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ABSTRACT

In the era of causal revolution, identifying the causal effect of an exposure on the
outcome of interest is an important problem in many areas, such as epidemics,
medicine, genetics, and economics. Under a general causal graph, the exposure
may have a direct effect on the outcome and also an indirect effect regulated by a
set of mediators. An analysis of causal effects that interprets the causal mechanism
contributed through mediators is hence challenging but on demand. To the best of
our knowledge, there are no feasible algorithms that give an exact decomposition of
the indirect effect on the level of individual mediators, due to common interaction
among mediators in the complex graph. In this paper, we establish a new statistical
framework to comprehensively characterize causal effects with multiple mediators,
namely, ANalysis Of Causal Effects (ANOCE), with a newly introduced definition
of the mediator effect, under the linear structure equation model. We further
propose a constrained causal structure learning method by incorporating a novel
identification constraint that specifies the temporal causal relationship of variables.
The proposed algorithm is applied to investigate the causal effects of 2020 Hubei
lockdowns on reducing the spread of the coronavirus in Chinese major cities out of
Hubei.

1 INTRODUCTION

In the era of causal revolution, identifying the causal effect of an exposure on the outcome of interest
is an important problem in many areas, such as epidemics (Hernán, 2004), medicine (Hernán et al.,
2000), education (Card, 1999), and economics (Panizza & Presbitero, 2014). Under a general causal
graph, the exposure may have a direct effect on the outcome and also an indirect effect regulated by a
set of mediators (or intermediate variables). For instance, during the outbreak of Coronavirus disease
2019 (COVID-19), the Chinese government has taken extreme measures to stop the virus spreading
such as locking Wuhan down on Jan 23rd, 2020, followed by 12 other cities in Hubei, known as
the “2020 Hubei lockdowns”. This approach (viewed as the exposure), directly blocked infected
people leaving from Hubei; and also stimulated various quarantine measures taken by cities outside
of Hubei (as the mediators), which further decreased the migration countrywide in China, and thus
indirectly control the spread of COVID-19. Quantifying the causal effects of 2020 Hubei lockdowns
on reducing the COVID-19 spread regulated by different cities outside Hubei is challenging but of
great interest for the current COVID-19 crisis. An analysis of causal effects that interprets the causal
mechanism contributed via individual mediators is thus very important.

Many recent efforts have been made on studying causal effects that are regulated by mediators.
Chakrabortty et al. (2018) specified the individual mediation effect in a sparse high-dimensional
causal graphical model. However, the sum of marginal individual mediation effect is not equal to
the effect of all mediators considered jointly (i.e. the indirect effect) due to the common interaction
among mediators (VanderWeele & Vansteelandt, 2014). Here, ‘interaction’ means that there exists at
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(a) A causal graph with parallel mediators.
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(b) A causal graph with interacted mediators.

Figure 1: Illustration of causal graphs with different types of mediators, where A is the exposure,
{M1, · · · ,Mp} are mediators, and Y is the outcome of interest.

least one mediator that is regulated by other mediator(s) (see Figure 1b for illustration), in contrast
to the simple ‘parallel’ case (shown in Figure 1a). Vansteelandt & Daniel (2017) considered an
exact decomposition of the indirect effect with a two-mediator setting based on the conditional
densities of mediators, while there was no feasible algorithm provided to solve their proposed
expressions yet. Therefore, a new framework with a computational friendly algorithm that gives an
exact decomposition of the indirect effect on the level of individual mediators is desired under the
complex causal network.

To estimate the underlying causal network, structure learning algorithms of the directed acyclic
graph (DAG) are widely used. Popular methods such as the PC algorithm (Spirtes et al., 2000)
that uses conditional independence tests to examine the existence of edges between each pair of
variables, require strong assumptions and thus have no guarantee in the finite sample regime. Recently,
Zheng et al. (2018) opened up another class of causal discovery methods by directly formulating a
pure optimization problem over real metrics with a novel characteristic of the acyclicity. Yu et al.
(2019) further extended Zheng et al. (2018)’s work with a deep generative model, and showed better
performance on the structure learning with weaker assumptions on the noise. See more follow-up
works in Lachapelle et al. (2019) and Zhu & Chen (2019). However, the current cutting-edge methods
neglect the temporal causal relationship among variables, and thus cannot appropriately represent the
causal network with pre-specified exposure and outcome.

In this paper, we consider establishing a new statistical framework to comprehensively characterize
causal effects with multiple mediators, namely, ANalysis Of Causal Effects (ANOCE), under the
linear structure equation model (LSEM). Specifically, we propose two causal effects on the level of
individual mediators, the natural direct effect and the natural indirect effect for a mediator, denoted as
DM and IM , respectively. Our proposed DM can be interpreted as the direct effect of a particular
mediator on the outcome that is not regulated by other mediators, while the IM is the indirect
effect of the mediator controlled by its descendant mediators. We prove that the DM is valid in the
sense that it exactly decomposes the indirect effect of the exposure on the outcome, followed by an
ANOCE table to explain different sources of causal effects. To bridge the cutting-edge graphical
learning approaches with the temporal causal relationship of variables, we extend the variational
auto-encoder (VAE) framework in Yu et al. (2019) with a novel identification constraint that specifies
the topological order of the exposure and the outcome. The proposed constrained VAE algorithm is
then used to estimate causal effects defined in our ANOCE table, named as ‘ANOCE-CVAE’.

Our contributions can be summarized in the following three aspects:
• 1). Conceptually, we define different sources of causal effects through mediators with a newly
introduced definition of direct and indirect mediator effects, and give an exact decomposition of the
indirect effect on the level of individual mediators, under the linear structure equation model.
• 2). Methodologically, we incorporate the background knowledge (the temporal causal relationship
among variables) when using an optimization approach to the causal discovery. Such prior knowledge
can be generalized for any measured variable and on the possible set of their parents. Our proposed
constrained structural learning can be easily extended to other score-based algorithms.
• 3). Practically, extensive simulations are conducted to demonstrate the empirical validity of the
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proposed algorithm and its competitive performance among existing causal discovery algorithms.
Our method is applied to investigate the causal effects of 2020 Hubei lockdowns on reducing the
COVID-19 spread in China, by quantifying the individual effect for each city.

2 BACKGROUND AND RELATED WORK

2.1 GRAPH TERMINOLOGY

Consider a graph G = (X,E) with a node set X and an edge set E. There is at most one edge
between any pair of nodes. If there is an edge between Xi and Xj , then Xi and Xj are adjacent.
A node Xi is said to be a parent of Xj if there is a directed edge from Xi to Xj . Let the set of all
parents of node Xj in G as PAXj

(G). A path from Xi to Xj in G is a sequence of distinct vertices,
π ≡ {a0, a1, · · · , aL} ⊂ V such that a0 = Xi, and aL = Xj . A directed path from Xi to Xj is a
path between Xi and Xj where all edges are directed toward Xj . A directed cycle is formed by the
directed path from Xi to Xj together with the directed edge Xj to Xi. A directed graph that does
not contain directed cycles is called a directed acyclic graph (DAG). A directed graph is acyclic if
and only if it has a topological ordering. Suppose a DAG G = (X,E) that characterizes the causal
relationship among |X| = d nodes, where X = [X1, X2, · · · , Xd]

> represents a random vector and
an edge Xi → Xj means that Xi is a direct cause of Xj . Let B = {bi,j}1≤i≤d,1≤j≤d be a d × d
matrix, where bi,j is the weight of the edge Xi → Xj ∈ E, and bi,j = 0 otherwise. Then, we say
that G = (X,B) is a weighted DAG with the node set X and the weighted adjacency matrix B (the
edge set E is nested in B).

2.2 RELATED WORK

Our work connects to the literature of the causal graphical model. Pearl et al. (2009) provided a
comprehensive review of recent advances in the analysis of causes and counterfactuals using ‘do-
operator’ by graphical methods. Later, Maathuis et al. (2009) started to use an unknown DAG without
hidden variables to estimate the causal effects from the high-dimensional observational data. Nandy
et al. (2017) extended the work of Maathuis et al. (2009) with the linear structure equation model,
followed by the individual mediation effect defined in Chakrabortty et al. (2018). All of these models
rely on the PC algorithm to search the Markov equivalence class of the partial DAG, and usually
require strong assumptions due to the computational limit. Our ANOCE is established under the
same causal structure of Chakrabortty et al. (2018) but without sparsity and normality assumptions.

Wide literature on causal discovery can be summarized in three classes. The first type focuses on
local conditional independence tests to find a causal skeleton and then determine the orientation
of edges, such as the well-known PC algorithm (Spirtes et al., 2000; Kalisch & Bühlmann, 2007).
However, testing the conditional independence of continuous variables is not easy (Shah & Peters,
2018). The second class specifies properly functional causal models with additional assumptions
on data distribution, including the ICA-LiNGAM (Shimizu et al., 2006) and the causal additive
model (CAM) (Bühlmann et al., 2014). The last class, the score-based method, includes the greedy
equivalence search (GES) (Chickering, 2002) and the fast GES (fGES) (Ramsey et al., 2017) that use
for example Bayesian scores in searching a space of causal models. Recently, Zheng et al. (2018)
opened up another track of score-based methods by constructing an optimization with an acyclicity
constraint under the LSEM, i.e. the NOTEARS. A follow-up work using a VAE parameterized
by a graph neural network that generalizes LSEM was proposed in Yu et al. (2019) with a more
computational friendly constraint, namely DAG-GNN. Also see Zhu & Chen (2019) and Lachapelle
et al. (2019) for other cutting-edge structural learning methods.

The improvement of our ANOCE-CVAE over the state-of-the-arts is as follows. We consider a new
constrained structural learning, by incorporating the background knowledge (the temporal causal
relationship among variables) into the score-based algorithms. We formulated such prior information
as the identification constraint and add it as the penalty term in the objective function for the causal
discovery. In this paper, we typically extend the DAG-GNN for an illustration. Note that the proposed
constraint is not limited to the DAG-GNN and can be easily extended to other score-based algorithms.
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3 ANALYSIS OF CAUSAL EFFECTS

3.1 STATISTICAL FRAMEWORK AND ASSUMPTIONS

Let A be the exposure/treatment, M = [M1,M2, · · · ,Mp]
> be mediators with dimension p, and Y

be the outcome of interest. Suppose there exists a weighted DAG G = (X,B) that characterizes
the causal relationship among X = [A,M>, Y ]>, where the dimension of X is d = p + 2. Let
Y ∗(A = a,M = m) be the potential outcome that would be observed after receiving treatment
a and setting mediators as m, and M∗(A = a) be the potential mediators that would be observed
after receiving treatment a. As standard in the causal inference (Rosenbaum & Rubin, 1983), we
assume that there is no unmeasured confounder: (A1) the effect of the treatment A on the outcome Y
is unconfounded, i.e. Y ∗(A = a,M = m) ⊥ A,∀a,m; (A2) the effect of the treatment A on the
mediators M is unconfounded, i.e. M∗(A = a) ⊥ A,∀a; (A3) the effect of the mediators M on
the outcome Y is unconfounded given the treatment A, i.e. Y ∗(A = a,M = m) ⊥ M |A,∀a,m.
In addition, as standard in the graphical causal discovery, we also make the Markov condition,
the faithfulness condition, causal sufficiency assumption, and the linear structural equation model
(LSEM) such that X = [A,M>, Y ]> characterized by the pair (G, ε) is generated by

X = B>X + ε, (1)

where ε is a random vector of jointly independent error variables.

Denote all directed paths in G that start with the exposure A and end with the outcome Y as set
{πAY (G)}. If there exists at least one directed path π∗ ∈ {πAY (G)} such that the length of π∗ is
larger than 2, we say there is an interaction among mediators, as shown in Figure 1b; otherwise, we
call mediators are ‘parallel’ as shown in Figure 1a. In this paper, we consider all possible causal
structures with multiple mediators under assumptions (A1-A3).

