
Revisiting Service Level Objectives and System Level Metrics
in Large Language Model Serving

Anonymous ACL submission

Abstract001

Large language models (LLMs) have achieved002
remarkable performance and are widely de-003
ployed in various applications, while the serv-004
ing of LLM inference has raised concerns about005
maintaining high user experience and achiev-006
ing sufficient throughput. Balancing these fac-007
tors is crucial for reducing operational costs008
while ensuring optimal performance. Accord-009
ingly, service level objectives (SLOs) and sys-010
tem level metrics have been introduced as key011
performance measures for LLM serving. How-012
ever, current metrics fall short in accurately013
capturing user experience. We find two notable014
issues: 1) manually delaying the delivery of015
some tokens can improve metrics of requests,016
and 2) actively abandoning requests that do not017
meet SLOs can improve system level metrics.018

In this paper, we revisit SLOs and system level019
metrics in LLM serving and propose a compre-020
hensive metric framework called smooth good-021
put, which integrates SLOs and system level022
metrics to reflect the nature of user experience023
in LLM serving. It is designed to be adapt-024
able, with parameters that can be tailored to the025
specific objectives of various tasks. Through026
this unified framework, we reassess the perfor-027
mance of different LLM serving systems under028
multiple workloads. We aspire for this frame-029
work to establish a standardized method for030
evaluating LLM serving, thereby encouraging031
cohesive advancements in future research.032

1 Introduction033

Large language models (LLMs) have achieved034

remarkable performance in many tasks and are035

widely deployed in various applications, such as036

chatbots (OpenAI, 2024; Zheng et al., 2024; Mon-037

tagna et al., 2023) and virtual assistants (Vu et al.,038

2024; Dong et al., 2023). With the increasing de-039

mand for LLM services, researchers have proposed040

various optimization strategies for LLM serving041

systems. Initially, the LLM serving systems are de-042

signed to maximize the throughput(Yu et al., 2022;043

Kwon et al., 2023). A straightforward approach 044

is to increase the batch size of the requests to im- 045

prove the resource utilization, thereby increasing 046

the throughput. However, large batch sizes may 047

lead to high latency, which may degrade the user 048

experience. We notice in the real-world LLM serv- 049

ing applications, the user need to interact with the 050

system, such as (OpenAI, 2024; DeepSeek-AI et al., 051

2025; OpenAI et al., 2024; Vu et al., 2024; Dong 052

et al., 2023), which requires a real-time response. 053

Specially, to evaluate user experience in LLM 054

serving systems, many metrics of single request 055

that measures the token delivery time of a re- 056

quest have been used to in previous work (Patel 057

et al., 2023; Agrawal et al., 2024b; Cheng et al., 058

2024; Patke et al., 2024), such as time-to-first-token 059

(TTFT), time-between-tokens (TBT), and time-per- 060

output-token (TPOT). For the first token generation, 061

it is costly to process the prefill stage (Vaswani 062

et al., 2023; Zhong et al., 2024), thereby introduc- 063

ing the TTFT for the first token generation, which 064

may significantly larger than the TBT/TPOT. TPOT 065

measures the average time between tokens in a re- 066

quest, while it is too loose to reflect the user experi- 067

ence, as a long stall in the middle of the request can 068

be averaged out by short intervals between other to- 069

kens, which actually degrades the user experience. 070

Therefore, (Agrawal et al., 2024b) introduces the 071

TBT metric to constrain the time interval between 072

two consecutive tokens. To further evaluate the 073

performance of LLM serving systems ensuring the 074

SLOs, system level metrics that measure the perfor- 075

mance of each request of the system such as SLO 076

attainment and goodput are proposed (Zhong et al., 077

2024; Agrawal et al., 2024b). The SLO attainment 078

measures the proportion of requests that meet the 079

SLOs, which can be viewed as the constraint of 080

the serving system, while the goodput measures 081

the number of completed requests that meet the 082

SLOs per second, which can be viewed as the per- 083

formance of the serving system. We also notice 084

1

that various systems and optimization strategies085

have been proposed to improve the system level086

metrics under the SLOs (Patel et al., 2023; Agrawal087

et al., 2024b; Zhong et al., 2024; Cheng et al., 2024;088

Patke et al., 2024).089

However, we observe that these metrics fail to090

capture the nature of user experience. Real-time091

LLM service is a rapidly interactive activity, just092

like web browsing (Weinreich et al., 2008; Skad-093

berg and Kimmel, 2004). Users do not perceive094

them as a sequence of single isolated token gener-095

ation events, but as a continuous stream of infor-096

mation. The evaluation bias caused by ignoring097

the inherent nature of user experience in streaming098

LLM serving can even lead optimization efforts099

based on these metrics to develop in a suboptimal100

direction. We identify several limitations in the101

existing metrics as follows:102

TBT is too tight for overall user experience while103

TPOT and E2E latency are too loose. TBT mea-104

sures the time interval between each token within105

a request, while TPOT reflects the average interval.106

As indicated in (Egger et al., 2012), user experi-107

ence in streaming services is influenced by waiting108

times without information to process. If users have109

enough information to process, occasional stalls110

(i.e., high TBT) may not degrade the experience.111

For example, if a system delivers 10 tokens in the112

first second, then stalls for 1 second, users read-113

ing at 4 tokens per second will still have a good114

experience, although the TBT is up to 1 second.115

Conversely, if only 2 tokens are delivered before116

a 1-second stall, users will suffer from the waiting117

time, although the TPOT is only 0.1s. In other118

words, the cost of high latency iterations is shared119

with previous iterations.120

Goodput and SLO attainment are not able to re-121

flect the benefits of requests that exceed the SLO.122

Goodput is a system level metric that can reflect the123

number of completed request that meet the SLOs124

per second, while SLO attainment reflects the pro-125

portion of requests that meet the SLOs. However,126

existing metrics definitions ignore the contribution127

of requests that are missed. Therefore, the optimal128

strategy seems to be to give up or reject the requests129

that have already missed the SLOs, which is not a130

good choice for users obviously. We argue that the131

requests that missed the SLO requirements are still132

valuable, and the benefits of all the requests should133

be carefully considered.134

Figure 1 illustrates how the streaming output135

0 5 10 15 20
Time (s)

0

20

40

60

80

100

To
ke

ns
 G

en
er

at
ed

Reference line, 4 tokens / s

Us
er

 E
xp

er
ie

nc
e

〇

〇
Stalls that won't affect users

② The time users wait

① TTFT

Tail TBT

〇

----- - without content to read

Figure 1: Token generation timeline in LLM serving
systems and its impact on user experience. The red
area indicates affected user experience. The overall
experience is determined by the total waiting time (red
line). Some longer TBTs do not degrade perceived
experience due to user processing characteristics.

