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ABSTRACT

In a statistical notion of algorithmic fairness, we partition individuals into groups
based on some key demographic factors such as race and gender, and require
that some statistics of a classifier be approximately equalized across those groups.
Current approaches require complete annotations for demographic factors, or focus
on an abstract worst-off group rather than demographic groups. In this paper, we
consider the setting where the demographic factors are only partially available. For
example, we have training examples for white-skinned and dark-skinned males, and
white-skinned females, but we have zero examples for dark-skinned females. We
could also have zero examples for females regardless of their skin colors. Without
additional knowledge, it is impossible to directly control the discrepancy of the
classifier’s statistics for those invisible groups. We develop a disentanglement
algorithm that splits a representation of data into a component that captures the
demographic factors and another component that is invariant to them based on
a context dataset. The context dataset is much like the deployment dataset, it is
unlabeled but it contains individuals from all demographics including the invisible.
We cluster the context set, equalize the cluster size to form a “perfect batch”,
and use it as a supervision signal for the disentanglement. We propose a new
discriminator loss based on a learnable attention mechanism to distinguish a perfect
batch from a non-perfect one. We evaluate our approach on standard classification
benchmarks and show that it is indeed possible to protect invisible demographics.

1 INTRODUCTION

Machine learning is already involved in decision-making processes that affect peoples’ lives such as
in screening job candidates (Raghavan et al., 2020) and in pricing credit (Hurley & Adebayo, 2017).
Efficiency can be improved, costs can be reduced, and personalization of services and products can be
greatly enhanced – these are some of the drivers for the widespread development and deployment of
machine learning algorithms. Algorithms such as classifiers, however, are trained from large amount
of labeled data, and can therefore encode and even reinforce past discriminatory practices that are
present in the data. The classifier might treat some groups of individuals unfavorably, for example,
denying credit on the grounds of language, gender, age and their combined effect. Algorithmic
fairness aims at building machine learning algorithms that can take biased datasets and outputs
fair/unbiased decisions for people with differing protected attributes, such as race, gender, and age.

A typical setting of algorithmic fairness is as follows. We are given a training set of observations
x ∈ X , their corresponding protected attributes s ∈ S, and the target label y ∈ Y for learning a
classifier. In a statistical notion of algorithmic fairness e.g. (Kamiran & Calders, 2012a; Hardt et al.,
2016; Zafar et al., 2017), we control the discrepancy of a classifier’s loss for a small number of
demographic groups defined on protected attributes. Recently, several works have considered the
setting where protected attributes are unknown (Kearns et al., 2018; Hashimoto et al., 2018; Khani
et al., 2019). They aim to control the losses of groups whose size is greater than some predefined
value. These works focus on an abstract worst-off group rather than demographic groups. It has been
noted that the implied worst-off groups may differ from well-specified demographic groups who are
known to suffer from past discriminatory practices (Hashimoto et al., 2018).

We are interested in the setting that is in between having complete annotations for demographic
groups and having none. In this paper, we introduce algorithmic fairness with invisible demographics.
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Figure 1: Overview of learning with invisible demographics: the train dataset, the context dataset and
the proposed approach using a perfect dataset.

Who are the invisible demographics? In the context of machine learning systems, those are individuals
with thin or non-existent labeled training data. The invisible population is primarily composed of
individuals with certain protected attributes (Hendricks, 2005; Abualghaib et al., 2019; Perez, 2019).
We now elaborate on several algorithmic decision scenarios involving invisible demographics. One
scenario is when we observe partial outcomes for some of the demographic groups, e.g. we have
labeled training data for males (with positive and negative outcomes), but for the group of females,
we only observe the one-sided labels (negative outcome). Another scenario is when we do not
observe any outcome for some of the demographic (sub)groups, e.g. we have training samples for
white-skinned and dark-skinned males, and white-skinned females, but we have zero labeled data
for dark-skinned females. An extreme version of the last scenario is when we do not observe any
outcome for females regardless of their skin colors, e.g. we only have training samples for males and
no training examples for females. To summarize, in the invisible demographics problem, we define
the demographics groups that are expected to be seen, so they are not abstract. However, not all of
the demographics are observed (labeled) during training, forming missing or invisible demographics.

This paper presents learning disentangled representations in the presence of invisible demographics.
Our source of supervision is motivated by the observation that we want to deploy our classifier
to the eventual real-world population. This deployment dataset will contain individuals from all
demographics. We thus consider the setting where unlabeled data is available for learning disentangled
representation. We call this data a context set and this context set is much like the deployment dataset,
it is unlabeled but it contains all demographics including the invisible ones.

We aim to convert our unlabeled context set into a perfect dataset (Kleinberg et al., 2016; Choulde-
chova, 2017), a dataset in which the target label and protected attribute are independent (i.e. y ⊥ s).
We will then use this perfect dataset as the inductive bias for learning disentangled representations.
How do we construct this perfect dataset without labels? We assume that the number of demographic
groups (hence clusters) is known a priori corresponding to the diverse demographic groups in the
real-world population in which our machine learning system will be deployed. We use unsupervised
kmeans clustering, or a supervised clustering based on rank statistics; the latter one allows to form
the clusters that also support annotations in the train data. Once the clusters have been found, we can
equalize the cluster size to form a perfect dataset and use it as an input for learning a disentangled
fair representation. See fig. 1 for an overview of our learning with invisible demographic framework.

Specifically, our paper provides the following main contributions:

1. A problem of algorithmic fairness with invisible demographics where we have zero data for
some of demographics and we still have to make predictions for those groups.

2. Applying clustering methods to the task of transforming unlabeled context dataset into a
perfect dataset.

3. Theoretical and experimental justification that the disentangled model with the perfect
dataset as an inductive bias provides a well-disentangled fair representation, one component
captures the demographic factors and another component is invariant to them.

