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Abstract

Video-Language Models (VLMs), powered by the advancements in Large Lan-
guage Models (LLMs), are charting new frontiers in video understanding. A pivotal
challenge is the development of an effective method to encapsulate video content
into a set of representative tokens to align with LLMs. In this work, we introduce
Slot-VLM, a new framework designed to generate semantically decomposed video
tokens, in terms of object-wise and event-wise visual representations, to facilitate
LLM inference. Particularly, we design an Object-Event Slots module, i.e., OE-
Slots, that adaptively aggregates the dense video tokens from the vision encoder to
a set of representative slots. In order to take into account both the spatial object
details and the varied temporal dynamics, we build OE-Slots with two branches:
the Object-Slots branch and the Event-Slots branch. The Object-Slots branch fo-
cuses on extracting object-centric slots from features of high spatial resolution but
low frame sample rate, emphasizing detailed object information. The Event-Slots
branch is engineered to learn event-centric slots from high temporal sample rate but
low spatial resolution features. These complementary slots are combined to form
the vision context, serving as the input to the LLM for effective video reasoning.
Our experimental results demonstrate the effectiveness of our Slot-VLM, which
achieves the state-of-the-art performance on video question-answering.

1 Introduction

Recently, Large Language Models (LLMs) have gained significant progress [5, 39, 31]. They present
exceptional ability to comprehend, reason with, and generate human language text. Such amazing
capabilities have stimulated the wave of research on extending the models to Vision Language Models,
enabling the vision reasoning ability.

For image understanding, MiniGPT-4 [51] leverages a Q-Former and a projector to align a frozen
vision encoder with a frozen advanced LLM, where Q-Former converts the visual input into a fixed-
length learned visual query tokens (32 tokens). LLaVA [25] and MiniGPT-v2 [10] directly use the
gridded visual tokens (after projection) as the LLM input. Image-text pairs are leveraged to align the
visual model and the LLM in training. For handling videos, one straightforward way is to stack the
tokens from sampled frames and feed them into the LLM [19, 12, 50]. This is challenging when we
densely sample frames (e.g., with the purpose of preserving more information) or when we sample
abundant frames for long videos. For example, for a video of 10 minutes, when we sample at 1 frame
per second and each frame uses 32 (or 256), we will have 19,200 (or 153,600) tokens in total. On the
one hand, the large number of tokens increases both the memory and computational requirement. On
the other hand, there is spatio-temporal redundancy and the features are not representative.
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Figure 1: Illustration of methods for aligning visual features with LLM. Previous methods (a) and
(b) leverage pooling or Q-Former to aggregate visual tokens, where each generated token contains
coupled semantics. In contrast, we propose to generate semantically decoupled object-centric tokens
as illustrated in (c), and event-centric tokens as illustrated in (d), to align with the LLM.

Video-ChatGPT [28] reduces the number of video tokens to 356 by separately performing spatial
pooling and temporal pooling, which suffers from the loss of visual details. Video-LLaMA [48] and
VideoChat [20] compress the video tokens using Q-Former, where a set of learnable queries aggregate
the information from video tokens through cross-attention and self-attention. These strategies
generate reduced tokens. However, each token contains semantically mixed/entangled information
(see the visualization analysis of Q-Former in Appendix G.1) and this may bring inefficiency to
video-language modeling. As we know, the text words as the input to LLMs have semantics and are
disentangled. Intuitively, to better align the video tokens with the language input of LLMs for building
VLMs, the generated video tokens that could act similarly to words are desired.

In this work, as illustrated in Figure 1, we aim to generate semantic-centric tokens2 from video
features to comply with LLMs for effective video-language modeling. By leveraging slot attention
[27, 35], which converts an image into object-centric representations, i.e., slots, we design an Object-
Event Slots module (i.e., OE-Slots module), that generates a set of semantically decomposed video
tokens (a.k.a. slots) from video features, and takes such slots as input to LLMs. This is somewhat
similar to human visual reasoning, where the brain converts the visual perception to high-level object
representations to facilitate further reasoning. We dub the scheme powered by OE-Slots module as
Slot-VLM. Figure 2 shows the flowchart of Slot-VLM. Particularly, OE-Slots module consists of
two branches: Object-Slots and Event-Slots for decomposed spatial and temporal modeling, focusing
on spatial objects and temporal varied dynamics (event), respectively. The Object-Slots branch
extracts object-centric slots from high spatial resolution features but sampled at low frame rate.
The Event-Slots branch extracts event-centric slots from high temporal resolution but low spatial
resolution features. The two sets of slots are combined together as the input to the LLM for video
reasoning. In instruction-tuning, we fine-tune OE-Slots module and the projection layer to align the
visual features with LLM.

In summary, we have three main contributions:

2A semantic-centric token refers to a token that represents a semantically meaningful entity, such as an object,
or an event (from a temporally consistent segment).
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Figure 2: Flowchart of our proposed Slot-VLM for video understanding. Slot-VLM consists of a
frozen image encoder, a learnable Object-Event Slots module (i.e., OE-Slots module), a projection
layer, and a frozen LLM. The image encoder encodes the input video of T frames into a sequence of
image features, resulting in extensive (H ×W × T ) video tokens. In order to obtain semantically
decoupled and compact (reduced) video tokens as the vision context for aligning with LLM, our
OE-Slots module learns to aggregate those tokens to object-centric tokens and event-centric tokens
through the Object-Slots branch and the Event-Slots branch, respectively. The Object-Slots branch
operates at low frame rate (t ≪ T ) but high spatial resolution in order to capture spatial objects
through slot attention on each sampled frame. The Event-Slots branch operates at high frame rate but
low spatial resolution (m = h× w, where h < H , w < W ) in order to capture temporal dynamics
through slot attention over each spatial position. The learned slots (tokens) from two branches are
projected and inputted to LLM for video reasoning, together with the text.

• We propose a new framework, Slot-VLM, for effective video-language modeling, where we
generate semantically decomposed tokens to comply with LLMs. To the best of our knowledge,
this work is the first to explore the use of learnable semantically decoupled visual tokens to align
with LLMs. This work provides a new insight that ‘disentangled’ video tokens are beneficial for
video-language modeling.

• We design an OE-Slots module that encourages object-centric and event-centric visual represena-
tions for modeling spatial objects and temporal dynamics. This moves a step towards the compact
and semantically meaningful token representations in VLMs.

• Experimental results demonstrate the effectiveness of our OE-Slots designs, achieving state-of-the-
art performance on video question answering tasks.

We hope that this work will inspire more designs towards generating compact and semantically
interpretable visual tokens for effective video-language modeling.

2 Related Work

Visual Language Models In considering the strong comprehension, reasoning, and generation ability
of the LLMs, there is a surge of investigations on exploiting LLMs and vision encoders to build
visual-language models, enabling the vision reasoning ability [1, 19, 51, 25, 20, 28, 49, 48, 37].

BLIP-2 [19] leverages frozen pre-trained CLIP image encoders [32] and frozen LLMs to bootstrap
language-image pre-training, with the modality gap bridged by a Querying Transformer (Q-Former)
and a projector. Q-Former extracts a fixed number (e.g., 32) of output features (tokens) from the
image feature, acting as an information bottleneck to facilitate the feeding of most useful information
to LLMs. Other works like MiniGPT-4 [51] and Video-LLaMA [48] similarly leverage Q-Former to
encode visual tokens, followed by image-text or video-text pair instruction tuning.

