
Under review at the GEM workshop, ICLR 2025

SCALABLE AND COST-EFFICIENT DE NOVO
TEMPLATE-BASED MOLECULAR GENERATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advances in reaction-based molecular generation hold great promise for
drug design. Composing a molecule from a predefined set of reaction templates
and building blocks keeps the generative modeling in line with what can be synthe-
sized in a real-world wet lab. In this paper, we tackle three important challenges of
template-based GFlowNets: 1) reducing the synthesis cost, 2) navigating in a large
set of building blocks, and 3) exploiting a small set of building blocks. We pro-
pose Cost Guidance for a backward policy that uses an auxiliary machine-learning
model to approximate the synthesis cost. Our approach limits the costs of pro-
posed molecules, while drastically improving their diversity and quality in large-
scale settings. Moreover, we design a Dynamic Library mechanism that allows the
generation of full synthesis trees, boosting the results in small-scale settings. The
resulting generative model establishes state-of-the-art results in template-based
molecular generation in a benchmark concerning synthesis cost and diversity of
high-rewarded molecules.

1 INTRODUCTION

Generative models offer a promise of accelerating drug discovery by vastly expanding the search
space of potential molecules through direct sampling from the distribution of compounds with
desired properties. Recent research has focused on the difficulty of synthesizing the generated
molecules using template-based approach, where generated molecules are assembled from a pre-
defined set of chemical building blocks in a sequence of reactions Gottipati et al. (2020); Horwood
& Noutahi (2020). Recent studies Koziarski et al. (2024); Cretu et al. (2024); Seo et al. (2024) have
integrated this concept into the GFlowNet framework Bengio et al. (2021), which is especially ap-
pealing for drug discovery given its natural mode-seeking tendencies and ability to explore massive
chemical spaces effectively. Despite the emergence of multiple GFlowNet-based methods aimed at
synthesizability, challenges persist in scalability and cost-awareness. An ideal generative framework
would explore the entire space of synthesizable molecules while favoring those that are simpler and
cheaper to synthesize. Existing methods do not yet achieve this balance.

In this paper, we propose SCENT (Scalable and Cost-Efficient de Novo Template-Based Molec-
ular Generation) which tackles the aforementioned limitations of reaction-based GFlowNets. Our
contributions can be summarized as follows:

• We design a Recursive Cost Guidance for backward policy that helps SCENT navigate the
vast molecular space, improving the diversity of generated molecules and reducing their cost,
especially in settings with a large number of building blocks.

• We design a Dynamic Building Block Library framework to enable the generation of fully-
shaped synthesis trees. Dynamic Library is shown to increase the number of modes discovered
in settings with a small number of initial building blocks.

• We investigate the mechanism of cost reduction in SCENT and develop a simple yet effective
strategy that mitigates the exploitative nature of our Cost Guidance, called Exploitation Penalty.
We show that it further improves the SCENT results by discouraging revisits of the same molec-
ular scaffolds.

We benchmark recent reaction-based GFlowNets across three building block settings, demonstrating
that SCENT efficiently identifies high-reward molecules at a lower cost than alternative approaches.
A graphical summary of our contributions can be found in Figure 1.

1

Under review at the GEM workshop, ICLR 2025

a) Recursive cost guidance for PB b) Exploratory forward sampling

underexplored
explored

𝑃𝐸(𝑠, 𝑎) ~ 𝑛(𝑠, 𝑎)−1

c) Dynamic building block library

Extended building blocks M

Sorted buffer (Sn)

Sampled trajectories

cheap
expensive

ĉ(𝒔’)

ĉ(𝒔’’)

backward synthesis forward synthesis

Figure 1: Recursive Cost Guidance (a) uses a machine learning model ĉ to estimate the recursively
defined cost of the previous molecules. Our backward policy PB prefers cheaper synthesis paths
and then guides the forward policy PF . To boost the exploration during the training, we augment
the forward sampling with a simple Exploitation Penalty technique (b). Dynamic Library (c) gathers
intermediate molecules with the highest expected reward and adds them to the building block library
M , enabling full-tree synthesis.

2 METHOD

In this section, we describe the details of SCENT and introduce 1) Recursive Cost Guidance, 2)
Dynamic Building Block Library and 3) Exploitation Penalty.

2.1 RECURSIVE COST GUIDANCE

In this section, we introduce a new way of incorporating the preference over trajectories in
GFlowNets Shen et al. (2023). Let c(τ) ∈ R be a function that assigns a cost to a partial trajec-
tory τ = (s0, a0, . . . , sn) starting from source state s0. In the context of reaction-based GFlowNet,
c(τ) may correspond to the cost of running a sequence of reactions from τ to synthesize the final
molecule sn. Furthermore, let c(s) = minτ∈T c(τ→s) denote the minimum cost of arriving at state
s.

Having those definitions, we can guide the GFlowNet towards cheaper trajectories using the recur-
sive definition:

PB((s
′
i, a

′
i)|s) = σ

|SA′|
i (s), si = −αf(c(s′i), s

′
i, a

′
i, s) (1)

where SA′ is a set of all parent state-action tuples (s′, a′) and f is a function defining the cost
of arriving to s through s′i and a′i. A key feature of our framework is handling the cost when it’s
recursive, making explicit computation intractable.

To mitigate this exponential nature of f , we estimate the underlying recursive component using a
neural network ĉ(s′) that is trained on data collected during the training to satisfy the recursivity
constraint. Then we can plug in the estimate ĉ(s′) in Equation (1) instead:

PB((s
′
i, a

′
i)|s) = σ

|SA′|
i (s), si = −αf(ĉ(s′i), s

′
i, a

′
i, s) (2)

Note that f is not a learnable function as it describes our preference over the trajectories. The only
learnable part of PB is ĉ(s′) which is trained jointly with PF .