We next give the total effect (TE), the natural direct effect that is not mediated by mediators (DE),
and the natural indirect effect that is regulated by mediators (IE) defined in Pearl et al. (2009).

Definition 3.1 (Pearl et al., 2009)

TE = ∂E{Y |do(A = a)}/∂a = E{Y |do(A = a+ 1)} − E{Y |do(A = a)},
DE = E{Y |do(A = a+ 1,M = m(a))} − E{Y |do(A = a)},
IE = E{Y |do(A = a,M = m(a+1))} − E{Y |do(A = a)},

where do(A = a) is a mathematical operator to simulate physical interventions that hold A constant
as a while keeping the rest of the model unchanged, which corresponds to remove edges into A and
replace A by the constant a in G. Here, m(a) is the value of M if setting do(A = a), and m(a+1) is
the value of M if setting do(A = a+ 1). Refer to Pearl et al. (2009) for more details of ‘do-operator’.

Note that in the assumed linear model, the slope of the line is the same everywhere; for convenience
and simplicity, we use a and a+ 1 to present the change of the treatment of 1 in the definition.

3.2 NATURAL DIRECT AND INDIRECT EFFECT FOR INDIVIDUAL MEDIATORS

We first give the definition of the natural direct effect for an individual mediator (DM ).

Definition 3.2 Natural direct effect for Mi:

DMi =
[
E{Mi|do(A = a+ 1)} − E{Mi|do(A = a)}

]
×
[
E{Y |do(A = a,Mi = m

(a)
i + 1,Ωi = o

(a)
i )} − E{Y |do(A = a)}

]
,

(2)

where m(a)
i is the value of Mi when setting do(A = a), Ωi = M \Mi is the set of mediators except

Mi, and o(a)i is the value of Ωi when setting do(A = a).

Remark 3.1 From Definition 3.2, the natural direct effect for Mi is the product of the total effect of
the treatment A on the mediator Mi and the direct effect of the mediator Mi on the outcome Y . The
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second multiplier is in line with the classical meaning of ‘natural’ in the causal inference literature
(Pearl et al., 2009). Thus, the DM can be interpreted as the causal effect through a particular
mediator from the treatment on the outcome that is not regulated by its descendent mediators.

The natural indirect effect for an individual mediator (IM ) can be defined similarly.

Definition 3.3 Natural indirect effect for Mi:

IMi =
[
E{Mi|do(A = a+ 1)} − E{Mi|do(A = a)}

]
×
[
E{Y |do(A = a,Mi = m

(a)
i + 1)} − E{Y |do(A = a,Mi = m

(a)
i + 1,Ωi = o

(a)
i )}

]
.

Remark 3.2 The second multiplier in the IMi captures the indirect effect of a particular mediator
on the outcome regulated by its descendent mediators. We show the individual mediation effect (η) in
Chakrabortty et al. (2018) can be decomposed into the DM and the IM in Section F in the appendix
when the LSEM assumption holds, i.e., ηi = DMi + IMi, for i-th mediator.

Next, we give explicit expressions of defined causal effects under the LSEM. Specifically, we can
write the linear structural model 1 under assumptions (A1-A3) as[

A
M
Y

]
= B>

[
A
M
Y

]
+ ε =

0 0p×1 0
α B>M 0
γ β> 0

[AM
Y

]
+

[
εA
εMp

εY

]
, (3)

where γ is a scalar, α, β, and 0p×1 are p× 1 vectors, BM is a p× p matrix, and ε ≡ [εA, ε
>
M , εY ]>.

Here, γ presents the weight of the edge A → Y , the i-th element of α corresponds to the weight
of the edge A → Mi, and the i-th element of β is the weight of the edge Mi → Y . Note that by
assumptions (A1-A3), we have the exposure A has no parents and the outcome Y has no descendants,
so equivalently, the first row and the last column of B> are all zeros (i.e., the first column and the last
row of B are all zeros). Notice the exposure can be presented by its own noise, i.e., A = εA, since A
has no parents, so any exposure (with arbitrary noise distribution) will satisfy the LSEM assumption.

Next, we obtain expressions of causal effects under the LSEM in the following theorem. The proof
can be found in Section G.1 of the appendix.

Theorem 3.1 Under assumptions (A1-A3) and Model 1, we have:
1). the natural direct effect is DE = γ;
2). the natural indirect effect is IE = β>(Ip −B>M )−1α, where Ip is a p× p identity matrix;
3). the total effect of A on Y is TE = γ + β>(Ip −B>M )−1α;
4). the natural direct effect of Mi on Y is DMi = βi{(Ip − B>M )−1α}i, where βi is the i-th
element of β corresponding to the weight of Mi → Y , and {(Ip −B>M )−1α}i is the i-th element of
(Ip −B>M )−1α as the total effect of A on Mi, i.e. E{Mi|do(A = a+ 1)} − E{Mi|do(A = a)}.

Remark 3.3 One may refer to section A in the appendix for the invertibility of Ip − B>M . Also, a
toy example is provided in section E to illustrate how to manually compute the causal effects defined
above. Note that there is no explicit expression of the IM due to the complex interaction among
mediators, while we provide its theoretical form in Section G.2 with its numerical form in Section B.

Based on the result 2) and 4) in Theorem 3.1, the IE can be presented as an additive form of DMs,
as shown in Theorem 3.2. Thus, the proposed natural direct effect of individual mediators is valid in
the sense that it exactly decomposes the indirect effect of the exposure on the outcome.

Theorem 3.2 Under assumptions (A1-A3) and Model 1, the IE can be decomposed through DMs:

IE =

p∑
i=1

DMi.

3.3 ANALYSIS OF CAUSAL EFFECTS TABLE

Based on the result TE = DE + IE in Pearl et al. (2009) and Theorem 3.2, we summarize the
defined causal effects and their relationship in Table 1 for the analysis of causal effects (ANOCE).
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Firstly, the causal effect of A on Y has two sources, the direct effect from A and the indirect effect via
p mediators M (M1, · · · ,Mp). Next, the direct source has the degree of freedom (d.f.) as 1, while
the indirect source has d.f. as p from p mediators. Note the true d.f. of the indirect effect may be
smaller than p, since A may not be regulated by all mediators. Then, the causal effect for the direct
source is the DE and for the indirect source is the IE, where the IE can be further decomposed into
p DMs and each component corresponds to the natural direct effect for a specific mediator. The last
row in the table shows that the DE and the IE compose the total effect TE with d.f. as p+ 1.

Table 1: Table of Analysis of Causal Effects (ANOCE Table).

Source Degree of freedom Causal effects
Direct effect from A 1 DE
Indirect effect via M p IE

M1

M2

...
Mp


1
1
...
1


DM1

DM2

...
DMp

Total 1 + p TE

4 CONSTRAINED STRUCTURAL LEARNING FOR ANOCE

We next estimate the weighted adjacency matrix B with our causal framework under the LSEM to
calculate causal effects. To better capture the sampling distribution faithful to the DAG, we consider
a deep generative model that generalizes the LSEM instead of using a regression that heavily relies
on assumptions of noise (see more discussion in Section 2.2). Specifically, the LSEM 1 can be
rewritten as (Ip+2−B>)X = ε, where Ip+2 is a (p+2)× (p+2) identity matrix. Inversely, we have
X = (Ip+2 −B>)−1ε. Following the VAE architecture in Yu et al. (2019), we treat the random error
ε as the independent latent variables to generate X , by two multilayer perceptrons as the encoder and
the decoder, with weights denoted as θ. We adopt their acyclicity constraint on B as,

h1(B) ≡ tr
[
(Ip+2 + tB •B)p+2

]
− (p+ 2) = 0, (4)

where tr(·) is the trace of a matrix, t is a hyperparameter that depends on an estimation of the largest
eigenvalue of B, and • denotes for the element-wise square.

Next, to incorporate the background knowledge of the temporal causal relationship among variables,
we propose an identification constraint that indicates the topological order of the exposure and the
outcome. As mentioned in Equation 3, under assumptions (A1-A3), the exposure A has no parents,
i.e. PAA(G) = ∅, and the outcome Y has no descendants, i.e. Y 6∈ PAX(G). Or equivalently, we
have the first column and the last row of B should equal to zero. Therefore, the matrix B must satisfy

h2(B) ≡
p+2∑
i=1

|bi,1|+
p+2∑
j=2

|bp+2,j | = 0, (5)

where bi,j is the element of the matrix B in i-th row and j-th column. The above constraint forces the
topological order of the exposure as 1 while the outcome as p+ 2, under which the DAG is searched
within a restricted regime. The prior knowledge in 5 can be generalized for any measured variable
and on the possible set of their parents, by connecting the topological order to the weighted matrix B.

Following Yu et al. (2019), the objective function is the evidence lower bound with two constraints:{
min
B,θ

f(B, θ) = 1
p+2

∑p+2
i=1 DKL{q(ε|Xi)||p(ε)} − Eq(ε|Xi){log p(Xi|ε)},

s.t. h1(B) = 0 and h2(B) = 0,
(6)

where DKL(·||·) is the Kullback-Leibler divergence, p(ε) is the prior distribution of ε, q(ε|Xi) is the
reconstructed empirical posterior distribution of ε, and p(Xi|ε) is the likelihood function. Then, we
have the loss function based on the augmented Lagrangian as

Lc,d(B, θ, λ1, λ2) = f(B, θ) + λ1h1(B) + λ2h2(B) + c|h1(B)|2 + d|h2(B)|2, (7)
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Figure 2: The averaged estimated B̂> under the ANOCE-CVAE: (a-c) correspond to Scenario 1;
(d-f) correspond to Scenario 2; (g-i) correspond to Scenario 3; (j) is the shared true DAG for Scenario
4 and 4∗; (k-l) are results under Scenario 4; (m-n) are results under Scenario 4∗.

where λ1 and λ2 are Lagrange multipliers, and c and d are penalty terms. To minimize the loss in 7
and satisfy both h1(B) = 0 and h2(B) = 0, we simultaneously update λ1 and λ2 and increase c and
d to infinity, by modifying the basic technique in Yu et al. (2019). Here, the minimization can be
solved using a blackbox stochastic optimization such as ‘Adam’ in Kingma & Ba (2014). Denote the
estimated matrix as B̂ from the above constrained structural learning. Under Theorem 3.1, we can
estimate causal effects in the ANOCE table based on the learned B̂. We name the above algorithm as
ANOCE-CVAE, with a detail pseudocode provided in Section B.

Remark 4.1 We incorporate the temporal causal relationship among variables when using an
optimization approach to the causal discovery. Such constrained structural learning is not limited to
the VAE framework and can be extended to any score-based algorithms. For instance, one can add
constraint 5 into the objective function in Zheng et al. (2018) or the reward in Zhu & Chen (2019).

5 EXPERIMENTS

We conduct extensive simulation studies to investigate the proposed method on learning causal effects
with multiple mediators, followed by a comparison to the popular structural learning algorithms.
The dataset and the code are publicly available at https://github.com/anoce-cvae/
ANOCE-CVAE.

5.1 SIMULATION STUDIES

Scenarios are generated as follows. In Scenario 1 to 3, we fix the dimension of M as p = 10 while
increasing the complexity of the true graph to examine the sensitivity of our algorithm to sparsity.
Specifically, Scenario 1 is the simplest causal graph with only one edge (A→ Y ) shown in Figure 2a;
and Scenario 2 has a fully connected graph with independent mediators (corresponding to the parallel
case, i.e. BM = 0p×p) illustrated in Figure 2d. In Scenario 3, we consider interacted mediators such
that BM 6= 0p×p, as demonstrated in Figure 2g. For Scenario 4, we allow p = 30 with interacted
mediators to examine the stability of our method under the high-dimensional setting. Here, the true
DAGs in Scenarios 3 and 4 are generated from the Erdős-Reńyi (ER) model with an expected degree
as 2 . Note that we consider fully identifiable models in the experiments so that it is meaningful to
evaluate causal effects from the estimated graph. The synthetic datasets {A,M, Y } are generated
from Model 1 with Gaussian errors in Scenario 1-4. We also set A ∈ {−1, 1} in Scenario 4 to show
that our algorithm is capable to handle both discrete and continuous exposure, denoted as Scenario 4∗.
The sample size n is chosen from {50, 500} to be consistent with the scale of our real data. See more
details of the data generation in Section C.1 and the implementation in Section C.2 in the appendix.