Related work We describe related work in three areas: zero-shot learning, semi-supervised learning,
and disentangled representation learning. On zero-shot learning. The setting with incomplete
training data, where we aim to account for seen and unseen outcomes is also known as generalized
zero-shot learning. Traditionally, zero-shot learning transfers knowledge from classes for which we
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have training data to classes for which we do not have via auxiliary knowledge, e.g. via prototype
examples (Larochelle et al., 2008), intermediate class description such as semantic attributes (Lampert
et al., 2009; Xian et al., 2018), word2vec embeddings (Bucher et al., 2019). Our method similarly
uses a context set as a source of auxiliary knowledge but in in contrast to generalized zero-shot
learning, our context set is an unlabeled pool of data, where class descriptions are unknown. On semi-
supervised learning. Wick et al. (2019) proposed a semi-supervised method that can successfully
harness unlabeled data to correct for the selection bias and label bias in the training data. The
unlabeled data, despite not containing the target label y, is labeled in terms of the protected variable
s. Our setting is significantly harder because there is no label information about y and s in the
context set. On disentangled representations learning. Locatello et al. (2019a) suggested that
disentanglement in representation learning may be a useful property to encourage fairness when
protected variables are not observed. In order for disentangled representations to improve fairness
measure without the knowledge of protected attribute s, they have to assume that the target label y
and the protected attribute s are independent, i.e. y ⊥ s. Though, in fairness settings, the variable s
is correlated with the variable y, and therefore unsupervised methods are not suitable for fairness
(Jaiswal et al., 2018b; 2019). Indeed, experiments in (Locatello et al., 2019a) were wholly done with
procedurally generated synthetic datasets involving 2D and 3D shapes. Without some supervision or
inductive bias, disentangled representation methods would not solve the issue of algorithmic fairness
with invisible demographics (Locatello et al., 2019b).

2 METHODOLOGY

2.1 THEORETICAL BACKGROUND

In this section, we first formulate mathematically the problem of invisible demographics and its
associated issue of algorithmic fairness. We then motivate theoretically the idea of perfect dataset for
achieving fairness, and its use for an inductive bias in learning disentangled representations.

Invisible demographics and algorithmic fairness. Let S denote the set of discrete-valued protected
attributes with an associated domains S. S can take the values taken by a single protected attribute,
or, S = S1 × S2 × . . .× Sp with S1, . . . , Sp be discrete-valued protected attributes more generally.
X , with the associated domain X , represents other attributes of the data. Let Y denote the space of
class labels for a classification task (Y = {0, 1} for binary classification or Y = {1, 2, . . . , Ccls} for
multi-class classification). For ease of exposition, we assume that we have multiple sourcesM of
samples, one for each combination of class label y and protected attribute s. That is, we have:

Mys, ∀y ∈ Y,∀s ∈ S, (1)

where, for example, the source My=0,s=0 contains all data points with class label y = 0 and
protected attribute s = 0. As in a standard supervised learning task, we have access to a training set
Dtr = {(xi, si, yi)}, that is used to learn a model M : X → Y . Dtr is composed of several sources.
This labeled training dataset, however, lacks samples from some of the sources:

∃y ∈ Y,∃s ∈ S : Dtr ∩Mys = ∅. (2)

For example, we might not have samples from two sources: My=0,s=0 andMy=1,s=0. In binary
classification, this corresponds to zero-labeled data for the invisible demographic group s = 0. Or we
only observe a negative outcome for the invisible demographic s = 0, i.e. we haveMy=1,s=0 = ∅.

Once the model M is trained, we deploy it to the real-world population with diverse demographic
groups. That is, we have a deployment set, Dt = {(xi)} which has overlap with all sources:

Dt ∩Mys 6= ∅ ∀y ∈ Y,∀s ∈ S. (3)

If the model relies only on the incomplete training set, it is not unreasonable to expect that the model
to easily misunderstand the invisibles. We can all agree that this sounds unfair, and we would like to
rectify this. We will be precise shortly about the adopted mathematical definitions of fairness.

We propose to alleviate the issue of unfairness to the invisibles by mixing labeled with unlabeled
data, which is usually much cheaper to obtain. In this paper, we call this unlabeled data a context set
Dctx = {(xi)}. This context set has overlap with all sources:

Dctx ∩Mys 6= ∅ ∀y ∈ Y,∀s ∈ S (4)
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The context set is much like the deployment set: it has no information about class labels y or the
protected attributes s.

We adopt a statistical notion of algorithmic fairness in which it balances a certain condition between
groups of individuals with different protected attributes. The term ȳ below is the prediction of a
machine learning model M . Several statistical fairness criteria have been proposed (Kamiran &
Calders, 2012a; Hardt et al., 2016; Zafar et al., 2017; Chouldechova, 2017; Raghavan et al., 2020)
(shown below for the case where s and y are binary):

Pr(ȳ = 1|s = 0) = Pr(ȳ = 1|s = 1) (equality of acceptance rate) (5)
Pr(ȳ = 1|s = 0, y) = Pr(ȳ = 1|s = 1, y) (equality of true positive/negative rate) (6)
Pr(y = 1|s = 0, ȳ) = Pr(y = 1|s = 1, ȳ) (equality of positive/negative predicted value) (7)

Generally, those statistical notions can be expressed in terms of different (conditional) independence
statements between the involved random variables (Barocas et al., 2019): ȳ ⊥ s (equation 5),
ȳ ⊥ s | y (equation 6), and y ⊥ s | ȳ (equation 7). If our training set has no positive outcome for
the demographic s = 0, i.e. My=1,s=0 = ∅, the true positive rate for this group will suffer, and
therefore we will likely not be able to satisfy, among others, equality of true positive rate.