Compared with image reasoning, it is more challenging for video-language modeling, where the
excessive number of visual tokens from video would enlarge the computation and memory cost to the
LLM inference and thus constrains the application of VLMs. Some works sparsely sample frames
and concatenate the tokens from these frames as the input to LLMs [19, 12, 50]. However, this brings
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difficulty for understanding videos with high temporal dynamics or long videos, with high risk of
losing valuable temporal information.

Video-ChatGPT [28] reduces the number of visual tokens by performing spatial and temporal pooling
separately. LLaMA-VID [22] represents each frame with two distinct tokens: context token and
content token, where context token is obtained by aggregating the visual features based on the text
query while the content token is obtained by pooling the features. However, being task-agnostic,
pooling would result in loss of helpful information. Moreover, the semantic-agnostic pooling
inevitably results in the mixing of features of different semantics, where such coupled representations
may bring difficulty for video reasoning. Q-Former provides an elegant way for generating reduced
number of tokens. However, we found the learned tokens are still coupled, with abundant overlapped
information among them. When aligning with the ‘disentangled’ word text tokens, such entanglement
may result in poor compatibility with LLMs. Chat-UniVi [17] merges the dense visual tokens by
clustering and uses the averaged token features in a cluster as the cluster representation. With
clustering being parameter-free and task-agnostic, this is sub-optimal. It is still an open question on
how to generate video tokens for constructing effective VLMs.

In this work, we explore the use of semantically decoupled tokens by learning spatial object-centric
slots and temporal event-centric slots as video representation. We reveal that using semantically
decoupled tokens as the input to LLMs are effective for video-language modeling.

Object-Centric Learning Humans naturally decompose the observed environment into entities
at the appropriate level of abstraction to act in the world [35]. To obtain semantically decoupled
representations, object-centric representation learning has garnered significant interest [6, 27, 36, 35].
Slot Attention [27] is a representative work. A slot attention module is designed to interface with
features to produces a small set of abstract representations, named as slots, where each slot represents
an object or a scene. It demonstrates encouraging object decomposition ability in simulated data
but fails on real-world images [27]. To successfully learn object-centric slots in real-world images,
DINOSAUR [35] learns the slots from pre-trained features by reconstructing the features. Such
pre-trained features can be obtained from self-supervised learning techniques like DINO [8], MAE
[15], or vision-language pre-training like CLIP [32]. These features usually have a high level of
homogeneity within objects and thus facilitate the forming of object-centric representations.

In this work, we leverage slot attention to learn semantically decoupled tokens as the input to LLMs
and investigate the effectiveness of aligning these ‘concept tokens’ with LLM input. Note that,
interestingly, words in human language are abstractions of concepts, with different words tending to
be disentangled. We intend to bridge the connection between vision and language by representing
video with ‘concepts’ in terms of object-centric slots and event-centric slots.

3 Proposed Slot-VLM

As illustrated in Figure 2, our Slot-VLM consists of a frozen image encoder, a trainable Object-Event
Slots (OE-Slots) module, a projection layer, and a frozen LLM. Given a video sequence, we extract
frames at a speed of 1 frame per second (FPS) and obtain a video V of T frames. The video V
together with the text question (user instruction) is input to Slot-VLM, and Slot-VLM outputs the
generated text answer.

In order to build an effective VLM for video understanding, we propose to encapsulate the dense
video tokens into a small set of semantically decoupled tokens to align with the LLM. Our OE-
Slots module converts the dense video tokens from the vision encoder into a set of object-centric
slots (tokens) through the Object-Slots branch, and a set of event-centric slots (tokens) through the
Event-Slots branch, which are then projected as the input to LLM for video reasoning.

Intriguingly, our exploitation of object-centric visual representations to enhance large language
model (LLM) reasoning mirrors certain aspects of the cognitive processes humans use for visual
reasoning. Human visual reasoning is a complex cognitive process. Visual signals are processed
initially through the primary visual cortex (V1) and subsequently integrated in higher-level visual
processing areas, resulting in the formation of complex visual object representations. Such high-level
object representations together with brain-stored knowledge are then used for logical reasoning
and inference to interpret observations [34, 3]. Similarly, Slot-VLM generates object-centric and
event-centric token representations to provide the vision source for the LLM reasoning, where the
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LLM stores rich knowledge and has strong reasoning ability, and interpretable-text generation ability.
Such exploration makes us move a small step towards brain-like visual reasoning.

3.1 Visual Feature Extraction

To extract visual features of a video, we simply use an image-based model to get per-frame feature.
Following [28], we utilize vision-language pre-trained CLIP (ViT-L/14) vision model [32] as our
vision encoder. For each frame, the vision encoder outputs H ×W visual tokens, with the dimension
of a token denoted by D, where H = W = 16 for the CLIP vision encoder. For a sampled video
of T frames, we have H ×W × T visual tokens. Taking a video of 3 minutes as an example, the
total number of video tokens is 16× 16× 180 = 46, 080. The large number of tokens would incur
significant computational and memory costs during LLM inference. Considering the redundancy
from the dense tokens, we aim to semantically exploit the the spatial structure and and temporal
dynamics to reduce the number of tokens for efficient LLM inference.

3.2 Object-Event Slots (OE-Slots) Module

Previous methods, which aggregate the video tokens by pooling [28] or Q-Former [50, 49], actually
produce tokens wherein semantics remain entangled within each token, rather than targeting at
generating semantics decoupled representations. In contrast, the word tokens, which are the input to
LLMs, are more semantically decoupled. In this work, we explore the using of semantics-decoupled
video representations for effective video-language modeling.

We design a OE-Slots module that encapsulates the dense video tokens from the vision encoder
into a small set of semantic-centric tokens to facilitate the LLM inference. It is challenging to learn
semantics-centric representations from the dense video features. DINOSAUR [35] uses slot attention
on the pre-trained image feature to learn object-centric representations without supervision. It is
challenging to directly extend the slot learning to video features, given the substantial number of video
tokens (e.g., 46,080 for a 3-minute video), which increases memory and computation requirements,
and the optimization difficulty.

In our work, to effectively learn semantics-centric representations from abundant video tokens, we
design an Object-Event Slots module comprising two branches. The an Object-Slots branch operates
at low frame rate to capture spatial object-wise slots for each sampled frame, while the Event-
Slots branch operates at high frame rate but low spatial resolution to capture temporal event-wise
slots. This dual-branch design is inspired by the SlowFast network [13], employing a Slow pathway
for low frame rate spatial feature learning and a Fast pathway for high frame rate motion capture
using a lightweight subnetwork. Unlike SlowFast which focuses on refining grid-wise features, our
Object-Event Slots module aims to generate a small set of semantically meaningful object-centric
slots and event-centric slots, serving as semantically meaningful input into LLM.

Object-Slots Branch As shown in Figure 2 of the Object-Slots branch, for a video of H ×W × T
dense video tokens, we sample the features at low frame rate but high (original) spatial resolution to
obtain H ×W × t video tokens. t denotes the number of uniformly sampled frames, which we set to
8 by default.

For the i-th frame, we have a set Si of H × W tokens. Si is taken as the input to slot attention
module [27, 35] to generate No object-centric slots Oi = {oi,1, . . . ,oi,No} (we also refer to them as
spatial slots). Please see Appendix A for more detailed formulation. Particularly, slot attention uses
an iterative mechanism to map from the input tokens to the slots. At each iteration, slots attention
uses cross attention with attention coefficients that are normalized over the slots (where slots are
the queries) to aggregate token information. The normalization over the slot introduces competition
between the slots for promoting the forming of decoupled representations.

