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Abstract

We use a deep Koopman operator-theoretic for-
malism to develop a novel causal discovery algo-
rithm, Kausal. Standard statistical frameworks,
such as Granger causality, lack the ability to quan-
tify causal relationships in nonlinear dynamics
due to the presence of complex feedback mecha-
nisms, timescale mixing, and nonstationarity. In
Kausal, we propose to leverage Koopman op-
erators for causal analysis where optimal observ-
ables are inferred using deep learning. Our numer-
ical experiments with toy models and real-world
phenomena such as El Niño-Southern Oscillation
demonstrate Kausal’s superior ability in discov-
ering and characterizing causal signals compared
to existing approaches. Code is publicly avail-
able at https://github.com/juannat7/
kausal.

1. Introduction
Causal discovery seeks to disentangle cause-effect mecha-
nisms for enhanced scientific understanding, leading to im-
proved modeling of the physical world (Aloisi et al., 2022;
Cattry et al., 2025; Roesch et al., 2025; Williams et al.,
2025). Since performing interventions to detect causal-
ity is infeasible in many domains, there is a great interest
to develop observation-driven causal discovery methods
(e.g., Granger, 1969; Hyvärinen et al., 2010; Runge, 2020).
However, existing methods tend to operate under certain
assumptions, such as time-invariance, stationarity, and lin-
earity (Granger, 1969; Runge et al., 2019; Bareinboim et al.,
2022; Camps-Valls et al., 2023), which limit their applica-
bility.

*Equal contribution 1Columbia University 2LEAP NSF Sci-
ence and Technology Center 3Los Alamos National Labora-
tory 4Pacific Northwest National Laboratory. Correspondence
to: Juan Nathaniel <jn2808@columbia.edu>, Carla Roesch
<cmr2293@columbia.edu>.

ICML 2025 Workshop on Assessing World Models. Copyright
2025 by the author(s).

In general, there are two categories of approaches for infer-
ring causal relationships in nonlinear dynamical systems: i)
using information flow to identify causal influence among
variables and subspaces (Granger, 1969; Liang & Kleeman,
2005; Majda & Harlim, 2007; James et al., 2016; Tank et al.,
2021; Rupe & Crutchfield, 2024); and ii) performing a lift-
ing transformation to project the system of interest to a
higher-dimensional space where causal effects can be in-
vestigated more easily (Lorenz, 1991; Sugihara et al., 2012;
Gilpin, 2024; Butler et al., 2024). Thus, we pose our re-
search question: Can we combine these two principles to
apply linear causal analysis methods in nonlinear systems?

A natural foundation for us to start answering this question
is Koopman theory (Koopman, 1931; Mezić, 2013; Brunton
et al., 2022; 2025), which states that finite nonlinear dynam-
ics can be represented with an infinite-dimensional linear
operator acting on the space of all possible measurement
functions or observables. Recent work by Rupe et al. (2024)
has established a theoretical foundation linking Koopman
theory to causal analysis for dynamical systems using pre-
scribed embeddings. Simultaneously, efficiently and effec-
tively estimating optimal embeddings has been enabled by
rapid advances of deep learning in high-dimensional set-
tings (Brunton et al., 2016; Lusch et al., 2018; Wang et al.,
2022). As such, data-driven Koopman operator methods
have seen a surge in interest, especially for spatiotemporal
analysis in a number of fields (Kutz et al., 2018; Azencot
et al., 2020; Rice et al., 2021; Froyland et al., 2021; Lintner
et al., 2023; Lamb et al., 2024; Nathaniel & Gentine, 2025).

Main contributions. In this paper, we leverage ideas from
deep learning, Koopman theory, and causal inference. Our
main contributions can be summarized as follows: (i) We
introduce a novel deep Koopman operator-based causal dis-
covery framework, Kausal, as illustrated in Figure 1. (ii)
We show that Kausal infers a better representation of the
basis functions through deep learning, as opposed to exist-
ing prescribed approaches, which leads to a more accurate
and meaningful causal analysis in high-dimensional nonlin-
ear systems. (iii) We successfully apply Kausal to both
idealized models and real-world phenomena highlighting
the algorithm’s scalability and generalizability.
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Figure 1. Schematic of the Kausal algorithm. We 1) estimate the
embeddings using deep learning, and 2) approximate the Koopman
operator with dynamic mode decomposition (DMD). Then, 3) we
infer causal measures by computing the difference in prediction er-
ror between marginal (effect-only) and joint (effect-cause) models.

2. Kausal
In this section, we introduce the background for Kausal
based on the theoretical foundation from Rupe et al. (2024).
A more detailed explanation of the framework is given in
Appendix A.1 and A.2.

Koopman operator. Koopman theory provides a global
linearization of high-dimensional nonlinear dynamical sys-
tems (Koopman, 1931). Specifically, the nonlinear temporal
evolution of system states is represented as a linear flow
in the evolution of observables ψ ∈ Ψ (more details in
Appendix A.2). The Koopman operator is then given by:

Kt := Ψt
θΨ

†
θ (1)

where Ψ†
θ is the pseudo-inverse of Ψθ. A low-rank approxi-

mation is also feasible with matrix projection onto dominant
modes using e.g., SVD. Note that Kt is an approximation
and converges to the Koopman operator Kt for D,M →∞
(Korda & Mezić, 2018).

Structural dynamical causal models. In classical terms,
causal mechanisms are described through structural causal
models (SCM), where a system of d random variables
x = {x1, . . . , xd} are expressed as an arbitrary function
fk of their direct parents (causes) xPAk

and an exogenous
distribution of noise ϵk. For dynamical systems, we can
extend SCM for a collection of d ODEs to define structural
dynamical causal models (SDCM) (Rubenstein et al., 2018;
Peters et al., 2022; Boeken & Mooij, 2024):

d
dt
ωk,t := fk(ωPAk,t

, ϵk),with ωk,0 = ωk(0) (2)

where k ∈ {1, . . . , d}.

