi-hop neighborhoods, their com-
plexities are O(|V||E|d♯) and O(|V||E|κ). Note that these two steps are computed at once. For the
edge evaluator and graph encoder, their costs are O(|V|d◦(d+ d♯) + |E|d◦) and O(Ld†(|V|+ |E|)).
CoRep contains three core losses: Lm, Lr, and Lc, and their complexities are O(χG |E|), O(χG |E|),
and O(|V|bκd♮), where κ denotes the average number of positive samples (κ ≪ |V|), and b is the
batch size of the loss. Detailed complexity analysis can be found in Appendix C.

4 Experiments

This section empirically evaluates the proposed CoRep method on 14 benchmark datasets and
analyzes its behavior on graphs to gain further insights. More results can be found in the Appendix F.

4.1 Experimental Setup

Datesets. To assess the quality of the learned representations, we employ transductive node clas-
sification as the downstream task. Our experiments are conducted on 14 widely used benchmark

7



Table 1: Results in terms of classification accuracies (in percent ± standard deviation) on homophilic
benchmarks. The best and second-best performance under each dataset are marked with boldface
and underline, respectively. OOM indicates Out-Of-Memory.

Methods Cora CiteSeer PubMed Wiki-CS Computers Photo CS Physics
GCN 81.50±1.30 70.30±0.28 78.80±2.90 76.89±0.37 86.34±0.48 92.35±0.25 93.10±0.17 95.54±0.19
GAT 82.80±1.30 71.50±0.49 78.50±0.27 77.42±0.19 87.06±0.35 92.64±0.42 92.41±0.27 95.45±0.17
MLP 56.11±0.34 56.91±0.42 71.35±0.05 72.02±0.21 73.88±0.10 78.54±0.05 90.42±0.08 93.54±0.05

H2GCN 80.23±0.20 69.97±0.66 78.79±0.30 79.73±0.13 84.32±0.52 91.86±0.27 91.18±0.58 93.56±0.48
FAGCN 77.80±0.66 69.81±0.80 76.74±0.66 74.34±0.53 83.51±1.04 92.72±0.22 93.81±0.24 96.16±0.15
PC-Conv 82.47±0.56 69.92±1.33 79.57±1.23 79.94±0.52 87.89±0.26 93.89±0.14 94.24±0.12 95.99±0.14

DeepWalk 69.47±0.55 58.82±0.61 69.87±1.25 74.35±0.06 85.68±0.06 89.44±0.11 84.61±0.22 91.77±0.15
node2vec 71.24±0.89 47.64±0.77 66.47±1.00 71.79±0.05 84.39±0.08 89.67±0.12 85.08±0.03 91.19±0.04
GAE 71.07±0.39 65.22±0.43 71.73±0.92 70.15±0.01 85.27±0.19 91.62±0.13 90.01±0.71 94.92±0.07
VGAE 79.81±0.87 66.75±0.37 77.16±0.31 75.63±0.19 86.37±0.21 92.20±0.11 92.11±0.09 94.52±0.00

DGI 82.29±0.56 71.49±0.14 77.43±0.84 75.73±0.13 84.09±0.39 91.49±0.25 91.95±0.40 94.57±0.38
GMI 82.51±1.47 71.56±0.56 79.83±0.90 75.06±0.13 81.76±0.52 90.72±0.33 OOM OOM
MVGRL 83.03±0.27 72.75±0.46 79.63±0.38 77.97±0.18 87.09±0.27 92.01±0.13 91.97±0.19 95.53±0.10
GRACE 80.08±0.53 71.41±0.38 80.15±0.34 79.16±0.36 87.21±0.44 92.65±0.32 92.78±0.23 95.39±0.32
GCA 80.39±0.42 71.21±0.24 80.37±0.75 79.35±0.12 87.84±0.27 92.78±0.17 93.32±0.12 95.87±0.15
BGRL 81.08±0.17 71.59±0.42 79.97±0.36 78.74±0.22 88.92±0.33 93.24±0.29 93.26±0.36 95.76±0.38