affects user experience. The horizontal red line 136

marked on the time-axis indicates two types of 137

waiting times: 1) the time to receive the first token 138

(TTFT) and 2) the time for subsequent tokens that 139

are generated slower than the user’s reading speed 140

(indicated by the reference line). At the beginning, 141

the user experience is poor when the user has to 142

wait for the first token. Subsequently, when users 143

finish reading all tokens delivered, they still suffer 144

from waiting. On the other hand, occasional stalls 145

in the middle of the line will not affect the user 146

experience as long as the user has enough tokens 147

to read. Specifically, the user may not even notice 148

the stalls in the red circles (the user is reading the 149

delivered information) although the TBT is large. 150

In this paper, we revisit SLOs and system level 151

metrics in LLM serving systems and identify the 152

limitations of existing metrics. To better model 153

the user experience in LLM serving systems, we 154

redesigned the SLO to define reasonable deadlines 155

for each token relative to the commitment of a 156

request, rather than relative to the previous token. 157

Upon the new SLO metric, we introduce the smooth 158

goodput to evaluate the performance of the service. 159

The smooth goodput considers the benefits of to- 160

ken generation as well as the punishment of user 161

waiting time without tokens to read. 162

Based on this unified framework, we re-evaluate 163

the performance of different LLM serving systems 164

under multiple workloads, aiming to help unify the 165

development direction of research on LLM serving 166

focused on user experience optimization. 167

2

2 Background and Related Works168

In this section, we revisit the background of LLM169

serving, including the autoregressive inference,170

mainstream LLM serving systems, and metrics171

to evaluate their serving quality. Based on these172

metrics, many scheduling strategies have been pro-173

posed.174

2.1 Streaming LLM Serving175

LLMs process autoregressive inference to generate176

output tokens based on input prompts. Specifically,177

a prompt of length k can be represented as a token178

sequence (t1, t2, ..., tk). The output generated by179

the LLM is also a token sequence of length n, de-180

noted as (tk+1, tk+2, ..., tk+n). The entire process181

consists of n iterations, where each iteration gen-182

erates a token. In the current iteration, the prompt183

and the tokens generated in previous iterations are184

concatenated as the input. Based on the charac-185

teristics of computation and memory access, these186

iterations can be divided into two phases: prefill187

and decode. As shown in Fig. 2, in the prefill phase,188

the LLM processes the entire prompt within a sin-189

gle iteration and generates the first token A0. The190

following decode phases generate the subsequent191

tokens (A1, A2, ..., An) one by one, ending with192

the generation of the EOS token AE .193

2.2 User Experience in LLM Serving194

Online LLM serving systems are often designed195

to provide real-time services to users, which196

is a rapidly interactive activity like web brows-197

ing (Weinreich et al., 2008; Skadberg and Kim-198

mel, 2004). When interacting with LLMs, users199

expect the system to respond quickly and provide200

instant feedback. During this continuous stream of201

information, always lefting enough information to202

process makes users feel comfortable (Egger et al.,203

2012).204

Exsiting works (Brysbaert, 2019) has studied the205

speed of reading and processing text. The average206

reading speed of an adult is about 3-4 words per207

second. Based on the granularity of tokenization208

in different languages, we can roughly estimate the209

token generation speed target.210

For offline LLM serving, user experience is not211

as stringent as in online scenarios. Users generally212

focus on the end-to-end metrics of batched offline213

tasks, and typically do not have specific require-214

ments for streaming-specific metrics like TBT and215

TPOT.216

𝐴𝐴𝐸𝐸𝐸𝐸𝐸𝐸𝐷𝐷𝐴𝐴1𝐷𝐷 𝐴𝐴2𝐷𝐷 𝐴𝐴3𝐷𝐷 𝐴𝐴4𝐷𝐷 𝐴𝐴𝑛𝑛𝐷𝐷𝐴𝐴𝑃𝑃 …

A0𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 𝑨𝑨

Autoregressive Inference

A1 A2 A3 A4 An AE

Figure 2: LLM Autoregressive Inference.

2.3 Metrics of LLM Serving 217

The metrics used to evaluate the performance of 218

LLM serving can be divided into two main groups: 219

SLOs that represent user experience and system 220

level metrics that assess performance under SLO 221

constraints. 222

As the protocol between the service provider 223

and the user, SLOs have been widely used in LLM 224

serving systems to support better user experience 225

(Patel et al., 2023; Agrawal et al., 2024b; Zhong 226

et al., 2024; Stojkovic et al., 2024; Cheng et al., 227

2024). As shown in Figure 3, the mainstream SLOs 228

in LLM serving systems are discussed as follows: 229

• TPOT (Time-per-Output-Token) and E2E 230

(End-to-End) Latency: TPOT reflects the 231

average time taking to generate a token (some- 232

times excluding the first token) while E2E 233

latency reflects the total time taken for a re- 234

quest (or a batch of requests) from commited 235

by users to when it completed. They have 236

no constraints on the time interval between 237

adjacent tokens. 238

• TTFT (Time-to-First-Token) and TBT 239

(Time-between-Tokens): TTFT reflects the 240

time taken for the generation of the first output 241

token while TBT represents the fine-grained 242

time interval between two adjacent tokens of 243

a request. They further delve into each token 244

generation process. 245

Based on these SLOs, some system level metrics 246

have been proposed to measure the performance of 247

the service: 248

• SLO Attainment: SLO attainment is used to 249

describe the proportion of requests that meet 250

the SLOs. Based on it, capacity is defined as 251

the maximum request rate under the constraint 252

of certain SLO attainment. 253

• Goodput: Goodput is defined as the number 254

of completed requests that meet the SLOs per 255

second in a service. It considers the trade- 256

off between the resource utilization and user 257

experience. 258

3

… ……𝐴𝐴4𝐷𝐷𝐵𝐵2𝐷𝐷𝐴𝐴𝑃𝑃 𝐴𝐴1𝐷𝐷 𝐴𝐴3𝐷𝐷𝐵𝐵1𝐷𝐷 𝐴𝐴𝐸𝐸𝐸𝐸𝐸𝐸𝐷𝐷𝐵𝐵𝑃𝑃

𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 𝑩𝑩𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 𝑨𝑨

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐴𝐴 𝑇𝑇𝐵𝐵𝑇𝑇𝐴𝐴1 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐵𝐵

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐴𝐴 (𝐸𝐸𝐸𝐸𝐸 𝑇𝑇𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿)

Exsiting SLOs

Figure 3: Exsiting SLOs of LLM Serving. Note that this
figure ignores the difference between token generation
from the LLM and its delivery to users.

2.4 Metric-Driven Optimization259

Throughput-oriented optimization. Orca (Yu260

et al., 2022) introduces the continuous batching,261

dynamically constructing and processing batches,262

thereby fully leveraging the parallelism of GPUs.263

Building upon this, vLLM (Kwon et al., 2023) fur-264

ther incorporates paged attention, which notably265

enhances compuation throughput, and reduces op-266

erational costs. Consequently, it has been widely267

adopted and established itself as the SOTA frame-268

work for inference services.269

SLO attainment-oriented optimization. Split-270

wise (Patel et al., 2023) and TetriInfer (Hu et al.,271

2024b) proposes splitting prefill and decode phases272

to separate device due to their different features273

of computing and memory access. Sarathi-Serve274

(Agrawal et al., 2024b) introduces chunked pre-275

fills and stall-free batching to mitigate the stall of276

generation. SCOOT (Cheng et al., 2024) propose277

an automatic paramter tuning system to find the278

optimal configuration for the system to meet the279

SLOs. These works improve SLO attainment de-280

fined on different metrics, enabling more requests281

to be served under SLO requirements.282

Goodput-oriented optimization. By avoiding the283

interference between prefill and decode phases,284

DistServe (Zhong et al., 2024) achieves higher285

goodput under the same SLO requirements on286

TTFT and TPOT. That is, more requests that meet287

the SLOs can be served per second. In fact, there288

have been goodput-optimal works on DNNs before289

(Zhang et al., 2023).290

In summary, despite the diverse metrics, certain291

projects such as Splitwise, Distserve, and TetriInfer292

have identified analogous optimization opportuni-293

ties. However, the inability to directly compare294

the effectiveness of these optimizations across dif-295

ferent measurement systems poses challenges in296

making informed optimization choices.297

3 Revisiting the SLOs 298

We revisit the design of SLOs in recent works on 299

LLM serving and demonstrate that existing SLOs 300

are irrational, and propose a new SLO that is more 301

aligned with user experience, focusing on the rela- 302

tionship between the information processing of the 303

user and the delivery of information by the service. 304

3.1 A Framework of SLOs 305

To align various SLOs, we introduce a unified 306

framework of SLOs that can be customized to rep- 307

resent the various requirements proposed in differ- 308

ent workloads. We view the objective as setting 309

the deadline for the generation time of each token, 310

whereas exsiting SLOs only care about the genera- 311

tion time interval between adjacent tokens. 312

Definition. We define the deadline of the i-th out- 313

put token of a request as di, while ti is the actual 314

generation time of the i-th output token. Therefore, 315

the SLO constraints can be formulated as: 316

∀i, ti ≤ di. (1) 317

Customization of existing SLOs. The framework 318

can be customized to represent the various require- 319

ments proposed in different works by adjusting the 320

deadline of each token. The details customization 321

of existing SLOs are following: 322

• TTFT and TBT. 323

di =

{
TTFT, i = 1,
ti−1 + TBT, i > 1.

