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ABSTRACT

We prove that Fp sketch, a well-celebrated streaming algorithm for frequency
moments estimation, is differentially private as is when p ∈ (0, 1]. Fp sketch uses
only polylogarithmic space, exponentially better than existing DP baselines and
only worse than the optimal non-private baseline by a logarithmic factor. The
evaluation shows that Fp sketch can achieve reasonable accuracy with differential
privacy guarantee. The evaluation code is included in the supplementary material.

1 INTRODUCTION

Counting is one of the most fundamental operations in almost every area of computer science. It
typically refers to estimating the cardinality (the 0th frequency moment) of a given set. However,
counting can actually refer to the process of estimating a broader class of statistics, namely pth
frequency moment, denoted Fp. Frequency moments estimation is at the core of various important
statistical problems. F1 is used for data mining (Cormode et al., 2005) and hypothesis tests (Indyk
& McGregor, 2008). F2 has applications in calculating Gini index (Lorenz, 1905; Gini, 1912)
and surprise index (Good, 1989), training random forests (Breiman, 2001), numerical linear alge-
bra (Clarkson & Woodruff, 2009; Sarlos, 2006) and network anomaly detection (Krishnamurthy
et al., 2003; Thorup & Zhang, 2004). Fractional frequency moments are used in Shannon entropy
estimation (Harvey et al., 2008; Zhao et al., 2007) and image decomposition (Geiger et al., 1999).

Non-private frequency moments estimation is systematically studied in the data streaming
model (Alon et al., 1999; Charikar et al., 2002; Thorup & Zhang, 2004; Feigenbaum et al., 2002;
Indyk, 2006; Li, 2008; Kane et al., 2010; Nelson & Woodruff, 2009; 2010; Kane et al., 2011).
This model assumes extremely limited storage such as network routers. The optimal non-private
algorithm (Kane et al., 2011) uses only polylogarithmic space to maintain frequency moments. In the
present work, we inherit the low space complexity requirement for the versatility of the algorithm.

The data being counted sometimes contains sensitive information. For example, to calculate Gini
index, the data should contain pairs of ID and income. Frequency moments of such data, if published,
might leak sensitive information. To mitigate, the gold standard of differential privacy (DP) should
be applied. Special cases of DP frequency moments estimation such as p = 0, 1, 2 are well-studied in
a wide spectrum of works (Choi et al., 2020; Smith et al., 2020; Blocki et al., 2012; Sheffet, 2017;
Upadhyay, 2014; Choi et al., 2020; Bu et al., 2021; Mir et al., 2011).

In the present work, we make the first customized effort towards DP estimation of fractional frequency
moments, i.e. p ∈ (0, 1] with low space complexity. We show that a well-known streaming algorithm,
namely Fp sketch (Indyk, 2006), preserves differential privacy as is. With its small space complexity,
Fp sketch elegantly solves the trilemma between efficiency, accuracy, and privacy.

Problem Formulation. We use bold lowercase letters to denote vectors (e.g. a,b, c) and bold
uppercase letters to denote matrices (e.g. A,B,C). {1, · · · , n} is denoted by [n].

Let S = {(k1, v1), · · · , (kn, vn)} (n ≥ 1) be a stream of key-value pairs where ki ∈ [m] (m ≥
2), vi ∈ [M ] (M ≥ 1)1. We would like to design a randomized mechanismM that estimates the pth

1In the main text, we consider the cash register model where each update vi ≥ 0. The result can be extended
to the strict turnstile model as shown in Appendix A.
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frequency moment:

Fp(S) =

m∑
k=1

(

n∑
i=1

I(ki = k)vi)
p

for p ∈ (0, 1] where I is an indicator function returning 1 if k = ki and 0 otherwise.

To provide rigorous privacy guarantee,M should preserve differential privacy as defined below. In
our setting, neighboring data streams differ in one key-value pair.
Definition 1 ((ε, δ)-Differential Privacy). A randomized algorithmM is said to preserve (ε, δ)-DP
if for two neighboring datasets S,S ′ and any measurable subset of the output space s,

P[M(S) ∈ s] ≤ eεP[M(S ′) ∈ s] + δ

When δ = 0, we omit it and denote the privacy guarantee as ε-DP.