2.1.1 RECURSIVE SYNTHESIS COST GUIDANCE

In this paper, we define c as the synthesis cost, which allows us to obtain a PB that favors cheaper
synthesis paths. The synthesis cost is defined as follows:

f(c(s′), a′, s′, s) = (c(a′) + c(s′))y(s′, a′, s)−1, (3)
where c(a′) denotes the cost of fragments (recall that a′ = (M ′, r) is a pair of fragments M ′ and
reaction template r), and y(s′, a′, s) is the yield (the expected percentage of reacted molecules)) of
the reaction r leading from molecule s′ to s along with additional M ′ fragments.

Details on how we estimate the yield and fragments’ cost can be found in Appendix C.

2

Under review at the GEM workshop, ICLR 2025

2.1.2 RECURSIVE DECOMPOSABILITY GUIDANCE

An important issue in reaction-based GFlowNets is to ensure that the parent molecule s′ in
PB(s

′, a′|s) can be recursively decomposed all the way back into building blocks from M . The
authors of RGFN Koziarski et al. (2024) checked it explicitly, leading to a huge computational over-
head. On the other hand, Cretu et al. (2024) proposed two implicit strategies to deal with the decom-
posability issue: an RL-based approach in which the backward reward is positive if the backward
trajectory arrives at s0 and negative when stuck on a non-decomposable molecule; and a pessimistic
backward policy that trains PB with maximum likelihood objective over trajectories sampled by PF .

In this paper, we take a different approach to tackle the decomposability problem and leverage our
Recursive Cost-Guided Backward Policy framework. We define cost d(τ) = 0 if τ starts with s0
and d(τ) = ∞ otherwise. Then the cost d(s′) = minτ∈T (d(τ→s)) = 0 if d′ is decomposable and
∞ otherwise. The recursive cost definition f for Decomposability Guidance takes a simple form:
f(d(s′), s′, a′, s) = d(s′) and can be efficiently approximated using d̂(s′).

To separately deal with the cost associated with the decomposability of a molecule and the syn-
thesis cost, we define two separate backward sub-policies, P c

B(a, s|s′) for the Cost Guidance and
P d
B(a, s|s′) for Decomposability Guidance:

PB(a, s|s′) ∝ P c
B(a, s|s′)P d

B(a, s|s′) (4)

2.2 DYNAMIC BUILDING BLOCKS LIBRARY

During training, we gather intermediate molecules encountered in the trajectories sampled by PF

(and possibly PB using a prioritized replay buffer) in a buffer. Let m be a molecule from the buffer
and s(m) ∈ R its score. Let Tm be the set of trajectories that contain m and let sτ be the final state
of a trajectory τ . Then:

s(m) =
1

|Tm|
∑
τ∈Tm

R(sτ) (5)

s(m) is thus interpreted as the ”expected utility” of a molecule m and captures the usefulness of that
molecule in generating high-reward synthesizable products which is the essence of library learning.
As such, the Dynamic Library algorithm can be summarized as follows:

1. For each trajectory τ , update the scores for all intermediate molecules in τ and save in a buffer
2. Filter the buffer:

(a) Keep molecules that have been obtained using no more than max reaction=2 reactions.
(b) Keep molecules that match at least min matches=10 reactant patterns in our predefined

set of templates.
(c) Finally, Keep molecules that are not already present in the Dynamic Library

3. We sort the filtered buffer and keep the L highest-expected utility molecules.
4. Finally, we extend the Dynamic Library with these L molecules.

The above steps are repeated every T iteration for a maximum Nadd iterations.

2.3 EXPLOITATION PENALTY

Appendix E.2 shows that Recursive Cost Guidance increases the exploitative behavior of SCENT.
To mitigate that, we develop a strategy that discourages SCENT from re-taking the same actions at
a given state during the training. We augment PF using an exploratory policy PE :

P ′
F (a|s) ∝ PF (a|s)PE(a|s) (6)

We define Exploitation Penalty PE using the following count-based Bellemare et al. (2016); Tang
et al. (2017); Ostrovski et al. (2017) approach:

PE(a|s) =
(n(s, a) + ϵ)−γ∑
a′(n(s, a′) + ϵ)−γ

, (7)

where n(s, a) is the number of (s, a) occurrences in the sampled trajectories. Note that as opposed
to pseudo-count methods our method directly assesses the number of visits and omits the erroneous

3

Under review at the GEM workshop, ICLR 2025

density estimation Pan et al. (2022); Burda et al. (2018); Pathak et al. (2017). The simplicity comes
with the cost of seemingly poor scaling capabilities - we need to store every visited state and action
which may be intractable when exploring the state space. However, Appendix E.2 shows that using
the exploitation penalty is highly beneficial even when used in the initial 1000 iterations, making the
memory needed to store the visited states constant with respect to the number of training iterations.

3 EXPERIMENTS

Table 1: Online discovery results.

model modes > 8.0 ↑ scaff. > 8.0 ↑

SM
A

L
L

RGFN 538 ±21 5862 ±354

SynFlowNet 10.0 ±0.8 27.0 ±8.6

RxnFlow 6.0 ±2.45 9.0 ±3.74

SCENT (w/o C) 510 ±26 5413 ±334

SCENT (C) 478 ±11 5150 ±87

SCENT (C+D) 596 ±19 7148 ±497

SCENT (C+P) 595 ±20 6839 ±360

SCENT (C+D+P) 715 ±15 8768 ±363

M
E

D
IU

M

RGFN 4755 ±541 10638 ±918

SynFlowNet 288 ±28 299 ±32

RxnFlow 26.3 ±3.9 27.3 ±2.5

SCENT (w/o C) 9310 ±863 11478 ±823

SCENT (C) 17705 ±4224 52340 ±4303

SCENT (C+P) 37714 ±3430 90068 ±9010

L
A

R
G

E

SynFlowNet 278 ±282 385 ±401

RxnFlow 24.5 ±2.5 25.0 ±2.0

SCENT (w/o C) 7171 ±291 8767 ±429

SCENT (C) 12375 ±264 36930 ±5455

SCENT (C+P) 26367 ±3193 46202 ±10242

Table 2: Inference sampling results.