(2) 324

Note that the deadline of the i-th token is deter- 325

mined by the generation time of the previous 326

token, which, as we will show, is not aligned 327

with user experience. 328

• End-to-end latency. 329

di = E2E, (3) 330

where E2E is the time of end-to-end latency. 331

Obviously, if the last token is generated be- 332

fore the end-to-end latency, the request meets 333

the SLO. As aforementioned, the end-to-end 334

latency is a very loose constraint, which is not 335

aligned with user experience all the time. 336

3.2 Optimization on Existing SLOs 337

Due to the prefill-prioritizing principle for improv- 338

ing throughput in vLLM, the decode phase of the 339

4

A5

𝐴𝐴7𝐷𝐷𝐵𝐵2𝐷𝐷

vLLM

Sarathi-Serve

𝐴𝐴𝑃𝑃 𝐴𝐴1𝐷𝐷 𝐵𝐵𝑃𝑃𝐴𝐴5𝐷𝐷

𝐴𝐴7𝐷𝐷𝐵𝐵2𝑃𝑃𝐴𝐴𝑃𝑃 𝐴𝐴1𝐷𝐷 𝐴𝐴6𝐷𝐷𝐵𝐵1𝑃𝑃𝐴𝐴5𝐷𝐷

𝐴𝐴𝑃𝑃 𝐴𝐴1𝐷𝐷 𝐴𝐴5𝐷𝐷 𝐴𝐴6𝐷𝐷

𝐴𝐴8𝐷𝐷𝐵𝐵3𝑃𝑃

𝐴𝐴7𝐷𝐷 𝐵𝐵𝑃𝑃

…

…

…

𝐴𝐴6𝐷𝐷𝐵𝐵1𝐷𝐷𝐴𝐴7𝐷𝐷𝐵𝐵2𝐷𝐷

𝐴𝐴9𝐷𝐷𝐵𝐵1𝐷𝐷

𝐴𝐴8𝐷𝐷𝐵𝐵1𝐷𝐷

…

…

…Decode Prepone
t𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

Release A1 A6 A7

Buffer

𝑇𝑇𝐵𝐵𝑇𝑇𝐸𝐸 𝑇𝑇𝐵𝐵𝑇𝑇𝐸𝐸 𝑇𝑇𝐵𝐵𝑇𝑇𝐸𝐸 A8

Generation stallPreempt

Strategies

Figure 4: An illustration of iteration scheduling strate-
gies.