Oftentimes, n,m is large (e.g. IP streams on routers) soM should take polylogarithmic space in
terms of n,m.

Proof Intuition. We summarize the intuition behind the proof that Fp sketch is differentially private
when p ∈ (0, 1]. Recall that when proving DP for traditional mechanisms such as the Gaussian
mechanism, the core is to upper-bound the ratio P (x)

Q(x) where P (x) and Q(x) are the probability
density functions of outputs when the inputs are neighboring datasets. In the proof of Gaussian
mechanism, P (x) and Q(x) can be viewed as a horizontal translation of each other and the distance
between their mean values is the sensitivity of the output.

For Fp, however, neighboring inputs do not translate the output distribution but instead change its
scale. For example, when p = 2, P (x) and Q(x) are Gaussian distributions with the same mean and
different variance. Inspired by the analogy to Gaussian mechanism, we need to address the below
two questions to prove differential privacy for Fp sketches.

Q1. How to bound the difference between the scales of P (x) and Q(x)?
Q2. How to bound the ratio between the density functions of P (x) and Q(x)?

To answer Q1, we propose a new sensitivity definition called pure multiplicative sensitivity. Pure
multiplicative sensitivity depicts the maximal multiplicative change in the output when the inputs are
neighboring datasets. We analyze frequency moments estimation and find that its pure multiplicative
sensitivity is approximately max{22p−2, 22−2p} when p ∈ (0, 1] and n�M .

To answer Q2, we first analyze the special case of p = 1. When p = 1, P (x)
Q(x) is rigorously upper-

bounded and thus F1 sketch preserves ε-DP. By analogy, we conjecture that Fp, p ∈ (0, 1] also
satisfies similar properties, which is doubly confirmed by the numerically simulated plots in Figure 2.
The conjecture is formally proved in Theorem 3.

2 RELATED WORK

Frequency moments estimation is thoroughly studied in the data streaming model. Alon et al.
(1999) proposed the first space-efficient algorithm for estimating pth frequency moments when p is
integer. Indyk (2006) extended the use case from integer moments to fractional moments using stable
distributions. A line of following works improve Indyk’s algorithm in various aspects such as space
complexity (Kane et al., 2010; Nelson & Woodruff, 2009), time complexity (Nelson & Woodruff,
2010; Kane et al., 2011) or accuracy (Li, 2008; 2009).

Several special cases in private frequency moments estimation such as p = 0, 1, 2 were also well
studied. Choi et al. (2020) and Smith et al. (2020) studied differentially private F0 estimation. They
separately proved that the Flajolet-Martin sketch is differentially private as is. Several independent
works (Blocki et al., 2012; Sheffet, 2017; Upadhyay, 2014; Choi et al., 2020; Bu et al., 2021) studied
the differential privacy guarantee in the special case p = 2 under the name of Johnson-Lindenstrauss
projection.

On the other hand, there is barely any prior work focusing on differentially private fractional frequency
moments estimation. Differentially private distribution estimation algorithms (Acs et al., 2012; Xu
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et al., 2013; Bassily & Smith, 2015; Suresh, 2019; Wang et al., 2019) can be used to provide a
differentially private estimation of fractional frequency moments. However, they are overkill as
their outputs contain much more information than the queried fractional frequency moment. They
only provide sub-optimal privacy-utility trade-off and are exponentially worse in terms of space
complexity.

Datar et al. (2004) considered a similar (but not the same) mathematical problem to the present work
when designing a locality-sensitive hashing scheme. However, their analysis focuses on the simple
cases when p = 1 and p = 2 and totally depends on numerical analysis for p ∈ (0, 1).