The averaged estimated matrix B̂> over 100 replications under the proposed ANOCE-CVAE is
illustrated in Figure 2. The numerical results are summarized in Table 2 (for Scenario 1 to 3) and
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Figure 3: The averaged estimated B̂> for Scenario 3 (ER2) with the graph threshold as 0.3.

Table 3 (for Scenario 4 and 4∗) in the appendix, including the bias of the estimated TE, DE, IE,
DM and IM for each mediator with their standard error. It can be observed that our proposed
method could correctly identify most of the edges in the causal graph when n = 500 in almost all
cases. Based on Table 2 and 3, the estimated causal effects are close to the true values as the sample
size increases, indicating the good performance of our proposed method on identifying the causal
effects regardless of the sparsity, the distribution of the exposure, and the dimension of mediators.

5.2 COMPARISON

We next compare our approach against the PC (Spirtes et al., 2000), the ICA-LiNGAM (Shimizu
et al., 2006), the NOTEARS (Zheng et al., 2018), and the DAG-GNN (Yu et al., 2019). Random
graphs are generated from both the ER and the Scale-Free (SF) networks with the expected degree
as 1, 2, and 4, denoted as Cases ER1, ER2, ER4, SF1, SF2, and SF4, respectively. To be consistent
with Section 5.1, we refer Scenario 3 (generated by the ER with the degree as 2) as ER2, and set
d = 12 (i.e. p = 10) with Gaussian errors for other five cases, under n = 500. Details of the data
generation and the implementation of each method are reported in Section C.1 and C.2. Here, we use
a graph threshold as 0.3 (commonly used in other methods) and 0.4 to prune the noise edges for a
fair comparison. The averaged estimated matrix B̂> over 100 replications under different methods
is shown in Figure 3 with a graph threshold as 0.3 for Scenario 3 (i.e., Case ER2) as an illustration.
See other cases in Figures 5 to 15 in the appendix. All the numerical results of six cases are reported
in Tables 4 and 5 in the appendix, including the false discovery rate, the true positive rate, and the
structural Hamming distance. It is shown our algorithm performs the best among five methods in
most cases, followed by the NOTEARS and the DAG-GNN. The comparison studies not only support
the choice of the extension on the score-based algorithm (by comparing the results of the NOTEARS
and the DAG-GNN with other methods), but also validate the improvement of our method over the
DAG-GNN by introducing the background knowledge in the causal discovery.

6 REAL DATA ANALYSIS: COVID-19 OUTBREAK

From early Jan 2020 to late Feb 2020 (the Spring Festival period), COVID-19 spread to every
province-level division of China, exacerbated by the Chinese new year migration and human to
human transmission. The Chinese Government locked Hubei down on Jan 24th, which directly
blocked infected people leaving from Hubei, and also indirectly control the spread of COVID-19.
Here, for simplicity, we attribute the causal effects of the measures taken by cities outside of Hubei to
the original and main action of interest, i.e. Hubei lockdowns. Thus, the COVID-19 example satisfies
the considered causality framework for studying the causal mediator effects.

We collect the data from the National Health Commission (NHC) of China and Baidu Qianxi for
analysis. Specifically, let the exposure A as if Hubei is on lockdown, 0 for unlocked (before and on
Jan 23rd), and 1 for locked (on and after Jan 24th). We select 30 candidate cities outside Hubei that
contain most potential infected people, as mediators M . The daily migration scale index (MSI) of
each city is used as the value of each mediator, which is the migration magnitude of large groups of
people from one geographical area to another (Chen et al., 2020) and is comparable among cities.
Lastly, we use the daily increase rate of confirmed cases out of Hubei to characterize the severity of
the virus spreading with a one-week delay (due to the diagnose and incubation period of COVID-19
(Lauer et al., 2020)): Yt = Confirmed cases out of Hubeit+8−Confirmed cases out of Hubeit+7

Confirmed cases out of Hubeit+7
. Here, the time t starts

from Jan 12th to Feb 20th, 2020, since Jan 19th, 2020 is the earliest date with an available number of
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Figure 4: The analysis of the causal effects of 2020 Hubei lockdowns on reducing the COVID-19
spread in China regulated by Chinese major cities outside Hubei.

confirmed cases out of Hubei (to compute Yt=1 on Jan 12th), and after Feb 20th, 2020, the pandemic
was under control outside Hubei with the evidence of the work resumption in China. The final dataset
yields a total of 38 records. More details of data collection can be found in Section D of the appendix.

The proposed algorithm is applied to the COVID-19 data with 100 replications by setting different
random seeds in the neural network. The estimated weighted adjacency matrix is shown in Figure
4a, with the detailed ANOCE table reported in Table 6 in the appendix. The total effect of 2020
Hubei lockdowns on the daily increase rate of confirmed cases outside Hubei as -0.497, where the
direct effect is -0.078 and the indirect effect is -0.419. In other words, by locking Hubei down, China
successfully reduced 49.7% of the daily new cases outside Hubei; 84% of which is the indirect effect
contributed via the reduced migration of cities (the mediators) out of Hubei, and the rest 16% owes
to the direct effect of Hubei lockdowns since infected people were constrained in Hubei after the
lockdown. Thus, the lockdown is effective in reducing the COVID-19 spread in China.

The total indirect effect of the lockdown can be further broken down by cities’ direct effects (DMs,
corresponds to the intensity of transmission within a particular city). We compare cities’ DMs with
their associated indirect effects (IMs, describes the secondary migration from a particular city to
other places) in Figure 4b, where a positive effect means spreading the virus while negative means
control. Note that the selected 30 cities are ordered by their cumulative MSI during the data period.
• 1). From Figure 4b, the majority of cities have a negative DM (colored in blue), which implies
the infection within cities outside Hubei have been effectively controlled under the lockdown. • 2).
There are more cities with a positive IMs (red), which is in line with the intuition that the secondary
migration among cities may exacerbate the pandemic. • 3). The positive effects (red) are more likely
located at the first 20 nodes, which corresponds to the cities with large MSI, while the last 10 cities
with relatively small MSI are almost all blue. This accords with the migration peak among big cities
during the Spring Festival period that aggravated the spread of the virus.

7 CONCLUSION

We conclude our paper with the following discussions. First, the proposed DM can be extended
beyond the LSEM assumption. A generalized definition of the DM from a graphical perspective
is given in Section F.2 of the appendix without the LSEM. Second, due to possibly unmeasured
confounders in our real data, such as cities’ features and periodic effect, we may consider extending
our model with a new topological order that contains confounders for a wider utility, such as forcing
the topological order of k confounders as 1 to k followed by the exposure as 1 + k. Third, our
proposed identification constraint can be generalized to other background knowledge.
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A ADDITIONAL GRAPH TERMINOLOGY

Given the node set, the weighted DAG can be uniquely determined by its weighted adjacency matrix,
i.e., there is a one-to-one transformation between G and B. Suppose the graph nodes X in G are
sorted in its topological order (corresponding to elementary transformation of the matrix), then the
matrix B is strictly upper triangular with the diagonal elements as 0. Therefore, for an identity matrix
I with the same dimension as B, I −B> is invertible since all its diagonal elements are 1 (positive).

B ALGORITHM: ANOCE-CVAE

The first part of the ANOCE-CVAE algorithm is on learning causal DAG from the observational data
in the constrained space, by minimizing the loss function in Equation 7 using blackbox stochastic
optimization solvers. Here, to minimize the loss in 7 and satisfy both h1(B) = 0 and h2(B) = 0, we
simultaneously update λ1 and λ2 and increase c and d to infinity, by modifying the basic technique
in Yu et al. (2019), corresponding to Part One.II.A.b and Part One.II.B in Algorithm 1. The second
part is to estimate causal effects in the ANOCE table from the learned causal structure, based on the
results from Theorem 3.1. Here, we numerically calculate the natural indirect effect for mediator IM
based on Corollary F.1 in step IV of the second part.

Algorithm 1 Analysis of Causal Effects via Constrained VAE (ANOCE-CVAE)

Global: Dataset X = {A,M, Y }, sample size n, dimension of mediators p, max iteration K,
number of epoch H , original learning rate r0, tolerance of constraint to zero δ,
parameter update bound U , tuning parameters ρ and ω, and penalty terms c and d;

Local: mean and standard variance of ε µε and σε, mean and standard variance of X µX and σX ,
weights in multilayer perceptrons of encoder and decoder θ = {W (1),W (2),W (3),W (4)},
Lagrange multipliers λ1 and λ2, penalty terms c and d, (p+ 2)× (p+ 2) matrix B,
Loss function L, old and new values of the first constraint hold

1 and hnew
1 ,

old and new values of the second constraint hold
2 and hnew

2 , and learning rate r;
Output: estimated matrix B̂, total effect TE, natural direct and indirect effect

DE and IE, and natural direct and indirect effect for mediator DM and IM .

Part One: Generate matrix B̂ via Constrained Variational Auto-Encoder;
I. Initialization: λ1 ← 0; λ2 ← 0; c← 1; d← 1; r ← r0; B = 0(p+2)×(p+2); hold

1 ←∞; hold
2 ←∞;

II. For step k, k = 1, · · · ,K:
A. While c× d < U :

a). For epoch i, i = 1, · · · , H:
1. Build Encoder (µε, σε)← (Ip+2 −B>)MLP{X,W (1),W (2)};
2. Build Decoder (µX , σX)←MLP{(Ip+2 −B>)−1ε,W (3),W (4)};
3. Calculate values of constraints hnew

1 ← h1(B) and hnew
2 ← h2(B),

and the loss function L← Lc,d(B,W
(1),W (2),W (3),W (4), λ1, λ2);

4. Use backward to update parameters {B,W (1),W (2),W (3),W (4)};
5. Update learning rate r;

b). If hnew
1 > ρhold

1 and hnew
2 > ρhold

2 : c← c× ω; d← d× ω;
Elseif hnew

1 > ρhold
1 and hnew

2 < ρhold
2 : c← c× ω;

Elseif hnew
1 < ρhold

1 and hnew
2 > ρhold

2 : d← d× ω;
Else: Break;

B. hold
1 ← hnew

1 ; hold
2 ← hnew

2 ; λ1 ← λ1 × hnew
1 ; λ2 ← λ2 × hnew

2 ;
C. If hnew

1 < δ and hnew
2 < δ: Break;

III. Output B̂ ← B;
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Algorithm 2 ANOCE-CVAE (cont.)

Part Two: Estimate causal effects in ANOCE based on matrix B̂;

I. According to Equation 3:
A. Get γ̂ as the direct effect DE;
B. Get α̂ as the effect of A on M , β̂, and the inside matrix B̂M ;

II. Get ζ̂ ≡ (Ip −B>M )−1α̂ that represents the causal effect of A on M ;
III. Get β̂>ζ̂ that represents the total natural indirect effect IE;

For each mediator Mi, i = 1, · · · , p: Define the natural direct effect for Mi as DM [i] = α̂[i]ζ̂[i];
IV. Get the natural indirect effect for mediator:

For each mediator Mi, i = 1, · · · , p:
A. Delete Mi from the matrix B̂ and get B̂′i;
B. Repeat step II. with reduced matrix B̂′i and get β̂′ and ζ̂ ′;

C. Calculate the effect difference as the total mediation effect β̂>ζ̂ − β̂′
>
ζ̂ ′

D. Define the natural indirect effect for Mi as IM [i] = {β̂>ζ̂ − β̂′
>
ζ̂ ′} −DM [i];

V. Define the total effect TE= γ̂ + β̂>ζ̂.

C ADDITIONAL SIMULATION STUDIES

In this section, we give more details on simulation studies to investigate the finite sample performance
of the proposed method for learning causal effects with multiple mediators, in comparison to the
popular causal discovery methods, including the PC, the ICA-LiNGAM, the NOTEARS, and the
DAG-GNN. The computing infrastructure used is a virtual machine in the compute engine of Google
Cloud Platform with 8 processor cores and 32GB memory. The average runtime for each result is
around 1 to 2 hours.