Causal mechanism. In dynamical systems, the time-
evolution of states is defined through a set of functions

called flow maps {Φt : Ω→ Ω}t∈T that carries the phase
space back onto itself. For an initial state ω ∈ Ω, flow maps
evolve ω through time t, given by ω(t) = Φt(ω). To define
a causal mechanism, we partition the phase space Ω of a
system into components:

Ω = ΩE × ΩC × ΩR (3)

representing the effect, cause, and remainder components.

Causal influence. The existence of a dynamical causal
relationship at time t is determined by whether the state
of the effect component depends on the initial state of the
cause component, i.e., ΩC dynamically causally influences
ΩE at time t. Mathematically we write this as:

ΩC →t ΩE ⇐⇒ ωE(t) is influenced by ωC and (4a)

ΩC ̸→t ΩE ⇐⇒ ωE(t) is not influenced by ωC , (4b)

where Equation 4b implies ΩC does not dynamically
causally influence ΩE .

Koopman causal influence. We can rephrase dynami-
cal causality using the Koopman framework, where it is
represented by the linear evolution of observables in re-
producing kernel Hilbert space, ψθ ∈ F . We argue that
causal relationships in the phase space Ω also induce dis-
tinguishable patterns in the flow of functions. For instance,
if ΩC →t ΩE , then the application of the Koopman oper-
ator on the effect observables FE will inherit this depen-
dence which is expressed as Ktψθ ∈ FE,C,R. We define
this as ΩC Koopman causally influences ΩE which is de-
noted by ΩC →t

K ΩE . Correspondingly, if ΩC does not
Koopman causally influence ΩE at time t, it is denoted by
ΩC ̸→t

K ΩE where Ktψθ ∈ FE,R. In summary, dynami-
cal causality and Koopman causality at time t are equivalent.
Namely, ΩC →t ΩE if and only if ΩC →t

K ΩE . For a
formal proof, refer to Theorem III.2 in Rupe et al. (2024).

Marginal and joint models. The data-driven measure of
Koopman causality leverages the dynamic mode decomposi-
tion (DMD) algorithm. Our method involves fitting two dis-
tinct DMD models to evolve functions in FE : i) a marginal
model restricted to functions from the effect subspace; and
ii) a joint model which utilizes functions from the subspace
incorporating both the effect and cause components.

We define the marginal and joint models, where the addi-
tion of identity observables on ΩE (Brunton et al., 2016),
ΨID,E := ψID(ΩE) = ΩE , empirically improves the perfor-
mance of our algorithm:

Kt
marg = Ψt

ID,E

[
ΨID,E

Ψθ,E

]†
; Kt

joint = Ψt
ID,E

[
ΨID,E

Ψθ,E,C

]†
(5)

where the matrices Ψθ,E and Ψθ,E,C are formed from ap-
plying the marginal ψθ,E(ωE) and joint ψθ,E,C(ωE,C) on
the training data in ΩE and ΩE × ΩC , respectively.
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Causal measure. The causal measure ∆Kt

C,E is defined as,

∆Kt

C,E := ΩC −−→
Kt

ΩE

:= L(ω̃t
E |marg, ω

t
E)− L(ω̃t

E |joint, ω
t
E),

(6)

where the difference in errors between the marginal and joint
models is calculated over all data points {ωE , ω

t
E , ωC}:

L(ω̃t
E , ω

t
E) =

1

N

∑
N

∥∥∥ω̃t
E − ω

t
E

∥∥∥2 . (7)

Hence, if the joint model has a significantly lower error,
it suggests that ΩC contains causal information about ΩE .
This also implies that if ∆Kt

C,E → 0, there is minimal causal
influence from ΩC on ΩE at time t.

Conditional forecasting. Computationally, estimating ∆Kt

C,E
at each time shift t is expensive. Thus, we perform condi-
tional forecasting, which preserves the structure of marginal
and joint models for reasonable t. Feeding the predicted
outputs ω̃E(t) back as identity observables ψID,E(ω̃E(t))
enables efficient exploration of causal dynamics over time.
However, it is not true forecasting because we supply data
from the test dataset to construct the non-identity observ-
ables. Specifically, starting with an initial value of ωE(t0)
from the test data we can define the first and following
conditional predictions for the marginal model as:

Kt
marg

[
ψID,E(ωE(t0))
ψθ,E(ωE(t0))

]
︸ ︷︷ ︸

:=w̃t
E |marg(t1)

→ Kt
marg

[
ψID,E(ω̃E(t1))
ψθ,E(ωE(t1))

]
︸ ︷︷ ︸

:=w̃t
E |marg(t2)

→ . . .

(8)
Given an additional initial value for ωC(t0) we follow the
same procedure with necessary adjustments to the dictionary
functions to obtain conditional forecasts for the joint model.

3. Experiments
3.1. Toy examples

We perform a range of experiments, including on
high-dimensional reaction-diffusion equation, to assess
Kausal’s ability for causal discovery (see Appendix D).
In the following, we show results for the coupled Rössler
oscillators, a 6-dimensional system Ω ∈ R6. We estimate
causal measures as defined in Equation 7 where the mea-
sure for each unique time shift t ∈ Z+ is estimated across
N data points. We use multilayer perceptrons (MLP) as
our deep estimators for the observables, represented as a
M = 32-dimensional feature vector of the encoder final
layer’s output. As illustrated in Figure 2, Kausal is able
to evaluate statistically significant causal signals in the true
direction (∆Kt

C,E) when compared with the non-causal case
(∆Kt

E,C ). For completeness, we also plot the causal measure

Figure 2. Causal measure estimation of coupled Rössler oscillators
by computing the difference between the true causal (∆Kt

C,E) and
non-causal direction (∆Kt

E,C) across time shifts t, using different
kernels to approximate the observables.

using a random Fourier features (RFF) kernel (M = 500;
Rupe et al., 2024; Rahimi & Recht, 2007).