following tokens for request A will be stalled until340

the prefill phase of request B is finished, which re-341

sults in a generation stall, i.e., a large TBT between342

AD
5 and AD

6 . Therefore, Sarathi-Serve splits the343

prefill phase of B into multiple chunks (BP
1 , BP

2 ,344

BP
3) and fuses them with the decode phases of re-345

quest A in the same batch. Specifically, one prefill346

chunk of request B will attach decoding one token347

of request A, like AD
6 B

P
1 , AD

7 B
P
2 and AD

8 B
P
3 . As-348

suming the prefill stage of B is split into nc chunks,349

the stall time of A is approximately reduced to350

about 1
nc

of the original. By this way, the stall time351

is smoothed, resulting in a smaller TBT. However,352

we observe that the absolute latency from decode353

tokens of request B (BD
1 , BD

2) will not benefit354

from the optimization. Further, our concern arises355

that this slicing approach, by introducing frequent356

assessments of the KV cache, may inadvertently357

lead to an increase in overall latency rather than a358

decrease.359

To summarize, the chunked-prefills smooths the360

TBT by slicing the prefill phase and fusing them361

with the decode phases of other requests. This362

provides an insight that instead of slicing, can we363

manually schedule the prefill and decode phases364

and achieve better performance?365

3.3 A Naive Imitation of Sarathi-Serve366

We propose a naive imitation strategy, called de-367

code prepone, which can achieve a comparable ef-368

fect to chunked prefills on TBT by simply schedul-369

ing without slicing. As shown in Figure 4, specifi-370

cally, the next n decode tokens for request A (AD
6371

and AD
7) are preponed to be generated before the372

prefill of request B starts. Meanwhile, instead of di-373

rectly outputting these tokens of request A, which374

can result in large TBT between n-th token (AD
7)375

to n+ 1-th token (AD
8), we smoothly output these376

tokens during the prefill phase of request B.377

To achieve smooth output, we take an intuitive378

approach by assigning a tdelay to the output timing379

of each preponed token. As shown in Figure 4, even380

though AD
6 and AD

7 have completed their decoding, 381

they are scheduled to be released sequentially after 382

the tdelay interval, while ensuring their output time 383

will not exceed the completion time of B’s prefill 384

phase. This strategy smooths the overall output 385

flow while maintaining overall latency and mitigat- 386

ing excessive TBT concerns. Besides, it can also be 387

adopted to trade TTFT for TBT/TPOT by delaying 388

the delivery of the first token. 389

3.4 A New Request-level SLO Defination 390

Before delving into the details of the new SLO, we 391

first introduce a output delay trick that can be used 392

to imporve the SLO attainment on TTFT and TBT 393

to highlight the issue of exsiting metrics. 394

Output delay trick. Output delay is a tactic 395

where tokens are released until the TBT deadline is 396

reached, rather than immediately upon generation. 397

Implementing output delay can be done by adding 398

an intermediate buffer layer between the inference 399

engine and the client, allowing looser constraints 400

on the delivery of subsequent tokens. 401

Delaying the delivery of generated tokens to 402

users can improve metrics, which is counterintu- 403

itive in fact. Essentially, it is because the premature 404

delivery of tokens inadvertently imposes additional 405

latency constraints on the subsequent tokens. Thus, 406

there is an urgent need to devise a novel SLO that 407

not only protects the user experience but also re- 408

frains from penalizing the early delivery of tokens. 409

Intuition. In fact, users do not frequently notice the 410

lag of the last word during the generation process. 411

We argue that generation stalls are not necessarily 412

harmful to user experience, as long as the delivery 413

of tokens is aligned with the user’s reading speed. 414

Given the limitations of TBT in setting the time 415

interval between adjacent tokens, we shift the fo- 416

cus of the SLO to the actual user experience. For 417

instance, we can set the constraint of each request 418

according to the response delay that users can toler- 419

ate and the speed of processing output information, 420

such as reading the output of the chatbot, under- 421

standing the summary of long text, listening, etc. 422

Definition: Porting the new SLO to the framework, 423

we have 424

di = V × i, (4) 425

where V is the output information processing speed 426

of the user, and i is the index of the output words. 427

di constraints the deadline of the i-th token, after 428

which the user will perceive a pause in the output 429

stream. 430

5

4 Revisiting the System level Metrics431

Note that SLOs are only concerned with the user432

experience at request level. However, in the system433

view, the service provider is more concerned about434

the overall performance of the service. Specifi-435

cally, the throughput of the service is a key metric,436

directly related to the capacity and efficiency of437

the service. Combining SLOs and throughput, the438

goodput is a metric that can reflect the throughput439

of the service that successfully meets the SLOs.440

4.1 Existing Strategy441

A common practice is the most urgent request-first442

strategy, based on the intuition that the request443

nearest to its deadline is the most important and444

should be processed first.445

In addition to this greedy strategy, goodput-446

based scheduling is also a dominant strategy. Re-447

viewing the definition of goodput as equation 5:448

Goodput =
∑

r∈R 1(∀i, ti ≤ di) · nr

T
, (5)449

where R is the set of requests, 1(·) is the indi-450

cator function, T is the time interval of serving451

the requests in R, and nr is the number of tokens452

that the request r generates. We observe that if453

a request does not meet the SLOs, its goodput is454

assigned a value of 0. This approach, when op-455

timizing for goodput, often leads to abandoning456

requests that cannot meet the SLOs. In LLM serv-457

ing, however, this is an unacceptable outcome for458

users. While latency undoubtedly degrades the user459

experience, abandoning a request altogether poses460

an even greater threat.461

4.2 Smooth Goodput462

Given the shortcomings of the existing goodput463

metric, a new metric must comprehensively con-464

sider the contribution of each request, even if it465

slightly exceeds the SLO requirements. In such466

cases, users have to wait for the subsequent token467

to be generated, after they have finished reading all468

the previously delivered tokens.469

Streaming service and user experience. Unlike470

models with a single forward inference process, in-471

teractive LLM applications are typically deployed472

as streaming services due to the autoregressive na-473

ture of LLMs. Research (Egger et al., 2012) on474

web based streaming services has shown that the475

waiting time of users is a key factor affecting user476

experience.477

Therefore, we introduce the concept of user wait 478

time, namely user idle latency, to measure the user 479

experience. The user idle latency is cumulative 480

duration during which a user is idle and waiting 481

for new tokens to be generated due to the lower 482

generation speed. Formally, the user idle latency l 483

of a request r is defined as: 484

lr =
n

max
i=1

(ti − di), (6) 485

where ti is the time when the i-th token is gen- 486

erated, di is the deadline time of the i-th token 487

delivered to the user, and n is the number of output 488

tokens in the request r. 489

Definition: The smooth goodput is defined as the 490

service benefit per unit of time. The benefit of 491

a request is defined by two factors: the number 492

of tokens that the request generates and the read 493

latency of the request. Formally, we have: 494

benefit(r) = nr − α · f(lr), (7) 495

where nr is the number of tokens that the request 496

r generates, f(·) is a function that maps the user 497

idle latency to the percentage of the benefit that 498

the request can generate, and α is a weight. For 499

interactive applications with stringent latency re- 500

quirements, a higher value of α should be chosen to 501

ensure that idle latency is minimized. In practical 502

deployments, the parameters of the benefit function 503

can be calibrated using historical workload data, 504

including request latency metrics and user behav- 505

iors (e.g., cancellations and complaints), to better 506

align the service characteristics with the benefit 507

calculation. 508

The smooth goodput is defined as: 509

smooth goodput =
∑

r∈R benefit(r)
T

, (8) 510

where T is the time interval of serving the requests 511

committed by the users denoted by R. We notice 512

that Andes (Liu et al., 2024a) also considers the 513

benefit of the requests that miss the SLOs. How- 514

ever, they consider the average token slowdown to 515

the deadline in SLOs, while we consider the maxi- 516

mum token slowdown, i.e., the user idle latency. In 517

practice, once the slowdown has occurred, catching 518

up later does not improve the user experience as 519

the user has already experienced the delay. The 520

maximum slowdown represents the furthest devi- 521

ation from the deadline within the entire request, 522

which corresponds to the total time the user spends 523

waiting for token generation. Therefore, smooth 524

goodput is more reasonable in this context. 525

6

3 6 9 12 15 18
Queries Per Second (QPS)

Queuing

(a) LLaMA-3.1-8B.

3 6 9 12 15 18
Queries Per Second (QPS)

Queuing

(b) LLaMA-3.1-8B with CP.

3 6 9 12 15 18
Queries Per Second (QPS)

Queuing

(c) Qwen2.5-14B.

3 6 9 12 15 18
Queries Per Second (QPS)

Queuing

(d) Qwen2.5-14B with cp.

Figure 5: Evaluate with existing metrics.

(a) LLaMA-3.1-8B. (b) LLaMA-3.1-8B with CP. (c) Qwen2.5-14B. (d) Qwen2.5-14B with CP.

Figure 6: Evaluate with smooth goodput.

5 Evaluation526

In this section, we re-evaluate different scheduling527

strategies under the unified metric framework we528

propose. Then we analyze the results and summa-529

rize the challenges of LLM servings. By compar-530

ing with the existing metrics, we demonstrate the531

advantages of smooth goodput.532

5.1 Experiment Setup533

Settings. We conduct our experiments on a server534

equipped with an NVIDIA A100-SXM4-80GB535

GPU, running Debian GNU/Linux 12 and CUDA536

12.2. We use LLaMA-3.1-8B-instruct (Grattafiori537

et al., 2024) and Qwen2-7B (Yang et al., 2024) as538

base models in the experiments. All of our code539

development is based on vLLM 0.6.3, and the ver-540

sions of all required packages are consistent with541

the requirements of it.542

Workloads. For workload, we use ShareGPT as543

the simulation of the conversations with chatbots,544

and LooGLE (Li et al., 2024) as the simulation of545

longer conversations. We set the arrival times of546

requests to follow the Poisson distribution or pro-547

cessed real-world trace with the average rate set548

as the parameter to simulate the arrival of requests.549

We also conduct the real-world trace experiments550

to evaluate the performance under real-world sce-551

narios.552

Metrics. We use the smooth goodput to evaluate553

the performance of LLM serving. We set α =554

5 in our experiments, with a default information555

consumption speed of 20 tokens per second. As556

a comparison, we also use the existing SLOs and557

system level metrics as introduced in Section 2.558

5.2 Analysis with Existing Metrics and 559

Smooth Goodput at the Service Level 560

We first analyze the performance of different 561

strategies using existing metrics, highlighting the 562

statistical regularities of vLLM under varying re- 563

quest rates and examining the underlying causes. 564

Subsequently, we introduce smooth goodput under 565

the same scheduling strategy to reveal new insights 566

that existing metrics fail to capture. 567

Figure 5 illustrates the performance of vLLM at 568

different request rates using the ShareGPT dataset, 569

which features relatively short prompts and re- 570

sponses. These existing metrics provide a compre- 571

hensive view of service performance. In the unsatu- 572

rated stage, as the request rate increases, resources 573

are utilized more efficiently, leading to increasing 574

throughput. Meanwhile, more requests in the batch 575

results in longer batch processing times and conse- 576

quently higher TBT and TPOT. Once the system 577

reaches its capacity, further increasing in request 578

rate causes more requests in queue, significantly 579

increasing TTFT. However, no balanced point can 580

be found obviously between throughput and user 581

experience using existing metrics, since the metrics 582

are not designed to consider the trade-off between 583

them. 584

Next, we evaluate using smooth goodput under 585

the same experiments. We set the information con- 586

sumption speed to 5 tokens per second and α = 10. 587

As shown in Figure 6, in the unsaturated stage, 588

smooth goodput increases with the request rate, as 589

the benefits from increased throughput outweigh 590

the costs. However, as the number of requests con- 591

tinues to rise, the benefits decrease due to high user 592

7

0 10 20
Time (s)

0

100

200

300

400
To

ke
ns

 G
en

er
at

ed

0.0

0.2

0.4

0.6

0.8

1.0

Us
er

 E
xp

er
ie

nc
e

(a) With chunked-prefills off.

0 10 20
Time (s)

0

100

200

300

400

To
ke

ns
 G

en
er

at
ed

0.0

0.2

0.4

0.6

0.8

1.0

Us
er

 E
xp

er
ie

nc
e

(b) With chunked-prefills on.

Figure 7: Token delivery timeline of vLLM.

0 100 200 300
#Tokens

0.0

0.2

0.4

0.6

0.8

TB
T

(s
)

(a) With chunked-prefills off.

0 100 200 300
#Tokens

0.0

0.1

0.2

0.3

0.4

TB
T

(s
)

(b) With chunked-prefills on.

Figure 8: The TBT metrics of vLLM.

idle time, leading to a decrease in smooth goodput.593

Chunked prefills reaches the peak smooth goodput594

at a higher request rate than vLLM since it com-595

bines prefill and decode phases to fully utilize the596

GPU’s parallelism, accommodating more requests597

before queuing. This highlights the importance of598

considering the balance between throughput and599

user experience in LLM serving systems.600

5.3 Analysis with SLOs at Request Level601

We conduct experiments to demonstrate that our602

new SLOs can measure the benefit of each request.603

We verify this with prompts averaging 1600 tokens604

in length. From the service logs of the two strate-605

gies, we select the same request under the same606

trace for comparison. Figures 7 and 8 describe the607

token generation process of the request with and608

without the chunked prefills technology. The chun-609

ked prefills implemented in vLLM significantly610

reduce the number of generation stalls, providing a611

smoother token generation process. However, anal-612

ysis of the data reveals that many token generation613

stalls caused by prefill preemption go unnoticed614

by users because some tokens have already been615

delivered to them. At this point, users are busy616

processing the information and may not even no-617

tice the generation stall, provided that a sufficient618

amount of tokens has already been delivered.619

Output Delaying Trick. We verify the effective-620

ness of the output delay trick to support our argu-621

ment on SLOs. As shown in Figure 9a, we imple-622

ment the output delay trick by buffering tokens and623

outputting them at a relatively slower rate. This624

trick is independent of any framework’s scheduling625

0 5 10 15 20
Time (s)

0

100

200

300

400

To
ke

ns
 G

en
er

at
ed w/o Output Delay

w/ Output Delay

0.0

0.2

0.4

0.6

0.8

1.0

Us
er

 E
xp

er
ie

nc
e

(a) Token delivery timeline.

