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Abstract001

Large language models (LLMs) have achieved002
remarkable performance and are widely de-003
ployed in various applications, while the serv-004
ing of LLM inference has raised concerns about005
maintaining high user experience and achiev-006
ing sufficient throughput. Balancing these fac-007
tors is crucial for reducing operational costs008
while ensuring optimal performance. Accord-009
ingly, service level objectives (SLOs) and sys-010
tem level metrics have been introduced as key011
performance measures for LLM serving. How-012
ever, current metrics fall short in accurately013
capturing user experience. We find two notable014
issues: 1) manually delaying the delivery of015
some tokens can improve metrics of requests,016
and 2) actively abandoning requests that do not017
meet SLOs can improve system level metrics.018

In this paper, we revisit SLOs and system level019
metrics in LLM serving and propose a compre-020
hensive metric framework called smooth good-021
put, which integrates SLOs and system level022
metrics to reflect the nature of user experience023
in LLM serving. It is designed to be adapt-024
able, with parameters that can be tailored to the025
specific objectives of various tasks. Through026
this unified framework, we reassess the perfor-027
mance of different LLM serving systems under028
multiple workloads. We aspire for this frame-029
work to establish a standardized method for030
evaluating LLM serving, thereby encouraging031
cohesive advancements in future research.032

1 Introduction033

Large language models (LLMs) have achieved034

remarkable performance in many tasks and are035

widely deployed in various applications, such as036

chatbots (OpenAI, 2024; Zheng et al., 2024; Mon-037

tagna et al., 2023) and virtual assistants (Vu et al.,038

2024; Dong et al., 2023). With the increasing de-039

mand for LLM services, researchers have proposed040

various optimization strategies for LLM serving041

systems. Initially, the LLM serving systems are de-042

signed to maximize the throughput(Yu et al., 2022;043

Kwon et al., 2023). A straightforward approach 044

is to increase the batch size of the requests to im- 045

prove the resource utilization, thereby increasing 046

the throughput. However, large batch sizes may 047

lead to high latency, which may degrade the user 048

experience. We notice in the real-world LLM serv- 049

ing applications, the user need to interact with the 050

system, such as (OpenAI, 2024; DeepSeek-AI et al., 051

2025; OpenAI et al., 2024; Vu et al., 2024; Dong 052

et al., 2023), which requires a real-time response. 053

Specially, to evaluate user experience in LLM 054

serving systems, many metrics of single request 055

that measures the token delivery time of a re- 056

quest have been used to in previous work (Patel 057

et al., 2023; Agrawal et al., 2024b; Cheng et al., 058

2024; Patke et al., 2024), such as time-to-first-token 059

(TTFT), time-between-tokens (TBT), and time-per- 060

output-token (TPOT). For the first token generation, 061

it is costly to process the prefill stage (Vaswani 062

et al., 2023; Zhong et al., 2024), thereby introduc- 063

ing the TTFT for the first token generation, which 064

may significantly larger than the TBT/TPOT. TPOT 065

measures the average time between tokens in a re- 066

quest, while it is too loose to reflect the user experi- 067

ence, as a long stall in the middle of the request can 068

be averaged out by short intervals between other to- 069

kens, which actually degrades the user experience. 070

Therefore, (Agrawal et al., 2024b) introduces the 071

TBT metric to constrain the time interval between 072

two consecutive tokens. To further evaluate the 073

performance of LLM serving systems ensuring the 074

SLOs, system level metrics that measure the perfor- 075

mance of each request of the system such as SLO 076

attainment and goodput are proposed (Zhong et al., 077

2024; Agrawal et al., 2024b). The SLO attainment 078

measures the proportion of requests that meet the 079

SLOs, which can be viewed as the constraint of 080

the serving system, while the goodput measures 081

the number of completed requests that meet the 082

SLOs per second, which can be viewed as the per- 083

formance of the serving system. We also notice 084
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that various systems and optimization strategies085