C.1 DATA GENERATION

We first generate a random DAG from the Erdős-Reńyi (ER) or the Scale-Free (SF) network (Barabási
& Albert, 1999) with an expected node degree. Then, we remove all in-edges (from precedent nodes)
of the first node as A and remove all out-edges (from descendent nodes) of the last node as Y , and
thus, the remaining nodes are the mediators M . Edges in DAGs for all scenarios are randomly
assigned with weights (w ∈ {−1, 1} with equal probability) to obtain the weighted adjacency matrix
B. Specifically, the true DAGs in Scenarios 3 and 4 are generated from the Erdős-Reńyi (ER) model
with an expected degree as 2, where we set number of nodes d = 12 (i.e. p = 10) in Scenario 3
and d = 32 (i.e. p = 30) in Scenario 4. Note that we consider fully identifiable models in Section
5.1 so that it is meaningful to evaluate causal effects from the estimated graph. In Section 5.2, we
repeat the above generation procedure with d = 12 to generate the true graph from both the ER and
the Scale-Free (SF) networks with the expected degree as 1, 2, and 4, denoted as Cases ER1, ER2,
ER4, SF1, SF2, and SF4, respectively. Here, to be consistent with Section 5.1, we refer Scenario 3
(generated by the ER with the degree as 2) as Case ER2.

The synthetic datasets {A,M, Y } are generated from Model 1, where the error variables in ε ≡
[εA, ε

>
M , εY ]> independently follow a normal distribution with mean 0 and noise 0.5 except for the

binary exposure in Scenario 4∗. Here, we add a baseline of 1.0 on the outcome Y . Note that the
Gaussian exposure in Scenario 4 and the binary exposure in Scenario 4∗ have the same mean and
noise and thus their results are comparable.

C.2 IMPLEMENTATION DETAILS

We detail the implementation for the proposed ANOCE-CVAE and comparison partners as follows:

• ANOCE-CVAE: The ANOCE-CVAE is implemented based on PyTorch (Paszke et al., 2017),
using Adam (Kingma & Ba, 2014) to minimize the loss function in Equation 7. We set the batch

13



Published as a conference paper at ICLR 2021

size as 25 for n = 50 and 100 for n = 500 with hidden nodes as p2, the initial learning rate as
0.003 with an update rule as r ← r/{log(c) + log(d) + 0.01} where c and d are penalty terms
for two constraints, and the parameter update bound as U = 1020, for all settings. Following the
recommendation of Yu et al. (2019), we find that their tuned parameters ρ = 0.25 and ω = 10 also
work well in our settings, and we adopt the Huber-norm regularization of B for a better convergence.
Here, the variational posterior and the likelihood are parameterized as Gaussian with unit noise to
approximate the underlying true model. The code is publicly available at an anonymous repository at
https://github.com/anoce-cvae/ANOCE-CVAE.

• PC (Spirtes et al., 2000): We set the Fisher-z test for the PC algorithm with the p-value
as 0.01 for all settings. The implementation is available through the py-causal package at
https://github.com/bd2kccd/py-causal, written in highly optimized Java codes. Also
see examples here https://github.com/bd2kccd/py-causal/blob/development/
example/py-causal%20-%20PC-ALL%20in%20Action.ipynb.

• ICA-LiNGAM (Shimizu et al., 2006): The ICA-LiNGAM assumes linear non-Gaussian additive
model to recover the weighted adjacency matrix. We implement the ICA-LiNGAM with default
hyper-parameters through the lingam package for all settings. See their repository at https:
//github.com/cdt15/lingam.

• NOTEARS (Zheng et al., 2018): The NOTEARS estimates the weighted adjacency matrix by
formulating the optimization with an acyclicity constraint. The implementation is available at their
repository at https://github.com/xunzheng/notears. We set the loss function as the
least square error with the L1 regularization. We find the NOTEARS is sensitive to the choice of
the L1 regularization in our settings. For a fair comparison, we set the L1 penalty parameter as 0.03
(instead of the default 0.1) for all settings, which achieves an overall good performance in most cases.
Note the author modified their acyclicity constraint in their codes to be the one used in Yu et al.
(2019) (i.e. Equation 4). We also use the same acyclicity constraint for NOTEARS, DAGGNN, and
our method for a fair comparison. Other hyper-parameters are set as default in their repository.

• DAG-GNN (Yu et al., 2019): The DAG-GNN incorporates the variational auto-encoder into
causal discovery with a modified smooth characterization on acyclicity in the evidence lower
bound as the loss function. Codes are available at their repository at https://github.com/
fishmoon1234/DAG-GNN based on PyTorch (Paszke et al., 2017). We set the same hyper-
parameters used in our ANOCE-CVAE for a fair comparison. Specifically, we use Adam (Kingma
& Ba, 2014) to minimize the loss function, and set the batch size as 25 for n = 50 and 100 for
n = 500 with hidden nodes as p2. The initial learning rate is set as 0.003 with an update rule as
r ← r/{log(c0) + 0.01} where c0 is penalty term for the acyclicity constraint. The rest settings are
the same as the default in their codes.

In the comparison studies (see Section 5.2 and C.4), we use a uniform graph threshold as 0.3
(commonly used in current literature) for all algorithms to prune the noise edges for a fair comparison.
In addition, we also provide the results under the graph threshold as 0.4 for additional comparison.

C.3 ADDITIONAL RESULTS OF ANOCE-CVAE

In this section, we provide additional simulation results for the ANOCE-CVAE. Following Section
5.1, the numerical results are summarized in Table 2 (for Scenario 1 to 3) and Table 3 (for Scenario 4
and 4∗), including the bias of the estimated TE, DE, IE, DM and IM for each mediator with their
standard error, over 100 replications. Note that due to limited space, we save the numerical results of
the IM in Table 3.

From the results in Table 2, it is clear that the estimated TE, DE, IE, DM and IM for each
mediator are close to the true values as the sample size increases in Scenario 1 to 3, which indicates
the good performance of our proposed method on identifying the causal effects regardless of the
sparsity. With the expected node degree increasing, one can observe a slightly larger bias and standard
error of the estimated causal effects as expected, as shown in Table 2. Based on Table 3, the results of
Scenario 4 and Scenario 4∗ are merely identical under different sample sizes, indicating our proposed
method can handle either discrete or continuous exposure. In addition, by comparing the results of
Scenario 3 and 4 where we fix the expected node degree as 2, one can observe a slightly larger bias
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of the estimated causal effects but of a similar small scale, as the dimension of mediators p increases,
which implies the stability of our method under the high-dimensional setting.

Table 2: The bias and standard error of the estimated causal effects for Scenario 1 to 3 (p = 10).

Results Scen. 1 (simplest) Scen. 2 (parallel) Scen. 3 (interacted)

n = 50 n = 500 n = 50 n = 500 n = 50 n = 500

TE 0.19 (0.02) 0.01 (0.00) 0.66 (0.05) 0.03 (0.02) 0.15 (0.05) 0.05 (0.03)

DE 0.23 (0.02) 0.01 (0.00) 0.78 (0.02) 0.12 (0.06) 0.78 (0.03) 0.15 (0.06)

IE 0.04 (0.01) 0.00 (0.00) 1.44 (0.04) 0.08 (0.06) 0.63 (0.04) 0.20 (0.04)

DM1 0.01 (0.00) 0.00 (0.00) 0.69 (0.03) 0.02 (0.01) 0.48 (0.04) 0.06 (0.02)

DM2 0.00 (0.00) 0.00 (0.00) 0.43 (0.03) 0.01 (0.01) 0.00 (0.00) 0.00 (0.00)

DM3 0.00 (0.00) 0.00 (0.00) 0.65 (0.02) 0.01 (0.02) 0.00 (0.00) 0.00 (0.00)

DM4 0.00 (0.00) 0.00 (0.00) 0.65 (0.03) 0.02 (0.01) 0.20 (0.02) 0.06 (0.01)

DM5 0.01 (0.00) 0.00 (0.00) 0.68 (0.03) 0.02 (0.01) 0.44 (0.02) 0.10 (0.01)

DM6 0.01 (0.00) 0.00 (0.00) 0.67 (0.02) 0.02 (0.02) 0.27 (0.04) 0.03 (0.01)

DM7 0.00 (0.00) 0.00 (0.00) 0.62 (0.03) 0.03 (0.01) 0.67 (0.03) 0.16 (0.03)

DM8 0.00 (0.00) 0.00 (0.00) 0.66 (0.03) 0.01 (0.01) 0.59 (0.03) 0.14 (0.03)

DM9 0.00 (0.00) 0.00 (0.00) 0.65 (0.02) 0.01 (0.01) 0.00 (0.00) 0.00 (0.00)

DM10 0.01 (0.00) 0.00 (0.00) 0.66 (0.03) 0.01 (0.01) 0.10 (0.02) 0.05 (0.01)

IM1 0.00 (0.00) 0.00 (0.00) 0.08 (0.01) 0.08 (0.01) 0.76 (0.03) 0.16 (0.04)

IM2 0.00 (0.00) 0.00 (0.00) 0.09 (0.01) 0.01 (0.01) 0.00 (0.00) 0.00 (0.00)

IM3 0.00 (0.00) 0.00 (0.00) 0.03 (0.01) 0.03 (0.01) 0.00 (0.00) 0.00 (0.00)

IM4 0.00 (0.00) 0.00 (0.00) 0.03 (0.01) 0.05 (0.01) 0.16 (0.01) 0.03 (0.01)

IM5 0.00 (0.00) 0.00 (0.00) 0.06 (0.01) 0.12 (0.01) 0.02 (0.01) 0.03 (0.00)

IM6 0.00 (0.00) 0.00 (0.00) 0.03 (0.01) 0.04 (0.01) 0.66 (0.02) 0.09 (0.02)

IM7 0.00 (0.00) 0.00 (0.00) 0.09 (0.01) 0.00 (0.01) 0.05 (0.02) 0.04 (0.01)

IM8 0.00 (0.00) 0.00 (0.00) 0.03 (0.01) 0.02 (0.01) 0.11(0.02) 0.06 (0.01)

IM9 0.00 (0.00) 0.00 (0.00) 0.03 (0.01) 0.01 (0.01) 0.00 (0.00) 0.00 (0.00)

IM10 0.00 (0.00) 0.00 (0.00) 0.07 (0.01) 0.08 (0.01) 0.03 (0.01) 0.00 (0.00)
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Table 3: The bias and standard error of the estimated causal effects for Scenario 4 and 4∗ (p = 30).