To distinguish different frames, we add learnable temporal position embedding pi to each slot of the
i-th frame and obtain the updated object slots as Oi = {oi,1, . . . ,oi,No}, where oi,j := oi,j + pi.
We concatenate the updated slots of all the t frames and obtain t×No slots O = {O1, . . . ,Ot} =
{o1,1,o1,2, . . . ,o1,No

, . . . ,ot,No
}. A linear projection layer (S-Proj.) transforms each token to

facilitate the alignment with slots from the Event-Slots branch and the alignment with the LLM.
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Note that we perform spatial object slot learning on the high spatial resolution but low frame rate
features in order to capture the spatial objects and reduce the number of slots, which is proportional
to the number of frames.

Event-Slots Branch As shown in Figure 2 of the Event-Slots branch, for a video of H ×W × T
dense video tokens, we sample the features at high frame rate but low spatial resolution to obtain
h× w × T video tokens. We obtain the spatial down-sampled tokens by averaging pooling with a
stride of 4, therefore h = H/4 = 4 and w = W/4 = 4.

We perform temporal slot learning along temporal axis. To be aware of different frames, we
add learnable temporal position embedding to each token. For the k-th spatial position, where
k = 1, . . . ,m and m = h× w, we have a set Fk of T tokens from the T frames. Fk is taken as the
input to slot attention module to generate Ne event-centric slots Ek = {ek,1, . . . , ek,Ne

} (we also
refer to them as temporal slots). Note that each spatial position from h× w positions corresponds to
a large local patch in the pixel space, i.e., 56×56 patch for a video of 224×224 spatial resolution.
This allows us to observe the temporal dynamics of a large local region (56×56 pixels), which helps
infer the evolution of part of an event within that region. Temporal slots aggregate the temporal
tokens for explaining parts of the input, similar to identifying events. Thus, we name the learned
slots as event-centric slots. We leverage temporal slots to aggregate semantically consistent temporal
segments, akin to how spatial slots aggregate spatially consistent regions. While these temporal
segments within a slot might not form a complete event, they are likely part of the same event.

We concatenate the slots from each of the m spatial positions and obtain m × Ne slots E =
{E1, . . . , Em} = {e1,1, e1,2, . . . , e1,Ne , . . . , em,Ne}. A linear projection layer (F-Proj.) transforms
each token to facilitate the alignment with slots from the Object-Slots branch and the alignment with
the LLM.

Note that we perform temporal event slot learning on the high frame rate but low spatial resolution
features in order to capture the temporal dynamics, and reduce the number of slots, which is
proportional to the spatial feature resolution.

3.3 Connection to LLM

We concatenate the object-centric slots from the Object-Slots branch and the event-centric slots from
the Event-Slots branch and obtain N = t × No +m × Ne slots. A linear projection layer (Proj.)
transforms each token to align with the LLM. The projected tokens and the text instruction are taken
as the input to LLM for video reasoning.

3.4 Training Strategy

We divide the training procedure into three stages: slot attention pre-training, single branch instruction
tuning, and two branch joint instruction tuning. We use the three stage training to better optimize
the model. Stage 1 aims to pre-train the slot attention modules (with the objective of reconstructing
the input features) to facilitate the learning of object-centric and event-centric slot representations,
i.e., the forming of semantically decomposed tokens/slots. Stage 2 separately trains the Object-
Slots branch and the Event-Slots branch to facilitate the system focusing on the optimization of each
branch separately, which eases the optimization. Stage 3 jointly optimizes the two branches and the
projection layer. Please see Appendix B for more details.

4 Experiments

4.1 Implementation Details

Following Video-ChatGPT [28], we employ the pre-trained CLIP vision model of ViT-L/14 [32]
as the vision encoder. Note that the model size of CLIP ViT-L/14 (which we use) is 303M, which
is much smaller than CLIP ViT-G/14 (1012M) as used by MovieChat [37], LLaMA-VID [22], and
Video-LLaMA [23]. Specifically, we extract features from the penultimate layer, yielding an array of
H ×W visual tokens for each video frame. We use the Vicuna (7B) from the LLaVA model [25], to
serve as our LLM. We sample at 1 fps from a video to obtain T frames, and we resize each frame to
224×224 resolution. In our experiments, we set No and Ne to 8 by default unless otherwise specified.
The OE-Slots module generates N = t × No +m × Ne = 8 × 8 + 16 × 8 = 192 slots (tokens)
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Table 1: Comparison with the state-of-the-art methods for video QA. All these models use Vicuna-
7B as the LLM. Different methods may use different datasets for pre-training. Moreover, for the
instruction tuning, different methods adopt different instruction data as illustrated in the second
column. For example, 11K(V)+5.1M(I) denotes the instruction data comprises about 11,000 pairs of
video instructions pairs and 5.1 million pairs of image instructions. Connector denotes the method
for connecting the vision features and the LLM. See Table 4 for the number of video tokens.

Model Instruction Data
(# of Pairs) Connector MSVD-QA MSRVTT-QA ActivityNet-QA Average

Acc. Score Acc. Score Acc. Score Acc. Score

Video LLaMA [48] 11K(V)+5.1M(I) Q-Former 51.6 2.5 29.6 1.8 12.1 1.1 31.1 1.8
Video Chat [20] 11K(V)+7K(I) Q-Former 56.3 2.8 45 2.5 26.5 2.2 42.6 2.5

Video-ChatGPT [28] 100K(V) Pooling 64.9 3.3 49.3 2.8 35.2 2.7 49.8 2.9
Chat-UniVi [17] 2M(V)+433K(I) Clustering 65 3.6 54.6 3.1 45.8 3.2 55.1 3.3

Video-LLaVA [23] 100K(V) - 64.8 - 58.3 - 40.7 - 54.6 -
Video-LLaVA† [23] 100K(V)+665K(I) - 70.7 3.9 59.2 3.5 45.3 3.3 58.4 3.6

BT-Adapter [26] 100K(V) Temporal Adaptor 67 3.6 51.2 2.9 46.1 3.2 54.8 3.2
LLaMA-VID [22] 100K(V)+625K(I) Q-Former&Pooling 69.7 3.7 57.7 3.2 47.4 3.3 58.3 3.4
VideoChat2 [21] 0.8M(V)+1.1M(I) Q-Former 70 3.9 54.1 3.3 49.1 3.3 57.7 3.5
MovieChat [37] 11K (V)+5.1M (I) Merge+Q-Former 75.2 3.8 52.7 2.6 45.7 3.1 57.9 3.2

Slot-VLM (Ours) 100K(V) Object-Event Slots 74.9 3.8 69.6 3.4 48.3 3.4 64.3 3.5
Slot-VLM† (Ours) 100K(V)+665K(I) Object-Event Slots 75.9 3.8 69.6 3.5 49.4 3.4 65.0 3.6

from 16× 16× T dense video tokens. To reduce training cost, both the image encoder and LLM are
frozen in our training.

All models are trained using a single NVIDIA A100 80GB GPU. The linear projection layer S-Proj.,
F-Proj. and Proj. consists of 1024, 1024, and 4096 neurons, respectively. We adopt a network
structure that is similar to the slot attention from [36] to build the slot attention modules, with
learnable slot initialization. More details please refer to Appendix B.