Performing conditional forecasting. We also illustrate
the concept of conditional forecasting formalized earlier in
Equation 8, starting with ω0. As shown in Figure 3, the
inclusion of ΩC (i.e., the joint model) is crucial in captur-
ing ΩE dynamics in the true causal direction, whereas its
exclusion (i.e., the marginal model) leads to significant de-
viations. Conversely, in the non-causal direction, both the
marginal and joint models make no perceptible difference
in forecasting ΩC as ΩE ̸→t

K ΩC .

(a) Conditional forecasts in the true causal direction
ΩC →t

K ΩE

(b) Conditional forecasts in the non-causal direction
ΩE →t

K ΩC

Figure 3. Conditional forecasts in the (a) true and (b) non-causal
direction using MLP kernels. In (a), the addition of ΩC in the joint
model improves the forecast of ΩE relative to the marginal model
that excludes it. In (b), however, both marginal and joint models
make no qualitative difference as ΩE ̸→t

K ΩC .
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Optimal kernel selection. Robust estimation of observ-
ables is crucial for the accurate representation of nonlinear
dynamics in F . In order to study this notion, we perform
joint forecasts using either a prescribed ψRFF or a learnable
dictionary of functions, ψθ, for varying dimensionality M .
As illustrated in Figure 4, joint forecasts utilizing ψθ repro-
duce the true dynamics more accurately (expected behavior),
even beyond the training set and for low M . In contrast,
joint forecasts using ψRFF, even with high M , struggle to
capture the underlying dynamics, underscoring the limita-
tions of prescribing dictionary functions rather than directly
learning them from data.

(a) Ablating optimal observables by performing condi-
tional joint forecasts (for “fixed” Kt=1) in the ΩC →t

K

ΩE direction (ω1(t) := x1(t) ∈ ΩE) using different
estimators of varying M .

(b) Dimensionality scaling between prescribed ψRFF
and learnable ψMLP comparing the conditional fore-
casts’ MSE across all times.

Figure 4. Performance assessment of MLP and RFF kernels for
varying dimensionality (i.e. increasing complexity).

3.2. World model: observed ENSO

Next, we illustrate Kausal’s generalization to real-world
phenomena using an example from climate science, El
Niño–Southern Oscillation (ENSO; Wang & Picaut, 2013).
Since ENSO has major societal impacts, understanding its
causal drivers is vital for explainable decision making in
sectors such as agriculture and disaster preparedness (Glantz

et al., 1987; Callahan & Mankin, 2023). We demonstrate
the feasibility of Kausal in studying ENSO dynamics us-
ing ocean reanalysis products from the European Centre for
Medium-Range Weather Forecasts (ECMWF; Zuo et al.,
2019). Preliminary results as illustrated in Figure 5 are
promising. We find that Kausal is able to track the emer-
gence of ENSO events as represented by ∆Kt

T,h > 0. Specif-
ically, warm-phase El Niño events (red shading in Figure 5)
result from an increase in T , weakening the Walker circu-
lation and leading to a decrease in h. Cold-phase La Niña
events follow a similar pattern but in the opposite direction
(blue shading in Figure 5). See Appendix D.3 for additional
details as well as results from a toy ENSO model.

3.3. Additional baselines

In the following, we compare Kausal to a range of base-
line causal discovery methods across two tasks: (i) causal
direction identification, and (ii) causal magnitude estima-
tion. Specifically, we compare against two well-established
methods: VARLiGAM (Hyvärinen et al., 2010; Shimizu
et al., 2006) and PCMCI+ (Peter Clark Momentary Condi-
tional Independence; Runge, 2020). Further, we evaluate
against novel deep learning-based causal discovery methods:
cLSTM (Tank et al., 2021) and TSCI (Tangent Space Causal
Inference; Butler et al., 2024). See Appendix E for more
implementation details.

Table 1. Causal direction identification for (a) Coupled Rössler
Oscillators, (b) reaction-diffusion equation. Entries denote the
p-value (ρ) for the true (C → E; ↓ ρ is better) and false causal
direction (E → C; ↑ ρ is better).

(a) Coupled Rössler oscillators

METHOD ρC→E ρE→C

PCMCI+ 0.44 0.39
VARLINGAM 1.22× 10−5 0.00
KAUSALRFF 0.01 1.00
KAUSALMLP 0.01 1.00

(b) Reaction-diffusion equation

METHOD ρC→E ρE→C

PCMCI+ 0.74 1.95× 10−13

VARLINGAM 0.00 0.00
KAUSALRFF 0.03 0.03
KAUSALCNN 0.03 0.23

Task 1: Identify causal direction. We first conduct hy-
pothesis testing (see Algorithm 1) to identify the causal
direction for the coupled Rössler oscillators (Table 1a) and
the reaction-diffusion equation (Table 1b) for which the true
directionality is known and clearly distinguishable (more
details in Appendix E.1). Because none of the deep learning-
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Figure 5. Causal measure of ENSO using real-world data showcasing Kausal’s ability (black line) to capture major El Niño (red shading)
and La Niña (blue shading) events. Events are estimated using NOAA’s Oceanic Niño Index (Glantz & Ramirez, 2020). The causal
measure estimated using a prescribed RFF kernel (green line) fails to capture ENSO dynamics. Ensemble is obtained from fitting 5
different randomly initialized kernel.

based methods provide out-of-the-box statistical tests to
validate causal direction, we conduct this task with VAR-
LiNGAM and PCMCI+. Our results indicate that PCMCI+
tends to be conservative, often yielding no directionality
when there is. In contrast, VARLiNGAM frequently con-
flates directional cues, inferring bi-directional relationships
when there is none. Kausal, however, captures the true
(and the lack of) causal relationships with greater precision.