have been proposed to improve the system level086

metrics under the SLOs (Patel et al., 2023; Agrawal087

et al., 2024b; Zhong et al., 2024; Cheng et al., 2024;088

Patke et al., 2024).089

However, we observe that these metrics fail to090

capture the nature of user experience. Real-time091

LLM service is a rapidly interactive activity, just092

like web browsing (Weinreich et al., 2008; Skad-093

berg and Kimmel, 2004). Users do not perceive094

them as a sequence of single isolated token gener-095

ation events, but as a continuous stream of infor-096

mation. The evaluation bias caused by ignoring097

the inherent nature of user experience in streaming098

LLM serving can even lead optimization efforts099

based on these metrics to develop in a suboptimal100

direction. We identify several limitations in the101

existing metrics as follows:102

TBT is too tight for overall user experience while103

TPOT and E2E latency are too loose. TBT mea-104

sures the time interval between each token within105

a request, while TPOT reflects the average interval.106

As indicated in (Egger et al., 2012), user experi-107

ence in streaming services is influenced by waiting108

times without information to process. If users have109

enough information to process, occasional stalls110

(i.e., high TBT) may not degrade the experience.111

For example, if a system delivers 10 tokens in the112

first second, then stalls for 1 second, users read-113

ing at 4 tokens per second will still have a good114

experience, although the TBT is up to 1 second.115

Conversely, if only 2 tokens are delivered before116

a 1-second stall, users will suffer from the waiting117

time, although the TPOT is only 0.1s. In other118

words, the cost of high latency iterations is shared119

with previous iterations.120

Goodput and SLO attainment are not able to re-121

flect the benefits of requests that exceed the SLO.122

Goodput is a system level metric that can reflect the123

number of completed request that meet the SLOs124

per second, while SLO attainment reflects the pro-125

portion of requests that meet the SLOs. However,126

existing metrics definitions ignore the contribution127

of requests that are missed. Therefore, the optimal128

strategy seems to be to give up or reject the requests129

that have already missed the SLOs, which is not a130

good choice for users obviously. We argue that the131

requests that missed the SLO requirements are still132

valuable, and the benefits of all the requests should133

be carefully considered.134

Figure 1 illustrates how the streaming output135
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Figure 1: Token generation timeline in LLM serving
systems and its impact on user experience. The red
area indicates affected user experience. The overall
experience is determined by the total waiting time (red
line). Some longer TBTs do not degrade perceived
experience due to user processing characteristics.