3 DIFFERENTIALLY PRIVATE FREQUENCY MOMENTS ESTIMATION

In this section, we first revisit Fp sketch and then prove the differential privacy guarantee for Fp sketch
step by step. Different from most differential privacy analyses based on additive sensitivity, our proof
depends on a variant of the multiplicative sensitivity (Dwork et al., 2015) called pure multiplicative
sensitivity. We give the first analysis of pure multiplicative sensitivity for p-th frequency moments.
Then we motivate the differential privacy proof using a special case when p = 1. Finally we proceed
to the general proof that Fp sketch preserves differential privacy. The main challenge stems from
the fact that the density functions of p-stable distributions have no close-form expressions when
p ∈ (0, 1).

3.1 REVISITING Fp SKETCH

For completeness, we revisit the well-celebrated Fp sketch by Indyk (2006) (also known as stable
projection or compressed counting). We first introduce p-stable distribution, the basic building block
in Fp sketch. Then we review how to construct and query Fp sketch using stable distributions.

Definition 2 (p-stable distribution). A random variable X follows a β-skewed p-stable distribution
if its characteristic function is

φX(t) = exp(−ζ|t|p(1−
√
−1β sgn(t) tan(

πp

2
))

where −1 ≤ β ≤ 1 is the skewness parameter, ζ > 0 is the scale parameter to the pth power.

In this paper, we focus on stable distributions with β = 0, namely symmetric stable distributions.
We denote a symmetric p-stable distribution by Dp,ζ , and slightly abuse the notation to denote the
density function as Dp,ζ(x). Note that the density function is the inverse Fourier transform of the
characteristic function.

Dp,ζ(x) =
1

2π

∫
R

exp(−
√
−1tx)φ(t)dt =

1

2π

∫
R

cos (xt) exp(−ζ|t|p)dt

If two independent random variables X1, X2 ∼ Dp,1, then C1X1 +C2X2 ∼ Dp,Cp1+Cp2 . We refer to
this property as p-stability. Fp sketch leverages the p-stability of these distributions to keep track of
the frequency moments.

The pseudo-code for vanilla Fp sketch is presented in Algorithm 1. To construct, a sketch of size r is
initialized to all zeros and a projection matrix P is sampled from Dr×mp,1 (line 2). For each incoming
key-value pair (ki, vi), we multiply the one-hot encoding of ki scaled by vi with the projection matrix
P and add it to the sketch (line 4).

a =

n∑
i=1

P× vieki =

m∑
k=1

P× (
∑
ki=k

vi)eki ∼ Drp,Fp(S)
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To query the sketch, we estimate ζ from a using various estimators such as median, inter-quantile,
geometric mean or harmonic mean as suggested by Indyk (2006), Li (2008) and Li (2009).

Algorithm 1: Fp sketch.

Input :Data stream: S = {(k1, v1), · · · , (kn, vn)}
1 Construct:
2 Initialize a = {0}r, P ∼ Dr×mp,1 ;
3 Update:
4 for i ∈ [n] do Let eki be the one-hot encoder of ki, a = a + P× vieki ;
5 Query:
6 return scale_estimator(a);

3.2 PURE MULTIPLICATIVE SENSITIVITY OF FREQUENCY MOMENTS ESTIMATION

As we will see in the following two subsections, the differential privacy proof for Fp sketch depends
on the pure multiplicative sensitivity of p-th frequency moments. As the first step, we give the
definition of pure multiplicative differential privacy. “Pure” is to distinguish from multiplicative
sensitivity as defined in Dwork et al. (2015).
Definition 3 (Pure multiplicative sensitivity). The multiplicative sensitivity of a functionM is defined
as the maximum ratio between outputs on neighboring inputs S and S ′.

ρp(n) = sup
|S|=n,|S′|=n,d(S,S′)=1

∣∣M(S)

M(S ′)
∣∣

We might omit the subscript and argument when they are clear from the context.

The pure multiplicative sensitivity of Fp is as below.
Theorem 1 (Multiplicative sensitivity of Fp). A mechanismM which calculates Fp, p ∈ (0, 1] has
pure multiplicative sensitivity upper bounded by

ρp ≤ 22−2p
( n− 1 +M

n− 1 + (m− 1)
p−1
p

)p

Proof for Theorem 1. Theorem 1 gives an upper bound on the multiplicative change when two input
datasets with the same sizem differ in one entry. To prove, we first consider a slightly different setting
when the second dataset is generated by adding an entry to the first dataset. Then the neighboring
datasets in the original setting can be generated by adding different entries to the same dataset. Thus,
taking the division of the upper and lower bound of the sensitivity in the incremental setting will give
an upper bound for sensitivity in the original setting.