Figure 6. AUROC scores for the observed ENSO (AUROC > 0.5
shows significant skills better than chance).

Task 2: Evaluate causal magnitude. Next, we evaluate
Kausal for causal magnitude estimation. This analysis
extends the observed ENSO case (Figure 5) but added a
summarized quantitative evaluation in terms of Area Under
the Receiver Operating Characteristic (AUROC; Peterson
et al., 1954) scores (Figure 6). Since most, if not all exist-
ing methods still assume a static causal graph with fixed
link magnitudes, we employ the sliding-window protocol
introduced by Runge et al. (2019) (see Appendix E.2 for

details and results). Beyond the ENSO case, we further
apply a similar setup to predict causal magnitudes in other
toy problems. For instance, Figures S9 - S11 illustrate the
causal magnitude timeseries given a backdrop of extremes
to be detected. While Figures S12-S14 highlight their AU-
ROC scores. Overall, Kausal consistently achieves the
highest score. The Granger causality-based approaches
(PCMCI+, cLSTM and VARLiNGAM) perform worse be-
cause their fixed time-lagged embeddings cannot capture
nonlinearities and multiscale interactions outside the chosen
window. Although TSCI leverages cross-correlation maps
in an operator-theoretic approach, it still struggles due to
the absence of explicit linearity constraints.

4. Conclusion
This paper presents Kausal, a novel deep Koopman
operator-based algorithm for causal discovery in high-
dimensional nonlinear systems, combining the principles
of deep learning, Koopman theory, and causal inference.
Leveraging deep learning to infer the dictionary functions
of observables, our algorithm improves the estimation of
causal measures in nonlinear dynamics relative to state-of-
the-art methods. Kausal’s scalability and generalizability
is further highlighted by evaluating its performance for a
range of systems of increasing complexity, including cou-
pled Rössler oscillators as well as sea-surface temperature
and height observations of ENSO. There are several promis-
ing directions for future work: extending the framework to
causal effect estimation allowing us to generate explainable
physics-informed predictions, discovering causal graphs
by developing tractable adjacency testing algorithms, and
accounting for stochastic, non-autonomous dynamics.
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Deep Koopman operator framework for causal discovery
in nonlinear dynamical systems

Supplementary Material

A. Background
A.1. Dynamical systems

In this section we provide a brief overview of the necessary mathematical background and define the required notations to
introduce our novel causal algorithm. The causal framework and notations follow Rupe et al. (2024).

Dynamical systems. Dynamical systems theory describes the evolution of a system over time, with the system state
represented as a point in a phase space, ω ∈ Ω, which we assume to be in the Euclidean space RN . Throughout this paper
variables are treated as vectors unless explicitly stated otherwise.

Flow maps. Time-evolution of states is defined through a set of functions called flow maps {Φt : Ω→ Ω}t∈T that carries
the phase space back onto itself. For an initial state ω ∈ Ω, flow maps evolve ω through time t, given by ω(t) = Φt(ω). The
orbit of a state ω is the set {ω(t) = Φt(ω)}t∈T , representing the trajectory of the system over the time domain T . Although
we denote the initial state as ω, writing ω(t, ω0) = Φt(ω0) with the initial state ω0 would be equivalent. For simplicity, we
also restrict our analysis to autonomous dynamical systems characterized by time-independent flow maps.

Ordinary differential equations. In a deterministic setting, the evolution of ω(t) over time t can be described through
ordinary differential equations (ODEs) of the form:

dω

dt
= f(t, ω) (9)

where f is an arbitrary function and the solution ω(t) depends on the initial condition ω(t0) = ω0 at time t0.

Components. To formalize the idea of causality in a dynamical system, we need to define different components of the system
which can impact each other. For anN -dimensional phase space (i.e. N degrees of freedom) as described above, we partition
the space into disjoint system component subspaces as Ω = Ω1 × Ω2 × · · · × ΩL with ωi ∈ Ωi and ω = [ω1 ω2 . . . ωL],
where L ≤ N .

Reproducing Kernel Hilbert Spaces (RKHS). Koopman operators act on functions rather than directly on system states,
mapping one function to another by evolving it under the system dynamics. To ensure the operations of the Koopman
operator are mathematically consistent and computationally feasible, we therefore require a well-defined function space. For
data-driven analysis, a natural choice of a function space is reproducing kernel Hilbert spaces (RKHS).

A RKHS is a Hilbert space of functions F such that the evaluation f 7→ f(ω) is continuous for each point ω ∈ Ω.
This requires the existence of a kernel function k : Ω × Ω → C such that k(·, ω′) ∈ F and f(ω′) = ⟨f, k(·, ω′)⟩. The
Moore-Aronszajn theorem (Aronszajn, 1950) implies that a positive definite kernel function defines a unique RKHS, so we
use the notation F = H(k) unambiguously. We will express the kernel k in terms of an associated feature map ψ : Ω→ F ,
namely k(ω, ω′) = ⟨ψ(ω),ψ(ω′)⟩H. The kernel k is constructed as the tensor product of the kernels ki, which are the
kernel functions for each component Ωi of the partitioned phase space Ω = Ω1 × · · · × ΩL. For a subspace ΩX given
X ⊂ {1, 2, ..., L} we define the component observable function subspace FX which is itself a RKHS. Thus, FX = H(kX)
is given through the kernel:

kX(ω, ω′) :=
∏
j∈X

kj(ψ(ωj),ψ(ω
′
j))

:= ⟨ψ(ωj),ψ(ω
′
j)⟩H

(10)

for all ω, ω′ ∈ Ω. We summarize key features of RKHS relevant to the Koopman framework in Table S1.

A.2. Koopman theory

Koopman operator. Koopman theory provides a global linearization of high-dimensional nonlinear dynamical systems
(Koopman, 1931; Brunton et al., 2022). Specifically, the nonlinear temporal evolution of system states is represented as
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a linear flow in the evolution of system observables. The map from system states to observables is given by a function,
ψ : Ω→ F .