Perfect dataset. We call a dataset for which y ⊥ s holds, a perfect dataset (Chouldechova, 2017;
Kleinberg et al., 2016). If we have access to a perfect dataset, we could equalize true positive/negative
rates (eq. 6) and also equalize positive/negative predicted values (eq. 7) for all demographic groups.
This can be shown by using the sum and product rule of conditional probabilities, e.g. (Kannan
et al., 2019). Let’s consider a binary-valued protected attribute, s′ versus s′′. For s′, we can compute:
Pr(y = 1|ȳ = 1, s′) = Pr(ȳ=1|y=1,s′)Pr(y=1|s′)/(Pr(ȳ=1|y=1,s′)Pr(y=1|s′)+Pr(ȳ=1|y=0,s′)(1−Pr(y=1|s′))),
and accordingly for s′′. The conditional probability on the left hand side is a positive predicted value,
and this quantity can be expressed in terms of true positive/negative rates and the base (prior) rate,
shown on the right hand side. If we have a perfect dataset (y ⊥ s holds, which means equal base
rates Pr(y = 1|s′) = Pr(y = 1|s′′)), an equality in the true positive/negative rates will give us an
equality in the positive/negative predicted values. Similarly, with a perfect dataset, we can equalize
true positive/negative rates (eq. 6) and also acceptance rates (eq. 5) for all demographic groups.
From the sum probability rule, we have: Pr(ȳ = 1|s′) = Pr(ȳ = 1|y = 1, s′)Pr(y = 1|s′) + Pr(ȳ =
1|y = 0, s′)(1− Pr(y = 1|s′)) for s′ value, and accordingly for s′′ value. Here, an acceptance rate
on the left hand side is related to true positive/negative rates and the base (prior) rate as shown on the
right hand side. In general, however, our given dataset is likely to be imperfect. In this paper, we
pursue learning a fair classifier for all demographics as learning disentangled representations with an
approximately perfect dataset.

Disentangled representation. Disentanglement learning aims to find a split representation of a
data point x and a mapping function f such that f(x) = (z1, z2, . . . , zp) where z1, z2, . . . , zp are p
distinct (independent) factors of variations. We can mathematically formalize this intuitive definition
using group and representation theories Higgins et al. (2018), or using structural causal models Suter
et al. (2019). Specifically in this paper, we would like to split representation of data into two factors
as f(x) = (zy, zs) where zy contains factors that are relevant for y-prediction and zs contains factors
related to demographic group s. As noted by Jaiswal et al. (2018a; 2019) (also vide sec. 1), since the
protected variable s is correlated with the class label y, we need annotations of undesired nuisance
variable s to be successful in using disentanglement learning methods for fairness. We only have
annotations of variable s in the training set Dtr = {(xi, si, yi)}, however, crucially, this set contains
missing demographic groups. We have all demographic groups in the context set Dctx = {(xi)}
(also in the deployment set Dtr = {(xi)}), though, the challenge is we should not expect annotations
of protected variable s at the deployment time. The next section will show that we can still leverage
the context set for learning the disentangled representations.

Disentanglement with a perfect dataset. Our framework for learning the disentangled representa-
tions comprises four core modules: 1) an encoder function f that embeds x into a bipartite space
f(x) → (zy, zs); 2) a decoder function g that learns the inverse of f , mapping back from the
embedded space into the input domain g(zy, zs)→ x̃; 3) a predictor function l that predicts y from
zy, and 4) a discriminator function h that classifies whether a given batch of samples embedded in
zy derives from the either context set or the training set; this marks a significant departure from the
typical GAN discriminator, which takes as input batches of data and yields a prediction for each
sample independently of the other samples in the batch. Fig. 2a shows our framework, where the
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(a) Architecture of our proposed method.
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(b) Example representation of the dis-
tribution matching algorithm. In this
case, the training set is lacking exam-
ples of purple 4’s. By enforcing the
subspace zy to have the same distri-
bution for both the training and test
set, the model is encouraged to learn a
representation that is invariant to color
(or s in general.) For this to work, it is
crucial that the batches are balanced.

Figure 2: Overview of the disentangling framework with a perfect dataset as an inductive bias.

training signal comes from the perfect dataset. Formally, given the training set, Dtr and samples
from the balanced (i.e. perfect – see section 2.2 for how this details on how this can be practically
achieved) context set Xperf , our learning objective can be written as:

Lmatch =
∑

x∈Xtr
⋃
Xperf

Lrecon(x, g(zs, zy)) + λ1

∑
x∈Xtr

Lsup(y, l(zy))+

+ λ2 (log h(f(zy ⊂ Xperf )) + log(1− h(f(zy ⊂ Xtr))) , (8)

where Lrecon and Lsup denote the reconstruction loss, and supervised loss, respectively, and λ1 and
λ2 are pre-factors. In practice, this objective is computed over mini-batches, B, and the discriminator
h is trained via the standard JSD loss (Goodfellow et al., 2014) to map a batch of data points
from the training set and the context set to a binary label: 1 if the batch is judged to have been
sampled from the context set, 0 otherwise. Its goal is to effectively estimate the probability that
a batch of samples, as a set, has been sampled from one distribution or the other. Since the task
is a set-prediction one, we require that the function it defines respects the exchangeability of the
batch dimension – that is the discriminator’s predictions should take into account dependencies
between samples in a batch but should be invariant to the order in which they appear, i.e. we have
h({zy}Bb=i) = h({zy}Bb=π(i)) for all permutations π ∈ Π. To render the entirety of the function h
composed of sub-functions h1(h2(h3...))), it requires only the innermost, sub-function, ρ in the chain
to have this property. While there are a number of choices when it comes to defining ρ, we choose a
weighted average ρ = 1

B

∑
i({attention(zy)}Bb=i), with weights computed according to a learned

attention mechanism. It takes the form of the scaled dot-product attention (Vaswani et al., 2017)
attention(Q,K, V ) := softmax(QKT /

√
d)V, , weighting values (V) according to the similarity

between the associated key (K) and query (Q) matrices, as measured by their dot-product. Q, K, and
V are used after they have been embedded into linear subspaces by matrix-multiplication with learned
weight matrices of dimension Rm×d. We found that defining K and V as zy , and Q as the mean of zy
over B, yielded good results and leave it to future work to explore more sophisticated methods. The
result of ρ is then processed by a series of fully-connected layers, following the DeepSets (Zaheer
et al., 2017) paradigm, which ultimately computes a single prediction for the current batch.