Concretely, let u = {u1, · · · , um} where ui > 0,
∑m
i=1 ui = s, ∆ ≥ 0. We would like to find both

upper and lower bounds for the below expression.∑m
i=2 u

p
i + (u1 + ∆)p∑m
i=2 u

p
i + up1

,∀p ∈ (0, 1] (1)

To bound expression (1), we first observe the following two inequalities (2) and (3).

∀a, b, c, d > 0, a ≥ b, c ≥ d, a+ c

a+ d
≤ b+ c

b+ d
. (2)

∀p ∈ (0, 1], (

m∑
i=1

ui)
p ≤

m∑
i=1

upi ≤ m
1−p(

m∑
i=1

ui)
p (3)

Inequality (2) can be proved with simple algebra. The left-hand-side of inequality (3) follows
because

∑m
1 upi is concave in (u1, . . . , un) in the simplex defined by the conditions ui ≥ 0 for all
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i, and
∑m

1 ui = s and hence the minimum of
∑m

1 upi on the simplex is attained at a vertex of the
simplex. The right-hand-side of inequality (3) is an instance of the well-known generalized mean
inequality (Sỳkora, 2009) or Hölder inequality (Hölder, 1889).

First, let’s upper bound expression (1). According to inequality (2) and (3),∑m
i=2 u

p
i + (u1 + ∆)p∑m
i=2 u

p
i + up1

(2)+(3)

≤
(
∑m
i=2 ui)

p + (u1 + ∆)p

(
∑m
i=2 ui)

p + up1
=

(s− u1)p + (u1 + ∆)p

(s− u1)p + up1

(3)

≤ 21−p(1+
∆

s
)p

Similarly, to lower bound expression (1),∑m
i=2 u

p
i + (u1 + ∆)p∑m
i=2 u

p
i + up1

(2)+(3)

≥
(m− 1)1−p(

∑m
i=2 ui)

p + (u1 + ∆)p

(m− 1)1−p(
∑m
i=2 ui)

p + up1

=
(s− u1)p + ((m− 1)

p−1
p (u1 + ∆))p

(s− u1)p + ((m− 1)
p−1
p u1)p

(3)

≥ 2p−1
( ((m− 1)

p−1
p − 1)u1 + s+ (m− 1)

p−1
p ∆

((m− 1)
p−1
p − 1)u1 + s

)p
≥ 2p−1(1 +

(m− 1)
p−1
p ∆

s
)p

Taking the division between the supremum and the infimum, we get

ρp ≤ 22−2p(
s+M

s+ (m− 1)
p−1
p

)p ≤ 22−2p(
n− 1 +M

n− 1 + (m− 1)
p−1
p

)p

In a typical streaming model where m is large and n�M , ρp / 22−2p ≤ 4. To get a better sense of
how ρ changes with p, we plot several curves with different hyper-parameters in Figure 1. Note that
the pure multiplicative sensitivity only depends on n,m,M and p which are public information.
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Figure 1: Pure multiplicative sensitivity.
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p ∈ (0, 1] on R+. The negative half is symmetric.

3.3 DIFFERENTIALLY PRIVATE F1 SKETCH

Instead of directly diving into the complete analysis, we first motivate the analysis with the special case
of p = 1. In this case, the symmetric 1st-stable distribution is the well-known Cauchy distribution:
D1,ζ(x) = 1

π ·
ζ

ζ2+x2 , and thus the analyses are significantly simplified. The main purpose of this
section is to pave the way for the proof of general Fp sketch.
Theorem 2 (ε-DP for F1 sketch). Let ρ1 represent the multiplicative sensitivity of the first frequency
moments. When the size of the sketch r = 1, F1 is ln ρ1-differentially private.