The Koopman operator Kt : F → F therefore acts as a time shift t on an observable ψ(ω):

ψt(ω) = [Ktψ](ω) := [ψ ◦ Φt](ω) = ψ(ω(t)). (11)

We need Koopman operators acting on F to be bounded to ensure the continuity of the time-evolution of ψ, i.e. Ktψ. This
property is given by defining the Koopman operator over a reproducing kernel Hilbert space (RKHS) (Kostic et al., 2022;
Rupe et al., 2024).

Observables. Obtaining observables in which the nonlinear dynamics appear approximately linear is an open challenge
(Brunton et al., 2022). Existing works often rely on a set of M -dimensional dictionary functions ψ = [ψ1 ψ2 · · · ψM ]⊺

spanning a finite-dimensional Hilbert space Fψ ⊂ F , such as Gaussian, and Random Fourier features (RFF; Rahimi &
Recht, 2007), Polynomial, Time Delay (TDF; Abarbanel et al., 1994). Note that these dictionary functions are the previously
defined feature maps. Often these functions may not be sufficiently expressive to represent complex dynamics (Kostic et al.,
2022). Nonetheless, deep learning provides a natural framework for inferring the optimal high-dimensional embedding,
which constitutes one of the goals of this paper.

In this paper, we compute a finite-rank approximation of the Koopman operator with dictionary functions ψθ : Ω→ H that
are learned using different neural network-based encoder-decoder architectures. Since we use appropriate regularizations and
activations, namely the bounded sigmoid function, we ensure that the observables are finite. As a result, the kernel function
is also bounded, i.e., kθ(ω, ω′) = ⟨ψθ(ω),ψθ(ω′)⟩H <∞ for all ω, ω′ ∈ Ω (Aronszajn, 1950; Caponnetto & De Vito,
2007; Kostic et al., 2022). The size of our encoder final layer’s output vector M ∈ Z+ determines the dimensionality ofH,
which is the number of learned dictionary functions.

Dynamic mode decomposition. To estimate the Koopman operator Kt we use dynamic mode decomposition (DMD), which
solves a least-squares regression problem to identify a finite-dimensional linear representation of the system dynamics.
Using dictionary functions defined as,

ψθ(ω(n))) = [ψθ,1(ω(n)) . . . ψθ,M (ω(n))]
⊺ ∈ RM×1, (12)

we construct data matrices consisting of observables for D ∈ Z+ pairs of data points {(ω(n), ωt(n)}D, denoted as Ψθ and
Ψt

θ (t time shifted):

Ψθ =

 | |
ψθ(ω(n1)) . . . ψθ(ω(nD))

| |

 , (13)

Ψt
θ =

 | |
ψt

θ(ω(n1)) . . . ψt
θ(ω(nD))

| |

 . (14)

Assuming there exists a unique linear operator Kt : FΨθ
→ FΨθ

that satisfies ⟨ψ′
θ,Ktψθ⟩H = ⟨ψ′

θ,K
tψθ⟩H, where

ψθ,ψ
′
θ ∈ Ψθ, we can define the least-squares regression problem as:

D∑
n=1

∥∥[KtΨθ](ω(n))−KtΨθ(ω(n))
∥∥2

=

D∑
n=1

∥∥[Ψθ ◦ Φt](ω(n))−KtΨθ(ω(n))
∥∥2

=

D∑
n=1

∥∥Ψθ(ω
t(n))−KtΨθ(ω(n))

∥∥2 .
(15)

The full rank least-squares solution is given as:
Kt := Ψt

θΨ
†
θ (16)
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where Ψ†
θ is the pseudo-inverse of Ψθ. A low-rank approximation is also feasible with matrix projection onto dominant

modes using e.g., SVD. Note that Kt is an approximation and converges to the Koopman operator Kt for D,M → ∞
(Korda & Mezić, 2018).

B. Relevant aspects of reproducing kernel Hilbert spaces

Table S1. Aspects of RKHS relevant to the Koopman Operator
Aspect Relevance to Koopman Operator Mathematical Representation

Function Space Koopman operator maps functions (observ-
ables); RKHS provides structured function
spaces.

F ⊆ H, Kt : F → F

Discrete Data Handles point evaluations of functions, key
for real-world data-driven analysis.

ψ(ω) = ⟨ψ, k(·, ω)⟩
(reproducing property)

Kernel Function Efficiently constructs feature spaces for
function representation.

k(ω, ω′) = ⟨ψ(ω),ψ(ω′)⟩H

Product Spaces Represents multi-dimensional interactions
between variables.

Hproduct = HE ⊗HC

Theoretical
Simplicity

Ensures boundedness, completeness, and
well-defined operator properties.

∥Kψ∥ ≤ C∥ψ∥
(bounded linear operator)

Data-Driven
Approximations

Enables finite-dimensional approximations
for computational feasibility.

Kt ≈ Kt := ΨtΨ†

(this paper)
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C. Kausal: A Differentiable Deep Koopman Causal Analysis Module
In this section, we highlight code snippets applying the Kausal algorithm.

Setting up. First, you can define multivariate timeseries and assign them as cause and effect variables by which a causal
analysis is going to be conducted.

import torch
from kausal.koopman import Kausal

# Define your cause/effect variables
cause = torch.tensor(...)
effect = torch.tensor(...)

# Initialize `Kausal` object
model = Kausal(cause = cause, effect = effect)

Performing causal analysis. You can then perform causal analysis by providing time shift parameter (defaults: 1).

# Estimate causal effect
causal_effect = model.evaluate(time_shift = 1)

Defining custom observable functions. You can then specify specific observable functions, e.g., MLP or CNN. By default, it
will use RFF with dictionary of size M = 500. If you choose a learnable dictionary, you can fit them given hyperparameters.

from kausal.observables import MLPFeatures

model = Kausal(
marginal_observable = MLPFeatures(...),
joint_observable = MLPFeatures(...),
cause = torch.tensor(...),
effect = torch.tensor(...)