4.2 Data Details and Evaluation Metrics

We use the Video Instruction Data, collected by [28], for video instruction tuning. This comprehensive
dataset comprises approximately 100K video text (question-and-answer) pairs, which are generated
from the ActivityNet dataset with an average video length of 180 seconds. The dataset is characterized
by a diverse array of question types. Alternatively, similar to Video-LLaVA [23], we could also
incorporate a 665K image-text instruction dataset from LLaVA v1.5 [24] for enhancing the instruction
tuning of the Object-Slots branch and mark the model as Slot-VLM†. We report both the results of
Slot-VLM and Slot-VLM† in Table 1. Note that all our other results including ablation studies and
visualization are obtained without using the 665K pairs.

We evaluate the performance on three open-ended video question-answering (QA) benchmarks like
MSVD-QA[9], MSRVTT-QA[44], and ActivityNet-QA [7]. We evaluate models using accuracy (%)
and average score metrics by [28], employing ChatGPT to judge prediction correctness. ChatGPT
reviews each QA pair and issues a binary correctness verdict and a similarity score from 0 (least) to 5
(most) (See Appendix C for more details). We also evaluate our models on three multi-choice QA
benchmarks, including Egoschema[29], NExT-QA[43] and STAR[42] (See Appendix F).

4.3 Comparison with the State-of-the-Arts

We evaluate the performance of our scheme against the state-of-the-art methods on three zero-shot
open-ended video QA benchmarks. Table 1 shows the results. All these models use Vicuna-7B [11]
as the LLM.

For video-language modeling, there is no converged standard on the training datasets, including the
data for pre-training and that for instruction tuning. Generally, it is not very fair for comparisons.
For example, Video-LLaMA [48] uses Webvid-2M short video dataset and CC595k image caption
datasets for pre-training to enable video features to contain as much visual knowledge as possible;
VideoChat2 [21] performs per-training of two stages for vision-language alignment (15M image
captions from CC3M and CC12M and 10M video captions form WebVid-10M) and vision-language
connection (adding 2M image captions, and 10M video captions from InternVid [40]), respectively.
Similar to Video-ChatGPT [28], we do not perform such visual-text alignment pre-training. For
instruction tuning, different methods use different data (see the second column in Table 1).
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We have the following observations/conclusions. 1) Our Slot-VLM† consistently achieves the
best accuracy on all the three benchmarks, outperforming all other methods, even though the
volume of vision-text pairs used for our instruction tuning (0.7M pairs) is much less than many
models such as VideoChat2 [21] (1.9M pairs), Chat-UniVi [17] (2.4M pairs), and MovieChat [37]
(5.1M pairs). The average performance of our Slot-VLM† outperforms Video-LLaVA† by 6.6% in
accuracy, while achieving the similar scores. 2) In comparison to the methods highlighted in gray that
utilize the same 100k video-text pairs for instruction tuning, our Slot-VLM consistently outperforms
its competitors, surpassing Video-ChatGPT [28] by 10% on MSVD-QA, 20.3% on MSRVTT-QA,
and 13.1% on ActivityNet-QA. Furthermore, it exceeds Video-LLaVA [23] by 10.1%, 11.3%, and
7.6%, and BT-Adapter [26] by 7.9%, 18.4%, and 2.2% across the same benchmarks, respectively,
demonstrating the high efficacy of our framework. 3) Compared with Chat-UniVi [17] that leverages
clustering to aggregate/compress tokens, our Slot-VLM† outperforms it significantly by 10.9% on
MSVD-QA, 15.0% on MSRVTT-QA, and 3.6% on ActivityNet-QA in accuracy, respectively. Note
that Chat-UniVi uses 2 million video-text pairs and 433K image-text for instruction tuning while we
use only 100K video-text pairs and 665K image-text pairs. 4) Comparing Slot-VLM† with Slot-VLM,
we can see that the incorporation of 665K image-text pairs brings an average of 0.7% gain in accuracy.

4.4 Ablation Studies

Table 2: Ablation studies on the effectiveness of our Slot-VLM. We compare our schemes powered
by slot attention with the schemes powered by Q-Former under our framework. The FLOPs and
number of parameters for the reduced token generation module are presented.

Model
In-domain MSVD-QA

#FLOPs (G) #Param. (M)Acc. Score Acc. Score

Spatial branch
Spatial-Qformer-VLM 40.1 2.48 70.9 3.57 24.9 50.8

Object-Slot-VLM 46.5 2.69 73.1 3.71 20.8 13.6

Temporal branch
Temporal-Qformer-VLM 46.0 2.64 72.6 3.62 26.2 50.8

Event-Slot-VLM 47.1 2.67 73.1 3.67 20.7 13.6

Two branches
ST-Qformer-VLM 29.7 2.07 66.9 3.40 51.1 101.6

Slot-VLM 48.8 2.75 74.9 3.76 41.6 27.3

We study the effectiveness of our semantics-centric designs, two branch design, and the hyper-
parameter choices, on the test set of the Video Instruction Data from [28], which we refer to as
In-domain, and on MSVD-QA [9]. We name our scheme with only the Object-Slots branch as
Object-Slot-VLM, the scheme with only the Event-Slots branch as Event-Slot-VLM, and our final
scheme as Slot-VLM.

Effectiveness of using Semantics-centric Tokens Under our framework, we replace our slot attention
modules for generating reduced tokens by Q-Former [19], using similar training strategies and
computational cost (FLOPs). Similarly, we name the schemes with the spatial branch, the temporal
branch, and two branches as Spatial-QFormer-VLM, Temporal-QFormer-VLM, and ST-QFormer-
VLM, respectively. Table 2 shows the results, the number of FLOPs, and the number of parameters
for the reduced token generation modules, indicating the fairness for comparisons. Note we compute
the FLOPs by taking a video of 100 frames. The number of parameters for our Object/Event-Slots
module is much smaller than that of the Spatial/Temporal-Qformer module because the Slot Attention
uses shared parameters for its L = 3 iterations. We can see that the schemes using slot attention
outperform those using Q-Former in both the single branch settings and the two branch setting.
Object-Slot-VLM outperforms Spatial-QFormer-VLM by 6.4% on the indomain test data (In-domain)
and 2.2% on MSVD-QA, respectively. Event-Slot-VLM outperforms Temporal-QFormer-VLM
by 1.1% and 0.5%. We visualized the spatial attention maps of learned Q-Former and found that
Q-Former is not capable of decoupling visual tokens to semantically meaningful instances (Please
see Appendix G.2).

In addition, for the two-branch scheme ST-QFormer-VLM, we found that tuning the Q-Formers
and projection layers even with the single-branch trained parameters as initialization cannot lead to
satisfactory results, which are poorer than the single-branch schemes. That may be caused by the
difficulty in aligning the output tokens of the two branches.

Effectiveness of our Two-branch Design As shown in Table 2, our Slot-VLM with two branches
outperforms our single-branch schemes Object-Slot-VLM by 2.3%/1.8% on In-domain/MSVD-QA
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Table 3: Ablation study on the effectiveness of joint spatial-temporal slots learning vs. two branch
design. The FLOPs and number of parameters for the reduced token generation module are presented.