Proof for Theorem 2. D1,F1
(x)

D1,ρ1F1
(x) =

ρ21F
2
1 +x

2

ρ1(F 2
1 +x

2)
is a decreasing function of x when x ∈ (0,∞)

because its derivative 2(ρ1−ρ31)F
2
1 x

ρ21(F
2
1 +x

2)2
is non-positive. Thus,

1

ρ1
=
D1,F1

(∞)

D1,ρ1F1
(∞)

≤ D1,F1
(x)

D1,ρ1F1
(x)
≤ D1,F1

(0)

D1,ρ1F1
(0)

= ρ1
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Then, for any data stream S and arbitrary measurable subset s,

P[F1(S) ∈ s] =

∫
x∈s
D1,F1(S)(x)dx =

∫
x∈s

D1,F1(S)(x)

D1,F1(S′)(x)
D1,F1(S′)(x)dx

≤
∫
x∈s

ρ1D1,F1(S′)(x)dx = eln ρ1P[F1(S ′) ∈ s]

3.4 DIFFERENTIALLY PRIVATE Fp SKETCH, p ∈ (0, 1]

The example of F1 being ε-DP indicates the possibility that Fp might have similar property when
p ∈ (0, 1]. To validate, we plot the curves for different values of ps as shown in Figure 2. From the
figure we can tell that when p ∈ (0, 1], the ratio Dp,1(x)Dp,2(x) seems to be well-bounded and preserve ε-DP.

We now prove the conjecture as formalized in Theorem 3.

Theorem 3 (ε-DP for Algorithm 1). Let ρp represent the multiplicative sensitivity of the p-th frequency
moments. When r = 1 and p ∈ (0, 1], Fp sketch (Algorithm 1) is 1

p ln ρp-differentially private.

Proof for Theorem 3. To prove Theorem 3, we prove the following inequality.

ρ
− 1
p

p < ρ−1p ≤
Dp,Fp(x)

Dp,ρpFp(x)
≤ ρ

1
p
p

We first prove the right-hand-side of the inequality. Observe that ζ−
1
pDp,1(ζ−

1
px) =

ζ
− 1
p

2π

∫
R cos(ζ−

1
pxt) exp(−|t|p)dt ?

= 1
2π

∫
R cos(xt) exp(−ζ|t|p)dt = Dp,ζ(x) where ? substitutes t

with ζ
1
p t using integration by substitution. Thus,

Dp,Fp(x)

Dp,ρpFp(x)
= ρ

1
p
p
Dp,1(F

− 1
p

p x)

Dp,1((ρpFp)
− 1
px)
≤ ρ

1
p
p
Dp,Fp(0)

Dp,ρpFp(0)
= ρ

1
p
p

as Dp,1 is increasing on (−∞, 0] and decreasing on [0,∞), and ρp ≥ 1.

To prove the left-hand-side of the inequality, we reorganize it into the format of a Fourier transform.∫ ∞
0

(ρp exp(−Fptp)− exp(−ρpFptp)) cos(tx)dt ≥ 0

It suffices to show that

h(ρ) =

∫ ∞
0

exp(−ρFptp)
ρ

cos(tx)dt

is decreasing. Taking the first derivative of h, we have

∂h

∂ρ
= − 1

ρ2

∫ ∞
0

g(t) cos(tx)dt , where g(t) = exp(−ρFptp)(ρFptp + 1)

According to Pólya criterion (Gneiting, 2001), it suffices to show that g is positive definite. We
first observe that the function 0 ≤ u 7→ (1 + u1/2)e−u

1/2

is the Laplace transform (Schiff, 1999)

of the positive function 0 < t 7→ e−1/(4t)

4
√
π t5/2

(the proof is deferred to the end) and hence a mixture

of exponential functions 0 ≤ u 7→ e−cu with c > 0. Thus with variable substitution, the function
s 7→ (1 + |s|p)e−|s|p is a mixture of functions s 7→ e−c|s|

2p

with c > 0, which are positive definite
for any p ∈ (0, 1] as they are characteristic functions of stable distributions.