Results Scen. 4 (continuous) Scen. 4∗ (binary)

n = 50 n = 500 n = 50 n = 500

TE 0.29 (0.04) 0.20 (0.02) 0.09 (0.03) 0.05 (0.01)

DE 0.90 (0.01) 0.28 (0.02) 0.85 (0.01) 0.25 (0.02)

IE 1.19 (0.04) 0.48 (0.03) 0.94 (0.03) 0.30 (0.02)

DM1 0.12 (0.02) 0.08 (0.01) 0.18 (0.02) 0.07 (0.01)

DM2 0.61 (0.02) 0.02 (0.01) 0.45 (0.02) 0.02 (0.01)

DM3 0.00 (0.01) 0.03 (0.01) 0.01 (0.01) 0.02 (0.01)

DM4 0.31 (0.03) 0.25 (0.02) 0.09 (0.02) 0.07 (0.01)

DM5 0.01 (0.01) 0.07 (0.01) 0.05 (0.03) 0.10 (0.02)

DM6 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

DM7 0.37 (0.02) 0.19 (0.02) 0.60 (0.04) 0.18 (0.02)

DM8 0.02 (0.01) 0.00 (0.01) 0.05 (0.01) 0.02 (0.02)

DM9 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

DM10 0.02 (0.01) 0.09 (0.01) 0.14 (0.01) 0.15 (0.01)

DM11 0.00 (0.01) 0.00 (0.00) 0.01 (0.01) 0.00 (0.00)

DM12 0.02 (0.00) 0.01 (0.01) 0.06 (0.01) 0.01 (0.01)

DM13 0.25 (0.02) 0.11 (0.02) 0.51 (0.04) 0.16 (0.03)

DM14 0.02 (0.01) 0.10 (0.01) 0.09 (0.02) 0.16 (0.01)

DM15 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

DM16 0.09 (0.01) 0.10 (0.02) 0.18 (0.03) 0.13 (0.02)

DM17 0.03 (0.01) 0.07 (0.02) 0.04 (0.03) 0.06 (0.03)

DM18 0.01 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

DM19 0.02 (0.00) 0.01 (0.00) 0.00 (0.00) 0.00 (0.00)

DM20 0.01 (0.00) 0.00 (0.00) 0.08 (0.01) 0.01 (0.01)

DM21 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

DM22 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

DM23 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

DM24 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

DM25 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

DM26 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

DM27 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

DM28 0.01 (0.01) 0.02 (0.01) 0.01 (0.01) 0.01 (0.00)

DM29 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

DM30 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
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C.4 ADDITIONAL COMPARISON STUDIES
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Figure 5: The averaged estimated B̂> for Case ER1 under different methods with threshold 0.3.
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Figure 6: The averaged estimated B̂> for Case ER4 under different methods with threshold 0.3.

0 2 4 6 8 10
0

2

4

6

8

10

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(a) True.

0 2 4 6 8 10
0

2

4

6

8

10

(b) ANOCE

0 2 4 6 8 10
0

2

4

6

8

10

(c) PC

0 2 4 6 8 10
0

2

4

6

8

10

(d) ICA

0 2 4 6 8 10
0

2

4

6

8

10

(e) NOTEARS

0 2 4 6 8 10
0

2

4

6

8

10

(f) DAG-GNN

Figure 7: The averaged estimated B̂> for Case SF1 under different methods with threshold 0.3.
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Figure 8: The averaged estimated B̂> for Case SF2 under different methods with threshold 0.4.
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Figure 9: The averaged estimated B̂> for Case SF4 under different methods with threshold 0.4.

This section provides more results on comparison studies against the existing methods. The data
generation and implementation details are provided in Section C.1 and C.2. Following Section 5.2

17



Published as a conference paper at ICLR 2021

Table 4: The empirical comparison results under different causal discovery methods with the graph
threshold as 0.3.

Methods Case ER1 ER2 ER4 SF1 SF2 SF4

FDR 0.00 (0.14) 0.00 (0.09) 0.14 (0.03) 0.21 (0.06) 0.17 (0.05) 0.13 (0.06)

ANOCE-CVAE TPR 0.50 (0.00) 1.00 (0.08) 0.93 (0.05) 1.00 (0.03) 0.96 (0.05) 0.81 (0.06)

SHD 5.00 (1.01) 0.00 (3.57) 8.00 (2.44) 3.00 (1.49) 6.00 (2.15) 10.00 (2.65)

FDR 0.00 (0.10) 0.50 (0.04) 0.23 (0.05) 0.00 (0.01) 0.29 (0.04) 0.27 (0.05)

PC TPR 0.40 (0.01) 0.26 (0.01) 0.41 (0.04) 1.00 (0.00) 0.46 (0.02) 0.34 (0.02)

SHD 6.00 (0.55) 19.00 (0.51) 29.00 (2.01) 0.00 (0.17) 19.00 (1.19) 25.00 (1.18)

FDR 0.00 (0.18) 0.08 (0.16) 0.15 (0.12) 0.00 (0.14) 0.00 (0.18) 0.00 (0.14)

ICA-LiNGAM TPR 0.40 (0.12) 0.52 (0.14) 0.41 (0.10) 0.64 (0.17) 0.50 (0.17) 0.47 (0.13)

SHD 6.00 (1.50) 12.00 (4.08) 26.00 (4.67) 4.00 (2.98) 13.00 (6.29) 17.00 (5.36)

FDR 0.00 (0.02) 0.00 (0.06) 0.04 (0.06) 0.00 (0.00) 0.00 (0.07) 0.04 (0.03)

NOTEARS TPR 0.50 (0.00) 0.78 (0.09) 0.63 (0.08) 1.00 (0.00) 0.58 (0.08) 0.72 (0.07)

SHD 5.00 (0.10) 5.00 (2.29) 15.00 (3.90) 0.00 (0.00) 11.00 (2.82) 9.00 (2.59)

FDR 0.29 (0.07) 0.15 (0.06) 0.13 (0.04) 0.29 (0.07) 0.13 (0.06) 0.11 (0.05)

DAG-GNN TPR 0.50 (0.00) 0.74 (0.06) 0.80 (0.06) 0.91 (0.06) 0.77 (0.07) 0.75 (0.05)

SHD 7.00 (0.49) 9.00 (2.22) 12.00 (3.08) 5.00 (1.66) 9.00 (2.23) 10.00 (1.71)

and C.2, we use a graph thresholds as 0.3 (commonly used in current literature) or 0.4 (for additional
comparison) in all algorithms to prune the noise edges for a fair comparison.

The estimated graphs (after pruning) are evaluated by three metrics: the false discovery rate (FDR),
the true positive rate (TPR), and the structural Hamming distance (SHD, the smallest number of edge
additions, deletions, and reversals to convert the estimated graph into the true DAG). Here, the SHD
takes into account both false positives and negatives and a lower SHD indicates a better estimate of
the causal graph. The FDR, TPR, and SHD of the averaged estimated matrix B̂> with their standard
deviation over 100 replications are reported in Table 4 for the graph threshold as 0.3 and in Table 5
for the graph threshold as 0.4, under different methods for all six cases with sample size n = 500.
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Table 5: The empirical comparison results under different causal discovery methods with the graph
threshold as 0.4.

Methods Case ER1 ER2 ER4 SF1 SF2 SF4

FDR 0.00 (0.13) 0.00 (0.08) 0.07 (0.04) 0.08 (0.05) 0.08 (0.04) 0.07 (0.05)

ANOCE-CVAE TPR 0.50 (0.00) 1.00 (0.10) 0.90 (0.05) 1.00 (0.03) 0.92 (0.05) 0.78 (0.07)

SHD 5.00 (0.92) 0.00 (3.52) 6.00 (2.91) 1.00 (0.90) 4.00 (1.89) 9.00 (2.62)

FDR 0.00 (0.10) 0.40 (0.04) 0.20 (0.05) 0.00 (0.01) 0.31 (0.04) 0.27 (0.05)

PC TPR 0.40 (0.01) 0.26 (0.01) 0.39 (0.04) 1.00 (0.00) 0.42 (0.02) 0.34 (0.02)

SHD 6.00 (0.55) 19.00 (0.51) 29.00 (2.01) 0.00 (0.17) 20.00 (1.19) 25.00 (1.18)

FDR 0.00 (0.30) 0.00 (0.15) 0.08 (0.12) 0.00 (0.15) 0.00 (0.19) 0.00 (0.15)

ICA-LiNGAM TPR 0.20 (0.14) 0.39 (0.14) 0.29 (0.09) 0.45 (0.16) 0.27 (0.17) 0.22 (0.13)

SHD 8.00 (1.72) 14.00 (3.90) 30.00 (4.28) 6.00 (2.51) 19.00 (5.48) 25.00 (4.99)

FDR 0.00 (0.00) 0.00 (0.04) 0.04 (0.05) 0.00 (0.00) 0.00 (0.06) 0.05 (0.03)

NOTEARS TPR 0.50 (0.00) 0.65 (0.08) 0.59 (0.07) 1.00 (0.00) 0.58 (0.09) 0.56 (0.08)

SHD 5.00 (0.00) 8.00 (1.86) 17.00 (3.54) 0.00 (0.00) 11.00 (2.83) 14.00 (2.72)

FDR 0.29 (0.09) 0.15 (0.05) 0.11 (0.05) 0.17 (0.05) 0.06 (0.06) 0.09 (0.03)

DAG-GNN TPR 0.50 (0.00) 0.74 (0.07) 0.78 (0.07) 0.91 (0.07) 0.65 (0.08) 0.66 (0.06)

SHD 7.00 (0.67) 9.00 (1.64) 12.00 (3.36) 3.00 (1.08) 10.00 (2.32) 12.00 (1.71)
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Figure 10: The averaged estimated B̂> for Case ER1 under different methods with threshold 0.4.
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Figure 11: The averaged estimated B̂> for Case ER2 under different methods with threshold 0.4.
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Figure 12: The averaged estimated B̂> for Case ER4 under different methods with threshold 0.4.

Besides Figure 3 for Case ER2 with a graph threshold as 0.3 shown in the main text, we also illustrate
the averaged estimated matrix B̂> over 100 replications under different methods for Case ER1, ER4,
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Figure 13: The averaged estimated B̂> for Case SF1 under different methods with threshold 0.4.
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Figure 14: The averaged estimated B̂> for Case SF2 under different methods with threshold 0.4.
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Figure 15: The averaged estimated B̂> for Case SF4 under different methods with threshold 0.4.

SF1, SF2, and SF4 with a graph threshold as 0.3 in Figure 5, 6, 7, 8, 9, respectively, and for Case
ER1, ER2, ER4, SF1, SF2, and SF4 with a graph threshold as 0.4 in Figure 10, 11, 12, 13, 14, 15,
respectively, under n = 500.

From Table 4 and 5, it is clear that our algorithm performs the best among the five methods in most
cases, followed by the other two score-based methods, i.e. the NOTEARS and the DAG-GNN. While
the traditional methods (the PC and the ICA-LiNGAM) perform the worst with large SHD and small
TPR. This finding supports the choice of the extension on the score-based method. Moreover, by
comparing our performance with the DAG-GNN, one can observe a substantial gain in terms of the
SHD and the TPR in most cases with comparable FDR. This validates the improvement of our method
over the DAG-GNN by introducing the background knowledge in the causal discovery. Another
supports are illustrated in Figure 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, and 15 for different settings, where
the averaged estimated matrix B̂> under the ANOCE-CVAE is approximately the same as the ground
true graph B> when n = 500. However, the PC and the ICA-LiNGAM can hardly recognize the true
causal pattern. In addition, methods have a slightly better performance in terms of FDR and SHD
while a slightly worse performance in terms of TPR under the graph threshold as 0.4, in comparison
to the results under the graph threshold as 0.3.

D ADDITIONAL REAL DATA RESULTS

In this section, we provide additional real data analysis on the COVID-19.

D.1 DATA COLLECTION

To better characterize the causality of the virus spreading under the Hubei lockdowns in China,
we assume: 1) Hubei was the centre of the COVID-19 outbreak in China (Zhou et al., 2020); 2)
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Figure 16: A direct acyclic graph illustrating the temporal causal relationship of the spreading network
of the coronavirus outbreak under 2020 Hubei lockdowns in China.