HGRL 80.66±0.43 68.56±1.10 80.35±0.58 76.68±0.17 84.30±0.47 93.53±0.22 93.99±0.15 OOM
GREET 83.32±0.49 72.20±1.01 80.50±0.66 79.87±0.49 87.55±0.37 92.99±0.38 94.68±0.21 95.91±0.14
HeteGCL 81.55±0.65 70.63±1.16 82.50±0.57 79.12±0.25 85.76±0.21 93.82±0.32 94.79±0.06 OOM

CoRep 85.04±0.34 73.67±0.40 83.50±0.47 82.20±0.51 89.17±3.81 93.84±1.89 94.39±0.31 96.21±0.11

datasets, consisting of 8 homophilic graph datasets (i.e., Cora, CiteSeer, PubMed, Wiki-CS, Amazon
Computers, Amazon Photo, CoAuthor CS, and CoAuthor Physics) [38, 29, 39] and 6 heterophilic
graph datasets (i.e., Chameleon, Squirrel, Actor, Cornell, Texas, and Wisconsin) [31]. The statistics
of all datasets are summarized in Appendix D.

Baselines. We compare CoRep with 5 groups of baseline methods, including 1) supervised/semi-
supervised learning methods (i.e. GCN [22], GAT [42], and MLP), 2) supervised learning methods
specially designed for heterophilic graphs (i.e. H2GCN [57], FAGCN [4], and PC-Conv [23]), 3)
conventional unsupervised graph representation learning methods (i.e., DeepWalk [35], node2vec
[17], GAE, and VGAE [21]), 4) contrastive self-supervised learning methods (i.e., DGI [41], GMI
[34], MVGRL [18], GRACE [59], GCA [60], and BGRL [40]), and 5) contrastive self-supervised
learning methods designed for heterophilic graphs (i.e., HGRL [6], GREET [27], and HeteGCL [44]).

Evaluation Protocol. For CoRep and all unsupervised baselines, we follow the standard linear
evaluation protocol of previous state-of-the-art graph self-supervised learning approaches at the node
classification task [50, 6], where a linear classifier is trained on top of the frozen representation, and
test accuracy is used as a proxy for representation quality. For datasets, we adopt the standard dataset
splits used in previous studies, i.e., public splits [52, 22, 31] or commonly used splits [60, 27].

Experimental Details. All methods were implemented in PyTorch with the Adam Optimizer. We
run 10 times of experiments and report the average test accuracy with standard deviation. For fair
comparison, the parameters of all baselines are tuned according to the parameter ranges reported by
the authors. Specific hyperparameter settings and more implementation details are in Appendix E.

4.2 Performance Comparison

Table 1 and Table 2 display the node classification results for 8 homophilic datasets and 6 heterophilic
datasets, respectively. Comparing the results in Tables 1 and 2, we have the following major
observations. First, we find that our CoRep outperforms all baseline methods in 10 out of 14
benchmarks and achieves the second and third-best performance on the remaining 4 benchmarks.
For example, CoRep achieves accuracies of 85.04% and 82.20% on the Cora and Wiki-CS datasets,
respectively, which is a relative improvement of over 1.72% and 2.26% compared to the best
baselines. For heterophilic graphs, CoRep achieves a relative improvement of over 5.71% and
2.97% on the Squirrel and Texas datasets compared to the best baselines. The superior performance
indicates that coloring learning on heterophilic graphs can produce expressive and generalizable
representations. Moreover, we also observe that CoRep significantly outperforms conventional
and contrastive unsupervised graph learning methods, surpasses heterophily-oriented unsupervised
learning methods in 85.71% of cases, and outperforms supervised learning methods under heterophily
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Table 2: Results in terms of classification accuracies (in percent ± standard deviation) on heterophilic
benchmarks. The best and second-best performance under each dataset are marked with boldface
and underline, respectively. OOM indicates Out-Of-Memory.