The last step is to prove the function F (u) = (1 + u1/2)e−u
1/2

, u ≥ 0 is the Laplace trans-

form of f(t) =
e−1/(4t)

4
√
π t5/2

, t > 0: F (u) =
∫∞
0
f(t)e−utdt, u ≥ 0. Let R(u) = F (u) and

L(u) =
∫∞
0
f(t)e−utdt. We observe that limx→∞ L(x) = limx→∞R(x) = limx→∞ L′(x) =
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limx→∞R′(x) = 0 so it is enough to show that L′′(u) = R′′(u). After a simple rescaling, it is
enough to show

J(a) :=

∫ ∞
0

exp
{
− 1

t
− at

} dt

2
√
t

=

√
π

2

e−2
√
a

√
a

where a > 0 as both sides do not contain linear terms. Using substitutions t = u2 and then
u = 1/(x

√
a), we get

J(a) =

∫ ∞
0

exp
{
− 1

u2
− au2

}
du = K(a)/

√
a,

where K(a) :=
∫∞
0

exp
{
− ax2 − 1

x2

}
dx
x2 . Note that K ′(a) = −J(a) and K(a) = J(a)

√
a. So,

we get the differential equation J ′(a) = −
(

1√
a

+ 1
2a

)
J(a), whose general solution is given by

J(a) = c√
a
e−2
√
a for a constant c. To determine c, note that K(a) = J(a)

√
a =

∫∞
0

exp
{
− 1

u2 −

au2
}
du
√
a =

∫∞
0

exp
{
− a

y2 − y
2
}
dy and c = K(0+) =

∫∞
0

exp{−y2} dy =
√
π
2 .

3.5 PRIVACY AMPLIFICATION BY SUB-SAMPLING
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Figure 3: Privacy budget ε vs. p. n =
215,m = 220,M = 24.

The last step of Algorithm 1 estimates ζ given samples
from the stable distributions. There are many candidate es-
timators such as the geometric estimator and the harmonic
estimator (Li, 2008; 2009). These estimators typically, as
suggested in Li (2008), require at least r ≥ 50 samples
to give an accurate estimation of ζ. However, the privacy
parameter ε grows linearly with r with trivial composi-
tion (Dwork et al., 2006), which might result in too weak
privacy protection.

To address, we follow the standard approach, amplifying
privacy using sub-sampling. Different from Algorithm 1,
each input has probability q to be inserted into each di-
mension of a, as presented in Algorithm 2. If we take
q = 1

r , then the privacy parameters in Theorem 3 hold as is. The proof is a simple application of the
composition theorems (Dwork et al., 2006) and privacy amplification (Balle et al., 2018).

Theorem 4 (ε-DP for Algorithm 2). Let ρp represent the multiplicative sensitivity of the p-th frequency
moments. When p ∈ (0, 1], Fp sketch with sub-sampling rate q is qr

p ln ρp-differentially private.

Algorithm 2: Fp sketch with sub-sampling. The only change appears in line 3-4 and 7, corre-
sponding to line 3 and 5 in Algorithm 1. Bernoulli(q) refers to Bernoulli distribution with success
probability q.
Input :Data stream: S = {(k1, v1), · · · , (kn, vn)}

1 Construction
2 Initialize a = {0}r, P ∼ Dr×mp,1 ;
3 for i ∈ [n] do
4 b ∼ Bernoulli(q);
5 Let eki be the one-hot encoder of ki, a = a + P× bvieki
6 Query
7 return scale_estimator(a)/qp;

3.6 UTILITY OF ALGORITHM 2

We depict the accuracy of a Fp estimator with a pair of parameters (γ, η).

Definition 4 ((γ, η)-Accuracy). A randomized algorithmM is said to be (γ, η)-accurate if

(1− γ)Fp(S) ≤M(S) ≤ (1 + γ)Fp(S) w.p. 1− η

7
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Algorithm 2 satisfies the following utility guarantee. The space complexity is only worse than the
optimal non-private algorithm (Kane et al., 2011) by a logarithmic factor. The accuracy bound is also
a worst-case bound and the performance in practice is typically much better (Section 4).