(a) The cumulative confirmed cases of selected cities.
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(b) The partial heat map of correlation matrix between cities and the treatment A or the outcome Y .

Figure 17: Additional figures for the real data analysis of the COVID-19 spread.

the decreased migration outside Hubei was largely stimulated by the lockdown; 3) individual who
departed to one destination would not return to the original departure due to travel restrictions in
China. Under the above assumptions, it is reasonable to use a temporal causal relationship to describe
the spread of COVID-19 under 2020 Hubei lockdowns as in Figure 16.

Next, we give more details on how to present components in Figure 16 with appropriate variables.
First, we set the exposure A as if Hubei is on lockdown, 0 for unlocked (before and on Jan 23rd) and
1 for locked (on and after Jan 24th). To select the candidate cities that contain most potential infected
people, we rank cities outside Hubei by their received Wuhan (identified over 60% cases in China
reported by the NHC) migration between Jan 1st, 2020 and Jan 22nd, 2020 (before the lockdown),
and choose the top 30 cities (account for 69.17% of total Wuhan migration) as mediators M , to
control the noise. We use the daily migration scale index (MSI) of each city as the value of each
mediator, defined in Baidu Qianxi to describe the migration magnitude. By noticing the following
facts: 1) it took usually 2 days to diagnose the COVID-19; 2) the estimated median incubation
period is 5 days (Lauer et al., 2020); the outcome of interest Y is defined as the daily increase rate of
confirmed cases out of Hubei with a one-week (7=2+5) delay. We delete extreme data points (two
outbreaks at jails), and the final dataset yields a total of 38 records.
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D.2 INITIAL DATA ANALYSIS

Figure 17a demonstrates the location of selected cities on the Chinese map with the color representing
its cumulative confirmed cases by March 1st, 2020. It can be observed that the selected mediators
are either located around Hubei province or are big central cities such as Beijing that has a large
population and migration scale. In addition, we provide the partial heat map of the correlation matrix
between cities and the treatment A or the outcome Y as illustrated in Figure 17b. Here, one could
observe that cities’ MSIs are highly positive correlated with the lockdown while are highly negative
correlated with the daily increase rate of confirmed cases.

D.3 ADDITIONAL RESULTS

Table 6 lists all the numerical facts of the selected cities, including the population (million), the
cumulative migration scale index (MSI) during the data period (Jan 12th to Feb 20th, 2020), the
ratio of received Wuhan migration between Jan 1st to Jan 22nd, 2020 (before the lockdown), the
cumulative confirmed cases by March 1st, 2020, and cities’ direct (DM ) and indirect effect (IM ).
Note the selected 30 cities in Table 6 are sorted according to their cumulative MSI, and its order is
used as the order of the mediators in this paper. It can be seen from Table 6 that the population, the
cumulative MSI, the ratio of received Wuhan migration, and the confirmed cases are highly correlated
among selected cities as expected. Note that we list these factors to assist the interpretation of the
results, while none of them is used to estimate the DAG of interest. Therefore, similar values of
factors don’t necessarily imply similar causal effects.

Besides the general causal pattern of cities’ estimated DMs and IMs stated in the main text, we
provide more interpretation on the level of the individual city. Here, we compare three groups of cities
that are of similar scale (population and migration) or geographic position, to specify our results.
First, we compare the results between Beijing and Shanghai, where both cities have comparable
population scale and are the center of politic or economic in China (the correlation between the MSI
of Beijing and the outcome yields the same value as of Shanghai as 0.50). It can be seen from Table 6
that Beijing and Shanghai have similar positive indirect effects as 0.247 and 0.235, respectively, while
Shanghai has a slightly higher direct effect on controlling the virus as -0.069, which is possibly due
to the smaller MSI of Shanghai. Second, we compare three cities located at Guangdong province (see
Figure 18a and 18b), including Shenzhen, Guangzhou, and Dongguan. All three cities have positive
effects, among which Guangzhou yields the highest direct effect as 0.847, followed by Dongguan.
The effect size of these cities agrees with their correlation coefficients with the outcome, where the
correlation between Guangzhou and Y is 0.61, followed by Dongguan as 0.58 and Shenzhen as
0.50. The last comparison is among cities in southeastern China (see Figure 18a and 18b), including
Suzhou, Hangzhou, and Wenzhou, all of which have a negative direct effect on the virus control and
a positive indirect effect for the virus spread. Here, Wenzhou achieves the largest absolute value of
the negative direct effect as -0.650, which conforms to its strict local shelter in home order after the
Hubei lockdowns, where the correlation between Wenzhou and the outcome achieves the highest
value as 0.83.

We summarize all different sources of causal effects in Table 6 as the ANOCE table of 2020 Hubei
lockdowns on reducing the COVID-19 spread in China. Note that due to cities’ different levels of
control measures on the coronavirus outside Hubei as well as other possible confounders, there are
some inconsistency between cities’ DMs and their cumulative MSIs. We leave the extension with
confounders for further investigation. Further interpretation of the real data analysis requires domain
experts.

One can refer to Figure 18a and 18b for cities’ DMs and IMs on the Chinese map. To check the
reasonability of our results, we plot the estimated weighted matrix in Figure 4a, where the first node
(indexed 0) represents the Hubei lockdowns, the last node (indexed 31) is the daily increase rate
out of Hubei, and the middle 30 nodes (indexed 1-30) correspond to 30 selected cities in Figure 4b.
From Figure 4a, we can observe: • 1). The color of the first column is almost all blue, indicating
that locking Hubei down can reduce the migration of selected cities; • 2). An approximate red upper
triangular among first 20 nodes implies a migration trend with positive effects among central cities
with large MSI, i.e. relatively smaller cities tend to have positive effects on other cities with relatively
larger MSI; • 3). An approximate red lower triangular among last 10 nodes indicates a weaker
migration trend with an opposite direction among non-central cities with small MSI; • 4). There is
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Table 6: Analysis of causal effects of 2020 Hubei lockdowns on reducing the COVID-19 spread in
China regulated by Chinese major cities outside Hubei.

Source d.f. Causal effects

Direct effect from the Hubei lockdowns 1 DE = −0.078

Inirect effect via Chinese major cities outside Hubei p = 30 IE = −0.419

Index City name Population Ratio of Confirmed Cumulative
DM IMWuhan Cases MSI

1 Shenzhen 10.36 3.02% 418 275.42 1 0.021 0.002

2 Guangzhou 12.70 3.22% 346 270.38 1 0.847 0.176

3 Beijing 23.00 5.50% 414 260.02 1 -0.003 0.247

4 Chengdu 14.05 2.57% 143 233.62 1 -0.201 -0.004

5 Shanghai 23.02 4.09% 338 232.80 1 -0.069 0.235

6 Dongguan 8.22 1.14% 99 211.99 1 0.257 0.003

7 Suzhou 10.47 1.42% 87 171.46 1 -0.481 0.553

8 Xian 10.00 1.87% 120 136.56 1 0.015 -0.089

9 Hangzhou 8.70 1.77% 169 135.73 1 -0.335 0.144

10 Zhengzhou 10.14 3.04% 157 132.58 1 -0.019 0.309

11 Chongqing 30.17 4.97% 576 128.98 1 0.313 0.050

12 Changsha 7.04 5.21% 242 126.78 1 0.399 0.222

13 Nanjing 8.00 1.78% 93 103.87 1 -0.210 -0.100

14 Kunming 6.43 1.24% 53 95.35 1 0.186 -0.075

15 Tianjin 12.94 1.02% 136 90.50 1 -0.092 -0.372

16 Hefei 5.70 2.11% 174 87.28 1 -0.182 0.249

17 Nanning 6.66 1.01% 55 76.63 1 0.114 0.152

18 Wenzhou 9.12 1.02% 504 60.38 1 -0.650 0.200

19 Nanchang 5.04 2.15% 230 46.95 1 -0.109 0.095

20 Zhoukou 8.95 1.50% 76 42.01 1 0.045 -0.043

21 Fuyang 7.60 1.25% 155 39.26 1 0.031 -0.023

22 Shangqiu 7.36 1.12% 91 35.48 1 0.030 -0.057

23 Yueyang 5.48 2.31% 156 29.56 1 0.006 -0.050

24 Zhumadian 7.23 2.34% 139 28.86 1 -0.070 -0.075

25 Changde 5.72 1.05% 82 28.49 1 0.002 -0.003

26 Nanyang 10.26 1.91% 156 27.71 1 -0.039 -0.106

27 Yichun 5.42 0.90% 106 24.91 1 -0.051 -0.085

28 Xinyang 6.11 5.00% 274 24.78 1 -0.080 -0.027

29 Anqing 5.31 1.57% 83 23.61 1 -0.022 -0.012

30 Jiujiang 4.73 2.06% 118 22.29 1 -0.072 -0.047

/ Selected cities 295.95 69.17% 5790 3204.24 30 -0.419 /
Total 1 + p = 31 TE = −0.497
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(a) The estimated direct effect of cities (DMs). (b) The estimated indirect effect of cities (IMs).

(c) The estimated DAG for the coronavirus data.
(d) The spreading network among cities that received
most of the Wuhan migration during the data period
(2.57% ∼ 5.50%, presented by the color of nodes).

Figure 18: Additional analysis of the causal effects of 2020 Hubei lockdowns on reducing the
COVID-19 spread in China regulated by Chinese major cities outside Hubei.

also an almost all blue rectangle in the right top of the estimated matrix, showing non-central cities
tend to have negative effects on central cities. Overall speaking, all the above finding accords with
the migration trend during the Spring Festival period and intensive mutual communications among
central cities in China, though there are also some noisy causal directions opposite with the main
trend in each area due to possible confounders and identifiability issue in the linear Gaussian model.

In addition, we provide the estimated DAG for the coronavirus data in Figure 18c as the complete
spreading network among major cities outside Hubei, where the exposure A, mediators M (cities’
corresponding index can be found in Table 6), and the outcome Y are colored in red, blue and green,
respectively. It can be observed that the in-degree is larger than the out-degree for nodes with small
index, while an opposite rule is applied for nodes with large index. This finding is consistent with the
migration trend identified in our main text. Lastly, we give the spreading network among cities that
received most Wuhan migration during the data period, including Beijing, Shanghai, Guangzhou,
Shenzhen, Chengdu, Chongqing, Zhengzhou, Changsha, and Xinyang, plus Wuhan, in Figure 18d, to
illustrate the partial interaction trend among cities. Each node refers to a city with the color of the
node presenting the percentage of received Wuhan migration, ranging from 2.57% to 5.50%.
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Figure 19: A weighted causal DAG Gtoy .

E TOY EXAMPLE

Example E.1 Here, we use a toy example of a weighted DAG Gtoy under the LSEM given in Figure
19 to better demonstrate our definitions.

In Gtoy, p = 4 mediators are included, where M1 ← 0.2A + ε1, M2 ← 0.2M1 + 0.5M4 + ε2,
M3 ← 0.4A+ ε3, M4 ← 0.5M3 + ε4, Y = 0.5A+ 1.1M2 + 0.7M3. There are 4 directed path from
A to Y :

1) ‘A→ Y ’ with length 1;
2) ‘A→M3 → Y ’ with length 2;
3) ‘A→M1 →M2 → Y ’ with length 3;
4) ‘A→M3 →M4 →M2 → Y ’ with length 4.

Since there exists 3 directed path π∗ ∈ {πAY (Gtoy)} such that the length of π∗ is larger than 2, we
have the mediators in Gtoy are interacted.