)

# Fit both marginal and joint observables if using learnable dictionaries.
marginal_loss, joint_loss = model.fit(

n_train = n_train,
epochs = epochs,
lr = lr,
batch_size = n_train,
**kwargs

)

Changing decomposition method. Several regression techniques to estimate the Koopman operator are also provided, e.g.,
full-rank pseudo-inverse (pinv) or low-rank mode decomposition (DMD).

from kausal.regressors import DMD

model = Kausal(
regressor = DMD(svd_rank = 4),
cause = torch.tensor(...),
effect = torch.tensor(...)

)
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D. Experiments
D.1. Coupled Rössler oscillation

We begin our exposition with the coupled Rössler oscillators, a 6-dimensional system Ω ∈ R6 described as:

ẋ1 = −φ1y1 − z1,
ẏ1 = φ1x1 + ay1 + c1(y2 − y1),
ż1 = b+ z1(x1 − d).

(17a)

ẋ2 = −φ2y2 − z2,
ẏ2 = φ2x2 + ay2 + c2(y1 − y2),
ż2 = b+ z2(x2 − d)

(17b)

where a, b, d, φi ∈ R are prescribed parameters and ci ∈ R the coupling terms. Setting c2 = 0 naturally partitions the
variables into ΩC = [x2, y2, z2]

⊺ →t
K ΩE = [x1, y1, z1]

⊺. Here, we use multilayer perceptrons (MLP) as our deep
estimators for the observables, represented as a M = 32-dimensional feature vector of the encoder final layer’s output.

Experimental setup. The system is solved with Dormand Prince 5th-Order scheme with t ∈ [0, 10] and ∆t = 10−2. The
parameters used here are a = 0.2, b = 0.2, d = 5.7, φ1 = 1.0, φ2 = 1.0, c1 = 0.5, c2 = 0.0. In the case of the dictionary
learning setting, we parameterize the lifting functions ψθ of the marginal and joint models with a 2-layer Multi-Layer
Perceptron (MLP) with hidden channels of [16, 32], activated by sigmoid, and optimized with AdamW using a learning
rate of 10−2 over 500 epochs. Otherwise, in the prescribed dictionary setting, we use Random Fourier Feature (RFF) of size
M = 500 as the default. Figure S1 illustrates a sample trajectory when varying coupling strength c1 while setting c2 = 0.

Figure S1. Coupled Rössler Oscillation with varying coupling strength c1, when c2 = 0.
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D.2. Reaction-diffusion equation

We now showcase Kausal’s scalability to high-dimensional settings and underscore the notion of uncertainty quantification
of causal measures using a 2D nonlinearly coupled reaction-diffusion process described as:

u̇ = Du∇2u− u(u− a)(u− 1) + βv,

v̇ = Dv∇2v − v(v − b)(v − 1) + γu
(18)

where Du, Dv, a, b ∈ R are prescribed parameters,∇2 : Rnx,ny → Rnx,ny the 2D Laplace operator (nx = ny = 16), and
β, γ ∈ R the coupling terms. The states (u, v) include components of the horizontal velocity. Here, we set γ = 0, such that
the variables are naturally partitioned into ΩC = [v]⊺ →t

K ΩE = [u]⊺. In our setup, we use convolutional neural networks
(CNN) as our deep estimators for the observables, represented as a 128-dimensional feature map of the encoder final layer’s
output.

Experimental setup. The system is solved over a 16× 16 grid with Dormand Prince 5th-Order scheme with t ∈ [0, 10]
and ∆t = 103. The parameters used here are Du = Dv = 0.1 as the diffusion coefficients, a = b = 0.3 as the reaction
parameters. As described in the main text, the coupling terms are set as β = 10 and γ = 0. In the case of the dictionary
learning setting, we parameterize the lifting functions ψθ of the marginal and joint models with a convolution-based
encoder-decoder symmetric structure (CNN) with hidden channels of [16, 32, 64, 128], activated by sigmoid, and optimized
with AdamW using a learning rate of 10−4 over 50 epochs. Otherwise, in the prescribed dictionary setting, we use Random
Fourier Feature (RFF) of size M = 500 as the default.

Figure S2. Nonlinear and coupled reaction-diffusion equation sample realization for different time steps.
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Uncertainty quantification of causal measures. Our finite approximation of linear flow in F is imperfect, and therefore,
capturing its representation uncertainty is crucial. To this end, we fit a number of CNN kernels to form an ensemble, where
we maintain the dimensionality (M = 128) but randomly initialize the learnable weights. In Figure S3, Kausal is able
to extract statistically significant causal signals in the true direction (ΩC →t

K ΩE) when compared with the non-causal
case (ΩE →t

K ΩC) as t≫ 0. The ensemble spread is represented as the shaded region around the mean solid line. Note
that due to small state values, we scale the causal measure to [−1, 1] and negative values of the causal measure are due to
insignificant causal signals.

Figure S3. Causal measure of reaction-diffusion equation by computing the difference between the true causal (∆Kt

C,E) and non-causal
direction (∆Kt

E,C ) across time shifts t, using an ensemble of randomly initialized CNN kernels (M = 128) to estimate the observables,
versus the default RFF.
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D.3. El Niño–Southern Oscillation

We analyze both simulated and real-world datasets of El Niño–Southern Oscillation (ENSO). We first describe the simulation
setup before elaborating on the experiments. We first apply Kausal to analyze a well-known ENSO physics-based
dynamical model (Jin, 1997) defined as:

Ṫ = −rT − µαb0h− ϵT 3,

ḣ = γT + (γµb0 − c)h
(19)

where r, α, b0, c ∈ R are prescribed parameters, ϵ ∈ R is a damping coefficient regulating the strength of nonlinearity, and
γ, µ ∈ R are the coupling terms. The states include anomalies in sea surface temperature T and thermocline height h in
the eastern and western equatorial Pacific, respectively. For notational uniformity, we partition ΩC = [T ]⊺ and ΩE = [h]⊺.
However, this does not imply ΩE ̸→t

K ΩC as long as the coupling terms are non-zero, which is the case throughout our
exposition. In our setup, we use MLP as our deep estimator for the observables, represented as a 32-dimensional vector of
the encoder final layer’s output.