We know that the independence condition y ⊥ s holds in the perfect set, but not in the training set due
to sampling bias. To do well, the discriminator should rely on this knowledge. More concretely, since
the context and training set have differing support over S×Y , namely (Str×Ytr) ( (Sperf×Yperf ),
that support serves as an indicator of the distribution from which the data has been drawn. The
scenarios we consider dictate Ytr = Yperf , making the disentangling well-posed. However, since
we wish to use Sctx × Yctx \ Str × Ytr as the training signal for the encoder, and not the relative
frequency of the target classes, it is important that, like the context set, we weight the samples of
the training set such that p(str|ytr)p(ytr) is equal for all str, ytr ∈ Str × Ytr. To guide the network
towards the desired solution, we supplement this implicit constraint with the explicit constraint that
zy be predictive of y, which we achieve using a linear predictor l; whenever we have dim(S) > 1 (in
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our experiments this corresponds to the partial outcomes setting) we also impose the same constraint
on zs, but with respect to s. With these conditions met, to fool the discriminator, the encoder must
separate out information pertaining to S into the embedded space zs not part of the discriminator’s
input, leaving only unprotected information in zy .

2.2 IMPLEMENTATION

Our framework overall entails two steps: 1) a method to construct a perfect dataset from an unlabeled
context set, and 2) a method to produce disentangled representations using the perfect dataset.

Constructing approximately perfect dataset via clustering. We cluster the data points from the
context set into K = dim(Y) · dim(S) number of clusters, i.e. the number of data sourcesMy,s.
We use the k-means clustering algorithm, and a recent method based on rank statistics (Han et al.,
2020). The cluster assignments can then be used as the basis for constructing a perfect dataset for
the subsequent disentangling phase. As a result of clustering, the data points in the context set Dctx
are labeled with cluster assignments Dctx = {(xi, ci)}, ci = C(zi). We balance Dctx so that all
clusters have equal size to form a perfect dataset (see fig. 1), and use it as a supervision signal for the
disentangling step.

Clustering requirements. We do not need to explicitly name the clusters (i.e. finding the demo-
graphic groups and labels that the clusters correspond to is unnecessary). The clustering is needed for
drawing an equal number of samples from each cluster, for each batch of data. Thus, constructing the
perfect dataset in this way does not require solving the linear assignment problem of cluster-source
association. In our experiments, we provide an analysis with unsupervised k-means clustering where
we do not use annotations from the training set even for the known groups. When clustering with the
training labels (such as with the rank statistics approach), we use the information that they provide to
ensure samples from the known subgroups are clustered together with others with the same label.

3 EXPERIMENTS

We conduct experiments using the Colored MNIST (Kim et al., 2019; Arjovsky et al., 2019; Kehren-
berg et al., 2020) and Adult Income (Dheeru & Karra Taniskidou, 2017) datasets that are publicly
available. To validate the first step of creating the perfect dataset, we compare three approaches:
the proposed model with clustering via rank statistics (ZSF+bal. (ranking)), with clustering
via k-means (ZSF+bal. (k-means)), and without balancing, when the context set Dctx is used
directly (ZSF); followed by the disentangling step as described. Additionally, we evaluate a variant
where the batches are balanced with ground truth labels (ZSF+bal. (ground truth)).

To validate the second step of learning fair representation via disentangling, we compare with two
other baselines. We train a binary classifier on the labeled training data which simply trained with
balanced batches (CNN for Colored MNIST and MLP for Adult Income). This is essentially what
Kamiran & Calders (2012b) proposed, so we refer to it as Kamiran & Calders. The second is
the fairness without demographics (FWD) method (Hashimoto et al., 2018) that learns fair classifier
with abstract groups. This is the only fairness-based method that is intended for the setting with
invisible demographics.

In Adult Income, in the setting of learning with partial outcomes, i.e. when we observe one-sided
outcome for one of the demographics, we compare with one additional fairness-aware baseline. It is
an adaptation of our model based on a common fair representation learning paradigm (Edwards &
Storkey, 2015; Madras et al., 2018; Creager et al., 2019). Using the same AutoEncoder model we do
for ZSF to generate a bipartite space, we train an adversarial network to minimize the approximate
mutual information between str and the representation the zy, with the reconstruction likewise a
function of zs and zy. We refer to this model as MIM (Mutual Information Minimization). MIM is
similar to the FFVAE model proposed Creager et al. (2019), in the sense of learning of a bipartite latent
space. However, since our experiments consider only single protected attribute, the disentangling
term is irrelevant. Furthermore, rather than encouraging zs to be predictive of s, we encourage
zy to be unpredictive of s for MIM, preventing the possibility of s-related information occupying
both subspaces. Overall, this adaptation amounts to just modifying the adversarial loss but is only
applicable in the setting where both protected groups are present in the training data (partial outcome
setting), and cannot handle cases in which demographics are missing entirely.
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Table 1: Results on Colored MNIST dataset for the task of two versus four digits classification with a
binary protected attribute (purple, green). We consider the scenarios of learning with partial outcomes
(30 repeats) and missing demographic (30 repeats). The fairness measures are: the ratio of acceptance
rates (AR ratio), true positive rates (TPR ratio), and true negative rates (TNR ratio) between the two
demographics, respectively (the closer to one the fairer).

Learning with partial outcomes, the sourceMy=’four’ ,s=purple is invisible.