model reward ↑ sim. > 8.0 ↓ scaff. > 8.0 ↑ cost > 8.0 ↓

SM
A

L
L

RGFN 7.34 ±0.06 0.24 ±0.02 90.3 ±25.6 37.7 ±2.0

SynFlowNet 6.89 ±0.29 - 4.33 ±4.19 -
RxnFlow 6.13 ±0.03 - 0.33 ±0.47 -

SCENT (w/o C) 7.38 ±0.02 0.25 ±0.02 97.3 ±14.3 37.1 ±1.0

SCENT (C) 7.43 ±0.02 0.26 ±0.01 106 ±8 23.7 ±4.0

SCENT (C+D) 7.56 ±0.05 0.23 ±0.01 202 ±34 19.7 ±2.0
SCENT (C+P) 7.42 ±0.05 0.24 ±0.01 103 ±26 20.7 ±2.6

SCENT (C+D+P) 7.66 ±0.03 0.24 ±0.0 240 ±11 20.7 ±3.0

M
E

D
IU

M

RGFN 7.08 ±0.08 0.21 ±0.02 46.3 ±13.5 1268 ±71

SynFlowNet 6.38 ±0.03 - 1.67 ±0.47 1952 ±548

RxnFlow 6.3 ±0.02 - 0.0 ±0.0 -
SCENT (w/o C) 7.31 ±0.09 0.19 ±0.01 74.3 ±19.1 1463 ±62

SCENT (C) 7.74 ±0.04 0.22 ±0.01 303 ±40 1163 ±147
SCENT (C+P) 7.81 ±0.04 0.2 ±0.01 360 ±21 1230 ±121

L
A

R
G

E

SynFlowNet 6.39 ±0.19 - 2.33 ±2.62 -
RxnFlow 6.14 ±0.08 - 0.0 ±0.0 -

SCENT (w/o C) 7.13 ±0.12 0.19 ±0.01 53.7 ±25.8 1678 ±63

SCENT (C) 7.52 ±0.09 0.21 ±0.01 209 ±74 1267 ±159
SCENT (C+P) 7.76 ±0.03 0.2 ±0.0 326 ±47 1291 ±66

4

Under review at the GEM workshop, ICLR 2025

In this section, we evaluate SCENT against recent template-based GFlowNets, namely RGFN
Koziarski et al. (2024), SynFlowNet Cretu et al. (2024) and RxnFlow Seo et al. (2024). The chosen
models explicitly output a reaction path using a shared backbone of reaction templates and building
blocks. This way we can directly compare the costs of the proposed molecules without the need
for erroneous retro-synthesis. We focus on GFlowNet-based models in this paper as this framework
outperforms other approaches in mode-seeking metrics that we report in the paper.

Our SCENT method consists of four components: 1) Decomposability Guidance, 2) Cost Guidance
(C), 3) Dynamic Library (D), and 4) Exploitation Penalty (P). The first component is used in all
experiments with SCENT. The rest of the components may be turned on or off, depending on the
experimental setting, which we indicate explicitly.

3.1 SETUP

Note that the results previously reported for those methods are not directly comparable: the meth-
ods use different sets of templates and building blocks. We propose a fair benchmark that aligns
those two important factors. The models are evaluated in three settings: 1) SMALL: templates and
building blocks described in Appendix C, 2) MEDIUM: templates from SynflowNet along with 64k
molecules from Enamine, and 3) LARGE: templates from SynflowNet along with 128k molecules
from Enamine. These settings cover a wide range of potential applications of SCENT. The SMALL
setting contains a curated set of cheap fragments and is easier for automated quick-chemistry or rapid
experimental turnover. MEDIUM and LARGE settings can be used for extensive molecular space
exploration with building blocks that need to be ordered from an external supplier.

The models were trained on sEH proxy Bengio et al. (2021). We report the number of molecules
with high reward whose mutual Tanimoto distance for ECFP6 fingerprints Rogers & Hahn (2010) is
lower than 0.5; and the number of unique Bemis-Murcko scaffolds discovered during the training.
Moreover, we sample 1000 synthesis paths using the trained forward policies and report the overall
mean reward. Then filter the high-reward molecules and report their average Tanimoto similarity,
the number of unique Bemis-Murcko scaffolds, and the average cost of the corresponding synthesis
paths. The training details and hyperparameters used are reported in Appendix B.

3.2 COMPARISON TO TEMPLATE-BASED GENERATIVE MODELS

Table 1 and 2 show the evaluation results for the considered GFlowNet approaches on sEH proxy.
SCENT with Cost Guidance (C) reduces cost in all settings, while drastically increasing the num-
ber of discovered modes and scaffolds in MEDIUM and LARGE. Enabling Dynamic Library (C+D)
boosts the online discovery performance in the SMALL setting and maintains the low cost of gen-
erated molecules obtained with Cost Guidance. The number of discovered modes and scaffolds is
further improved by the Exploration Penalty (+P). The resulting SCENT (C+D+P) for SMALL set-
ting and (C+P) on MEDIUM and LARGE outperforms all considered models by a large margin in
terms of diversity, quality, and cost of discovered molecules.

4 CONCLUSION

In this paper, we presented SCENT, a template-based approach for molecular generation within the
GFlowNet framework. SCENT introduces three new mechanisms that collectively enhance explo-
ration of chemical space: (1) recursive Cost Guidance, which focuses sampling on molecules with
low synthesis cost, (2) Dynamic Library building blocks, which improve exploration efficiency - es-
pecially with smaller fragment libraries - and enable the generation of non-linear synthesis trees, and
(3) an Exploration Penalty, which avoids repeated visits to previously explored candidates. Through
empirical evaluations, we demonstrated that combining these strategies leads to state-of-the-art re-
sults in template-based molecular generation across diverse experimental settings - from small-scale
fragment libraries suitable for rapid, automated synthesis, to large-scale libraries that create vast
search spaces. We anticipate that this framework will accelerate drug discovery, be integrated into
self-driving labs, and potentially extend to other scenarios such as molecular optimization of known
hits, which remains an avenue for future work.