affects user experience. The horizontal red line 136

marked on the time-axis indicates two types of 137

waiting times: 1) the time to receive the first token 138

(TTFT) and 2) the time for subsequent tokens that 139

are generated slower than the user’s reading speed 140

(indicated by the reference line). At the beginning, 141

the user experience is poor when the user has to 142

wait for the first token. Subsequently, when users 143

finish reading all tokens delivered, they still suffer 144

from waiting. On the other hand, occasional stalls 145

in the middle of the line will not affect the user 146

experience as long as the user has enough tokens 147

to read. Specifically, the user may not even notice 148

the stalls in the red circles (the user is reading the 149

delivered information) although the TBT is large. 150

In this paper, we revisit SLOs and system level 151

metrics in LLM serving systems and identify the 152

limitations of existing metrics. To better model 153

the user experience in LLM serving systems, we 154

redesigned the SLO to define reasonable deadlines 155

for each token relative to the commitment of a 156

request, rather than relative to the previous token. 157

Upon the new SLO metric, we introduce the smooth 158

goodput to evaluate the performance of the service. 159

The smooth goodput considers the benefits of to- 160

ken generation as well as the punishment of user 161

waiting time without tokens to read. 162

Based on this unified framework, we re-evaluate 163

the performance of different LLM serving systems 164

under multiple workloads, aiming to help unify the 165

development direction of research on LLM serving 166

focused on user experience optimization. 167

2



2 Background and Related Works168

In this section, we revisit the background of LLM169

serving, including the autoregressive inference,170

mainstream LLM serving systems, and metrics171

to evaluate their serving quality. Based on these172

metrics, many scheduling strategies have been pro-173

posed.174

2.1 Streaming LLM Serving175

LLMs process autoregressive inference to generate176

output tokens based on input prompts. Specifically,177

a prompt of length k can be represented as a token178

sequence (t1, t2, ..., tk). The output generated by179

the LLM is also a token sequence of length n, de-180

noted as (tk+1, tk+2, ..., tk+n). The entire process181

consists of n iterations, where each iteration gen-182

erates a token. In the current iteration, the prompt183

and the tokens generated in previous iterations are184

concatenated as the input. Based on the charac-185

teristics of computation and memory access, these186

iterations can be divided into two phases: prefill187

and decode. As shown in Fig. 2, in the prefill phase,188

the LLM processes the entire prompt within a sin-189

gle iteration and generates the first token A0. The190

following decode phases generate the subsequent191

tokens (A1, A2, ..., An) one by one, ending with192

the generation of the EOS token AE .193

2.2 User Experience in LLM Serving194

Online LLM serving systems are often designed195

to provide real-time services to users, which196

is a rapidly interactive activity like web brows-197

ing (Weinreich et al., 2008; Skadberg and Kim-198

mel, 2004). When interacting with LLMs, users199

expect the system to respond quickly and provide200

instant feedback. During this continuous stream of201

information, always lefting enough information to202

process makes users feel comfortable (Egger et al.,203

2012).204

Exsiting works (Brysbaert, 2019) has studied the205

speed of reading and processing text. The average206

reading speed of an adult is about 3-4 words per207

second. Based on the granularity of tokenization208

in different languages, we can roughly estimate the209

token generation speed target.210

For offline LLM serving, user experience is not211

as stringent as in online scenarios. Users generally212

focus on the end-to-end metrics of batched offline213

tasks, and typically do not have specific require-214

ments for streaming-specific metrics like TBT and215

TPOT.216

𝐴𝐴𝐸𝐸𝐸𝐸𝐸𝐸𝐷𝐷𝐴𝐴1𝐷𝐷 𝐴𝐴2𝐷𝐷 𝐴𝐴3𝐷𝐷 𝐴𝐴4𝐷𝐷 𝐴𝐴𝑛𝑛𝐷𝐷𝐴𝐴𝑃𝑃 …

A0𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 𝑨𝑨

Autoregressive Inference

A1 A2 A3 A4 An AE

Figure 2: LLM Autoregressive Inference.

2.3 Metrics of LLM Serving 217

The metrics used to evaluate the performance of 218

LLM serving can be divided into two main groups: 219

SLOs that represent user experience and system 220

level metrics that assess performance under SLO 221

constraints. 222

As the protocol between the service provider 223

and the user, SLOs have been widely used in LLM 224

serving systems to support better user experience 225

(Patel et al., 2023; Agrawal et al., 2024b; Zhong 226

et al., 2024; Stojkovic et al., 2024; Cheng et al., 227

2024). As shown in Figure 3, the mainstream SLOs 228

in LLM serving systems are discussed as follows: 229

• TPOT (Time-per-Output-Token) and E2E 230

(End-to-End) Latency: TPOT reflects the 231

average time taking to generate a token (some- 232

times excluding the first token) while E2E 233

latency reflects the total time taken for a re- 234

quest (or a batch of requests) from commited 235

by users to when it completed. They have 236

no constraints on the time interval between 237

adjacent tokens. 238

• TTFT (Time-to-First-Token) and TBT 239

(Time-between-Tokens): TTFT reflects the 240

time taken for the generation of the first output 241

token while TBT represents the fine-grained 242

time interval between two adjacent tokens of 243

a request. They further delve into each token 244

generation process. 245

Based on these SLOs, some system level metrics 246

have been proposed to measure the performance of 247

the service: 248

• SLO Attainment: SLO attainment is used to 249

describe the proportion of requests that meet 250

the SLOs. Based on it, capacity is defined as 251

the maximum request rate under the constraint 252

of certain SLO attainment. 253

• Goodput: Goodput is defined as the number 254

of completed requests that meet the SLOs per 255

second in a service. It considers the trade- 256

off between the resource utilization and user 257

experience. 258
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… ……𝐴𝐴4𝐷𝐷𝐵𝐵2𝐷𝐷𝐴𝐴𝑃𝑃 𝐴𝐴1𝐷𝐷 𝐴𝐴3𝐷𝐷𝐵𝐵1𝐷𝐷 𝐴𝐴𝐸𝐸𝐸𝐸𝐸𝐸𝐷𝐷𝐵𝐵𝑃𝑃

𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 𝑩𝑩𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 𝑨𝑨

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐴𝐴 𝑇𝑇𝐵𝐵𝑇𝑇𝐴𝐴1 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐵𝐵

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐴𝐴 (𝐸𝐸𝐸𝐸𝐸 𝑇𝑇𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿)

Exsiting SLOs

Figure 3: Exsiting SLOs of LLM Serving. Note that this
figure ignores the difference between token generation
from the LLM and its delivery to users.

2.4 Metric-Driven Optimization259

Throughput-oriented optimization. Orca (Yu260

et al., 2022) introduces the continuous batching,261

dynamically constructing and processing batches,262

thereby fully leveraging the parallelism of GPUs.263

Building upon this, vLLM (Kwon et al., 2023) fur-264

ther incorporates paged attention, which notably265

enhances compuation throughput, and reduces op-266

erational costs. Consequently, it has been widely267

adopted and established itself as the SOTA frame-268

work for inference services.269

SLO attainment-oriented optimization. Split-270

wise (Patel et al., 2023) and TetriInfer (Hu et al.,271

2024b) proposes splitting prefill and decode phases272

to separate device due to their different features273

of computing and memory access. Sarathi-Serve274

(Agrawal et al., 2024b) introduces chunked pre-275

fills and stall-free batching to mitigate the stall of276

generation. SCOOT (Cheng et al., 2024) propose277

an automatic paramter tuning system to find the278

optimal configuration for the system to meet the279

SLOs. These works improve SLO attainment de-280

fined on different metrics, enabling more requests281

to be served under SLO requirements.282

Goodput-oriented optimization. By avoiding the283

interference between prefill and decode phases,284

DistServe (Zhong et al., 2024) achieves higher285

goodput under the same SLO requirements on286

TTFT and TPOT. That is, more requests that meet287

the SLOs can be served per second. In fact, there288

have been goodput-optimal works on DNNs before289

(Zhang et al., 2023).290

In summary, despite the diverse metrics, certain291

projects such as Splitwise, Distserve, and TetriInfer292

have identified analogous optimization opportuni-293

ties. However, the inability to directly compare294

the effectiveness of these optimizations across dif-295

ferent measurement systems poses challenges in296

making informed optimization choices.297

3 Revisiting the SLOs 298

We revisit the design of SLOs in recent works on 299

LLM serving and demonstrate that existing SLOs 300

are irrational, and propose a new SLO that is more 301

aligned with user experience, focusing on the rela- 302

tionship between the information processing of the 303

user and the delivery of information by the service. 304

3.1 A Framework of SLOs 305

To align various SLOs, we introduce a unified 306

framework of SLOs that can be customized to rep- 307

resent the various requirements proposed in differ- 308

ent workloads. We view the objective as setting 309

the deadline for the generation time of each token, 310

whereas exsiting SLOs only care about the genera- 311

tion time interval between adjacent tokens. 312

Definition. We define the deadline of the i-th out- 313

put token of a request as di, while ti is the actual 314

generation time of the i-th output token. Therefore, 315

the SLO constraints can be formulated as: 316

∀i, ti ≤ di. (1) 317

Customization of existing SLOs. The framework 318

can be customized to represent the various require- 319

ments proposed in different works by adjusting the 320

deadline of each token. The details customization 321

of existing SLOs are following: 322

• TTFT and TBT. 323

di =

{
TTFT, i = 1,
ti−1 + TBT, i > 1.