0 100 200 300
#Tokens

0.0

0.1

0.2

0.3

0.4

TB
T

(s
)

w/o Output Delay
w/ Output Delay

(b) The TBT metric.

Figure 9: Illustration of the output delay trick.

strategy and can be implemented on both the server 626

and client sides. Compared to no delay, the output 627

delay trick effectively reduces the tail TBT with- 628

out affecting the service throughput, as shown in 629

Figure 9b. It delays the delivery of most tokens to 630

the user but achieves better performance in existing 631

metrics. This smooths the TBT to nearly a constant 632

value (the information consumption rate of users) 633

but does not reduce user idle time at all. This indi- 634

cates that the total time users spend waiting has not 635

improved, and therefore users may still complain 636

about the service. This is also why we believe that 637

existing metrics cannot measure user experience 638

well. 639

6 Conclusion and Future Work 640

In this paper, we propose a metric framework to 641

evaluate the performance of LLM serving. We 642

show that existing metrics fail to capture user 643

experience and demonstrate the correlation be- 644

tween user experience and output delivery speed 645

in streaming LLM serving. We introduce smooth 646

goodput to measure service benefit per unit time, 647

considering both service efficiency and user experi- 648

ence. Using this framework, we re-evaluate perfor- 649

mance under multiple workloads, demonstrating its 650

capability in analyzing service performance. We 651

hope this framework can provide a unified standard 652

for evaluating LLM serving performance and foster 653

research in LLM serving optimization. 654

For future work, we observe that the latest slow- 655

thinking models (OpenAI et al., 2024; DeepSeek- 656

AI et al., 2025) undergo a lengthy thought process 657

before delivering tokens to users, which motivates 658

us to explore semantic-aware SLOs, e.g., assigning 659

looser SLOs to requests carrying more information. 660

Additionally, models with different sizes and abili- 661

ties may produce different output throughput and 662

quality, where considering the optimal balance be- 663

tween throughput and user experience is a promis- 664

ing direction. 665

8

Limitations666

While we propose a unified metric framework for667

evaluating LLM serving, designed to reflect the668

essence of user experience in streaming scenarios669

such as chatbots and text translation, it is important670

to note that current services also include offline and671

non-streaming delivery scenarios. Our metrics can672

accommodate these workloads but will degrade to673

resemble existing throughput and E2E latency met-674

rics, as these scenarios do not require consideration675

of token delivery timelines.676

References677

Amey Agrawal, Nitin Kedia, Jayashree Mohan, Ashish678
Panwar, Nipun Kwatra, Bhargav Gulavani, Ra-679
machandran Ramjee, and Alexey Tumanov. 2024a.680
Vidur: A large-scale simulation framework for llm681
inference. Preprint, arXiv:2405.05465.682

Amey Agrawal, Nitin Kedia, Ashish Panwar, Jayashree683
Mohan, Nipun Kwatra, Bhargav Gulavani, Alexey684
Tumanov, and Ramachandran Ramjee. 2024b. Tam-685
ing {Throughput-Latency} tradeoff in {LLM} infer-686
ence with {Sarathi-Serve}. In 18th USENIX Sympo-687
sium on Operating Systems Design and Implementa-688
tion (OSDI 24), pages 117–134.689

Marc Brysbaert. 2019. How many words do we read690
per minute? a review and meta-analysis of reading691
rate. Journal of memory and language, 109:104047.692

Ke Cheng, Zhi Wang, Wen Hu, Tiannuo Yang, Jianguo693
Li, and Sheng Zhang. 2024. Towards slo-optimized694
llm serving via automatic inference engine tuning.695
Preprint, arXiv:2408.04323.696

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang,697
Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,698
Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang,699
Xingkai Yu, Yu Wu, Z. F. Wu, Zhibin Gou, Zhihong700
Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue,701
Bingxuan Wang, Bochao Wu, Bei Feng, Chengda Lu,702
Chenggang Zhao, Chengqi Deng, Chenyu Zhang,703
Chong Ruan, Damai Dai, Deli Chen, Dongjie Ji,704
Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo,705
Guangbo Hao, Guanting Chen, Guowei Li, H. Zhang,706
Han Bao, Hanwei Xu, Haocheng Wang, Honghui707
Ding, Huajian Xin, Huazuo Gao, Hui Qu, Hui Li,708
Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang709
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L.710
Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong, Kai711
Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai712
Yu, Lean Wang, Lecong Zhang, Liang Zhao, Litong713
Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan714
Zhang, Minghua Zhang, Minghui Tang, Meng Li,715
Miaojun Wang, Mingming Li, Ning Tian, Panpan716
Huang, Peng Zhang, Qiancheng Wang, Qinyu Chen,717
Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan,718
Runji Wang, R. J. Chen, R. L. Jin, Ruyi Chen,719
Shanghao Lu, Shangyan Zhou, Shanhuang Chen,720

Shengfeng Ye, Shiyu Wang, Shuiping Yu, Shunfeng 721
Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing 722
Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, 723
T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, 724
Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao 725
Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan 726
Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin 727
Liu, Xin Xie, Xingchao Liu, Xinyu Yang, Xinyuan Li, 728
Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, 729
Xiaojin Shen, Xiaosha Chen, Xiaowen Sun, Xiaoxi- 730
ang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, 731
Xinxia Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang 732
Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng 733
Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, 734
Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, 735
Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, 736
Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yu- 737
jia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, 738
Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong Xu, 739
Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, 740
Yunxian Ma, Ying Tang, Yukun Zha, Yuting Yan, 741
Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean 742
Xu, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, 743
Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zi- 744
jia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, 745
Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu 746
Zhang, and Zhen Zhang. 2025. Deepseek-r1: Incen- 747
tivizing reasoning capability in llms via reinforce- 748
ment learning. Preprint, arXiv:2501.12948. 749

Xin Luna Dong, Seungwhan Moon, Yifan Ethan Xu, 750
Kshitiz Malik, and Zhou Yu. 2023. Towards next- 751
generation intelligent assistants leveraging llm tech- 752
niques. In Proceedings of the 29th ACM SIGKDD 753
Conference on Knowledge Discovery and Data Min- 754
ing, pages 5792–5793. 755

Sebastian Egger, Tobias Hossfeld, Raimund Schatz, and 756
Markus Fiedler. 2012. Waiting times in quality of 757
experience for web based services. In 2012 Fourth 758
international workshop on quality of multimedia ex- 759
perience, pages 86–96. IEEE. 760

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, 761
Abhinav Pandey, Abhishek Kadian, Ahmad Al- 762
Dahle, Aiesha Letman, Akhil Mathur, Alan Schel- 763
ten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh 764
Goyal, Anthony Hartshorn, Aobo Yang, Archi Mi- 765
tra, Archie Sravankumar, Artem Korenev, Arthur 766
Hinsvark, Arun Rao, Aston Zhang, Aurelien Ro- 767
driguez, Austen Gregerson, Ava Spataru, Baptiste 768
Roziere, Bethany Biron, Binh Tang, Bobbie Chern, 769
Charlotte Caucheteux, Chaya Nayak, Chloe Bi, 770
Chris Marra, Chris McConnell, Christian Keller, 771
Christophe Touret, Chunyang Wu, Corinne Wong, 772
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Al- 773
lonsius, Daniel Song, Danielle Pintz, Danny Livshits, 774
Danny Wyatt, David Esiobu, Dhruv Choudhary, 775
Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, 776
Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, 777
Elina Lobanova, Emily Dinan, Eric Michael Smith, 778
Filip Radenovic, Francisco Guzmán, Frank Zhang, 779
Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis An- 780
derson, Govind Thattai, Graeme Nail, Gregoire Mi- 781
alon, Guan Pang, Guillem Cucurell, Hailey Nguyen, 782

9

https://arxiv.org/abs/2405.05465
https://arxiv.org/abs/2405.05465
https://arxiv.org/abs/2405.05465
https://arxiv.org/abs/2408.04323
https://arxiv.org/abs/2408.04323
https://arxiv.org/abs/2408.04323
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948

Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan783
Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Is-784
han Misra, Ivan Evtimov, Jack Zhang, Jade Copet,785
Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park,786
Jay Mahadeokar, Jeet Shah, Jelmer van der Linde,787
Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu,788
Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang,789
Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park,790
Joseph Rocca, Joshua Johnstun, Joshua Saxe, Jun-791
teng Jia, Kalyan Vasuden Alwala, Karthik Prasad,792
Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth793
Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer,794
Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal795
Lakhotia, Lauren Rantala-Yeary, Laurens van der796
Maaten, Lawrence Chen, Liang Tan, Liz Jenkins,797
Louis Martin, Lovish Madaan, Lubo Malo, Lukas798
Blecher, Lukas Landzaat, Luke de Oliveira, Madeline799
Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar800
Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew801
Oldham, Mathieu Rita, Maya Pavlova, Melanie Kam-802
badur, Mike Lewis, Min Si, Mitesh Kumar Singh,803
Mona Hassan, Naman Goyal, Narjes Torabi, Niko-804
lay Bashlykov, Nikolay Bogoychev, Niladri Chatterji,805
Ning Zhang, Olivier Duchenne, Onur Çelebi, Patrick806
Alrassy, Pengchuan Zhang, Pengwei Li, Petar Va-807
sic, Peter Weng, Prajjwal Bhargava, Pratik Dubal,808
Praveen Krishnan, Punit Singh Koura, Puxin Xu,809
Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj810
Ganapathy, Ramon Calderer, Ricardo Silveira Cabral,811
Robert Stojnic, Roberta Raileanu, Rohan Maheswari,812
Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ron-813
nie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan814
Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sa-815
hana Chennabasappa, Sanjay Singh, Sean Bell, Seo-816
hyun Sonia Kim, Sergey Edunov, Shaoliang Nie, Sha-817
ran Narang, Sharath Raparthy, Sheng Shen, Shengye818
Wan, Shruti Bhosale, Shun Zhang, Simon Van-819
denhende, Soumya Batra, Spencer Whitman, Sten820
Sootla, Stephane Collot, Suchin Gururangan, Syd-821
ney Borodinsky, Tamar Herman, Tara Fowler, Tarek822
Sheasha, Thomas Georgiou, Thomas Scialom, Tobias823
Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal824
Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh825
Ramanathan, Viktor Kerkez, Vincent Gonguet, Vir-826
ginie Do, Vish Vogeti, Vítor Albiero, Vladan Petro-827
vic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whit-828
ney Meers, Xavier Martinet, Xiaodong Wang, Xi-829
aofang Wang, Xiaoqing Ellen Tan, Xide Xia, Xin-830
feng Xie, Xuchao Jia, Xuewei Wang, Yaelle Gold-831
schlag, Yashesh Gaur, Yasmine Babaei, Yi Wen,832
Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao,833
Zacharie Delpierre Coudert, Zheng Yan, Zhengxing834
Chen, Zoe Papakipos, Aaditya Singh, Aayushi Sri-835
vastava, Abha Jain, Adam Kelsey, Adam Shajnfeld,836
Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand,837
Ajay Menon, Ajay Sharma, Alex Boesenberg, Alexei838
Baevski, Allie Feinstein, Amanda Kallet, Amit San-839
gani, Amos Teo, Anam Yunus, Andrei Lupu, An-840
dres Alvarado, Andrew Caples, Andrew Gu, Andrew841
Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchan-842
dani, Annie Dong, Annie Franco, Anuj Goyal, Apara-843
jita Saraf, Arkabandhu Chowdhury, Ashley Gabriel,844
Ashwin Bharambe, Assaf Eisenman, Azadeh Yaz-845
dan, Beau James, Ben Maurer, Benjamin Leonhardi,846

Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi 847
Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Han- 848
cock, Bram Wasti, Brandon Spence, Brani Stojkovic, 849
Brian Gamido, Britt Montalvo, Carl Parker, Carly 850
Burton, Catalina Mejia, Ce Liu, Changhan Wang, 851
Changkyu Kim, Chao Zhou, Chester Hu, Ching- 852
Hsiang Chu, Chris Cai, Chris Tindal, Christoph Fe- 853
ichtenhofer, Cynthia Gao, Damon Civin, Dana Beaty, 854
Daniel Kreymer, Daniel Li, David Adkins, David 855
Xu, Davide Testuggine, Delia David, Devi Parikh, 856
Diana Liskovich, Didem Foss, Dingkang Wang, Duc 857
Le, Dustin Holland, Edward Dowling, Eissa Jamil, 858
Elaine Montgomery, Eleonora Presani, Emily Hahn, 859
Emily Wood, Eric-Tuan Le, Erik Brinkman, Este- 860
ban Arcaute, Evan Dunbar, Evan Smothers, Fei Sun, 861
Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat 862
Ozgenel, Francesco Caggioni, Frank Kanayet, Frank 863
Seide, Gabriela Medina Florez, Gabriella Schwarz, 864
Gada Badeer, Georgia Swee, Gil Halpern, Grant 865
Herman, Grigory Sizov, Guangyi, Zhang, Guna 866
Lakshminarayanan, Hakan Inan, Hamid Shojanaz- 867
eri, Han Zou, Hannah Wang, Hanwen Zha, Haroun 868
Habeeb, Harrison Rudolph, Helen Suk, Henry As- 869
pegren, Hunter Goldman, Hongyuan Zhan, Ibrahim 870
Damlaj, Igor Molybog, Igor Tufanov, Ilias Leontiadis, 871
Irina-Elena Veliche, Itai Gat, Jake Weissman, James 872
Geboski, James Kohli, Janice Lam, Japhet Asher, 873
Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jen- 874
nifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy 875
Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe 876
Cummings, Jon Carvill, Jon Shepard, Jonathan Mc- 877
Phie, Jonathan Torres, Josh Ginsburg, Junjie Wang, 878
Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khan- 879
delwal, Katayoun Zand, Kathy Matosich, Kaushik 880
Veeraraghavan, Kelly Michelena, Keqian Li, Ki- 881
ran Jagadeesh, Kun Huang, Kunal Chawla, Kyle 882
Huang, Lailin Chen, Lakshya Garg, Lavender A, 883
Leandro Silva, Lee Bell, Lei Zhang, Liangpeng 884
Guo, Licheng Yu, Liron Moshkovich, Luca Wehrst- 885
edt, Madian Khabsa, Manav Avalani, Manish Bhatt, 886
Martynas Mankus, Matan Hasson, Matthew Lennie, 887
Matthias Reso, Maxim Groshev, Maxim Naumov, 888
Maya Lathi, Meghan Keneally, Miao Liu, Michael L. 889
Seltzer, Michal Valko, Michelle Restrepo, Mihir Pa- 890
tel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark, 891
Mike Macey, Mike Wang, Miquel Jubert Hermoso, 892
Mo Metanat, Mohammad Rastegari, Munish Bansal, 893
Nandhini Santhanam, Natascha Parks, Natasha 894
White, Navyata Bawa, Nayan Singhal, Nick Egebo, 895
Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich 896
Laptev, Ning Dong, Norman Cheng, Oleg Chernoguz, 897
Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin 898
Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pe- 899
dro Rittner, Philip Bontrager, Pierre Roux, Piotr 900
Dollar, Polina Zvyagina, Prashant Ratanchandani, 901
Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel 902
Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu 903
Nayani, Rahul Mitra, Rangaprabhu Parthasarathy, 904
Raymond Li, Rebekkah Hogan, Robin Battey, Rocky 905
Wang, Russ Howes, Ruty Rinott, Sachin Mehta, 906
Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara 907
Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, 908
Satadru Pan, Saurabh Mahajan, Saurabh Verma, 909
Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lind- 910

10

say, Shaun Lindsay, Sheng Feng, Shenghao Lin,911
Shengxin Cindy Zha, Shishir Patil, Shiva Shankar,912
Shuqiang Zhang, Shuqiang Zhang, Sinong Wang,913
Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala,914
Stephanie Max, Stephen Chen, Steve Kehoe, Steve915
Satterfield, Sudarshan Govindaprasad, Sumit Gupta,916
Summer Deng, Sungmin Cho, Sunny Virk, Suraj917
Subramanian, Sy Choudhury, Sydney Goldman, Tal918
Remez, Tamar Glaser, Tamara Best, Thilo Koehler,919
Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim920
Matthews, Timothy Chou, Tzook Shaked, Varun921
Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai922
Mohan, Vinay Satish Kumar, Vishal Mangla, Vlad923
Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu,924
Vladimir Ivanov, Wei Li, Wenchen Wang, Wen-925
wen Jiang, Wes Bouaziz, Will Constable, Xiaocheng926
Tang, Xiaojian Wu, Xiaolan Wang, Xilun Wu, Xinbo927
Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia,928
Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi,929
Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen Hao,930
Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary931
DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang,932
Zhiwei Zhao, and Zhiyu Ma. 2024. The llama 3 herd933
of models. Preprint, arXiv:2407.21783.934