5

Under review at the GEM workshop, ICLR 2025

REFERENCES

Tomasz Badowski, Karol Molga, and Bartosz A. Grzybowski. Selection of cost-effective yet chemi-
cally diverse pathways from the networks of computer-generated retrosynthetic plans. Chem. Sci.,
10:4640–4651, 2019. doi: 10.1039/C8SC05611K. URL http://dx.doi.org/10.1039/
C8SC05611K.

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos.
Unifying count-based exploration and intrinsic motivation. Advances in neural information pro-
cessing systems, 29, 2016.

Emmanuel Bengio, Moksh Jain, Maksym Korablyov, Doina Precup, and Yoshua Bengio. Flow
network based generative models for non-iterative diverse candidate generation. Advances in
Neural Information Processing Systems, 34:27381–27394, 2021.

Oussama Boussif, Léna Néhale Ezzine, Joseph D Viviano, Michał Koziarski, Moksh Jain, Nikolay
Malkin, Emmanuel Bengio, Rim Assouel, and Yoshua Bengio. Action abstractions for amortized
sampling. arXiv preprint arXiv:2410.15184, 2024.

Matthew Bowers, Theo X Olausson, Lionel Wong, Gabriel Grand, Joshua B Tenenbaum, Kevin
Ellis, and Armando Solar-Lezama. Top-down synthesis for library learning. Proceedings of the
ACM on Programming Languages, 7(POPL):1182–1213, 2023.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. arXiv preprint arXiv:1810.12894, 2018.

Miruna Cretu, Charles Harris, Julien Roy, Emmanuel Bengio, and Pietro Liò. Synflownet: Towards
molecule design with guaranteed synthesis pathways. arXiv preprint arXiv:2405.01155, 2024.

P Kingma Diederik. Adam: A method for stochastic optimization. (No Title), 2014.

Ian Dunn and David Ryan Koes. Mixed continuous and categorical flow matching for 3d de novo
molecule generation, 2024. URL https://arxiv.org/abs/2404.19739.

Carl Edwards, Tuan Lai, Kevin Ros, Garrett Honke, Kyunghyun Cho, and Heng Ji. Translation
between molecules and natural language, 2022. URL https://arxiv.org/abs/2204.
11817.

Kevin Ellis, Lucas Morales, Mathias Sablé-Meyer, Armando Solar-Lezama, and Josh Tenenbaum.
Learning libraries of subroutines for neurally-guided bayesian program induction. Neural Infor-
mation Processing Systems (NIPS), 2018.

Kevin Ellis, Catherine Wong, Maxwell Nye, Mathias Sablé-Meyer, Lucas Morales, Luke Hewitt,
Luc Cary, Armando Solar-Lezama, and Joshua B Tenenbaum. Dreamcoder: Bootstrapping in-
ductive program synthesis with wake-sleep library learning. In Proceedings of the 42nd acm
sigplan international conference on programming language design and implementation, pp. 835–
850, 2021.

Yin Fang, Ningyu Zhang, Zhuo Chen, Lingbing Guo, Xiaohui Fan, and Huajun Chen. Domain-
agnostic molecular generation with chemical feedback, 2024. URL https://arxiv.org/
abs/2301.11259.

Jenna Fromer and Connor Coley. An algorithmic framework for synthetic cost-aware deci-
sion making in molecular design. Nature Computational Science, 4:1–11, 06 2024. doi:
10.1038/s43588-024-00639-y.

Sai Krishna Gottipati, Boris Sattarov, Sufeng Niu, Yashaswi Pathak, Haoran Wei, Shengchao Liu,
Simon Blackburn, Karam Thomas, Connor Coley, Jian Tang, et al. Learning to navigate the
synthetically accessible chemical space using reinforcement learning. In International conference
on machine learning, pp. 3668–3679. PMLR, 2020.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

6

http://dx.doi.org/10.1039/C8SC05611K
http://dx.doi.org/10.1039/C8SC05611K
https://arxiv.org/abs/2404.19739
https://arxiv.org/abs/2204.11817
https://arxiv.org/abs/2204.11817
https://arxiv.org/abs/2301.11259
https://arxiv.org/abs/2301.11259

Under review at the GEM workshop, ICLR 2025

Emiel Hoogeboom, Victor Garcia Satorras, Clément Vignac, and Max Welling. Equivariant diffu-
sion for molecule generation in 3d, 2022. URL https://arxiv.org/abs/2203.17003.

Julien Horwood and Emmanuel Noutahi. Molecular design in synthetically accessible chemical
space via deep reinforcement learning. ACS omega, 5(51):32984–32994, 2020.

Liang Huang, Tianfan Xu, Yadi Yu, et al. A dual diffusion model enables 3d molecule generation and
lead optimization based on target pockets. Nature Communications, 15:2657, 2024. doi: 10.1038/
s41467-024-46569-1. URL https://doi.org/10.1038/s41467-024-46569-1.

Ross Irwin, Spyridon Dimitriadis, Jiazhen He, and Esben Jannik Bjerrum. Chemformer: a pre-
trained transformer for computational chemistry. Machine Learning: Science and Technology,
3(1):015022, jan 2022. doi: 10.1088/2632-2153/ac3ffb. URL https://dx.doi.org/10.
1088/2632-2153/ac3ffb.

Ross Irwin, Alessandro Tibo, Jon Paul Janet, and Simon Olsson. Efficient 3d molecular generation
with flow matching and scale optimal transport, 2024. URL https://arxiv.org/abs/
2406.07266.