Model
In-domain MSVD-QA

#FLOPs (G) #Param. (M)Acc. Score Acc. Score

Slot-Joint-VLM 46.7 2.66 72.8 3.68 1304.8 13.7
Slot-VLM 48.8 2.75 74.9 3.76 41.6 27.3
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8

𝑜𝑖,1 𝑜𝑖,2 𝑜𝑖,3 𝑜𝑖,4 𝑜𝑖,5 𝑜𝑖,6 𝑜𝑖,7 𝑜𝑖,8

Figure 3: Visualization of spatial attention masks from the Object-Slots branch for two video
examples, respectively. We have t = 8 frames as shown in 8 rows, indexed by i, where i = 1, . . . , t.
The first column shows the original frame. The second to the ninth columns show the cross attention
mask (from slot attention) for the No = 8 object-centric slots Oi = {oi,1, . . . ,oi,No}. We can see
that even though not perfectly segmented, some meaningful slots have been formed. For example,
the slots marked by red, purple, green, and blue in the first video (left) correspond to ‘background’,
‘human body’, ‘head’, and ‘barbell’. Note that the slots in a frame is unordered and exchangeable.

and Event-Slot-VLM by 1.7%/1.8% in accuracy, respectively. Our semantics-centric tokens from the
two branches are complementary.

An alternative design is to learn the same number of slots (i.e., 192) from the dense H×W×T tokens
instead of from the two branched tokens. We dub the scheme as Slot-Joint-VLM. As discussed in
Section 3.2, directly extending the slot learning to dense video features raises increases memory and
computation requirements, and the optimization difficulty. Table 3 shows the comparison between
Slot-Joint-VLM and our two-branch design Slot-VLM. We can see that the computational complexity
of the reduced token generation module of Slot-VLM is much lower than that of Slot-Joint-VLM
while Slot-VLM achieves superior performance.

Influence of Hyper-parameters Appendix E shows the influence of hyper-parameters.

4.5 Visualization

Object-Centric Slots We visualize the spatial cross-attention masks from our Slot-VLM for indicating
the forming of object-centric slots for each frame, with two video samples shown in Figure 3. We can
see that some meaningful slots have been formed. For example, in the first video, the slots marked
by red, purple, green, and blue in the first video (left) correspond to ‘background’, ‘human body’,
‘head’, and ‘barbell’. For comparison, we also visualize the cross-attention masks of Q-Former from
the scheme Spatial-QFormer-VLM in Appendix G.2. We observe that our object-centric slots from
Slot-VLM are better semantically decoupled.

Moreover, we found the instruction tuning can further promote the decoupling of slots (see Ap-
pendix G.3, where the well decoupled representations may better align with LLM.

Event-Centric Slots Figure 4(a) visualizes the temporal cross-attention masks from our Event-
Slots branch for indicating the forming of event-centric slots for each spatial position (in total
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Figure 4: Visualization of temporal attention mask for m = h×w = 16 spatial positions from (a) our
Event-Slots branch and (b) Temporal-QFormer-VLM, respectively. For simplicity, we also refer to
slot as query here. For the k-th spatial position, we denote the set of learned temporal queries by Ek.
Take the 13-th spatial position of the query set E13 as an example (as marked by red box in (a) and
blue box in (b)). For this spatial position, the models generate Ne = 8 slots/queries by aggregating
the temporal visual tokens. The attention masks for E13 are denoted by a map of T rows and Ne

columns, with the visibility indicating which queries this temporal position belongs to. The higher the
visibility, the greater the affinity between this temporal position and the query. We can see that in our
Slot-VLM, similar contents tend to be allocated to the same slot, i.e., different slots capture different
contents (events) and present decoupled semantics. In contrast, in Temporal-QFormer-VLM, different
contents are usually assigned to the same query or are uniformly assigned to different queries. Note
that for Temporal-QFormer-VLM, we only show the mask of one head to save space, where similar
observations can be found from other heads. A glimpse of the original video can be found in Figure 5.
See Figure 10 for the enlarged visualization of E13.

Figure 5: A glimpse of the original video used in Figure 4. For visualization purpose, we only show
the frames down-sampled at a factor of 8, which is 1/8fps.

h× w = 16 positions). Similarly, Figure 4(b) visualizes the temporal cross-attention masks from
Temporal-QFormer-VLM for indicating the forming of query tokens for each spatial position. We
can see that in our Slot-VLM, along the temporal axis, similar contents tend to be allocated to the
same slot. In other words, different slots capture different contents (events) and present decoupled
semantics. In contrast, in the Temporal-QFormer-VLM, different contents are usually assigned to the
same query or are uniformly assigned to different queries. The queries learned from Q-Former do not
present decoupled semantics. Figure 5 shows a glimpse of the original video used in Figure 4.

5 Conclusion

In this work, we introduce a new framework, Slot-VLM, that aims to generate a small set of semanti-
cally decoupled video tokens to comply with LLM for effective video reasoning. Particularly, we
design a dual-branch Object-Event Slots module to learn object-centric slots and event-centric slots to
jointly capture the spatial object details and temporal dynamics. These semantic-centric slots are taken
as the input to LLM for effective video reasoning. Experimental results demonstrate the superiority of
our framework and show the effectiveness of using semantics-decoupled representations for aligning
with LLM. However, our current representations are still not perfect where object instances and
events are not ideally segmented. We anticipate this work will inspire more investigations towards
semantic-centric visual representations for video-language modeling.
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A More Details about Object-Slots Modeling

As shown in Figure 2 of the Object-Slots branch, for a video of H ×W × T dense video tokens, we sample the
features at low frame rate but high (original) spatial resolution to obtain H ×W × t video tokens. t denotes the
number of uniformly sampled frames, which we set to 8 by default. In our framework, H = W = 16. For the
i-th frame, we have a set Si of M = H ×W tokens. Si is taken as the input to slot attention module [27, 35] to
generate No object-centric slots Oi = {oi,1, . . . ,oi,No} (we also refer to them as spatial slots).

Slot attention uses an iterative mechanism to map from the input tokens to the slots. At each iteration, slots
attention uses cross attention with attention coefficients Am,n that are first normalized over the slots

Am,n :=
eMm,n∑No
l=1 e

Mm,l
, M :=

1

D
k(Si) · q(Qi)

T ∈ RM×No . (1)

Such normalization over the slots introduces competition among the slots for promoting the forming of decoupled
representations. To aggregate the input tokens to their assigned slots, weighted mean is used as follows for
updating slots as:

Q̃i := WT · v(Si) ∈ RNo×D, Wm,n :=
Am,n∑Mo
l=1 Al,n

, (2)

k(·), q(·), and v(·) are learnable linear transformations. Gated Recurrent Unit (GRU) and MLP parameterized
by hϕ is used to further updated the slots as Qi := hϕ(Qi, Q̃i). L such iterations are performed to obtain the
final No slots for this frame. Note that we initialize the slots from learnable Gaussian distributions. L such
iterations are performed to obtain the final No slots for this frame. Note that we initialize the slots from learnable
Gaussian distributions.

To distinguish different frames, we add learnable temporal position embedding pi to each slot of the i-th frame
and obtain the updated object slots as Oi = {oi,1, . . . ,oi,No}, where oi,j := oi,j+pi. We concatenate the slots
of all the t frames and obtain t×No slots O = {O1, . . . ,Ot} = {o1,1,o1,2, . . . ,o1,No , . . . ,ot,No}. A linear
projection layer (S-Proj.) transforms each token to facilitate the alignment with slots from the Event-Slots branch
and the alignment with the LLM.

Note that the slot attention mechanism for learning event-centric slots is similar to that for learning object-centric
slots and we will no longer elaborate on that.