Arpan Gujarati, Reza Karimi, Safya Alzayat, Wei Hao,935
Antoine Kaufmann, Ymir Vigfusson, and Jonathan936
Mace. 2020. Serving {DNNs} like clockwork: Per-937
formance predictability from the bottom up. In 14th938
USENIX Symposium on Operating Systems Design939
and Implementation (OSDI 20), pages 443–462.940

Cunchen Hu, Heyang Huang, Liangliang Xu, Xusheng941
Chen, Jiang Xu, Shuang Chen, Hao Feng, Chenxi942
Wang, Sa Wang, Yungang Bao, Ninghui Sun, and943
Yizhou Shan. 2024a. Inference without interference:944
Disaggregate llm inference for mixed downstream945
workloads. Preprint, arXiv:2401.11181.946

Cunchen Hu, Heyang Huang, Liangliang Xu, Xusheng947
Chen, Jiang Xu, Shuang Chen, Hao Feng, Chenxi948
Wang, Sa Wang, Yungang Bao, et al. 2024b. In-949
ference without interference: Disaggregate llm in-950
ference for mixed downstream workloads. arXiv951
preprint arXiv:2401.11181.952

Suhas Jayaram Subramanya, Daiyaan Arfeen, Shouxu953
Lin, Aurick Qiao, Zhihao Jia, and Gregory R Ganger.954
2023. Sia: Heterogeneity-aware, goodput-optimized955
ml-cluster scheduling. In Proceedings of the 29th956
Symposium on Operating Systems Principles, pages957
642–657.958

Andreas Kosmas Kakolyris, Dimosthenis Masouros,959
Sotirios Xydis, and Dimitrios Soudris. 2024. Slo-960
aware gpu dvfs for energy-efficient llm inference961
serving. IEEE Computer Architecture Letters.962

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying963
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gon-964
zalez, Hao Zhang, and Ion Stoica. 2023. Efficient965
memory management for large language model serv-966
ing with pagedattention. In Proceedings of the 29th967
Symposium on Operating Systems Principles, pages968
611–626.969

Jiaqi Li, Mengmeng Wang, Zilong Zheng, and Muhan 970
Zhang. 2024. Loogle: Can long-context lan- 971
guage models understand long contexts? Preprint, 972
arXiv:2311.04939. 973

Zhuohan Li, Lianmin Zheng, Yinmin Zhong, Vin- 974
cent Liu, Ying Sheng, Xin Jin, Yanping Huang, 975
Zhifeng Chen, Hao Zhang, Joseph E Gonzalez, et al. 976
2023. {AlpaServe}: Statistical multiplexing with 977
model parallelism for deep learning serving. In 17th 978
USENIX Symposium on Operating Systems Design 979
and Implementation (OSDI 23), pages 663–679. 980

Jiachen Liu, Zhiyu Wu, Jae-Won Chung, Fan 981
Lai, Myungjin Lee, and Mosharaf Chowdhury. 982
2024a. Andes: Defining and enhancing quality- 983
of-experience in llm-based text streaming services. 984
arXiv preprint arXiv:2404.16283. 985

Xiaoxuan Liu, Cade Daniel, Langxiang Hu, Woosuk 986
Kwon, Zhuohan Li, Xiangxi Mo, Alvin Cheung, 987
Zhijie Deng, Ion Stoica, and Hao Zhang. 2024b. 988
Optimizing speculative decoding for serving large 989
language models using goodput. arXiv preprint 990
arXiv:2406.14066. 991

Sara Montagna, Stefano Ferretti, Lorenz Cuno Klopfen- 992
stein, Antonio Florio, and Martino Francesco Pengo. 993
2023. Data decentralisation of llm-based chatbot 994
systems in chronic disease self-management. In Pro- 995
ceedings of the 2023 ACM Conference on Informa- 996
tion Technology for Social Good, pages 205–212. 997

OpenAI, :, Aaron Jaech, Adam Kalai, Adam Lerer, 998
Adam Richardson, Ahmed El-Kishky, Aiden Low, 999
Alec Helyar, Aleksander Madry, Alex Beutel, Alex 1000
Carney, Alex Iftimie, Alex Karpenko, Alex Tachard 1001
Passos, Alexander Neitz, Alexander Prokofiev, 1002
Alexander Wei, Allison Tam, Ally Bennett, Ananya 1003
Kumar, Andre Saraiva, Andrea Vallone, Andrew Du- 1004
berstein, Andrew Kondrich, Andrey Mishchenko, 1005
Andy Applebaum, Angela Jiang, Ashvin Nair, Bar- 1006
ret Zoph, Behrooz Ghorbani, Ben Rossen, Benjamin 1007
Sokolowsky, Boaz Barak, Bob McGrew, Borys Mi- 1008
naiev, Botao Hao, Bowen Baker, Brandon Houghton, 1009
Brandon McKinzie, Brydon Eastman, Camillo Lu- 1010
garesi, Cary Bassin, Cary Hudson, Chak Ming Li, 1011
Charles de Bourcy, Chelsea Voss, Chen Shen, Chong 1012
Zhang, Chris Koch, Chris Orsinger, Christopher 1013
Hesse, Claudia Fischer, Clive Chan, Dan Roberts, 1014
Daniel Kappler, Daniel Levy, Daniel Selsam, David 1015
Dohan, David Farhi, David Mely, David Robinson, 1016
Dimitris Tsipras, Doug Li, Dragos Oprica, Eben Free- 1017
man, Eddie Zhang, Edmund Wong, Elizabeth Proehl, 1018
Enoch Cheung, Eric Mitchell, Eric Wallace, Erik 1019
Ritter, Evan Mays, Fan Wang, Felipe Petroski Such, 1020
Filippo Raso, Florencia Leoni, Foivos Tsimpourlas, 1021
Francis Song, Fred von Lohmann, Freddie Sulit, 1022
Geoff Salmon, Giambattista Parascandolo, Gildas 1023
Chabot, Grace Zhao, Greg Brockman, Guillaume 1024
Leclerc, Hadi Salman, Haiming Bao, Hao Sheng, 1025
Hart Andrin, Hessam Bagherinezhad, Hongyu Ren, 1026
Hunter Lightman, Hyung Won Chung, Ian Kivlichan, 1027
Ian O’Connell, Ian Osband, Ignasi Clavera Gilaberte, 1028
Ilge Akkaya, Ilya Kostrikov, Ilya Sutskever, Irina 1029

11

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2401.11181
https://arxiv.org/abs/2401.11181
https://arxiv.org/abs/2401.11181
https://arxiv.org/abs/2401.11181
https://arxiv.org/abs/2401.11181
https://arxiv.org/abs/2311.04939
https://arxiv.org/abs/2311.04939
https://arxiv.org/abs/2311.04939