Moksh Jain, Emmanuel Bengio, Alex Hernandez-Garcia, Jarrid Rector-Brooks, Bonaventure FP
Dossou, Chanakya Ajit Ekbote, Jie Fu, Tianyu Zhang, Michael Kilgour, Dinghuai Zhang, et al.
Biological sequence design with gflownets. In International Conference on Machine Learning,
pp. 9786–9801. PMLR, 2022.

Moksh Jain, Tristan Deleu, Jason Hartford, Cheng-Hao Liu, Alex Hernandez-Garcia, and Yoshua
Bengio. Gflownets for ai-driven scientific discovery. Digital Discovery, 2(3):557–577, 2023a.

Moksh Jain, Sharath Chandra Raparthy, Alex Hernández-Garcıa, Jarrid Rector-Brooks, Yoshua Ben-
gio, Santiago Miret, and Emmanuel Bengio. Multi-objective gflownets. In International Confer-
ence on Machine Learning, pp. 14631–14653. PMLR, 2023b.

Michał Koziarski, Andrei Rekesh, Dmytro Shevchuk, Almer van der Sloot, Piotr Gaiński, Yoshua
Bengio, Cheng-Hao Liu, Mike Tyers, and Robert A Batey. Rgfn: Synthesizable molecular gener-
ation using gflownets. arXiv preprint arXiv:2406.08506, 2024.

Micha Livne, Zulfat Miftahutdinov, Elena Tutubalina, Maksim Kuznetsov, Daniil Polykovskiy, An-
nika Brundyn, Aastha Jhunjhunwala, Anthony Costa, Alex Aliper, Alán Aspuru-Guzik, and Alex
Zhavoronkov. nach0: multimodal natural and chemical languages foundation model. Chem-
ical Science, 15(22):8380–8389, 2024. ISSN 2041-6539. doi: 10.1039/d4sc00966e. URL
http://dx.doi.org/10.1039/D4SC00966E.

Hannes H Loeffler, Jiazhen He, Alessandro Tibo, Jon Paul Janet, Alexey Voronov, Lewis H Mervin,
and Ola Engkvist. Reinvent 4: Modern ai–driven generative molecule design. Journal of Chem-
informatics, 16(1):20, 2024.

Nikolay Malkin, Moksh Jain, Emmanuel Bengio, Chen Sun, and Yoshua Bengio. Trajectory balance:
Improved credit assignment in gflownets. Advances in Neural Information Processing Systems,
35:5955–5967, 2022a.

Nikolay Malkin, Salem Lahlou, Tristan Deleu, Xu Ji, Edward Hu, Katie Everett, Dinghuai Zhang,
and Yoshua Bengio. Gflownets and variational inference. arXiv preprint arXiv:2210.00580,
2022b.

Elia Mazuz, Gabi Shtar, Bar Shapira, and Lior Rokach. Molecule generation using transformers
and policy gradient reinforcement learning. Scientific Reports, 13:8799, 2023. doi: 10.1038/
s41598-023-35648-w. URL https://doi.org/10.1038/s41598-023-35648-w.

Amy McGovern and Richard S Sutton. Macro-actions in reinforcement learning: An empirical
analysis. Computer Science Department Faculty Publication Series, pp. 15, 1998.

Georg Ostrovski, Marc G Bellemare, Aäron Oord, and Rémi Munos. Count-based exploration with
neural density models. In International conference on machine learning, pp. 2721–2730. PMLR,
2017.

7

https://arxiv.org/abs/2203.17003
https://doi.org/10.1038/s41467-024-46569-1
https://dx.doi.org/10.1088/2632-2153/ac3ffb
https://dx.doi.org/10.1088/2632-2153/ac3ffb
https://arxiv.org/abs/2406.07266
https://arxiv.org/abs/2406.07266
http://dx.doi.org/10.1039/D4SC00966E
https://doi.org/10.1038/s41598-023-35648-w

Under review at the GEM workshop, ICLR 2025

Ling Pan, Dinghuai Zhang, Aaron Courville, Longbo Huang, and Yoshua Bengio. Generative aug-
mented flow networks. arXiv preprint arXiv:2210.03308, 2022.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In International conference on machine learning, pp. 2778–2787.
PMLR, 2017.

David Rogers and Mathew Hahn. Extended-connectivity fingerprints. Journal of chemical informa-
tion and modeling, 50(5):742–754, 2010.

Nicholas T Runcie and Antonia SJS Mey. Silvr: Guided diffusion for molecule generation. Journal
of Chemical Information and Modeling, 63(19):5996–6005, 2023.

Seonghwan Seo, Minsu Kim, Tony Shen, Martin Ester, Jinkyoo Park, Sungsoo Ahn, and Woo Youn
Kim. Generative flows on synthetic pathway for drug design. arXiv preprint arXiv:2410.04542,
2024.

Max W Shen, Emmanuel Bengio, Ehsan Hajiramezanali, Andreas Loukas, Kyunghyun Cho, and
Tommaso Biancalani. Towards understanding and improving gflownet training. In International
Conference on Machine Learning, pp. 30956–30975. PMLR, 2023.

Yuxuan Song, Jingjing Gong, Minkai Xu, Ziyao Cao, Yanyan Lan, Stefano Ermon, Hao Zhou,
and Wei-Ying Ma. Equivariant flow matching with hybrid probability transport, 2023. URL
https://arxiv.org/abs/2312.07168.

Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A frame-
work for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–
211, 1999.

Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, OpenAI Xi Chen, Yan Duan, John Schul-
man, Filip DeTurck, and Pieter Abbeel. # exploration: A study of count-based exploration for
deep reinforcement learning. Advances in neural information processing systems, 30, 2017.

Clement Vignac, Nagham Osman, Laura Toni, and Pascal Frossard. Midi: Mixed graph and 3d
denoising diffusion for molecule generation, 2023. URL https://arxiv.org/abs/2302.
09048.