(2) 324

Note that the deadline of the i-th token is deter- 325

mined by the generation time of the previous 326

token, which, as we will show, is not aligned 327

with user experience. 328

• End-to-end latency. 329

di = E2E, (3) 330

where E2E is the time of end-to-end latency. 331

Obviously, if the last token is generated be- 332

fore the end-to-end latency, the request meets 333

the SLO. As aforementioned, the end-to-end 334

latency is a very loose constraint, which is not 335

aligned with user experience all the time. 336

3.2 Optimization on Existing SLOs 337

Due to the prefill-prioritizing principle for improv- 338

ing throughput in vLLM, the decode phase of the 339
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Figure 4: An illustration of iteration scheduling strate-
gies.

following tokens for request A will be stalled until340

the prefill phase of request B is finished, which re-341

sults in a generation stall, i.e., a large TBT between342

AD
5 and AD

6 . Therefore, Sarathi-Serve splits the343

prefill phase of B into multiple chunks (BP
1 , BP

2 ,344

BP
3 ) and fuses them with the decode phases of re-345

quest A in the same batch. Specifically, one prefill346

chunk of request B will attach decoding one token347

of request A, like AD
6 B

P
1 , AD

7 B
P
2 and AD

8 B
P
3 . As-348

suming the prefill stage of B is split into nc chunks,349

the stall time of A is approximately reduced to350

about 1
nc

of the original. By this way, the stall time351

is smoothed, resulting in a smaller TBT. However,352

we observe that the absolute latency from decode353

tokens of request B (BD
1 , BD

2 ....) will not benefit354

from the optimization. Further, our concern arises355

that this slicing approach, by introducing frequent356

assessments of the KV cache, may inadvertently357

lead to an increase in overall latency rather than a358

decrease.359

To summarize, the chunked-prefills smooths the360

TBT by slicing the prefill phase and fusing them361

with the decode phases of other requests. This362

provides an insight that instead of slicing, can we363

manually schedule the prefill and decode phases364

and achieve better performance?365

3.3 A Naive Imitation of Sarathi-Serve366

We propose a naive imitation strategy, called de-367

code prepone, which can achieve a comparable ef-368

fect to chunked prefills on TBT by simply schedul-369

ing without slicing. As shown in Figure 4, specifi-370

cally, the next n decode tokens for request A (AD
6371

and AD
7 ) are preponed to be generated before the372

prefill of request B starts. Meanwhile, instead of di-373

rectly outputting these tokens of request A, which374

can result in large TBT between n-th token (AD
7 )375

to n+ 1-th token (AD
8 ), we smoothly output these376

tokens during the prefill phase of request B.377

To achieve smooth output, we take an intuitive378

approach by assigning a tdelay to the output timing379

of each preponed token. As shown in Figure 4, even380

though AD
6 and AD

7 have completed their decoding, 381

they are scheduled to be released sequentially after 382

the tdelay interval, while ensuring their output time 383

will not exceed the completion time of B’s prefill 384

phase. This strategy smooths the overall output 385

flow while maintaining overall latency and mitigat- 386

ing excessive TBT concerns. Besides, it can also be 387

adopted to trade TTFT for TBT/TPOT by delaying 388

the delivery of the first token. 389

3.4 A New Request-level SLO Defination 390

Before delving into the details of the new SLO, we 391

first introduce a output delay trick that can be used 392

to imporve the SLO attainment on TTFT and TBT 393

to highlight the issue of exsiting metrics. 394

Output delay trick. Output delay is a tactic 395

where tokens are released until the TBT deadline is 396

reached, rather than immediately upon generation. 397

Implementing output delay can be done by adding 398

an intermediate buffer layer between the inference 399

engine and the client, allowing looser constraints 400

on the delivery of subsequent tokens. 401

Delaying the delivery of generated tokens to 402

users can improve metrics, which is counterintu- 403

itive in fact. Essentially, it is because the premature 404

delivery of tokens inadvertently imposes additional 405

latency constraints on the subsequent tokens. Thus, 406

there is an urgent need to devise a novel SLO that 407

not only protects the user experience but also re- 408

frains from penalizing the early delivery of tokens. 409

Intuition. In fact, users do not frequently notice the 410

lag of the last word during the generation process. 411

We argue that generation stalls are not necessarily 412

harmful to user experience, as long as the delivery 413

of tokens is aligned with the user’s reading speed. 414

Given the limitations of TBT in setting the time 415

interval between adjacent tokens, we shift the fo- 416

cus of the SLO to the actual user experience. For 417

instance, we can set the constraint of each request 418

according to the response delay that users can toler- 419

ate and the speed of processing output information, 420

such as reading the output of the chatbot, under- 421

standing the summary of long text, listening, etc. 422

Definition: Porting the new SLO to the framework, 423

we have 424

di = V × i, (4) 425

where V is the output information processing speed 426

of the user, and i is the index of the output words. 427

di constraints the deadline of the i-th token, after 428

which the user will perceive a pause in the output 429

stream. 430
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4 Revisiting the System level Metrics431