Theorem 5 (Utility of Algorithm 2). ∀p ∈ (0, 1] and ∀γ, η ∈ (0, 1), Algorithm 2 is (γ+
√

qp−q2p
λ , η+

λ)-accurate if r = O
(
γ−2 log( 1

η )
)
. In this case, Algorithm 2 uses O

(
γ−2 log(mM/(γη)) log( 1

η )
)

bits.

Proof. Let SAq(·) represent the sub-sampling process and Frp represent a Fp sketch with length r.
Then Algorithm 2 can be represented as Frp ◦ SAq where ◦ represents composition of mechanisms.

First, we need the accuracy of Fp sketch. According to Theorem 4 of Indyk (2006), if we fix the
sub-sampled items,

P[|F
O
(
γ−2 log( 1

η )
)

p ◦ SAq(S)− Fp ◦ SAq(S)| ≤ γFp ◦ SAq(S)] ≥ 1− η

Second, we need the accuracy of the sub-sampling process. The expectation and variance of the
sub-sampling process is as follow.

E[Fp ◦ SA(S)] = qpFp(S) (4)

V[Fp ◦ SA(S)] = E[(Fp ◦ SA(S))2]− E2[Fp ◦ SA(S)]

≤ Fp(S)× E[Fp ◦ SA(S)]− q2pF 2
p (S) = (qp − q2p)Fp(S)

(5)

According to Chebyshev’s inequality,

P[|Fp ◦ SA(S)− qpFp(S)| ≤
√
qp − q2p

λ
Fp(S)] ≥ 1− λ (6)

Combining (4), (6) and (6) we get Theorem 5.

4 EVALUATION

4.1 EVALUATION SETUP
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(a) Uniformly Distributed Stream.
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Figure 4: Results on Synthetic Data.

As we would like to empirically understand Fp sketch’s trade-off between space, error and privacy, we
evaluate Fp with p ∈ {0.25, 0.5, 0.75, 1} using synthetic streams of different sizes and distributions.
We also evaluate Fp with p ∈ {0.05, 0.1, · · · , 0.95, 1} on real-world data. All the experiments were
run on a Ubuntu18.04 LTS server with 32 AMD Opteron(TM) Processor 6212 with 512GB RAM.

Synthetic Data. We first evaluate Fp sketches using synthetic data. We synthesize two kinds of
data: the key domain is either uniformly or binomially distributed. The value domain is {1} by
default. The size of the key domain is 1000.
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Real-world Data. We also evaluate Fp sketches using real-world application usage data (Ye et al.,
2019) collected by TalkingData SDK. There are more than 30 million events in this dataset, each
representing one access to the TalkingData SDK. We view the event type as the key and the value is
set to 1 by default.

4.2 EVALUATION RESULTS

In this section, we present the evaluation results. To avoid the influence of outliers, we report the
median and interquartile of 100 runs for each data point except for the real-data evaluation. For all
the evaluation, the sketch size r is 50 as suggested in Li (2008). The sub-sampling rate in all the
experiments is 0.02.

Synthetic Data. The evaluation results on synthetic data are presented in Figure 4. For uniformly
distributed data, we observe that as the stream size increases, the multiplicative error decreases. We
conjecture the reason to be the effect of sub-sampling. Concretely, each bin in the value domain has to
get enough samples to approximate the behavior of the true distribution. On the other hand, when the
data is binomially distributed, the multiplicative error is relatively stable with small fluctuation. We
conjecture the reason is that as binomial distribution is more concentrated, the sample complexity is
smaller than uniform distribution. Besides, for uniformly distributed data, ps close to 0 have relatively
large errors while the errors when p is close to 1 are small. The reason is that the further p is from 1,
the larger the influence of sub-sampling.
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Figure 5: Results on Real-world Data.
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Figure 6: The curves of Dp,1(x)Dp,2p (x) with different values of
p ∈ (1, 2) on R+. The negative half is symmetric. The
x-axis is log-scale to highlight the complex monotone trends.