From the weighted DAG Gtoy, we have the direct effect of A on Y is γtoy = 0.5, αtoy ≡
[0.5, 0, 0.4, 0]>, βtoy ≡ [0, 1.1, 0.7, 0]>, and

B>M
toy

=

 0 0 0 0
0.2 0 0 0.5
0 0 0 0
0 0 0 0.5

 .
Note one may recover Gtoy from the weight matrix Btoy as long as the order of the vertices in Btoy
is given. Then, we have

(Ip −B>M
toy

)−1 =

 1 0 0 0
0.2 1 0.25 0.5
0 0 1 0
0 0 0.5 1

 .
Thus, the indirect effect of A on Y is

βtoy
>

(Ip −B>M
toy

)−1αtoy

=[0, 1.1, 0.7, 0]

 1 0 0 0
0.2 1 0.25 0.5
0 0 1 0
0 0 0.5 1

 [0.5, 0, 0.4, 0]>

=[0, 1.1, 0.7, 0][0.5, 0.2, 0.4, 0.2]>

=0 + 0.22 + 0.28 + 0 = 0.5.

(E.1)

From the Equation E.1 and Theorem 3.1, we have the DM of M2 and M3 is 0.22 and 0.28, respec-
tively, while other DM are 0. Note that there is no explicit expression of the natural indirect effect
through the directed path from A to Y (IM ) due to the complex interaction among mediators, while
we provide its theoretical form in Equation G.6 based on the path method in Wright (1921) and
Nandy et al. (2017). Specifically, for each directed path from A to Y , we have:
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1) the direct effect through ‘A→ Y ’ (DE): 0.5;
2) the effect of path ‘A→M3 → Y ’: 0.4× 0.7 = 0.28;
3) the effect of path ‘A→M1 →M2 → Y ’: 0.5× 0.2× 1.1 = 0.11;
4) the effect of path ‘A→M3 →M4 →M2 → Y ’: 0.4× 0.5× 0.5× 1.1 = 0.11;
5) so the indirect effect of A on Y (IE) is 0.11 + 0.11 + 0.28 = 0.5;
6) and the total effect of A on Y (TE) is 0.5 + 0.5 = 1.0;
7) the indirect effect for M1 (IM1) corresponds to the effect of path ‘A→M1 →M2 → Y ’, thus is
0.11;
8) the indirect effect for M2 (IM2) is zero since there is no path first goes through M2 followed by
other mediators;
9) the indirect effect for M3 (IM3) corresponds to the effect of path ‘A→M3 →M4 →M2 → Y ’,
thus is 0.11;
10) the indirect effect for M4 (IM4) corresponds to the effect of path ‘A→M3 →M4 →M2 → Y ’,
thus is 0.11.

We can calculate the last edge-specific effect directly from its definition. Since there is no M1 → Y
and M4 → Y in Gtoy, we have LEtoy1 = LEtoy4 = 0. By deleting M2 → Y in Gtoy, the total effect
reduced by 0.11 + 0.11 = 0.22, so LEtoy2 = 0.22; similarly, after deleting M3 → Y , the total effect
decreases 0.28, thus LEtoy3 = 0.28. One may notice that the last edge-specific effects are equal
to the DMs, and the additive of the last edge-specific effects is exact the last step of calculation
βtoy

>
(Ip −B>M

toy
)−1αtoy in Equation E.1.

F CONNECTION TO LITERATURE

We establish the connection between our proposed method to the literature from three different
angles. First, we show that the individual mediation effect defined in Chakrabortty et al. (2018) can
be decomposed into our defined DM and IM when the LSEM assumption holds. Next, we give an
equivalent definition of the DM through a type of special edge (last edge) in the causal graph. Lastly,
we prove that the proposed DM is consistent with the interventional effect via a particular mediator
defined in Vansteelandt & Daniel (2017) under the LSEM.

F.1 FROM INDIVIDUAL MEDIATION VIEWPOINT

Chakrabortty et al. (2018) defined the individual mediation effect under the LSEM as follows.

Definition F.1 (Chakrabortty et al., 2018) Individual mediation effect for Mi:

ηi =
[
E{Mi|do(A = a+ 1)} − E{Mi|do(A = a)}

]
×
[
E{Y |do(Mi = mi + 1)} − E{Y |do(Mi = mi)}

]
.

(F.1)

In the following theorem, we show that the summation of ηi is strictly larger than the IE if the
mediators are not parallel. The proof is given in Section G.2.

Theorem F.1 If there exists at least one directed path π∗ ∈ {πAY (G)} such that the length of π∗ is
larger than 2, and the element in B is nonnegative, then∑

ηi > IE. (F.2)

Remark F.1 From the above theorem, it is clear that the mediator effect defined in Chakrabortty
et al. (2018) is not appropriate for interpreting the decomposition of the indirect effect, when there
exists interaction among mediators (a common situation as described in the introduction). Here, we
keep the condition that the element in B is nonnegative, as the multiple count mediation effects in
Chakrabortty et al. (2018) may cancel out in some cases and their summation would equal to the IE
by chance.

Inspired by the proof of Theorem F.1, the mediator effect ηi can be decomposed into two parts, the
natural direct and indirect effect for i-th mediator, as shown in the following corollary.
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Corollary F.1 Under assumptions (A1-A3) and Model 1, we have

ηi = DMi + IMi. (F.3)

Remark F.2 Corollary F.1 together with the definition of ηi in Chakrabortty et al. (2018) provides a
feasible way to numerically calculate the natural indirect effect IMi. Specifically, by deleting the
mediator Mi in the causal graph, the reduced treatment effect corresponds to ηi, then IMi = ηi −
DMi, where the explicit expression of the DMi is provided in Theorem 3.1. See more implementation
details in Section B.

F.2 FROM GRAPHICAL PERSPECTIVE

Next, we give the definition of the edge-specific effect following Avin et al. (2005). Suppose a
directed edge of interest as Xi → Xj in a weighted DAG G. Define a new weighted DAG G′i,j by
deleting the directed edge Xi → Xj in G, i.e. G′i,j ≡ G \ (Xi → Xj).

Definition F.2 (Avin et al., 2005) Edge-specific effect:

ET (Xi, Xj) = TEG − TEG′
i,j
, (F.4)

where TEG means the total effect in graph G.

We next give an equivalent definition of our proposed DM from a graphical perspective. Let the edge
in G that starts with i-th mediator and ends with node Y , i.e. Mi → Y , as the i-th last edge. Denote
the graph G deleting the i-th last edge (Mi → Y ) as G′i. We define the ith last edge-specific effect as

Definition F.3 Last edge-specific effect for Mi:

LEi =

{
TEG − TEG′

i
, if there exists edge Mi → Y in G;

0, otherwise. (F.5)

By Theorem 3.1, we have (Ip −B>M )−1α is the causal effect of A on M . Let ζ ≡ (Ip −B>M )−1α,
with its i-th element ζi ≡ {(Ip −B>M )−1α}i. Next, we show that the i-th last edge-specific effect
can be presented as βiζi under the LSEM in the following theorem, where βi is the i-th element of
the vector β and corresponds to the weight of the edge Mi → Y . The proof can be found in Section
G.3.

Theorem F.2 Under assumptions (A1-A3) and Model 1, we have

LEi = βiζi. (F.6)

Based on Theorem 3.1, the natural direct effect of Mi on Y can be expressed as DMi = βiζi. Thus,
with the result of Theorem F.2, it is easy to show the following corollary.

Corollary F.2 Under assumptions (A1-A3) and Model 1, the natural direct effect of Mi is equal to
the i-th last edge-specific effect:

LEi = DMi = βiζi. (F.7)

Remark F.3 Here, both definitions describe the direct impact of one mediator Mi on the outcome.
The natural direct effect of a particular mediator Mi can be understood as the influence when
removing the direct edge between Mi and Y . Thus, we have the equivalence between two definitions.

Then, we can decompose the total natural indirect effect into p last edge-specific effects or p DMs as
the following additive form, based on Theorem 3.2 and Corollary F.2.

Corollary F.3 Under assumptions (A1-A3) and Model 1, we have

IE = β>ζ =

p∑
i=1

βiζi =

p∑
i=1

DMi =

p∑
i=1

LEi. (F.8)
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In fact, based on the uniqueness of each last edge, the natural indirect effect can be decomposed into
p last edge-specific effect regardless of the LSEM setting through the graphical perspective. We give
the following intuitive conclusion. The proof can be found in Section G.4.

Theorem F.3 The IE can be decomposed through LEs as:

IE =

p∑
i=1

LEi. (F.9)

Remark F.4 One can view the last edge-specific effect as the generalized definition of the natural
direct effect for mediator without the LSEM assumption.

F.3 FROM INTERVENTIONAL EFFECT LEVEL

Finally, we show the consistency of our defined DM to the interventional effect via a particular
mediator defined in Vansteelandt & Daniel (2017) under the LSEM.

Definition F.4 (Vansteelandt & Daniel, 2017) Under assumptions (A1-A3), the interventional effect
via Mi is

ξi =
∑

m1∈M1

· · ·
∑

mp∈Mp

[
E(Y |A = a,Mi = mi,Ωi = oi)P (Ωi = oi|A = a)

×
{
P (Mi = mi|A = a+ 1)− P (Mi = mi|A = a)

}]
,

(F.10)

where Mi is the support of Mi, oi = [m1, · · · ,mi−1,mi+1, · · · ,mp], P (M = m|A = a) is the
probability of M = m when setting A = a.

Theorem F.4 Under assumptions (A1-A3) and Model 1, we have

DMi = ξi,

Remark F.5 The proof can be found in Section G.5. Based on Definition 3.2 and Equation F.10, both
the proposed DM and the effect defined in Vansteelandt & Daniel (2017) contain the information of
the causal effect of A on the mediator Mi, i.e. P (Mi = mi|A = a+ 1)− P (Mi = mi|A = a).

G TECHNICAL PROOFS

G.1 PROOF OF THEOREM 3.1

Proof G.1 In this proof, we will give the explicit expressions of causal effects defined under the
LSEM. First, Equation 3 is equivalent to A ≡ εA,

M = αA+B>MM + εM ,
Y = γA+ β>M + εY .

(G.1)

Based on M = αA+B>MM + εM , by moving B>MM to the left-hand side, we have

(Ip −B>M )M = αA+ εM .

Suppose the mediators are sorted in the topological order (a series of elementary transformation of
the matrix), then the matrix B>M is strictly upper triangular with the diagonal element as 0. Thus, we
have Ip − B>M is invertible, then Ip − B>M under its original order should be also invertible (any
invertible matrix after elementary transformation is still invertible).

Therefore, we can rewrite M as a purely function of A plus the error term as follows.

M = (Ip −B>M )−1αA+ (Ip −B>M )−1εM . (G.2)

28



Published as a conference paper at ICLR 2021

Then we replace mediators in Equation G.1 with Equation G.2 and obtain
A ≡ εA,
M = (Ip −B>M )−1αA+ (Ip −B>M )−1εM ,
Y = γA+ β>M + εY

= γA+ {β>(Ip −B>M )−1α}A+ {β>(Ip −B>M )−1εM + εY }.

(G.3)

Next, we show how to get the explicit expressions of E{Y |do(A = a)} under the LSEM. Following
the results in Rosenbaum & Rubin (1983), under the assumption (A2), we have P{M |do(A = a)} =
P (M |A = a), and thus,

E{M |do(A = a)} = E(M |A = a).

Similarly, we can get E{Y |do(A = a)} = E(Y |A = a) under the assumption (A1), and
E{Y |do(A = a,M = m)} = E(Y |A = a,M = m) under the assumption (A3).

Based on above results and Equation G.3, we have

E{Y |do(A = a)} = E{Y |A = a}
=E{γA+ β>M + εY |A = a}
=γa+ β>E{M |A = a}
=γa+ β>E{(Ip −B>M )−1αA+ (Ip −B>M )−1εM |A = a}
=γa+ β>(Ip −B>M )−1αa,

(G.4)

where the first ‘=’ is held under the assumption (A1), the second and forth ‘=’ are given by Equation
G.3 that Y = γA+ β>M + εY and M = (Ip −B>M )−1αA+ (Ip −B>M )−1εM .