Cluster. Acc. ↑ Acc. ↑ AR ratio→ 1.0← TPR ratio→ 1.0← TNR ratio→ 1.0←
ZSF N/A 0.829 ± 0.083 0.306 ± 0.337 0.31 ± 0.342 0.994 ± 0.006
ZSF+bal. (ranking) 0.983 ± 0.006 0.912 ± 0.056 0.653 ± 0.232 0.652 ± 0.227 0.995 ± 0.005
ZSF+bal. (k-means) 0.732 ± 0.157 0.904 ± 0.076 0.627 ± 0.308 0.63 ± 0.313 0.995 ± 0.004
ZSF+bal. (ground truth) N/A 0.92 ± 0.058 0.686 ± 0.245 0.684 ± 0.241 0.997 ± 0.003
Kamiran & Calders (2012) CNN N/A 0.756 ± 0.009 0.001 ± 0.005 0.001 ± 0.005 0.994 ± 0.004
FWD Hashimoto et al. (2018) N/A 0.765 ± 0.026 0.045 ± 0.106 0.045 ± 0.104 0.989 ± 0.027

Learning with missing demographics ( purple color), two sourcesMy=’four’ ,s=purple,My=’two’ ,s=purple are invisible.

Cluster. Acc. ↑ Acc. ↑ AR ratio→ 1.0← TPR ratio→ 1.0← TNR ratio→ 1.0←
ZSF N/A 0.851 ± 0.143 0.729 ± 0.257 0.622 ± 0.405 0.797 ± 0.261
ZSF+bal. (ranking) 0.922 ± 0.024 0.868 ± 0.114 0.876 ± 0.097 0.783 ± 0.265 0.702 ± 0.23
ZSF+bal. (k-means) 0.716 ± 0.153 0.796 ± 0.104 0.688 ± 0.219 0.709 ± 0.328 0.492 ± 0.296
ZSF+bal. (ground truth) N/A 0.888 ± 0.088 0.854 ± 0.089 0.852 ± 0.175 0.714 ± 0.203
Kamiran & Calders (2012) CNN N/A 0.759 ± 0.04 0.239 ± 0.304 0.288 ± 0.398 0.738 ± 0.376
FWD Hashimoto et al. (2018) N/A 0.763 ± 0.041 0.355 ± 0.302 0.525 ± 0.454 0.531 ± 0.432

Table 2: Results on Colored MNIST dataset for a 3-digits-3-colors task, i.e. classification of the digits
two versus four vs six with a protected attribute that can take three values (purple, green, blue). We
consider the scenario of learning with partial outcomes with four sources missing (30 repeats). The
fairness measures are: the Hirschfeld-Gebelein-Renyi correlation (the lower the better), the mean of
the pairwise ratio of acceptance rates (AR ratio mean), true positive rates (TPR ratio mean), and true
negative rates (TNR ratio mean) across all pairwise combinations (the closer to one the fairer).

Learning with partial outcomes, the sourcesMy=’two’,s=green,My=’two’,s=blue,My=’four’,s=blue andMy=’six’,s=green are invisible.

Acc. ↑ HGR corr. ↓ AR ratio (mean) ↑ TPR ratio (mean) ↑ TNR ratio (mean) ↑
ZSF 0.88 ± 0.08 0.264 ± 0.169 0.725 ± 0.15 0.911 ± 0.118 0.798 ± 0.201
FWD Hashimoto et al. (2018) 0.62 ± 0.04 0.803 ± 0.047 0.157 ± 0.066 0.383 ± 0.097 0.418 ± 0.098
Kamiran & Calders (2012) CNN 0.63 ± 0.05 0.784 ± 0.069 0.208 ± 0.1 0.471 ± 0.145 0.359 ± 0.036

We report the following performance metrics: clustering accuracy on the context set, classification
accuracy and fairness metrics of the prediction task on the test set.

Colored MNIST dataset with 2 digits. The colored MNIST dataset is a variant of the MNIST
dataset in which the digits are colored, and the color simulates the protected attributes of the digit. We
study binary classification, digit two versus digit four, and explore two settings: with one digit-color
source invisible (learning with partial outcomes) and two digit-color sources invisible (learning with
missing demographics). Specifically, in the first setting we have training data for digit two in green
and purple colors, but the digit four only comes in green color, so the sourceMy=’four’ ,s=purple is
invisible. The second setting is learning with missing demographics, where we have training data for
both digits in green, but we do not have training data for the demographics of purple color, i.e. two
sourcesMy=’two’,s=purple andMy=’four’,s=purple) are invisible. At test time and in the context set
we observe all possible colored digits combinations. We follow the colorization procedure outlined
by Kim et al. (2019), with the mean color values selected so as to be maximally dispersed. The
images are symmetrically zero-padded to a size of 32x32. In the 2-digit case, we use 5,339 images in
the unlabeled context set, 2,328 training samples, and 2,014 for testing the classifier.

We report the results in Table 1. In both settings, we are able to clearly outperform the baselines.
In the partial outcome setting, we can see that balancing the batches (bal.), to emulate a perfect
dataset, significantly improves performance, not only in terms of accuracy but in all fairness metrics.
The results in Table 1 show relatively high variance, but this likely stems from the smallness of the
training set and potentially the imbalance in the classes. As Agrawal et al. (2020) observed, high
variance is expected with fairness-enforcing methods (see especially Section 3 there).

For the setting with missing demographics, the results show that balancing is still useful, but only
marginally so. This makes sense, because in this setting, the network does not have to ride the fine
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Table 3: Results on the Adult Income dataset for the binary classification task of predicting whether
an individual earns >$50,000 with a binary protected attribute gender (30 repeats). We consider two
scenarios: one where an entire demographic is missing (females are missing from the training set)
and one where we only partially observe outcomes for one of the demographics (all females earn less
than $50,000). The fairness measures are: AR (Acceptance Rate) ratio, TPR (True Positive Rate)
ratio, and TNR (True Negative Rate) ratio.

Learning with partial outcomes, the sourceMy=‘above $50,000’,s=‘female’ is invisible.