Real-world Data. The evaluation results for real-world data are presented in Figure 5. We sampled
100,0000 data points from the dataset and the key has a domain of size 1488095. Each data point is
the median of 5 runs. We observe that the further p is from 1, the higher the multiplicative error. This
conforms with our observation in the evaluation on synthetic data.

5 CONCLUSION & FUTURE WORK

This paper takes an important step towards narrowing the gap of space complexity between private
and non-private frequency moments estimation algorithms. We prove that Fp is differentially private
as is when p ∈ (0, 1] and thus give the first differentially private frequency estimation protocol with
polylogarithmic space complexity.

At the same time, we observe several open challenges. First, the proof does not easily extend to
p ∈ (1, 2). Figure 6 exhibits the complexity of monocity of Dp,1(x)Dp,2p (x) when p ∈ (1, 2). The most
complex curve when p = 1.99 is composed of three monotonic parts in the figure. Hence, an
interesting next step is to fully understand the monotonicity pattern of the ratio curve when p ∈ (1, 2)
and get corresponding privacy parameters. Second, the space complexity of Algorithm 2 is still worse
than the optimal non-private algorithm by a factor of log(m). It is interesting to check whether the
optimal algorithm (Kane et al., 2011) also preserves differential privacy.
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Ethics Statement. Our work study the intrinsic differential privacy of Fp sketches. Fp sketches
should be used with careful calibration to make sure the output is accurate and provides reasonable
privacy guarantee. All the datasets and packages used are open-sourced.
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A PURE MULTIPLICATIVE SENSITIVITY IN STRICT TURNSTILE MODEL

In this section, we derive the pure multiplicative sensitivity of Fp in the strict turnstile model. In
the strict turnstile model, for a key-value stream S = {(k1, v1), · · · , (kn, vn)} (n ≥ 1) where
ki ∈ [m] (m ≥ 2), vi ∈ {−M, · · · ,M} (M ≥ 1), the sum of vs of the same key should always be
non-negative:

n∑
i=1

I(ki = k)vi ≥ 0

Besides, for the utility of the result, we need to assume that M < n− 1.
Theorem 6 (Multiplicative sensitivity of Fp in strict turnstile model). A mechanismM < n − 1
which calculates Fp, p ∈ (0, 1] in the strict turnstile model when has pure multiplicative sensitivity
upper bounded by

ρst
p ≤ 22−2p(1 +

2M

n− 1−M
)p

Proof for Theorem 6. An upper bound for the sensitivity of Fp in the strict turnstile model can be
derived by taking the division of the upper and lower bound in the incremental setting following the
same logic as the proof for Theorem 1. The upper bound is the same as in the proof of Theorem 6 so
we only need to calculate the lower bound of the following expression.

First, we observe the following two inequalities.

∀a, b, d > 0, c ≥ 0, a ≤ b, c ≤ d, a+ c

a+ d
≤ b+ c

b+ d
. (7)

∑m
i=2 u

p
i + (u1 −∆)p∑m
i=2 u

p
i + up1

(3)+(7)

≥
(
∑m
i=2 ui)

p + (u1 −∆)p

(
∑m
i=2 ui)

p + up1

=
(s− u1)p + (u1 −∆)p

(s− u1)p + up1
(3)

≥ 2p−1(1− ∆

s
)p

Taking the division between the supremum and the infimum, we get

ρst
p ≤ 22−2p(1 +

2∆

s−∆
)p ≤ 22−2p(1 +

2M

n− 1−M
)p

As shown in Figure 7, when m is the same, the sensitivity is very close to the sensitivity in the cash
register model if M � n.
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Figure 7: Pure multiplicative sensitivity in the Strict Turnstile Model.

13


	Introduction
	Related Work
	Differentially Private Frequency Moments Estimation
	Revisiting Fp Sketch
	Pure multiplicative sensitivity of frequency moments estimation
	Differentially Private F1 Sketch
	Differentially Private Fp Sketch, p(0, 1]
	Privacy Amplification by Sub-sampling
	Utility of Algorithm 2

	Evaluation
	Evaluation Setup
	Evaluation Results

	Conclusion & Future Work
	Pure Multiplicative Sensitivity in Strict Turnstile Model