Kofman, Jakub Pachocki, James Lennon, Jason Wei,1030
Jean Harb, Jerry Twore, Jiacheng Feng, Jiahui Yu,1031
Jiayi Weng, Jie Tang, Jieqi Yu, Joaquin Quiñonero1032
Candela, Joe Palermo, Joel Parish, Johannes Hei-1033
decke, John Hallman, John Rizzo, Jonathan Gordon,1034
Jonathan Uesato, Jonathan Ward, Joost Huizinga,1035
Julie Wang, Kai Chen, Kai Xiao, Karan Singhal, Ka-1036
rina Nguyen, Karl Cobbe, Katy Shi, Kayla Wood,1037
Kendra Rimbach, Keren Gu-Lemberg, Kevin Liu,1038
Kevin Lu, Kevin Stone, Kevin Yu, Lama Ahmad,1039
Lauren Yang, Leo Liu, Leon Maksin, Leyton Ho,1040
Liam Fedus, Lilian Weng, Linden Li, Lindsay Mc-1041
Callum, Lindsey Held, Lorenz Kuhn, Lukas Kon-1042
draciuk, Lukasz Kaiser, Luke Metz, Madelaine Boyd,1043
Maja Trebacz, Manas Joglekar, Mark Chen, Marko1044
Tintor, Mason Meyer, Matt Jones, Matt Kaufer,1045
Max Schwarzer, Meghan Shah, Mehmet Yatbaz,1046
Melody Y. Guan, Mengyuan Xu, Mengyuan Yan,1047
Mia Glaese, Mianna Chen, Michael Lampe, Michael1048
Malek, Michele Wang, Michelle Fradin, Mike Mc-1049
Clay, Mikhail Pavlov, Miles Wang, Mingxuan Wang,1050
Mira Murati, Mo Bavarian, Mostafa Rohaninejad,1051
Nat McAleese, Neil Chowdhury, Neil Chowdhury,1052
Nick Ryder, Nikolas Tezak, Noam Brown, Ofir1053
Nachum, Oleg Boiko, Oleg Murk, Olivia Watkins,1054
Patrick Chao, Paul Ashbourne, Pavel Izmailov, Pe-1055
ter Zhokhov, Rachel Dias, Rahul Arora, Randall1056
Lin, Rapha Gontijo Lopes, Raz Gaon, Reah Mi-1057
yara, Reimar Leike, Renny Hwang, Rhythm Garg,1058
Robin Brown, Roshan James, Rui Shu, Ryan Cheu,1059
Ryan Greene, Saachi Jain, Sam Altman, Sam Toizer,1060
Sam Toyer, Samuel Miserendino, Sandhini Agarwal,1061
Santiago Hernandez, Sasha Baker, Scott McKinney,1062
Scottie Yan, Shengjia Zhao, Shengli Hu, Shibani1063
Santurkar, Shraman Ray Chaudhuri, Shuyuan Zhang,1064
Siyuan Fu, Spencer Papay, Steph Lin, Suchir Balaji,1065
Suvansh Sanjeev, Szymon Sidor, Tal Broda, Aidan1066
Clark, Tao Wang, Taylor Gordon, Ted Sanders, Te-1067
jal Patwardhan, Thibault Sottiaux, Thomas Degry,1068
Thomas Dimson, Tianhao Zheng, Timur Garipov,1069
Tom Stasi, Trapit Bansal, Trevor Creech, Troy Peter-1070
son, Tyna Eloundou, Valerie Qi, Vineet Kosaraju,1071
Vinnie Monaco, Vitchyr Pong, Vlad Fomenko,1072
Weiyi Zheng, Wenda Zhou, Wes McCabe, Wojciech1073
Zaremba, Yann Dubois, Yinghai Lu, Yining Chen,1074
Young Cha, Yu Bai, Yuchen He, Yuchen Zhang, Yun-1075
yun Wang, Zheng Shao, and Zhuohan Li. 2024. Ope-1076
nai o1 system card. Preprint, arXiv:2412.16720.1077

OpenAI. 2024. Chatgpt. https://chat.openai.com.1078
Accessed: 2024-08-09.1079

Pratyush Patel, Esha Choukse, Chaojie Zhang, Aashaka1080
Shah, Íñigo Goiri, Saeed Maleki, and Ricardo Bian-1081
chini. 2023. Splitwise: Efficient generative llm infer-1082
ence using phase splitting. Power, 400(700W):1–75.1083

Archit Patke, Dhemath Reddy, Saurabh Jha, Hao-1084
ran Qiu, Christian Pinto, Shengkun Cui, Chandra1085
Narayanaswami, Zbigniew Kalbarczyk, and Ravis-1086
hankar Iyer. 2024. One queue is all you need: Resolv-1087
ing head-of-line blocking in large language model1088
serving. Preprint, arXiv:2407.00047.1089

Yongxia Xia Skadberg and James R Kimmel. 2004. Vis- 1090
itors’ flow experience while browsing a web site: its 1091
measurement, contributing factors and consequences. 1092
Computers in human behavior, 20(3):403–422. 1093

Jovan Stojkovic, Chaojie Zhang, Íñigo Goiri, Josep Tor- 1094
rellas, and Esha Choukse. 2024. Dynamollm: De- 1095
signing llm inference clusters for performance and 1096
energy efficiency. arXiv preprint arXiv:2408.00741. 1097

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 1098
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz 1099
Kaiser, and Illia Polosukhin. 2023. Attention is all 1100
you need. Preprint, arXiv:1706.03762. 1101

Minh Duc Vu, Han Wang, Zhuang Li, Jieshan Chen, 1102
Shengdong Zhao, Zhenchang Xing, and Chun- 1103
yang Chen. 2024. Gptvoicetasker: Llm-powered 1104
virtual assistant for smartphone. arXiv preprint 1105
arXiv:2401.14268. 1106

Yuxin Wang, Yuhan Chen, Zeyu Li, Xueze Kang, Zhen- 1107
heng Tang, Xin He, Rui Guo, Xin Wang, Qiang Wang, 1108
Amelie Chi Zhou, and Xiaowen Chu. 2024. Burst- 1109
gpt: A real-world workload dataset to optimize llm 1110
serving systems. Preprint, arXiv:2401.17644. 1111

Harald Weinreich, Hartmut Obendorf, Eelco Herder, 1112
and Matthias Mayer. 2008. Not quite the average: 1113
An empirical study of web use. ACM Transactions 1114
on the Web (TWEB), 2(1):1–31. 1115

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, 1116
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan 1117
Li, Dayiheng Liu, Fei Huang, Guanting Dong, Hao- 1118
ran Wei, Huan Lin, Jialong Tang, Jialin Wang, Jian 1119
Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin 1120
Xu, Jingren Zhou, Jinze Bai, Jinzheng He, Junyang 1121
Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang, 1122
Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng 1123
Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin, 1124
Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, 1125
Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng, 1126
Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin 1127
Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang 1128
Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu 1129
Cui, Zhenru Zhang, and Zhihao Fan. 2024. Qwen2 1130
technical report. arXiv preprint arXiv:2407.10671. 1131

Gyeong-In Yu, Joo Seong Jeong, Geon-Woo Kim, Soo- 1132
jeong Kim, and Byung-Gon Chun. 2022. Orca: A 1133
distributed serving system for {Transformer-Based} 1134
generative models. In 16th USENIX Symposium 1135
on Operating Systems Design and Implementation 1136
(OSDI 22), pages 521–538. 1137

Hong Zhang, Yupeng Tang, Anurag Khandelwal, and 1138
Ion Stoica. 2023. {SHEPHERD}: Serving {DNNs} 1139
in the wild. In 20th USENIX Symposium on Net- 1140
worked Systems Design and Implementation (NSDI 1141
23), pages 787–808. 1142

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan 1143
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, 1144
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2024. 1145
Judging llm-as-a-judge with mt-bench and chatbot 1146

12

https://arxiv.org/abs/2412.16720
https://arxiv.org/abs/2412.16720
https://arxiv.org/abs/2412.16720
https://chat.openai.com
https://arxiv.org/abs/2407.00047
https://arxiv.org/abs/2407.00047
https://arxiv.org/abs/2407.00047
https://arxiv.org/abs/2407.00047
https://arxiv.org/abs/2407.00047
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2401.17644
https://arxiv.org/abs/2401.17644
https://arxiv.org/abs/2401.17644
https://arxiv.org/abs/2401.17644
https://arxiv.org/abs/2401.17644

arena. Advances in Neural Information Processing1147
Systems, 36.1148

Yinmin Zhong, Shengyu Liu, Junda Chen, Jianbo Hu,1149
Yibo Zhu, Xuanzhe Liu, Xin Jin, and Hao Zhang.1150
2024. Distserve: Disaggregating prefill and decoding1151
for goodput-optimized large language model serving.1152
arXiv preprint arXiv:2401.09670.1153

13

	Introduction
	Background and Related Works
	Streaming LLM Serving
	User Experience in LLM Serving
	Metrics of LLM Serving
	Metric-Driven Optimization

	Revisiting the SLOs
	A Framework of SLOs
	Optimization on Existing SLOs
	naive
	A New Request-level SLO Defination

	Revisiting the System level Metrics
	Existing Strategy
	Smooth Goodput

	Evaluation
	Experiment Setup
	Analysis with Existing Metrics and Smooth Goodput at the Service Level
	Analysis with SLOs at Request Level

	Conclusion and Future Work