B More Implementation Details about Training

We use three stage training to better optimize the model. Stage 1 aims to pre-train the slot attention modules (with
the objective of reconstructing the input features) to facilitate the learning of object-centric and event-centric
slot representations, i.e., the forming of semantically decomposed tokens/slots. Stage 2 separately trains the
Object-Slots branch and the Event-Slots branch to facilitate the system focusing on the optimization of each
branch separately, which eases the optimization. Stage 3 jointly optimizes the two branches and the projection
layer. All models are trained using a single NVIDIA A100 80GB GPU. AdamW is used as the optimizer.

Stage 1 We first pre-train the two Slot-Attention modules of the Object-Slots branch and the Event-Slots branch
separately. This promotes the formation of object-centric and event-centric slot representations. Similar to
DINOSAUR [35], we use transformer decoder to reconstruct features (rather than images) obtained by CLIP
ViT-L/14 by taking the outputted slots (ahead the projection) from Slot-Attention as input.

We train the models for 60 epochs with a learning rate 1e-4. We use the Slot Attention module in SLATE[36].
The dimension of each slot is set to 1024. Following [36], the number of iterations L is set to 3. We use the video
frames from the 100K Video Instruction Data [28] for training. Position embeddings in the Event-Slots branch
are discarded during the pre-training to ease the training.

Stage 2 We perform instruction tuning on the single branch schemes, separately. For example, we fine-tune the
Object-Slots branch and the projection layers using the instruction pairs from [28], by loading the parameters
from the first stage. We use the 100K Video Instruction Data from [28] to train our single branch schemes,
respectively. We set the number of epochs to 3.

The Object-Slots branch/Event-Slots branch and the projection layer Proj. are tuned. We set the learning rate to
2e-5. We adopt the cosine annealing learning rate. We set the batch size to 40 and train on a single A100 GPU.

Stage 3 We fine-tune the OE-Slots module and the projection layer using the instruction pairs, by loading the
parameters from OE-Slots module from the second stage. By default, we use the Video Instruction Data for
instruction tuning. We set the number of epochs to 3.
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Table 4: Comparison with the state-of-the-art methods for video QA in terms of the used number of
video tokens. ‘Varied length’ denotes the number varied with the video length. ‘-’ denotes we did not
find information from their papers. * denotes the likely number based on the paper’s description

Model # of video tokens

Video LLaMA [48] 256
Video Chat [20] -

Video-ChatGPT [28] 356
Chat-UniVi [17] Varied length

Video-LLaVA [23] -
Video-LLaVA† [23] -

BT-Adapter [26] 256
LLaMA-VID [22] Varied length
VideoChat2 [21] 1536*
MovieChat [37] -

Slot-VLM (Ours) 192
Slot-VLM† (Ours) 192

When we incorporate 665K image-text pairs for training Slot-VLM†, we use 665K image-text pairs and 100K
video-text pairs jointly to train the framework. When the input is an image-text pair, the Event-Slots branch is
dropped in training. With the increased training data, we set the number of epochs to 1.

The Object-Slots branch/Event-Slots branch and the projection layer Proj. are tuned. The training hyper-
parameters used in this stage are the same as those in the second stage.

Note that our three-stage training is easy to implement. Previous methods usually also use multiple stage training.
For example, VideoChat2 [21] adopted a progressive three stage training using much more data than ours.
LLaMA-VID [22], Video-LLaVA [23], Chat-UniVi [17] all adopted two stage training.

The numbers trainable parameters in the three stages are 27M, 37M, and 33M, respectively. The three stages
training of our Slot-VLM model takes about 15, 12, and 15 hours respectively. The three stages training of our
Slot-VLM† model takes about 15, 12, and 46 hours respectively.

C More Details about Evaluation Metrics

In our study on the open-ended video question answering, we adopt the evaluation metrics of accuracy and
average score as established by [28]. To assess the accuracy of our model’s predictions, we utilize ChatGPT
(chatgpt35-turbo) as an evaluator. ChatGPT processes each question alongside the corresponding ground truth
and the model’s predicted answer. It then provides a binary "yes" or "no" judgment on the correctness of the
prediction for accuracy assessment. Additionally, ChatGPT assigns an integer score ranging from 0 to 5 to
quantify the closeness of the predicted answer to the ground truth, with 0 indicating no similarity and 5 denoting
a close match.

D Number of Video Tokens Used by Different Models

Table 4 shows the performance gain is not due to the final number of video tokens input to the LLMs, where our
Slot-VLM uses only 192 tokens that is much smaller than some other models.

E More Ablation Studies

Influence of High Spatial Resolution for the Object-Slots Branch and High Frame Rate for the Event-
Slots Branch We study the influence of spatial resolution of the visual features in the Object-Slots branch and
the influence of frame rate of the visual features in the Event-Slots branch, respectively. As shown in Table 5,
when we reduce the spatial resolution from 16× 16 to 4× 4 for the Object-Slots branch, the performance drops
by 4.6%/3.3% on In-domain/MSVD-QA in accuracy. When we reduce the frame rate by a factor of 8 from
1fps to 1/8fps for the Event-Slots branch, the performance drops by 4.3%/1.4% on In-domain/MSVD-QA in
accuracy.

Influence of Hyperparameter No We study the influence of the number of object-centric slots No of a frame
for Object-Slot-VLM and show the results in Table 6. We can see that as the increase of the number of slots
from 4 to 16 for a frame, the performance increases and saturates when No = 8 in terms of score in In-domain.
Therefore, by default, we set No = 8.
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Table 5: Ablation study on the influence of high spatial resolution for the Object-Slots branch and
high frame rate for the Event-Slots branch. Object-Slot-VLM (4× 4) denotes the spatial resolution is
reduced from 16× 16 to 4× 4. Event-Slot-VLM (T/8) denotes the frame rate is reduced by a factor
of 8.

Model
In-domain MSVD-QA

Acc. Score Acc. Score

Object-Slots branch
Object-Slot-VLM (4x4) 41.9 2.53 69.8 3.55

Object-Slot-VLM 46.5 2.69 73.1 3.71

Event-Slots branch
Event-Slot-VLM (T/8) 42.9 2.59 71.6 3.63

Event-Slot-VLM 47.1 2.67 73.1 3.67

Table 6: Ablation study on the influence of the number of object-centric slots No and the influence of
the number of event-centric slots Ne, respectively.

Model
In-domain MSVD-QA

Acc. Score Acc. Score

Object-Slots branch
Object-Slot-VLM (4slots) 42.6 2.54 72.7 3.67
Object-Slot-VLM (8slots) 46.5 2.69 73.1 3.71

Object-Slot-VLM (16slots) 47.7 2.69 72.9 3.70

Event-Slots branch
Event-Slot-VLM (4slots) 46.4 2.66 74.2 3.69
Event-Slot-VLM (8slots) 47.1 2.67 73.1 3.67
Event-Slot-VLM (16slots) 46.3 2.68 74.4 3.69

Influence of Hyperparameter Ne We study the influence of the number of event-centric slots Ne of a spatial
position for Event-Slot-VLM and show the results in Table 6. We can see that as the increase of the number of
slots from 4 to 16 along the temporal direction, the performance increases in terms of score in In-domain and
achieves good performance when Ne = 8. For simplicity, we set Ne = 8 by default.

Influence of Frame Sampling Rate in the Object-Slots Branch and Stride for Pooling in the Event-Slots
Branch We conducted ablation studies using single branch settings. For the Object-Slots branch, we tested
three frame sampling rates: 4 frames (Object-Slot-VLM (4 frames)), 8 frames, and 16 frames per video. For the
Event-Slots branch, we tested four pooling strides to achieve spatial resolutions of 2x2 (Event-Slot-VLM (2x2)),
4x4, and 8x8.