Note that SLOs are only concerned with the user432

experience at request level. However, in the system433

view, the service provider is more concerned about434

the overall performance of the service. Specifi-435

cally, the throughput of the service is a key metric,436

directly related to the capacity and efficiency of437

the service. Combining SLOs and throughput, the438

goodput is a metric that can reflect the throughput439

of the service that successfully meets the SLOs.440

4.1 Existing Strategy441

A common practice is the most urgent request-first442

strategy, based on the intuition that the request443

nearest to its deadline is the most important and444

should be processed first.445

In addition to this greedy strategy, goodput-446

based scheduling is also a dominant strategy. Re-447

viewing the definition of goodput as equation 5:448

Goodput =
∑

r∈R 1(∀i, ti ≤ di) · nr

T
, (5)449

where R is the set of requests, 1(·) is the indi-450

cator function, T is the time interval of serving451

the requests in R, and nr is the number of tokens452

that the request r generates. We observe that if453

a request does not meet the SLOs, its goodput is454

assigned a value of 0. This approach, when op-455

timizing for goodput, often leads to abandoning456

requests that cannot meet the SLOs. In LLM serv-457

ing, however, this is an unacceptable outcome for458

users. While latency undoubtedly degrades the user459

experience, abandoning a request altogether poses460

an even greater threat.461

4.2 Smooth Goodput462

Given the shortcomings of the existing goodput463

metric, a new metric must comprehensively con-464

sider the contribution of each request, even if it465

slightly exceeds the SLO requirements. In such466

cases, users have to wait for the subsequent token467

to be generated, after they have finished reading all468

the previously delivered tokens.469

Streaming service and user experience. Unlike470

models with a single forward inference process, in-471

teractive LLM applications are typically deployed472

as streaming services due to the autoregressive na-473

ture of LLMs. Research (Egger et al., 2012) on474

web based streaming services has shown that the475

waiting time of users is a key factor affecting user476

experience.477

Therefore, we introduce the concept of user wait 478

time, namely user idle latency, to measure the user 479

experience. The user idle latency is cumulative 480

duration during which a user is idle and waiting 481

for new tokens to be generated due to the lower 482

generation speed. Formally, the user idle latency l 483

of a request r is defined as: 484

lr =
n

max
i=1

(ti − di), (6) 485

where ti is the time when the i-th token is gen- 486

erated, di is the deadline time of the i-th token 487

delivered to the user, and n is the number of output 488

tokens in the request r. 489

Definition: The smooth goodput is defined as the 490

service benefit per unit of time. The benefit of 491

a request is defined by two factors: the number 492

of tokens that the request generates and the read 493

latency of the request. Formally, we have: 494

benefit(r) = nr − α · f(lr), (7) 495

where nr is the number of tokens that the request 496

r generates, f(·) is a function that maps the user 497

idle latency to the percentage of the benefit that 498

the request can generate, and α is a weight. For 499

interactive applications with stringent latency re- 500

quirements, a higher value of α should be chosen to 501

ensure that idle latency is minimized. In practical 502

deployments, the parameters of the benefit function 503

can be calibrated using historical workload data, 504

including request latency metrics and user behav- 505

iors (e.g., cancellations and complaints), to better 506

align the service characteristics with the benefit 507

calculation. 508

The smooth goodput is defined as: 509

smooth goodput =
∑

r∈R benefit(r)
T

, (8) 510

where T is the time interval of serving the requests 511

committed by the users denoted by R. We notice 512

that Andes (Liu et al., 2024a) also considers the 513