Cluster. Acc. ↑ Acc. ↑ AR ratio→ 1.0← TPR ratio→ 1.0← TNR ratio→ 1.0←
ZSF N/A 0.691 ± 0.014 0.313 ± 0.066 0.347 ± 0.07 0.859 ± 0.029
ZSF+bal. (k-means) 0.388 ± 0.038 0.682 ± 0.027 0.262 ± 0.093 0.301 ± 0.109 0.835 ± 0.042
ZSF+bal. (ranking) 0.699 ± 0.003 0.708 ± 0.017 0.488 ± 0.078 0.551 ± 0.085 0.909 ± 0.027
ZSF+bal. (ground truth) N/A 0.731 ± 0.011 0.556 ± 0.065 0.63 ± 0.072 0.897 ± 0.023
Kamiran & Calders (2012) MLP N/A 0.681 ± 0.009 0.151 ± 0.023 0.182 ± 0.026 0.79 ± 0.033
FWD Hashimoto et al. (2018) N/A 0.68 ± 0.008 0.15 ± 0.022 0.18 ± 0.023 0.791 ± 0.038
MIM+bal. (ground truth) N/A 0.658 ± 0.026 0.215 ± 0.158 0.246 ± 0.180 0.893 ± 0.026

Learning with missing demographics (Females), two sourcesMy=‘above $50,000’,s=‘female’,My=‘below $50,000’,s=‘female’ are invisible.

Cluster. Acc. ↑ Acc. ↑ AR ratio→ 1.0← TPR ratio→ 1.0← TNR ratio→ 1.0←
ZSF N/A 0.768 ± 0.024 0.805 ± 0.124 0.851 ± 0.131 0.912 ± 0.035
ZSF+bal. (k-means) 0.373 ± 0.035 0.777 ± 0.028 0.843 ± 0.105 0.885 ± 0.101 0.912 ± 0.046
ZSF+bal. (ranking) 0.606 ± 0.01 0.775 ± 0.015 0.801 ± 0.082 0.868 ± 0.086 0.911 ± 0.037
ZSF+bal. (ground truth) N/A 0.767 ± 0.015 0.81 ± 0.063 0.872 ± 0.06 0.923 ± 0.032
Kamiran & Calders (2012) MLP N/A 0.801 ± 0.018 0.746 ± 0.101 0.846 ± 0.095 0.841 ± 0.039
FWD Hashimoto et al. (2018) N/A 0.802 ± 0.018 0.752 ± 0.102 0.854 ± 0.097 0.839 ± 0.038

line of identifying the intended difference between training and context set. Instead, here it is very
clear what the difference is: the training set only contains green digits whereas the context set has also
purple digits. k-means performs relatively poorly here. It might be that it produces batches more
biased than random batches which prevents the network from learning the right disentanglement.

Colored MNIST dataset with 3 digits. We conduct the experiments for a 3-digits-3-colors variant
of ColoredMNIST dataset using the setting of learning with partial outcomes, to investigate how an
increase in the number of classes affects disentangling of classes ang groups. We report the results
with four sources missing in Table 2 and Table 7 in the Appendix. Our method (ZSF) outperforms
the baselines by a significant margin with respect to both accuracy and all fairness metrics. Since,
in this case, S and Y are both no longer binary, we generalize the fairness metrics applied to the
binary datasets in two ways. We compute the mean of the pairwise AR/TPR/TNR ratios across all
pairwise combinations. Additionally we compute the minimum (i.e. farthest away from 1) of the
pairwise ratios (AR ratio min) as well as the largest difference between the raw AR values (AR diff
max) reported in the Appendix. Also we compute the Hirschfeld-Gebelein-Renyi (HGR) maximal
correlation (Rényi, 1959) between S and Y , serving as a measure of dependence defined between two
variables with arbitrary support. See Appendix D for visualizations of the learned fair representation.

Adult Income dataset. The Adult Income dataset is a common dataset for evaluating fair machine
learning models. In this dataset, each instance is described by 14 characteristics including gender,
education, marital status, number of work hours per week among others, along with a label denoting
income level (≥50K or not). We transform the representation into 62 real and binary features along
with the protected attribute s. In the whole dataset, 30% of the male individuals earn more than $50K
per year (high income), however of the female individuals only 11% have a high income. Following
standard practice in algorithmic fairness e.g. Zemel et al. (2013), we consider gender to be the
protected attribute.

For evaluation, we balanced the test set such that all elements of S × Y are equally sized, observing
that a random subset of the data could lead to a majority classifier achieving comparable accuracy to
the fairness-unaware baselines, while achieving perfect fairness in terms of TPR ratios. We repeat
the procedure with 30 train/context/test splits and report the average performance across repeats.
We study the following two settings. 1) Invisible demographics: we have training data for males
with positive and negative outcomes, but do not have labeled data for females, i.e. My=1s=0 and
My=0s=0 are missing; 2) Partial outcomes: we have labeled training data for males s = 1 with both
positive and negative outcomes, but for the group of females s = 0, we only observe the one-sided
negative outcome, so the sourceMy=1s=0 is invisible. The results are reported in Table 3.
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Partial outcomes: We see that the proposed approach consistently outperforms the baselines in terms
of fairness and performs on-par or better than them in terms of accuracy. The importance of the
context-set being properly balanced for our method is reflected in the superiority of ZSF+bal.
(ranking) over other variants, while the k-means variant fails to recognize the correct clustering
according to S × Y , and the downstream accuracy suffers. The MIM baseline with ground truth
balancing performs better than Kamiran & Calders and FWD in terms of fairness at the ex-
pense of accuracy drop. Our ZSF+bal. (ground truth) variant is dominating MIM+bal.
(ground truth) in terms of both performance metrics.

Invisible demographics: In the absence of str = Female altogether, FWD outperforms the baseline
Kamiran & Calders (2012) MLP in all respects but TNR ratio, being the top-performer in
accuracy among the tabulated methods. However, ZSF+bal. variants show to be considerably
fairer according to all fairness metrics, at the cost of accuracy, and demonstrate the importance of
a balanced context set (when compared to ZSF alone). In both settings, even though the clustering
accuracy is far from perfect, it is good enough to benefit the distribution matching phase, indicating
that while Lmatch is sensitive to the quality of Xperf , it is not overly so.