Ziqi Zhou, Steven Kearnes, Li Li, Richard N. Zare, and Patrick Riley. Optimization of
molecules via deep reinforcement learning. Scientific Reports, 9:10752, 2019. doi: 10.1038/
s41598-019-47148-x. URL https://doi.org/10.1038/s41598-019-47148-x.

8

https://arxiv.org/abs/2312.07168
https://arxiv.org/abs/2302.09048
https://arxiv.org/abs/2302.09048
https://doi.org/10.1038/s41598-019-47148-x

Under review at the GEM workshop, ICLR 2025

A RELATED WORKS

Generative models for molecular design. Various paradigms exist for small molecule generation
using machine learning. These can be classified both by the molecular representations they aim
to generate, which include molecular graphs, SMILES strings, and atomic coordinates, and by the
deep learning frameworks employed to achieve these goals, which include diffusion Hoogeboom
et al. (2022); Runcie & Mey (2023); Huang et al. (2024); Vignac et al. (2023) and flow match-
ing models Song et al. (2023); Irwin et al. (2024); Dunn & Koes (2024), reinforcement learning
Zhou et al. (2019); Mazuz et al. (2023); Loeffler et al. (2024), and large language models Irwin
et al. (2022); Edwards et al. (2022); Fang et al. (2024); Livne et al. (2024). One such framework,
Generative Flow Networks (GFlowNets) Bengio et al. (2021); Malkin et al. (2022b); Jain et al.
(2023a; 2022; 2023b), has gained popularity as an alternative to traditional reinforcement learning
for iterative molecular graph and SMILES generation due to its theoretical emphasis on diversity in
sampling, which is critical to hit-finding in drug discovery. Notably, recent GFlowNet Cretu et al.
(2024); Koziarski et al. (2024); Seo et al. (2024) and reinforcement learning Gottipati et al. (2020);
Horwood & Noutahi (2020) work has explored synthesizable molecular design, wherein molecu-
lar building blocks are combined along known high-yield chemical reactions to generate molecules
along plausible chemical synthesis pathways.

Cost-aware molecular synthesis In addition to properties like binding affinity, practical factors such
as the cost of starting materials, reaction conditions, and the ability to conduct parallel chemistry are
crucial in prioritizing molecules within generative frameworks. Synthetic feasibility is influenced
by factors like reaction complexity, number of steps, and reagent accessibility. These factors and
their often nonlinear influence on one another contribute to total cost being notoriously difficult to
quantify. Existing methods by Fromer & Coley (2024) and Badowski et al. (2019) typically involve
selecting from existing retrosynthetic trees a subset that minimizes a single- or multi-objective cost
criterion. In contrast, our approach incorporates the cost prediction mechanism into the backward
policy of the template-based GFlowNet, increasing the flow on the cheaper pathways. This way,
the forward sampling (synthesis) is implicitly biased towards cheaper molecules and the backward
retrosynthesis proposes cheaper pathways for already sampled high-reward molecules.

Library learning is a well-studied method for navigating large search spaces, particularly in pro-
gram induction, where it has achieved significant success. For example, DreamCoder Ellis et al.
(2021; 2018); Bowers et al. (2023) employs a two-step process: programs sampled during training
are collected into a corpus, and a library synthesis algorithm is applied to extract the most common
subroutines, which are then added to the library of primitives. In the Options framework Sutton
et al. (1999), the library or set of actions is kept fixed, and a set of policies (called options) is learned
instead. Another closely related framework involves the learning of macro-actions McGovern &
Sutton (1998)—sequences of primitive actions that form a temporal abstraction. In settings where
macro-actions are beneficial, they have been shown to improve both credit assignment and explo-
ration. Recently, Boussif et al. (2024) introduced ActionPiece, a framework for applying library
learning to any task by compressing the actions using BPE in a set of trajectories to extract the most
common subsequences and augment the action space. Their approach has demonstrated success
in probabilistic modeling, achieving state-of-the-art results for GFlowNet-based methods. Our ap-
proach is closely related to the latter, with the key distinction being that we modify the library of
fragments by focusing on intermediate states rather than actions.

B MODELS TRAINING

All the models sampled 320000 forward trajectories during the training in total in SMALL and
MEDIUM settings and 256000 in LARGE. All the forward policies were trained using the Trajectory
Balance Objective Malkin et al. (2022a) and their parameters were optimized using Adam Diederik
(2014). All the methods were trained using their built-in action embedding mechanisms and on
the maximum number of reactions equal to 4. The hyperparameters were chosen semi-manually or
using small grid searches to maximize the number of high-reward modes in the SMALL setting on
sEH proxy.

9

Under review at the GEM workshop, ICLR 2025

B.1 SCENT

We followed most of the hyperparameter choices from the official implementation of RGFN
Koziarski et al. (2024). We set the number of sampled forward trajectories to 64, and the num-
ber of trajectories sampled from the prioritized replay buffer to 32. We set the β to 64 for sEH,
and 48 for GSK3β and JNK3. We used uniform ϵ-greedy exploration with ϵ = 0.05 for all our
experiments, except for those with other exploration techniques (e.g. Exploitation Penalty).

All SCENT instances were trained using decomposability guidance, either solely or with Cost Guid-
ance using Equation (4).

Decomposability Guidance To predict the decomposability of the molecule, we use the model
described in Appendix D. We set the cost temperature (Equation (1)) to α = 5.

Synthesis Cost Guidance The model for synthesis Cost Guidance is described in Appendix D.
We set the cost temperature to α = 5.

Dynamic Building Blocks Library We update the dynamic building blocks library every T =
1000 iterations for a maximum of Nadd = 10 additions (meaning that we do this until the end of
training). The number of molecules added to the library every time it’s updated is L = 400.

Exploitation Penalty We set ϵ = 3 in Equation (7) and schedule γ in two ways: 1) so that
it linearly decays to zero after N iterations, and 2) it grows with the trajectory length (each step
increases it by some constant factor ∆γ). We set N = ∞ for SCENT that uses Dynamic Library
and N = 1000 for the rest of the runs. The growing delta ∆γ = 0.2, while the initial s0 temperature
γ0 = 1.0. Note that for JNK3 in the MEDIUM setting, we used 4500 iterations for exploitation
penalty.