Experimental setup. The system is solved with Dormand Prince 5th-Order scheme with t ∈ [0, 100] and ∆t = 10−2.
The parameters used here are r = 0.25, α = 0.125, b0 = 2.5, c = 1.0, γ = 0.75. As described in the main text, we vary
both the coupling term µ and nonlinearity parameter ϵ. In the case of the dictionary learning setting, we parameterize the
lifting functions ψθ of the marginal and joint models with a 2-layer Multi-Layer Perceptron (MLP) with hidden channels of
[16, 32], activated by sigmoid, and optimized with AdamW using a learning rate of 10−2 over 500 epochs. Otherwise, in
the prescribed dictionary setting, we use Random Fourier Feature (RFF) of size M = 500 as the default.

Linear stability analysis. Here, we provide more details on our linear stability analysis, including a bifurcation diagram
and sample trajectories around the critical point µc = 0.67 (see Figure S4a).

(a) Bifurcation diagram with varying µ. The critical
point is reached when µc = 0.67. Meanwhile, µ < µc

and µ > µc represent dissipative and chaotic dynamics
respectively.

(b) Sample trajectories given identical initial condition but different coupling
terms µ. We only analyze the coupled oscillatory regime because the
decoupled mechanism is physically unrealistic (i.e., Im(λ) ̸= 0).

Figure S4. Linear stability analysis of ENSO model by Jin (1997) showcasing in a) the bifurcation diagram that identifies fixed point
structures, and in b) sample trajectories given different coupling strength µ that produce dissipative, stable, or chaotic oscillatory
realizations (i.e., Im(λ) ̸= 0).

Setting ϵ = 0 in Equation 19 linearizes the dynamics such that several evaluations could be performed, including stability
analysis. This is crucial for identifying bifurcation, or tipping points of the system. The full linear stability analysis,
including the bifurcation diagram, are described and illustrated in Figure S4. Given a prescribed set of parameters, the
critical point µc = 0.67 corresponds to a stable periodic attractor. Meanwhile, µ < µc and µ > µc represent dissipative and
diverging oscillations, respectively. Here, we only consider physically realistic oscillatory dynamics defined in µ-regimes
where Im(λ) ̸= 0.

In Figure S5, Kausal reveals accurate linear analysis across µ-regimes that induces dissipative, stable, or diverging
oscillatory ENSO dynamics. For instance, in the critical delta region where µc = 0.67, our causal measures show identical
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peaks with consistent periodicity. Whereas in the dissipative (or diverging) dynamics, our causal measures reveal decreasing
(or increasing) influence in the ΩC →t

K ΩE direction. This is physically consistent with the model as both T and h are
exerting coupled feedback, and partly governed by µ.

(a) Phase space of ENSO dynamics in different µ-regimes.
(b) Causal measure estimation of ENSO (∆Kt

T,h) across µ-
regimes using different estimators for the observables.

Figure S5. Kausal reveals the underlying ENSO dynamics exhibiting (left) dissipative, (center) stable, and (right) diverging oscillatory
patterns shown in (a) the phase space, and (b) causal measure.

Capturing nonlinearity strength. We perform similar analysis in the stable region of µc = 0.67, but vary nonlinearity
by setting ϵ ̸= 0. As illustrated in Figure S6, we note two physically consistent observations in the causal measure: (a)
oscillatory dynamics (insofar Im(λ) ̸= 0), and (b) a dampening pattern as nonlinearity strengthens, as evidenced by the
slower rate of change in ∆Kt

C,E and smaller magnitude of peaks. Overall, a robust identification of weakly or strongly
coupled variables within a system, as demonstrated by Kausal, is crucial for better understanding, effective control, and
accurate forecasting of dynamics.

Figure S6. Causal measure of ENSO for varying nonlinearity strength ϵ using MLP kernels to approximate the observables. Our Kausal
framework is able to meaningfully differentiate and characterize nonlinearity in the underlying ENSO dynamics.

Application to real-world data. Lastly, we move beyond simulation and to a real-world application, using a long-term
ocean reanalysis product.

As mentioned briefly in the main text, we use the ECMWF monthly 1.5◦ ocean reanalysis product (Zuo et al., 2019) as
preprocessed in Nathaniel et al. (2024). In particular, we use anomalies of sosstsst (sea surface temperature) for T and
sossheig (sea surface height) for h in Equation 19. Note, that while in the ENSO model described above h resembles the
thermocline height, we use sea surface height in this observation-based study. Both variables are interchangeable when
studying the feedback mechanisms of ENSO (as the sea level height decreases the thermocline shallows; Zhao et al., 2021).
We define the equatorial band as 5◦S-5◦N and then estimate T over the Nino-3 region (150◦E-90◦W) and h over the Nino-4
region (150◦E-150◦W). The background SST anomaly is computed along the Nino3.4 region (170◦W-120◦W). Lastly,
we deseasonalize the variables by subtracting the 30-year monthly climatology. Following NOAA’s Oceanic Niño Index
(ONI; Glantz & Ramirez, 2020), El Niño events are defined when at least five consecutive 3-month running means of SST
anomalies in the Nino3.4 region show T ≥ 0.5◦C, and La Niña events when T ≤ −0.5◦C (see Figure S7).
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Figure S7. Sea surface temperature (SST) anomalies (black line) in Nino3.4 region to identify major El Niño and La Niña events (shading)
according to NOAA’s ONI index (Glantz & Ramirez, 2020).