4 DISCUSSION AND CONCLUSION

We have introduced a problem of algorithmic fairness in the presence of invisible demographics,
which is at the intersection of demographic group fairness with each training data point annotated
with protected attributes, and abstract group fairness with unknown protected attributes. We want
to protect well-specified demographic groups but some demographics have non-existent labeled
training data - those individuals are the invisible demographics. Our proposed model consists of
discovering the missing demographic clusters in the unlabeled context set and subsequently learning
a disentangled fair representation that can be used at deployment. We consider the train and context
sets as coming from the same data domain, such that the knowledge about invisible demographics
can be directly transferred from the latter. Extending the model to allow for a domain adaptation step
between those sets will be explored in the future. This work is the first attempt in addressing learning
with invisible demographics, and we hope it will spark broad interest in the community.

5 CURRENT LIMITATIONS

First, dataset consumers should take extra care about the cost-benefit analysis of selecting particular
datasets for their machine learning tasks. Although having zero labeled examples for some demo-
graphic groups is not uncommon, especially at the intersection of protected attributes, we should do
go/no-go decisions w.r.t. this dataset. Corrective action such as fairness interventions or inaction
should be recorded.

Second, the problem of fairness has no one size fits all solution as fairness definitions are context
specific, i.e. different fairness definitions have different meanings in different contexts and not all
fairness criteria can be simultaneously fulfilled in one decision process. Every decision process
involves different stakeholders, decision makers, individuals affected by the decision, and sometimes
the general public, as some decisions (e.g. criminal justice) has impact on the society as a whole. It is
also the case that bias by models and perceived bias by a human observer might not be the same and
has to be studied in a broad interdisciplinary context.
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A WHY NOT USE A FAIR CLUSTERING METHOD?

Current fair clustering methods (Chierichetti et al., 2017; Backurs et al., 2019; Huang et al., 2019)
cluster based on the protected attribute and thus are not applicable to our setting in which the context
set is unlabeled and the training set is incomplete with respect to s.

B DATASET CONSTRUCTION

B.1 COLORED MNIST BIASING PARAMETERS

To simulate a real-word setting where the data, labeled or otherwise, is usually not naturally balanced,
we bias the Colored MNIST training and context sets by downsampling certain color/digit combina-
tions. The proportions of each such combination retained in the partial outcomes (in which we have
one source missing from the training set) and invisible demographics (in which we have two sources
missing from the training set) are enumerated in Table 4 and 5, respectively. For the 3-digit-3-color
variant of the problem, no biasing is applied to either the context set or the training set (the missing
combinations are specified in the caption accompanying Table 2); this variant was experimented with
only under the partial-outcomes setting.

Table 4: Biasing parameters for the training (left) and context (right) sets of Colored MNIST in the
partial outcomes setting.

Combination Proportion retained

(y = 2, s = purple) 1.0
(y = 2, s = green) 0.4
(y = 4, s = purple) 0.0
(y = 4, s = green) 1.0

Combination Proportion retained

(y = 2, s = purple) 0.7
(y = 2, s = green) 0.6
(y = 4, s = purple) 0.4
(y = 4, s = green) 1.0

Table 5: Biasing parameters for the training (left) and context (right) sets of Colored MNIST in the
invisible demographics setting.

Combination Proportion retained

(y = 2, s = purple) 0.0
(y = 2, s = green) 0.85
(y = 4, s = purple) 0.0
(y = 4, s = green) 1.0

Combination Proportion retained

(y = 2, s = purple) 0.7
(y = 2, s = green) 0.6
(y = 4, s = purple) 0.4
(y = 4, s = green) 1.0

B.2 ADULT INCOME

For the Adult Income dataset, we do not need to apply any synthetic biasing as the dataset naturally
contains some bias wrt s. Thus, we instantiate the context as just a random subset of the original
dataset. Explicit balancing of the test set is needed to yield informative evaluation, however, namely
in the penalizing of biased classifiers, but care must be taken in doing so. Balancing the test set such
that

|{x ∈ X|s = 0, y = 0}| = |{x ∈ X|s = 1, y = 0}| and (9)
|{x ∈ X|s = 0, y = 1}| = |{x ∈ X|s = 1, y = 1}| .

where for both target classes, y = 0 and y = 1, the proportions of the groups s = 0 and s = 1
are made to be the same, is intuitive, yet at the same time precludes sensible comparison of the
accuracy/fairness trade-off of the different classifiers. Indeed, with the above conditions, a majority
classifier (predicting all 1s or 0s) achieves comparable accuracy to the fairness-unaware baselines,
while also yielding perfect fairness, by definition. This observation motivated us to devise an
alternative scheme, where we balance the test set according to the following constraints
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|{x ∈ X|s = 0, y = 0}| = |{x ∈ X|s = 0, y = 1}| (10)
= |{x ∈ X|s = 1, y = 1}| = |{x ∈ X|s = 1, y = 0}|.

That is, all subsets of S ×Y are made to be equally sized. Under this new scheme the accuracy of the
the majority classifier is 50% for the binary-classification task.

C OPTIMIZATION

The hyperparameters and architectures for the AutoEncoder (AE), Predictor and Discriminator
subnetworks used for the Adult Income and Colored MNIST experiments are detailed in Table 6. For
fair comparison, identical hyperparameters are used for the MIM baseline. All networks are trained
using the Adam optimizer (Kingma & Ba, 2015).

For ColorMNIST dataset, the baseline CNN and FWD model use an architecture similar to the encoder
with two substitutions. 1) GLU Dauphin et al. (2017) is replaced with Leaky ReLU as the hidden
activation; 2) max-pooling is used for spatial downsampling instead of strided convolutions. The
final convolutional layer is followed by a global average pooling layer followed by a fully-connected
classification layer. For the MIM and ZSF models, the architecture matches that of the discriminator,
excluding the components from the aggregation operation onward in the latter case. All classifiers
were trained for 60 epochs with a learning rate of 1× 10−3 and a batch size of 256.