B.2 RGFN

We use the official implementation of RGFN Koziarski et al. (2024) with mostly default parameters.
We changed the number of sampled forward trajectories to 64, and the number of trajectories sam-
pled from the prioritized replay buffer to 32. We set the β to 64 for sEH, and 48 for GSK3β and
JNK3.

B.3 SYNFLOWNET

We followed the setting from the paper Cretu et al. (2024) and the official repository. We used
MaxLikelihood or REINFORCE backward policy with disabled or enabled replay buffer. We grid
searched GFlowNet reward temperature β: {32, 64} for sEH and β ∈ {16, 32} for GSK3β and
JNK3.

We trained SynFlowNet using 32 forward trajectories and 8000 iterations on LARGE setting, and
64 forward trajectories and 5000 iterations for SMALL and MEDIUM.

B.4 RXNFLOW

We used the default parameters from the official implementation and adapted 1) the
action subsampling ratio so that the number of sampled actions is close to the number used
in their paper, and 2) GFlowNet beta temperatures. We set action subsampling ratio=1.0
for the SMALL setting, 0.2 for MEDIUM, and 0.1 for LARGE. We set the β sampling distribution
to Uniform(16, 64) for sEH, and Uniform(16, 48) for GSK3β and JNK3.

C REACTION YIELDS AND FRAGMENTS COSTS ESTIMATES

SMALL setting The reaction set for the SMALL setting is the extended reaction set from
Koziarski et al. (2024). We added Bishler-Napieralski and Pictet-Spengler reactions, along with

10

Under review at the GEM workshop, ICLR 2025

various aryl functionalizations, benzoxazole, benzimidazole, and benzothiazole formation reactions,
Hantzsch thiazole synthesis, alkylation of aromatic nitrogen, and Williamson ether synthesis.

Building block prices for SMALL were obtained from the vendors online. If multiple vendors of-
fered the same building block, only the cost of the cheapest option was considered. For compounds
available in varying amounts, both the price per gram and the alternative size (e.g., 5, 10, 25 grams)
were considered, and the smallest price per mmol was used. Compounds that were exclusively ac-
cessible in other forms, such as salts, related functional groups, or containing a protected functional
group were used with the SMILES fitted to the corresponding reactions. The cost of a product
includes the total cost of the building blocks used, while additional expenses such as solvents, cata-
lysts, and reagents are not accounted for.

Reaction yield estimates for amide coupling, nucleophilic additions to isocyanates, Suzuki reaction,
Buchwald-Hartwig coupling, Sonogashira coupling, and azide-alkyne cycloaddition were obtained
by analyzing in-house data. For all other reactions, SMARTS templates were used to search for
reaction substructure in Reaxys and SciFinder, and the obtained literature data was analyzed to
produce yield estimates.

MEDIUM and LARGE setting We used subsets of building blocks from Enamine of size 64000
for LARGE and 128000 for MEDIUM settings. We downloaded the fragments’ costs from their
website.

D COST PREDICTION MODEL TRAINING

We use two cost prediction models in SCENT: synthesis cost prediction model ĉ(s) and decompos-
ability prediction model (let us override the notation and denote it as d̂(s)). The size of mini-batches,
the dataset size N , and the negative sampling ratio were manually chosen to maximize the cost pre-
diction validation losses gathered during the training.

D.1 SYNTHESIS COST MODEL

The cost prediction model ĉ(s) is a simple multi-layer perception on top of ECFP4 fingerprint e(s) ∈
R2048:

ĉ(s) = W1ϕ(W2e(s)), W1 ∈ R1×128, W2 ∈ R128×2048, (8)
where θ is the GELU activation function Hendrycks & Gimpel (2016).

To train the model we maintain a dataset D with current estimates of the states/molecules c(s)
denoted as cs. The dataset is updated with trajectories sampled from GFlowNet during the training
and its size is kept below N = 10000. Given a trajectory τ , we update all cs for states s ∈ τ using
the cost of the partial trajectory τs leading to state s: c′s = min(cs, c(τs)). To stabilize training, we
standardize all costs in D using the mean and variance of costs from the building block library M .

Given an updated dataset D, we perform five mini-batch updates of ĉ using mini-batches of size
1024, learning rate of 0.01 and mean-square-error loss Lcost = ||c(s)− ĉ(s)||22.

Importantly, when computing the recursive costs in our cost-guided backward policy PB from Equa-
tion (2), we use the most optimistic estimate of the cost by using min(ĉ(s), cs) if the considered cost
cs ∈ D.

D.2 DECOMPOSABILITY MODEL

The decomposability model d̂(s) is very similar to the synthesis cost model, except that it encodes
the current number of used reactions in the molecule s. The ”cost” in the context of decomposability
is 0 if the given molecule can be decomposed into building blocks from M (within some number
of steps) and ∞ otherwise. In practice, we train the model d̂(s) to predict decomposability label ∈
{0, 1} using binary cross entropy Lcost (the ”cost” is then −d̂(s)). The labels are gathered similarly
to synthesis cost values, using the trajectories encountered in the GFlowNet’s forward sampling.
We update the d̂(s) with five mini-batches of size 1024 and learning rate of 0.005. We additionally
ensure that at least 20% of the sampled molecules for d̂(s) training are not decomposable. In the

11

Under review at the GEM workshop, ICLR 2025

inference, we use the most optimistic estimate of cost by using min(−ĉ(s), cs) in PB computation
if considered cost cs ∈ D.

E STUDIES OF RECURSIVE SYNTHESIS COST GUIDANCE

In this section, we study the proposed synthesis Cost Guidance mechanism in SCENT.

E.1 HOW DOES COST REDUCTION WORK?