Instead of computing an area average, we use each gridcell as its own independent dimensionality to increase the number
of features. The marginal and joint models are estimated using MLP kernels with 2 hidden-channels of size [512, 1024],
activated by sigmoid, and optimized with AdamW using a learning rate of 10−2 over 500 epochs. Causal measures for the
displayed time periods in Figure 5 and Figure S8 are estimated by iteratively increasing time shifts t in Equation 7 for fixed
initial conditions ω0, which is given by the respective first displayed date.

In Figure S8, an additional analysis of the observed ENSO highlights the limitations of prescribed observables through the
failure of RFF to capture causal signals in major ENSO events .

Figure S8. Causal measure of ENSO using real-world data showcasing the use of RFF-derived observables results in failure to detect
meaningful causal signals around major ENSO events.
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E. Baselines
We run additional ablation studies to benchmark Kausal with state-of-the-art causal discovery for dynamical systems.

E.1. Task 1: Causal direction identification

We perform hypothesis testing to identify ΩC → ΩE . For this work, we use the Coupled Rössler oscillators and reaction-
diffusion equation where the true directionality is known and clearly distinguishable (no feedback mechanism i.e., ΩC → ΩE

and ΩE ̸→ ΩC ). For Kausal, we propose a statistical test to check ΩC → ΩE , given by Algorithm 1, drawing inspiration
from Christiansen et al. (2022). In plain English, the algorithm checks if there is distinguishable causal effect in the direction
of ΩC → ΩE when compared with an N -times randomly shuffled timeseries for a given time shift t. By default, we use
N = 100 and t = 1 and the significance is measured with a one-sided test.

Algorithm 1 Kausal identifiability test (ΩC → ΩE)

input: ΩC , ΩE , N , t
require: N > 1 Number of random permutation
∆C→E ← Kausal

(
ΩC

t−→K ΩE

)
Apply Equation 6

∆C ̸→E ← ∅ Initialize causal measure placeholder for randomized timeseries
for n← 1 to N do
Ω̂C ← RandomTemporalPermute(ΩC)
Ω̂E ← RandomTemporalPermute(ΩE)

∆C ̸→E [n]← Kausal
(
Ω̂C

t−→K Ω̂E

)
Apply Equation 6

end for
ρ← PTest(∆C→E > ∆C ̸→E) Perform one-sided p-test
return: ρ

We use PCMCI+ (Runge, 2020) and VARLiNGAM (Hyvärinen et al., 2010) as our baselines to check the true and false
causal directions as they provide statistical tests out-of-the-box. The baseline setups are as follow:

• PCMCI+: τmax = 1 to recover at most t− 1 time lag with partial correlation (ParCorr) conditional test,

• VARLiNGAM: τmax = 1 to recover at most t− 1 time lag.

E.2. Task 2: Causal magnitude estimation

Since most baselines (PCMCI+ (Runge, 2020), VARLiNGAM (Hyvärinen et al., 2010), cLSTM (Tank et al., 2021), and
TSCI (Butler et al., 2024)) aggregate causal measures given a timeseries (i.e., estimated causal graph is assumed to be
static), we employ an identical sliding window strategy proposed in Tigramite tutorial for ENSO identification analysis
(Runge et al., 2019). In short, we define a sliding window of size 10 and step size of 1. For each time instance t ≥ 1,
we extract ΩC(t − 1) → ΩE(t) causal effect measure. In this experiment, we compute the absolute causal magnitude
estimate (i.e., unsigned) and evaluate it using Area Under the Receiver Operating Characteristic (AUROC) (Peterson
et al., 1954) where the binary classification include both positive and negative extrema about a pre-defined ±γσ, where
γ ∈ [0, 1] and σ is the deviation about a mean state (e.g., in our real ENSO example, the extrema refer to El Niño and
La Niña, and the mean state is defined as the climatology). For toy problems, we prescribe γCoupled-Rossler := 1.00 and
γreaction-diffusion := 0.50 to sufficiently capture meaningful extremes. Note that in the reaction-diffusion experiment, we
run baselines with a spatially-averaged timeseries as most baseline algorithms do not scale in high-dimensional, multivariate
nodes. We use the default hyperparameters settings across models. Finally, we extract the final L = 1000 time samples in
the Coupled Rössler oscillations, and further subsample at every S = 50 steps in the reaction-diffusion trajectory, to mimic
how dynamics are typically observed in real-world (i.e., steady-state behaviors and sparse sampling, respectively).

Figures S9 - S11 illustrate the causal magnitude estimation as timeseries given a backdrop of extremes to be detected. While
Figures S12-S14 highlight the AUROC curve and scores in the causal detection of extreme signals. Across experiments, we
find the superiority of Kausal in detecting extreme signals, even in the most challenging real-world ENSO dynamics.
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(a) Kausal (MLP) and baselines

(b) Kausal variants

Figure S9. Causal magnitude estimation for Coupled Rössler oscillators given a backdrop of extremes to be detected.
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(a) Kausal (CNN) and baselines

(b) Kausal variants

Figure S10. Causal magnitude estimation for reaction-diffusion equation given a backdrop of extremes to be detected.
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(a) Kausal (MLP) and baselines

(b) Kausal variants

Figure S11. Causal magnitude estimation for real ENSO observations given a backdrop of extremes to be detected.
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(a) Kausal (MLP) and baselines (b) Kausal variants

Figure S12. AUROC (↑ is better) for Coupled Rössler oscillators in the causal detection of extreme signals.

(a) Kausal (CNN) and baselines (b) Kausal variants

Figure S13. AUROC (↑ is better) for reaction-diffusion equation in the causal detection of extreme signals.

(a) Kausal (MLP) and baselines (b) Kausal variants

Figure S14. AUROC (↑ is better) for real ENSO observations in the causal detection of extreme signals.
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