benefit of the requests that miss the SLOs. How- 514

ever, they consider the average token slowdown to 515

the deadline in SLOs, while we consider the maxi- 516

mum token slowdown, i.e., the user idle latency. In 517

practice, once the slowdown has occurred, catching 518

up later does not improve the user experience as 519

the user has already experienced the delay. The 520

maximum slowdown represents the furthest devi- 521

ation from the deadline within the entire request, 522

which corresponds to the total time the user spends 523

waiting for token generation. Therefore, smooth 524

goodput is more reasonable in this context. 525
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Figure 6: Evaluate with smooth goodput.

5 Evaluation526

In this section, we re-evaluate different scheduling527

strategies under the unified metric framework we528

propose. Then we analyze the results and summa-529

rize the challenges of LLM servings. By compar-530

ing with the existing metrics, we demonstrate the531

advantages of smooth goodput.532

5.1 Experiment Setup533

Settings. We conduct our experiments on a server534

equipped with an NVIDIA A100-SXM4-80GB535

GPU, running Debian GNU/Linux 12 and CUDA536

12.2. We use LLaMA-3.1-8B-instruct (Grattafiori537

et al., 2024) and Qwen2-7B (Yang et al., 2024) as538

base models in the experiments. All of our code539

development is based on vLLM 0.6.3, and the ver-540

sions of all required packages are consistent with541

the requirements of it.542

Workloads. For workload, we use ShareGPT as543

the simulation of the conversations with chatbots,544

and LooGLE (Li et al., 2024) as the simulation of545

longer conversations. We set the arrival times of546

requests to follow the Poisson distribution or pro-547

cessed real-world trace with the average rate set548

as the parameter to simulate the arrival of requests.549

We also conduct the real-world trace experiments550

to evaluate the performance under real-world sce-551

narios.552

Metrics. We use the smooth goodput to evaluate553

the performance of LLM serving. We set α =554

5 in our experiments, with a default information555

consumption speed of 20 tokens per second. As556

a comparison, we also use the existing SLOs and557

system level metrics as introduced in Section 2.558

5.2 Analysis with Existing Metrics and 559

Smooth Goodput at the Service Level 560

We first analyze the performance of different 561

strategies using existing metrics, highlighting the 562

statistical regularities of vLLM under varying re- 563

quest rates and examining the underlying causes. 564

Subsequently, we introduce smooth goodput under 565

the same scheduling strategy to reveal new insights 566

that existing metrics fail to capture. 567

Figure 5 illustrates the performance of vLLM at 568

different request rates using the ShareGPT dataset, 569

which features relatively short prompts and re- 570

sponses. These existing metrics provide a compre- 571

hensive view of service performance. In the unsatu- 572

rated stage, as the request rate increases, resources 573

are utilized more efficiently, leading to increasing 574

throughput. Meanwhile, more requests in the batch 575

results in longer batch processing times and conse- 576

quently higher TBT and TPOT. Once the system 577

reaches its capacity, further increasing in request 578

rate causes more requests in queue, significantly 579

increasing TTFT. However, no balanced point can 580

be found obviously between throughput and user 581

experience using existing metrics, since the metrics 582

are not designed to consider the trade-off between 583

them. 584

Next, we evaluate using smooth goodput under 585

the same experiments. We set the information con- 586

sumption speed to 5 tokens per second and α = 10. 587

As shown in Figure 6, in the unsaturated stage, 588

smooth goodput increases with the request rate, as 589

the benefits from increased throughput outweigh 590

the costs. However, as the number of requests con- 591

tinues to rise, the benefits decrease due to high user 592
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(b) With chunked-prefills on.