0 2000 4000
iteration

3.5

3.6

3.7

3.8

a) average paths length

SCENT (w/o cost guidance)
SCENT (cost guidance)

0 2000 4000
iteration

400

450

500

550

b) average price of used fragments

0 2000 4000
iteration

4000

5000

6000

c) average number of unique fragments

0 200 400
cost of the fragment

0

20

40

60

d) fragments costs histogram

Cost reduction analysis for sEH proxy in MEDIUM setting

Figure 2: Cost reduction analysis for sEH proxy and MEDIUM setting. Cost Guidance decreases
the average length of the sampled trajectory (a), and the average cost of used fragments (b) which
directly reduces the synthesis path cost. It also focuses on a smaller fraction of fragments during
generation (c) and minimizes the usage of the most expensive ones (d). The plots are smoothened
by averaging results from the last 100 iterations.

0 2000 4000
iteration

3.88

3.90

3.92

3.94

a) average paths length

SCENT (w/o cost guidance)
SCENT (cost guidance)

0 2000 4000
iteration

8

10

12

14

16

18
b) average price of used fragments

0 2000 4000
iteration

340

360

380

c) average number of unique fragments

0 2000 4000
iteration

0.740

0.745

0.750

d) average reaction yield

Cost reduction analysis for sEH proxy in SMALL setting

Figure 3: Cost reduction analysis for sEH proxy and MEDIUM setting. Cost Guidance decreases
the average length of the sampled trajectory (a), and the average cost of used fragments (b) which
directly reduces the synthesis path cost. Importantly, the average reaction yield (d) does not increase
when using Cost Guidance, suggesting its low influence in reducing the synthesis costs. The plots
are smoothened by averaging results from the last 100 iterations.

We analyze how Cost Guidance reduces the average reaction path cost generated by PF . Figure 2-a
shows that Cost Guidance reduces the trajectory length, which lowers the overall cost of the trajec-
tory. Additionally, Figure 2-b and -d demonstrate that Cost Guidance selects cheaper fragments and
significantly limits the use of more expensive ones. Finally, Figure 2 illustrates that Cost Guidance
relies on a subset of fragments throughout training, which correlates with the frequent use of cheaper
molecules. Figure 3 presents the same analysis for the SMALL setting.

E.2 EXPLOITATION ANALYSIS

According to Table 1 and 2, Cost Guidance increases the number of discovered scaffolds more
than it increases the number of discovered modes. By our definition, a set of modes is a set of
high-rewarded molecules that has mutual Tanimoto similarity below 0.5. It captures the notion of
structural diversity much better than the number of scaffolds also often reported as a number of
”modes”.

Therefore, the divergence in the improvement over the number of scaffolds and modes may indicate
that Cost Guidance increases the exploitativeness. In Figure 4, we plot how often PF resamples
previously discovered scaffolds with high-reward. Cost Guidance revisits the scaffolds drastically

12

Under review at the GEM workshop, ICLR 2025

0 1000 2000 3000 4000 5000
iteration

0.00

0.05

0.10

0.15

re
vi

si
ts

 o
f s

ca
ffo

ld
s

w
ith

 re
w

ar
d

>=
 8

.0

Scaffold revisits ratio in MEDIUM setting

w/o cost guidance
cost guidance
cost guidance + exploitation penalty

Figure 4: Frequency of revisits of high-rewards scaffolds during training. Cost Guidance drastically
increases the ratio of revisits, suggesting its exploitative nature. By incorporating the exploitation
penalty into Cost Guidance, we reduce the revisits ratio.

more often than SCENT without Cost Guidance, suggesting its more exploitative nature. However,
adding the exploitation penalty limits this behavior.

E.3 RECURSIVE COST GUIDANCE HELPS IN SCALING

Encouraged by the results of Cost Guidance in MEDIUM and LARGE settings, we performed addi-
tional experiments to show how the size of the building block library M influences the gap between
cost guided SCENT, SCENT without Cost Guidance, and SCENT with additional Exploitation
Penalty. Figure 5 shows that Cost Guidance drastically increases the number of discovered scaffolds
from the smallest (2k molecules) to the largest (256k molecules) M . On the other hand, we observe
that the gap in the number of discovered modes is raised up to M of size 128k, but then drops in the
largest setting.

2k 4k 8k 16k 32k 64k 128k
Number of building blocks

0

20000

40000

60000

80000

N
um

be
r o

f s
ca

ffo
ld

s

Number of discovered scaffolds with sEH (proxy) > 8

SCENT (w/o cost biasing)
SCENT (cost biasing)
SCENT (cost biasing + penalty)

Figure 5: Number of discovered scaffolds as a function of the size of building block library M . The
numbers are reported for the 3000th training iteration.

The fact that using Cost Guidance improves the mode-seeking metrics is initially not intuitive. Re-
sults from Appendix E.1 suggest that it navigates the fragment space more effectively, reducing the
number of used fragments. While limiting the size of the building block library by randomly crop-
ping some fragments may increase the results according to Cretu et al. (2024) and Koziarski et al.
(2024), the effect of the reduction is by far less prominent than our performance gains. Similarly, the
removal of the most expensive fragments helps the mode-seeking metrics, but to a limited extent. As
such, we believe that Cost Guidance learns to select building blocks that are both cheap and useful
for the given reward.

13

	Introduction
	Method
	Recursive Cost Guidance
	Recursive Synthesis Cost Guidance
	Recursive Decomposability Guidance

	Dynamic Building Blocks Library
	Exploitation Penalty

	Experiments
	Setup
	Comparison to Template-based Generative Models

	Conclusion
	Related works
	Models Training
	SCENT
	RGFN
	SynFlowNet
	RxnFlow

	Reaction Yields and Fragments Costs Estimates
	Cost Prediction Model Training
	Synthesis Cost Model
	Decomposability Model

	Studies of Recursive Synthesis Cost Guidance
	How Does Cost Reduction Work?
	Exploitation analysis
	Recursive Cost Guidance Helps in Scaling