Table 7 shows the results. Increasing the sampled frames or spatial resolutions improves performance but
increases the number of video tokens and the computational cost. By default, we use 8 sample frames and a 4x4
spatial resolution to balance complexity (192 tokens in total) and performance.

Table 7: Ablation studies on sampling different number of temporal frames for the Object-Slots
branch, and on using different spatial resolutions for the Event-Slots branch

Model # video tokens
In-domain MSVD-QA

Acc. Score Acc. Score

Object-Slots branch
Object-Slot-VLM (4 frames) 32 42.1 2.55 72.4 3.65
Object-Slot-VLM (8 frames) 64 46.5 2.69 73.1 3.71

Object-Slot-VLM (16 frames) 128 46.8 2.7 74.3 3.72

Event-Slots branch
Event-Slot-VLM (2x2) 32 39.3 2.44 70.9 3.55
Event-Slot-VLM (4x4) 128 47.1 2.67 73.1 3.67
Event-Slot-VLM (8x8) 512 50.4 2.79 76.6 3.77

Influence of Three Stages Training Stage 1 aims to pre-train the slot attention modules (with the objective of
reconstructing the input features) to facilitate the learning of object-centric and event-centric slot representations,
i.e., the forming of semantically decomposed tokens/slots. Stage 2 separately trains the Object-Slots branch and
the Event-Slots branch to facilitate the system focusing on the optimization of each branch separately, which
eases the optimization. Stage 3 jointly optimizes the two branches and the projection layer. Table 8 shows the
ablation study on the influence of each training stage. We have the following observations/conclusions. 1) If there
is only one joint training stage as Model-1, the performance drops by 1.8% and 2.4% in accuracy on In-domain
and MSVD-QA, respectively. When compared with other methods as shown in Table 1 on MSVD-QA, our
Model-1 with one joint training stage achieves 72.5% in accuracy, ranks the second best among all other methods.
It is still effective over many other methods but is less effective than our final scheme with three stages training.
2) Skipping either Stage 1 or Stage 2 leads to performance drop.
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Table 8: Ablation study on the three-stage training on In-domain and MSVD-QA. “No” denotes that
this stage training is not used while “Yes” denotes that this stage training is used. We report the
accuracy (%) and score.

Models Stage 1 Stage 2 Stage 3
In-domain MSVD-QA

Acc. Score Acc. Score

Model-1 No No Yes 46.9 2.69 72.5 3.67
Model-2 No Yes Yes 46.1 2.68 74.6 3.76
Model-3 Yes No Yes 44.2 2.64 73.5 3.69

Model-4 (final) Yes Yes Yes 48.8 2.75 74.9 3.76

Table 9: Performance (accuracy) comparison on the subset of Egoschema.
Method ViperGPT[38] Sevila[46] Video-LLaVA[23] mPLUG-Owl[45] LLoVi[47] Slot-VLM

Accuracy 15.8 25.7 36.8 33.8 50.8 55.8

F Comparison with the State-of-the-Arts on Multi-choice datasets

We also evaluate our models on multi-choice QA benchmarks, including Egoschema[29], NExT-QA[43] and
STAR[42].

Egoschema. For EgoSchema, we have tested the performance on the 500-question subset and Table 9 shows
the results. Slot-VLM significantly outperforms Sevila by 30% and outperforms the comparable 7B model
Video-LLaVA by 19% in accuracy.

NExT-QA. For NExT-QA, Table 10 shows our Slot-VLM is competitive to VideoChat2. We believe using more
training videos like VideoChat2 (1.1 million) would further enhance performance.

STAR. For STAR, Table 11 shows the comparisons. Different from [14, 2, 46, 4], our model is tested in zero
shot manner, without accessing STAR during training. Our Slot-VLM achieves competitive performance with
generalizable models of Flamingo-9B and InternVideo. Note that InternVideo uses a much larger number of
videos (12 million) than ours, whereas our model uses only 100K videos for training.

G More Visualization

G.1 Visualization of Q-Former Attention Maps from BLIP2

BLIP2 [19] is a representative visual language pre-trained model that aggregates image features (from CLIP
encoder) by a Q-Former into 32 learnable query tokens. Q-Former employs a 12-head cross-attention mechanism
to aggregate visual features into a set of queries, which subsequently processes the queries by a self-attention
module and a feed-forward layer. We analyze whether such well-trained Q-Former has learned decoupled
semantics for the 32 query tokens. Figure 6 visualizes the learned cross-attention masks (laid out on the original
image) corresponding to the 32 queries (32 columns, qh,1,qh,2, . . . ,qh,32) from 12 heads (shown in 12 rows,
h = 1, 2, . . . , 12) for two images in (a) and (b) respectively. We can see that a query focuses on different regions
for different heads. For a head, usually the information was allocated into only a few queries. However, there is
no obvious evidence that different queries have learned decoupled semantics. In contrast, as shown in Figure 3,
our learned spatial slots have more remarkable decoupled semantics.

G.2 Visualization of Q-Former Spatial Attention Maps from Spatial–QFormer-VLM

We visualize the spatial attention maps of the learned queries of Q-Former from our Spatial-QFormer-VLM.
Q-Former uses cross-attention of 12 heads to aggregate the visual features. In Figure 7, we show the masks
for 12 heads separately as shown in the 3× 4 grids separated by green lines. For each head, we show all the 8
frames in different rows; the first column shows the original frame; the second to the ninth columns show the
cross attention mask (from Q-Former) for the 8 queries. We can see that the queries are not clearly decoupled,
with each one being a mixture of spatial features. A feature in a spatial position is usually allocated to a couple
of queries instead of one. Compared with the spatial attention masks from our Slot-VLM as shown in Figure 3,
it is less semantically decoupled for the learned queries.
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Table 10: Performance (accuracy) compari-
son on NExT-QA.

Dataset specific trained (In domain) Accuracy
MIST[14] 57.2
GF(uns)[2] 58.8
Sevila[46] 73.8

Zero-shot (Generalization) Accuracy
InternVideo[41] 49.1
Mistral(7B)[16] 51.1

VFC[30] 51.5
LLoVi[47] 54.3

MVU(13B)[33] 55.2
ViperGPT(GPT-3.5)[38] 60.0

LangRepo(12B)[18] 60.9
VideoChat2[21] 61.7

Slot-VLM 62.0

Table 11: Performance (accuracy) compari-
son on STAR.

Dataset specific trained (In domain) Accuracy
MIST[14] 51.1
GF(uns)[2] 53.9
Sevila[46] 64.9

LRR[4] 70.5
Zero-shot (Generalization) Accuracy

Flamingo-9B[1] 41.8
InternVideo[41] 41.6

Slot-VLM 42.7

G.3 Visualization of Spatial Attention Maps for Spatial Slots from Stage 1 and Stage 2

In the first stage pre-training, slot attention is learned by reconstructing the features. In the second stage, LLM is
incorporated for video instruction tuning. Here, we take spatial slots as examples to compare the slot attention
masks from stage 1 and stage 2. Figure 8 and Figure 9 show the visualization for two examples, respectively.
Interestingly, we observe that after the instruction tuning, the learned slots are better decoupled, where a spatial
position usually contributes to multiple slots in stage 1 but only contributes to a very few slots in stage 2. Similar
phenomenons are obtained for temporal slots.