Figure 7: Token delivery timeline of vLLM.
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Figure 8: The TBT metrics of vLLM.

idle time, leading to a decrease in smooth goodput.593

Chunked prefills reaches the peak smooth goodput594

at a higher request rate than vLLM since it com-595

bines prefill and decode phases to fully utilize the596

GPU’s parallelism, accommodating more requests597

before queuing. This highlights the importance of598

considering the balance between throughput and599

user experience in LLM serving systems.600

5.3 Analysis with SLOs at Request Level601

We conduct experiments to demonstrate that our602

new SLOs can measure the benefit of each request.603

We verify this with prompts averaging 1600 tokens604

in length. From the service logs of the two strate-605

gies, we select the same request under the same606

trace for comparison. Figures 7 and 8 describe the607

token generation process of the request with and608

without the chunked prefills technology. The chun-609

ked prefills implemented in vLLM significantly610

reduce the number of generation stalls, providing a611

smoother token generation process. However, anal-612

ysis of the data reveals that many token generation613

stalls caused by prefill preemption go unnoticed614

by users because some tokens have already been615

delivered to them. At this point, users are busy616

processing the information and may not even no-617

tice the generation stall, provided that a sufficient618

amount of tokens has already been delivered.619

Output Delaying Trick. We verify the effective-620

ness of the output delay trick to support our argu-621

ment on SLOs. As shown in Figure 9a, we imple-622

ment the output delay trick by buffering tokens and623

outputting them at a relatively slower rate. This624

trick is independent of any framework’s scheduling625
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(a) Token delivery timeline.
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Figure 9: Illustration of the output delay trick.

strategy and can be implemented on both the server 626

and client sides. Compared to no delay, the output 627

delay trick effectively reduces the tail TBT with- 628

out affecting the service throughput, as shown in 629

Figure 9b. It delays the delivery of most tokens to 630

the user but achieves better performance in existing 631

metrics. This smooths the TBT to nearly a constant 632

value (the information consumption rate of users) 633

but does not reduce user idle time at all. This indi- 634

cates that the total time users spend waiting has not 635

improved, and therefore users may still complain 636

about the service. This is also why we believe that 637

existing metrics cannot measure user experience 638

well. 639

6 Conclusion and Future Work 640

In this paper, we propose a metric framework to 641

evaluate the performance of LLM serving. We 642

show that existing metrics fail to capture user 643

experience and demonstrate the correlation be- 644

tween user experience and output delivery speed 645

in streaming LLM serving. We introduce smooth 646

goodput to measure service benefit per unit time, 647

considering both service efficiency and user experi- 648

ence. Using this framework, we re-evaluate perfor- 649

mance under multiple workloads, demonstrating its 650

capability in analyzing service performance. We 651

hope this framework can provide a unified standard 652

for evaluating LLM serving performance and foster 653

research in LLM serving optimization. 654

For future work, we observe that the latest slow- 655

thinking models (OpenAI et al., 2024; DeepSeek- 656

AI et al., 2025) undergo a lengthy thought process 657

before delivering tokens to users, which motivates 658

us to explore semantic-aware SLOs, e.g., assigning 659

looser SLOs to requests carrying more information. 660

Additionally, models with different sizes and abili- 661

ties may produce different output throughput and 662

quality, where considering the optimal balance be- 663

tween throughput and user experience is a promis- 664

ing direction. 665
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Limitations666

While we propose a unified metric framework for667

evaluating LLM serving, designed to reflect the668

essence of user experience in streaming scenarios669

such as chatbots and text translation, it is important670

to note that current services also include offline and671

non-streaming delivery scenarios. Our metrics can672

accommodate these workloads but will degrade to673

resemble existing throughput and E2E latency met-674

rics, as these scenarios do not require consideration675

of token delivery timelines.676
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