Following the same calculation procedure of E{Y |do(A = a)}, we next give the natural direct effect
under assumptions (A1-A3) and Model 1 as

DE = E{Y |do(A = a+ 1,M = m(a))} − E{Y |do(A = a)}
= {γ(a+ 1) + β>m(a)} − {γa+ β>m(a)}
= γ,

where the first ‘=’ is given by the definition of the DE.

Similarly, the natural indirect effect is

IE = E{Y |do(A = a,M = m(a+1))} − E{Y |do(A = a)}
= {γa+ β>m(a+1)} − {γa+ β>m(a)}
= β>(Ip −B>M )−1α(a+ 1)− β>(Ip −B>M )−1αa

= β>(Ip −B>M )−1α.

Thus, the total effect of A on Y is

TE = E{Y |do(A = a+ 1)} − E{Y |do(A = a)} = DE + IE = γ + β>(Ip −B>M )−1α.

Finally, we give the expression for the natural direct effect of Mi on Y under the LSEM. Based on the
assumption (A2) and Equation G.2, we have

E{Mi|do(A = a+ 1)} − E{Mi|do(A = a)}
=E{Mi|A = a+ 1} − E{Mi|A = a}
={(Ip −B>M )−1α}i(a+ 1)− {(Ip −B>M )−1α}ia
={(Ip −B>M )−1α}i,

(G.5)

where {(Ip −B>M )−1α}i is the i-th element of the vector (Ip −B>M )−1α.
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Then, based on Y = γA+ β>M + εY and the assumption (A3), we have,

E{Y |do(A = a,Mi = m
(a)
i + 1,Ωi = o

(a)
i )} − E{Y |do(A = a)}

=E{Y |A = a,Mi = m
(a)
i + 1,Ωi = o

(a)
i } − E{Y |A = a}

=γa+ β>



m
(a)
1
...

m
(a)
i + 1

...
m

(a)
p


− γa− β>



m
(a)
1
...

m
(a)
i
...

m
(a)
p


= β>1i = βi,

where 1i is a p× 1 vector with the i-th element as 1 while others qual to 0, and βi is the i-th element
of the vector β.

Thus, we have

DMi =
[
E{Mi|do(A = a+ 1)} − E{Mi|do(A = a)}

]
×
[
E{Y |do(A = a,Mi = m

(a)
i + 1,Ωi = o

(a)
i )} − E{Y |do(A = a)}

]
,

={(Ip −B>M )−1α}i × βi

=βi{(Ip −B>M )−1α}i. �

G.2 PROOF OF THEOREM F.1

Proof G.2 1. If there is no directed path π∗ ∈ {πAY (G)} such that the length of π∗ is larger than
2, i.e. the length of π∗ ∈ {πAY (G)} is either 1 or 2. Here, the path with length 1 corresponds to
A → Y , and paths with length 2 are A → Mi → Y with possibly i = 1, · · · , p. Thus, there is no
interaction among mediators.

By the definition of the LSEM, we have BM = 0p×p, where 0p×p is a p× p zero matrix. Following
the path method (the causal effect of Xi on Xj along a directed path from Xi → Xj in G can be
calculated by multiplying all edge weights along the path) illustrated in Wright (1921) and Nandy
et al. (2017), we could obtain

∑
ηi =

∑
i βiαi = IE. (See a toy example provided in section E to

illustrate how to use the path method to manually compute the causal effects.)

2. If there exists at least one directed path π∗ ∈ {πAY (G)} such that the length of π∗ is larger than 2,
and the element in B is nonnegative, we have BM 6= 0p×p. Without loss of generality, suppose there
exists Mi ∈M with a set of directed path that starts with A, contains Mi, then goes through other
mediators, and ends with Y , denoted each path in such set as πi,j = {A→ · · · →Mi · · · → · · · →
Y } for j = 1, · · · , ni, where ni is the size of such path set for Mi, and the weights of edges in πi,j is
positive. Note the set {πi,j} excludes the paths end with Mi → Y .

Let eπi,j denote the causal effect of A on Y through directed path πi,j . Based on the path method in
Wright (1921) and Nandy et al. (2017) with the definition of IMi, we have its theoretical form as

IMi =

ni∑
j=1

eπi,j . (G.6)

By Equation G.5 and the definition of ηi, we have its first multiplier as

E{Mi|do(A = a+ 1)} − E{Mi|do(A = a)} = {(Ip −B>M )−1α}i,
which is also the first multiplier in both DMi and IMi.

And the second multiplier of ηi can be expressed as
E{Y |do(Mi = mi + 1)} − E{Y |do(Mi = mi)}

=E{Y |do(Mi = m
(a)
i + 1)} − E{Y |do(Mi = m

(a)
i )}

=E{Y |do(A = a,Mi = m
(a)
i + 1)} − E{Y |do(A = a,Mi = m

(a)
i )},

=E{Y |do(A = a,Mi = m
(a)
i + 1)} − E{Y |do(A = a)},
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where m(a)
i is the value of Mi when setting do(A = a). Here, the first ‘=’ is valid since mi can be

arbitrary number, and the second and third ‘=’ are based on the equivalent interventions.

Based on the technique of plus and minus the same term, we decompose the second multiplier of ηi
into two parts as follows

E{Y |do(A = a,Mi = m
(a)
i + 1)} − E{Y |do(A = a)}

=
[
E{Y |do(A = a,Mi = m

(a)
i + 1,Ωi = o

(a)
i )} − E{Y |do(A = a)}

]
︸ ︷︷ ︸

the second multiplier ofDMi

+
[
E{Y |do(A = a,Mi = m

(a)
i + 1)} − E{Y |do(A = a,Mi = m

(a)
i + 1,Ωi = o

(a)
i )}

]
︸ ︷︷ ︸

the second multiplier of IMi

(G.7)

where Ωi = M \Mi is the sets of mediators except Mi, and o(a)i is the value of Ωi when setting
do(A = a). Here, the first term in the above equation corresponds to the second multiplier of DMi,
while the second term is the second multiplier of IMi.

Thus, the summation of ηi is∑
ηi =

∑
i

{[
E{Mi|do(A = a+ 1)} − E{Mi|do(A = a)}

]
×
[
E{Y |do(Mi = mi + 1)} − E{Y |do(Mi = mi)}

]}

=
∑
i

{DMi + IMi} =
∑
i

DMi +
∑
i

IMi = IE +
∑
i

ni∑
j=1

eπi,j
,

where the first ‘=’ is from Definition F.1, the second ‘=’ is given by Equation G.7 and Definition 3.2
and 3.3, and the last ‘=’ comes from Theorem 3.2 and the theoretical form of IM in Equation G.6.

Here, we have eπi,j > 0 since the weights of edges in πi,j is positive based on the path method in
Wright (1921) and Nandy et al. (2017). Then,

∑
i

∑ni

j=1 eπi,j
is also strictly larger than 0. Therefore,

we have ∑
ηi > IE. �

G.3 PROOF OF THEOREM F.2

Proof G.3 1. If there doesn’t exist edge Mi → Y in G, then by definition we have βi = 0. Thus,
LEi = βiζi = 0.

2. If there exists edge Mi → Y in G. Suppose there is a directed path set with size mi associated to
the edge Mi → Y , where each directed path π̃i,j starts with node A and ends with Mi → Y , denoted
as π̃i,j = {A→ · · · → · · · →Mi → Y } for j = 1, · · · ,mi.

Let eπ̃i,j denote the causal effect of A on Y through directed path π̃i,j , e
(A,Mi)
π̃i,j

be the causal effect of
A on Mi through directed path π̃i,j , and e(Mi,Y ) is the causal effect of Mi on Y through directed
edge Mi → Y . Following the path method in Wright (1921) and Nandy et al. (2017), we have
eπ̃i,j

= e
(A,Mi)
π̃i,j

e(Mi,Y ).

Then the i-th last edge-specific effect is equal to the summation of the effect through each path π̃i,j ,
i.e.,

LEi =

ni∑
j=1

eπ̃i,j
=

ni∑
j=1

e
(A,Mi)
π̃i,j

e(Mi,Y ) = e(Mi,Y )
ni∑
j=1

e
(A,Mi)
π̃i,j

.

Here, by the similar argument based on the path method, we have e(Mi,Y ) = βi and
∑ni

j=1 e
(A,Mi)
π̃i,j

as the total causal effect of A on Mi.

31



Published as a conference paper at ICLR 2021

Recall that ζi ≡ {(Ip − B>M )−1α}i is the causal effect of A on Mi. Therefore, the i-th LE is the
product of the causal effect of A on Mi and the causal effect of Mi on Y , i.e.,

LEi = βiζi. �

G.4 PROOF OF THEOREM F.3

Proof G.4 Given a general DAG G with nodes {A,M, Y }, let the union of all directed paths that
contain the i-th last edge as τi = {π : A → · · · → Mi → Y }, i = 1, · · · p. Here, we have
τi = {π̃i,j}1≤j≤mj

established in Section G.3. It is clear that the union set of τi in G is equal to the
set of all directed paths start with A and end with node Y (except A→ Y ) in G as⋃

i

τi = {πAY (G)} \ {A→ Y }.

Also, based on the uniqueness of each last edge, τi is pairwise disjoint, i.e.

τi
⋂
τj = ∅, ∀i 6= j.

Since the IE is defined as the total causal effect of A on Y that goes through mediators, we have the
IE equal to the causal effect that goes through the set {πAY (G)} \ {A→ Y }, i.e. the IE equal to
the causal effect that goes through set

⋃
i τi. Based on the mutual disjoint property of τi, we have the

IE is exactly the summation of the causal effect through τi. Lastly, from the definition of LEi, we
have

IE =

p∑
i=1

LEi. �

G.5 PROOF OF THEOREM F.4

Proof G.5 The proof of the consistency of our defined DM to the interventional effect ξi can be
completed based on Equation 3 under assumptions (A1-A3) and Model 1.

Recall the definition in Equation F.10, we have

ξi =
∑

m1∈M1

· · ·
∑

mp∈Mp

[
E(Y |A = a,Mi = mi,Ωi = oi)P (Ωi = oi|A = a)

×
{
P (Mi = mi|A = a+ 1)− P (Mi = mi|A = a)

}]
.

=
∑

m1∈M1

· · ·
∑

mp∈Mp

{
E(Y |A = a,Mi = mi,Ωi = oi)P (Ωi = oi|A = a)P (Mi = mi|A = a+ 1)

− E(Y |A = a,Mi = mi,Ωi = oi)P (Ωi = oi|A = a)P (Mi = mi|A = a)
}
.

Given A = a, the value of Mi is m(a)
i and Ωi takes o(a)i ; while when setting A = a+ 1, the value

of Mi is m(i)
a+1. Therefore, we have P (Mi = mi|A = a) = 1 if mi = m

(a)
i otherwise is 0, and

P (Ωi = oi|A = a) = 1 if oi = o
(a)
i otherwise is 0.

Under assumptions (A1-A3), we have

ξi = E(Y |A = a,Mi = m
(a+1)
i ,Ωi = o

(a)
i )− E(Y |A = a,Mi = m

(a)
i ,Ωi = o

(a)
i ).

Then, based on the LSEM that Y = γA+ β>M + εY , we can further obtain that

ξi =γa+ β>



m
(a)
1
...

m
(a+1)
i
...

m
(a)
p


− γa− β>



m
(a)
1
...

m
(a)
i
...

m
(a)
p


= βi{m(a+1)

i −m(a)
i }.
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From Equation G.2, we have

ξi = βi

[
{(Ip −B>M )−1α}i(a+ 1)− {(Ip −B>M )−1α}ia

]
= βi{(Ip −B>M )−1α}i.

Thus, under assumptions (A1-A3) and Model 1, we have

DMi = ξi. �
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