G.4 Visualization of Learned Event-Centric Slots

Figure 10 shows the enlarged visualization of attention masks for the 13-th spatial position that is previously
shown in Figure 4.

H Discussion on the Application on Long Video Understanding

For several-minute-long videos, Slot-VLM can still capture important objects and events information for video
understanding. Experiments on the ActivityNet-QA dataset, where the average length of video clips is 111.6
seconds, and the maximum length is 285 seconds, show the superiority of our Slot-VLM over many other
methods (see Table 1, note that the amount of instruction tuning data is much smaller than that in VideoChat2).
For scenes with more objects, some similar objects would be gathered into the same slot. Even if not being
perfect, our semantics decoupled representations presents its superiority to pooling-based and Q-former based
strategies where semantics are mixed in the generated tokens for video understanding.

For much longer videos (e.g., hour-long videos), it would be difficult to represent the dynamic scenes with only
a small set of event slots. We could extend our framework to well serve long video understanding by partitioning
the long-video to chunks of shorter duration, where the object-centric and event-centric slots are generated for
each chunk and these slots from chunks are concatenated sequentially as the input to LLM. We leave this as
future work.

I Limitations

In this work, we introduce a new framework, Slot-VLM, that aims to generate a small set of event-centric
video tokens to comply with LLM for effective video reasoning. Currently, we leverage slot attention to learn
object-centric slots and event-centric slots. However, the learned slot representations are still not perfect where
object instances are still not perfectly segmented and events are not perfectly partitioned. With such imperfect
slot representations, our framework achieves the state-of-the-art performance, demonstrating strong potential. We
believe the advancement of unsupervised object-centric representation learning in future could further enhance
the performance of our framework.

For much longer videos (e.g., hour-long videos), it would be difficult to represent the dynamic scenes with
only a small set of event slots. Our framework is extensible to support those very long videos but we have not
implemented and experimented on such cases. For example, for a three-hour-long video, we could partition
the video into chunks with each chunk being τ seconds and summarize dense video features into sparse Ns

object-centric and Nf event-centric tokens for each chunk and concatenate the tokens of chunks sequentially
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Figure 6: Visualization of spatial attention masks from the Q-Former in BLIP2 for two images in (a)
and (b) respectively. We show the learned query masks for the 12 heads in 12 rows, respectively. In
each row, we show the masks for the 32 queries. Note that the first column show the original image
repeated by 12 times. There is no obvious evidence that different queries have learned decoupled
semantics.

as the input to LLM for inference. This is feasible in practice by borrowing experience from LLaMA-VID
[22], which is designed for long-form video understanding. LLaMA-VID encodes each frame into two tokens
at a sample rate of 1 frame per second to support three-hour-long videos. In our framework, when we have
Ns +Nf = 192 tokens for each chunk, by setting the duration of a chunk to τ = 96 seconds, we equivalently
have 2 tokens per frame on average, facilitating the handling of hour-long-video as LLaMA-VID does.

J Impact Statements

This paper endeavors to make notable advancements in video-language modeling, a field integral to enhancing
our interaction with and comprehension of video content. We aspire to drive positive innovation, yet we remain
aware that technological progress may have unforeseen side effects. We call upon the users to use AI responsibly.
When we release code and models, we would set a safeguard by requiring that users adhere to usage guidelines.
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Figure 7: Visualization of spatial attention masks from our baseline scheme Spatial-QFormer-VLM
for 8 frames of a video. Since there are 12 heads in Q-Former, we plot 12 (3 × 4) sets of attention
masks separated by green lines. For each head, we have t = 8 frames as shown in each row; the first
column shows the original frame; the second to the ninth columns show the cross attention mask
(from Q-Former) for the 8 queries. We can see that the queries are not clearly decoupled, with each
one being a mixture of spatial features. A feature in a spatial position is usually allocated to a couple
of queries. Compared with the spatial attention masks from our Slot-VLM as shown in Figure 3, it is
less semantically decoupled for the learned queries.
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(a) (b)

Figure 8: Visualization of spatial attention masks from (a) the stage 1 pre-training, and (b) the stage 2
after instruction tuning. We have t = 8 frames as shown in 8 rows, indexed by i, where i = 1, . . . , t,
respectively. The first column shows the original frame. The second to the ninth columns show the
cross attention mask (from slot attention) for the No = 8 object-centric slots Oi = {oi,1, . . . ,oi,No

}.
Interestingly, we can see that after the instruction tuning, the learned slots are much more decoupled,
where a spatial position usually contributes to multiple slots in stage 1 but only contributes to a very
few slots in stage 2.
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Figure 9: Visualization of spatial attention masks from (a) the stage 1 pre-training, and (b) the stage 2
after instruction tuning. We have t = 8 frames as shown in 8 rows, indexed by i, where i = 1, . . . , t,
respectively. The first column shows the original frame. The second to the ninth columns show the
cross attention mask (from slot attention) for the No = 8 object-centric slots Oi = {oi,1, . . . ,oi,No

}.
Interestingly, we can see that after the instruction tuning, the learned slots are much more decoupled,
where a spatial position usually contributes to multiple slots in stage 1 but only contributes to a very
few slots in stage 2.
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Figure 10: Enlarged visualization of temporal attention mask for the 13-th spatial position from (a)
our Event-Slots branch and (b) Temporal-QFormer-VLM, respectively. For simplicity, we also refer
to slot as query here. For the 13-th spatial position, we denote the set of learned temporal queries by
E13. For this spatial position, the models generate Ne = 8 queries by aggregating the temporal visual
tokens. The attention masks for E13 are denoted by a map of T rows and Ne = 8 columns, with the
visibility indicating which queries this temporal position belongs to. The higher the visibility, the
greater the affinity between this temporal position and the query. We can see that in our Slot-VLM,
similar contents tend to be allocated to the same slot, i.e., different slots capture different contents
(events) and present decoupled semantics. In contrast, in Temporal-QFormer-VLM, different contents
are usually assigned to the same query or are uniformly assigned to different queries.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: We aim to generate semantic-centric tokens from video features to better comply with
LLMs for effective video-language modeling, providing a new insight that ‘disentangled’ tokens are
beneficial for video-language modeling.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made in the
paper.

• The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Please see Appendix I.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that the paper
has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to violations of

these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide
closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address problems
of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
(and correct) proof?

Answer: [NA]

Justification: There is no theory in this paper.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
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• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they appear in

the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Section 3, 4, and Appendix B have presented the necessary information to reproduce the
main experimental results of the paper. The used datasets are all public datasets.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by the

reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might suffice,
or if the contribution is a specific model and empirical evaluation, it may be necessary to either
make it possible for others to replicate the model with the same dataset, or provide access to
the model. In general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate the results,
access to a hosted model (e.g., in the case of a large language model), releasing of a model
checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either be

a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?
Answer: [Yes] .
Justification: We will release the code.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.
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• The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: We have described the necessary information in Section 3, 4, Appendix B and E.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that is

necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer: [No]

Justification: Following other papers in this field, we did not report error bar to save the computational
cost.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report

a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is
not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: Please see Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual experimental
runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read the NeurIPS Code of Ethics and confirm that we follow that.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due

to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [Yes]

Justification: Please see Appendix J.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [Yes]

Justification: Please see Section J. When we release code and models, we would set a safeguard by
requiring that users adhere to usage guidelines.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.
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• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: We have cited the original papers of the datasets. We have checked the licenses of used
datasets and followed them.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package should

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human Subjects
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Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.
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