For evaluating on the Adult Income dataset we use scikit-learn’s (Pedregosa et al., 2011) logistic
regression (LR) model, optimized with LBFGS, as the base classifier for K&C, MIM and our method
(ZSF). SVM and LR with cross-validation (LRCV) from the same library are also included as
baselines. Due to the discrepancy between the training and test sets leading to biased CV estimates,
we found that using LR with a fixed regularization constant (C = 1.0) consistently yielded better
performance. For the FWD baseline, logistic regression was again used but with it trained via gradient
descent (Adam, learning rate=1× 10−3) instead of via convex optimization due to the non-standard
loss function.

Since, by design, we do not have labels for all subgroups the model will be tested on, and bias
against these invisible subgroups is what we aim to avoid, properly validating, and thus conducting
hyperparameter selection for models generally, is not straightforward. We can use estimates of the
mutual information between the learned-representation and s and y (which we wish to minimize wrt
to the former, maximize wrt the latter) to guide the process, though as we see from MIM baseline,
optimizing the model wrt to these metrics obtained from only the training set does not guarantee
generalization to the missing subgroups. We can however measure, additionally measure the entropy
of the predictions on the encoded test set and seek to maximize it across all samples, or alternatively
train a discriminator of the same kind used for training ZSF as a measure the shift in the latent
space between datasets. We use the latter approach (considering, the learned distance between
subspace distributions, accuracy, and reconstruction loss) to inform an extensive grid-search over the
hyperparameter space of ZSF, and by extension MIM, for which we use the same encoder architecture
as for ZSF, and the same discriminator architecture up until the aggregation step.

For the FWD-model, we allowed access to the labels of the test set for the purpose of hyperparam-
eters selection, performing a grid-search over multiple splits to avoid overfitting to any particular
instantiation. Specifically, the threshold (η) parameter for FWD was determined by a grid-search over
the space {0.01, 0.1, 0.3, 1.0}.
In addition to the losses stated in the distribution matching objective, Lmatch, in the main text, we
also regularize the encoder by the `2 norm of its embedding, finding this to work better than more
complex regularization methods such as spectral normalization (Miyato et al., 2018), finding this
helped stabilize training. The weight associated with this parameter is denoted as ’`2-norm weight’
Table 6.

D QUALITATIVE RESULTS

Given a learned invariant representation, we can generate a reconstruction to visualize the information
contained in it. An example of this can be seen in figure 3. This is from our experiment with 3 digits
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Table 6: Hyperparameters used for Colored MNIST and Adult dataset experiments.

ColorMNIST Adult

Input size 3× 32× 32 61

AutoEncoder

Levels 4 1
Level depth 2 1
Hidden units / level [32, 64, 128, 256] [61]
Activation GLU (Dauphin et al. (2017)) SELU (Klambauer et al. (2017))
Downsampling op. Strided Convs. –
Reconstruction loss MSE Mixed1

Learning rate 1× 10−3 1× 10−3

Clustering

Batch size 256 1000
AE pre-training epochs 150 100
Clustering epochs 100 300
Self-supervised loss Cosine + BCE Cosine + BCE
U (for ranking statistics) 5 3

Distribution Matching

Batch size 256 1000
Training epochs 250 1000
|z| 128 35
|zs| 3 2
Reconstruction-loss weight 1 1
Predictor weight (λ1) 1× 10−2 0.0
`2-norm (on encoding) weight 1 0
Adversarial weight (λ2) 1× 10−3 1× 10−2

Predictors

Hidden units - -
Learning rate 3× 10−4 1× 10−3

Discriminator

Hidden units pre-aggregation [256, 256] [32]
Hidden units post-aggregation [256, 256] -
Embedding dim (for attention) 32 32
Activation SELU SELU
Learning rate 3× 10−4 1× 10−3

Updates / AE update 1 1
1Cross-entropy is used for categorical features, MSE for continuous features.

in Colored MNIST. We can clearly see that the reconstructed invariant representation has lost all color
information; instead all digits are magenta-colored, which was the majority color in the training set.

E ADDITIONAL METRICS

E.1 COLORED MNIST DATASET WITH 3-DIGITS-3-COLORS TASK

15
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(a) Original images. (b) Reconstructed invariant representation.

Figure 3: Example images from the experiment with 3 digits (and 3 colors).

Table 7: Results on Colored MNIST dataset for a 3-digits-3-colors task, i.e. classification of the
digits two versus four vs six with a protected attribute that can take three values (purple, green, blue).
We consider the scenarios of learning with partial outcomes with four sources missing (30 repeats).
As the fairness metric, we report the minimum (i.e. farthest away from 1) of the pairwise ratios
(AR/TPR/TNR ratio min) as well as the largest difference between the raw values (AR/TPR/TNR
diff max) .

Learning with partial outcomes, the sourcesMy=’two’,s=green,My=’two’,s=blue,My=’four’,s=blue andMy=’six’,s=green are invisible.

AR min. ratio TPR min. ratio TNR min. ratio AR max. diff TPR max. diff TNR max. diff
ZSF 0.604 ± 0.213 0.866 ± 0.176 0.702 ± 0.292 0.236 ± 0.189 0.133 ± 0.175 0.297 ± 0.291
FWD Hashimoto et al. (2018) 0.027 ± 0.05 0.077 ± 0.145 0.128 ± 0.147 0.887 ± 0.101 0.923 ± 0.145 0.871 ± 0.147
Kamiran & Calders (2012) CNN 0.072 ± 0.077 0.208 ± 0.217 0.039 ± 0.054 0.904 ± 0.087 0.792 ± 0.217 0.961 ± 0.054
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