Methods Chameleon Squirrel Actor Cornell Texas Wisconsin
GCN 59.63±2.32 36.28±1.52 30.83±0.77 57.03±3.30 60.00±4.80 56.47±6.55
GAT 56.38±2.19 32.09±3.27 28.06±1.48 59.46±3.63 61.62±3.78 54.71±6.87
MLP 46.91±2.15 29.28±1.33 35.66±0.94 81.08±7.93 81.62±5.51 84.31±3.40

H2GCN 59.39±1.98 37.90±2.02 35.86±1.03 82.16±4.80 84.86±6.77 86.67±4.69
FAGCN 63.44±2.05 41.17±1.94 36.81±0.26 81.35±5.05 84.32±6.02 83.33±2.01
PC-Conv 53.20±1.60 35.79±0.62 36.07±0.61 78.65±2.70 85.68±2.97 88.63±2.94
DeepWalk 47.74±2.05 32.93±1.58 22.78±0.64 39.18±5.57 46.49±6.49 33.53±4.92
node2vec 41.93±3.29 22.84±0.72 28.28±1.27 42.94±7.46 41.92±7.76 37.45±7.09
GAE 33.84±2.77 28.03±1.61 28.03±1.18 58.85±3.21 58.64±4.53 52.55±3.80
VGAE 35.22±2.71 29.48±1.48 26.99±1.56 59.19±4.09 59.20±4.26 56.67±5.51

DGI 39.95±1.75 31.80±0.77 29.82±0.69 63.35±4.61 60.59±7.56 55.41±5.96
GMI 46.97±3.43 30.11±1.92 27.82±0.90 54.76±5.06 50.49±2.21 45.98±2.76
MVGRL 51.07±2.68 35.47±1.29 30.02±0.70 64.30±5.43 62.38±5.61 62.37±4.32
GRACE 48.05±1.81 31.33±1.22 29.01±0.78 54.86±6.95 57.57±5.68 50.00±5.83
GCA 49.80±1.81 35.50±0.91 29.65±1.47 55.41±4.56 59.46±6.16 50.78±4.06
BGRL 47.46±2.74 32.64±0.78 29.86±0.75 57.30±5.51 59.19±5.85 52.35±4.12

HGRL 48.29±1.64 35.79±0.89 36.97±0.98 79.46±4.45 82.16±6.00 86.28±3.58
GREET 63.09±2.18 40.86±1.93 35.75±1.08 73.78±3.64 85.41±3.67 84.12±4.76
HeteGCL 48.77±1.55 34.27±1.58 37.59±1.22 81.32±6.26 82.37±5.83 80.39±5.23

CoRep 65.64±1.39 46.88±1.56 37.32±1.13 82.70±4.55 88.65±3.97 86.86±3.17

in 85.71% of cases as well. This result suggests that goal consistency between coloring learning and
heterophilic graph learning can facilitate the model’s effective adaptation to heterophily structures.

4.3 Ablation Study

Table 3: Ablation studies results
(mean classification accuracy) on
the Cornell and Texas datasets.

Ablation Cornell Texas
A1 w/o Col. Mat. 70.00 77.57
A2 w/o Ed. Eva. 76.49 85.95
A3 w/o Gum. Soft. 77.57 82.16
A4 w/o Ld 79.73 85.95
A5 w/o Lr 81.62 86.49
A6 w/o Lc 75.14 84.32
A4+A5 78.92 85.14
A4+A6 73.78 83.78
A5+A6 74.59 78.65

CoRep 82.70 88.65

To examine the contribution of key designs in CoRep, we consider
the following ablations. (A1) We remove the edge-aware color-
ing matching learning (w/o Col. Mat.), where the hard assign-
ment argmaxj∈JχGKπi,j of predicted coloring labels is directly
used to guide positive sample selection in multi-hop neighbor-
hood contrastive learning. (A2) We remove the learnable edge
evaluator (w/o Ed. Eva.), where the coloring matching loss is
computed directly from the coloring labels without using edge
evaluation. (A3) We remove the Gumbel-Softmax technique
(w/o Gum. Soft.), where the hard assignment argmaxj∈JχGKπi,j
replaces the node’s color C col

i in Equation (11) to identify the
positive sample set. (A4) We remove the coloring redundancy
constraint (w/o Ld) by setting α = 0. (A5) We remove the triplet
relation ranking loss (w/o Lr) by setting β = 0. (A6) We remove
the multi-hop neighborhood contrastive loss (w/o Lc) by setting γ = 0. We show the ablation study
results in Table 3 (More results can be found in the Appendix F.1). From Table 3, we can see that
A1 has a significant impact on the model’s performance, highlighting the importance of edge-aware
coloring matching learning. The introduction of A2 and A3 further improves its performance, indi-
cating the effectiveness of edge evaluation and the Gumbel-Softmax. The performance degradation
observed in A4, A5, and A6 highlights the critical role of the loss terms Ld, Lr, and Lc in CoRep, as
they are essential for maintaining intra-class compactness, edge discriminability, and global structural
consistency, respectively. We also observe that the combination of losses Ld, Lr, and Lc yields better
results compared to using each loss individually. The complete model (last row) achieves the best
performance, demonstrating that the different components of the proposed CoRep framework are
complementary and work synergistically.

4.4 Parameter Analysis

In this section, we perform a detailed sensitivity analysis on the number of colors and neighborhood
hops. Additional hyperparameter experiments can be found in Appendix F.2.
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Figure 3: Parameter sensitivity of χG and κ.

Effect of the Number of Colors χG . We vary
χG from 5 to 20 with a 5-unit interval to exam-
ine its impact on the model. The classification
accuracies under different χG choices are shown
in Figure 3(a). We observe that the best results
across CiteSeer, Cornell, and Texas datasets of-
ten occur when χG is relatively large. This phe-
nomenon suggests that appropriately increasing
the number of colors helps the model uncover un-
derlying semantic information. Meanwhile, the
coloring redundancy constraint ensures intra-class compactness to avoid introducing irrelevant colors.

Effect of the Neighborhood Hops κ. We then vary neighborhood hops κ to investigate the model’s
sensitivity to the neighborhood scope. As shown in Figure 3(b), we observe that superior performance
is obtained using only one-hop neighbors on the CiteSeer dataset, suggesting that local structures are
sufficient to reflect class consistency in highly homophilic graphs. In contrast, on the Cornell and
Texas datasets, relying on multi-hop neighbors leads to better performance, indicating that in highly
heterophilic graphs, incorporating broader structural information helps preserve features of distant
yet semantically related nodes, thereby maintaining global semantic consistency.

5 Conclusion

In this paper, inspired by graph coloring, we proposed a coloring learning for heterophilic graph
representation (CoRep). Unlike prevailing GCL approaches that rely heavily on carefully designed
augmentations, our method focuses on assigning distinct colors to different types of nodes. Specif-
ically, we: 1) Pioneered a coloring classifier to generate similar/dissimilar coloring labels to ho-
mophilic/heterophilic nodes to encourage them to be closer/farther; Constructed a global positive
sample set using multi-hop same-color neighbors to capture global structural consistency. 2) Intro-
duced a learnable edge evaluator to guide the coloring learning dynamically and utilized edges’ triplet
relationship to enhance its robustness. 3) Leveraged the Gumbel-Softmax and redundancy constraint
to enhance intra-class compactness. Extensive experiments on 14 benchmark datasets showed the
effectiveness of CoRep. The limitations and broader impacts of CoRep are discussed in Appendix H.
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much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have stated the limitations of the proposed CoRep model in the Appendix.
Guidelines:

• The answer NA means that the paper has no limitation, while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

15



Answer: [NA]
Justification: There are no theoretical results in this paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide full explanations and implementation details for the proposed
CoRep model in the main paper and in the appendix. All datasets required for the exper-
iments are public datasets. We run 10 times of experiments and report the average test
accuracy with standard deviation in the Experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide the source code and data as supplementary material in the sub-
mission. In addition, we believe that the main paper and appendix provide sufficient
experimental details to ensure the reproducibility of our model.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We present the experimental setup in the main text and provide details in the
appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: For all experiments using the CoRep model, we provide the mean and standard
deviation of 10 runs on widely used or random splits.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the experimental platform in the main paper and appendix, includ-
ing the settings of hardware, hyper-parameters, and so on, as well as providing the time
complexity of the model.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We followed the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discuss both potential positive societal impacts and negative societal
impacts of the work performed in Appendix.

Guidelines:
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We use the public datasets for experiments in this paper and have cited the
original paper that produced the dataset.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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