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ABSTRACT

We tackle the domain generalisation (DG) problem by posing it as a domain adap-
tation (DA) task where we adversarially synthesise the worst-case ‘target’ domain
and adapt a model to that worst-case domain, thereby improving the model’s robust-
ness. To synthesise data that is challenging yet semantics-preserving, we generate
Fourier amplitude images and combine them with source domain phase images,
exploiting the widely believed conjecture from signal processing that amplitude
spectra mainly determines image style, while phase data mainly captures image
semantics. To synthesise a worst-case domain for adaptation, we train the classifier
and the amplitude generator adversarially. Specifically, we exploit the maximum
classifier discrepancy (MCD) principle from DA that relates the target domain
performance to the discrepancy of classifiers in the model hypothesis space. By
Bayesian hypothesis modeling, we express the model hypothesis space effectively
as a posterior distribution over classifiers given the source domains, making ad-
versarial MCD minimisation feasible. On the DomainBed benchmark including
the large-scale DomainNet dataset, the proposed approach yields significantly
improved domain generalisation performance over the state-of-the-art.

1 INTRODUCTION

Contemporary machine learning models perform well when training and testing data are identically
distributed. However, in practice it is often impossible to obtain an unbiased sample of real-world
data for training, and therefore distribution-shift inevitably exists between training and deployment.
Performance can degrade dramatically under such domain shift (Koh et al., 2021), and this is often
the cause of poor performance of real-world deployments (Geirhos et al., 2020). This important issue
has motivated a large amount of research into the topic of domain generalisation (DG) (Zhou et al.,
2021a), which addresses training models with increased robustness to distribution shift. These DG
approaches span a diverse set of strategies including architectural innovations (Chattopadhyay et al.,
2020), novel regularisation (Balaji et al., 2018), alignment (Sun & Saenko, 2016) and learning (Li
et al., 2019) objectives, and data augmentation (Zhou et al., 2021b) to make available training data
more representative of potential testing data. However, the problem remains essentially unsolved,
especially as measured by recent carefully designed benchmarks (Gulrajani & Lopez-Paz, 2021).

Our approach is related to existing lines of work on data-augmentation solutions to DG (Zhou et al.,
2021b; Shankar et al., 2018), which synthesise more data for model training; and alignment-based
approaches to Domain Adaptation (Sun & Saenko, 2016; Saito et al., 2018) that adapt a source model
to an unlabeled target set – but cannot address the DG problem where the target set is unavailable. We
improve on both by providing a unified framework for stronger data synthesis and domain alignment.

Our framework combines two key innovations: A Bayesian approach to maximum classifier dis-
crepancy, and a Fourier analysis approach to data augmentation. We start from the perspective of
maximum classifier discrepancy (MCD) from domain adaptation (Ben-David et al., 2007; 2010; Saito
et al., 2018). This bounds the target-domain error as a function of discrepancy between multiple
source-domain classifiers. It is not obvious how to apply MCD to the DG problem where we have
no access to target-domain data. A key insight is that MCD provides a principled objective that we
can maximise in order to synthesise a worst-case target domain, and also minimise in order to train a
model that is adapted to that worst-case domain. Specifically, we take a Bayesian approach that learns
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Figure 1: Overall training flow of the proposed approach (AGFA). We generate target-domain data by
synthesizing Fourier amplitude images trained adversarially. See main text in Sec. 3 for details.

a distribution over source-domain classifiers, with which we can compute MCD. This simplifies the
model by eliminating the need for adversarial classifier training in previous applications of MCD
(Saito et al., 2018), which leaves us free to adversarially train the worst-case target domain. To enable
challenging worst-case augmentations to be generated without the risk of altering image semantics,
our augmentation strategy operates in the Fourier amplitude domain. It synthesises amplitude images,
which can be combined with phase images from source-domain data to produce images that are
substantially different in style (amplitude), while retaining the original semantics (phase). Our overall
strategy termed Adversarial Generation of Fourier Amplitude (AGFA) is illustrated in Fig. 1.

In summary, we make the following main contributions: (1) We provide a novel and principled
perspective on DG by drawing upon the MCD principle from DA. (2) We provide AGFA, an effective
algorithm for DG based on variational Bayesian learning of the classifier and Fourier-based synthesis
of the worst-case domain for robust learning. (3) Our empirical results show clear improvement on
previous state-of-the-arts on the rigorous DomainBed benchmark.

2 PROBLEM SETUP AND BACKGROUND

We follow the standard setup for the Domain Generalisation (DG) problem. As training data, we are
given labeled data S = {(x, y)|(x, y) ∼ Di, i = 1, . . . , N} where x ∈ X and y ∈ Y = {1, . . . , C}.
Although the source domain S consists of different domains {Di}Ni=1 with domain labels available,
we simply take their union without using the originating domain labels. This is because in practice
the number of domains (N ) is typically small, and it is rarely possible to estimate a meaningful
population distribution for empirical S from a few different domains. What distinguishes DG from
the closely-related (unsupervised) Domain Adaptation (DA), is that the target domain (T ) on which
model’s prediction performance is measured is unknown for DG, whereas in DA the input data x
from the target domain are revealed (without class labels y). Below we briefly summarise the MCD
principle and Ben-David’s theorem, one of the key theorems in DA, as we exploit them to tackle DG.

Ben-David’s theorem and MCD principle in DA. In unsupervised DA, Ben-David’s theorem (Ben-
David et al., 2010; 2007) provides an upper bound for the target-domain generalisation error of a
model (hypothesis). We focus on the tighter bound version, which states that for any classifier h in
the hypothesis spaceH = {h|h : X → Y}, the following holds (without the sampling error term):

eT (h) ≤ eS(h) + sup
h,h′∈H

∣∣dS(h, h′)− dT (h, h
′)
∣∣+ e∗(H;S, T ), (1)

where eS(h) := E(x,y)∼S [I(h(x) ̸= y)] is the error rate of h(·) on the source domain S, dS(h, h′) :=
Ex∼S [I(h(x) ̸= h′(x))] denotes the discrepancy between two classifiers h and h′ on S (similarly for
eT (h) and dT (h, h

′)), and e∗(H;S, T ) := minh∈H eS(h) + eT (h). Thus we can provably reduce
the target domain generalisation error by simultaneously minimizing the three terms in the upper
bound1, namely source-domain error eS(h), classifier discrepancy, and minimal source-target error.

Previous approaches (Saito et al., 2018; Kim et al., 2019) aim to minimise the upper bound, and one
reasonable strategy is to constrain the hypothesis spaceH in such a way that it contains only those

1Some recent work such as (Vedantam et al., 2021), however, empirically studied potential risk of looseness
of the bound in certain scenarios.
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h’s with small eS(h). Within this source-confined hypothesis space (denoted by H|S), the terms
eS(h) and dS(h, h

′) in the bound are expected to be close to 0 for all h, h′ ∈ H|S , and the bound of
(1) effectively reduces to what is called the Maximum Classifier Discrepancy (MCD) loss,

MCD(H|S ;T ) := sup
h,h′∈H|S

|dT (h.h′)| = sup
h,h′∈H|S

Ex∼T

[
I(h(x) ̸= h′(x))

]
. (2)

This suggests the MCD learning principle: we need to minimise both the error on S (so as to form
the source-confined hypothesis spaceH|S) and the MCD loss on T . Note however that the last term
e∗ is not considered in (Saito et al., 2018; Kim et al., 2019) mainly due to the difficulty of estimating
the target domain error. We will incorporate e∗ in our DG algorithm as described in the next section.

We conclude the section by briefly reviewing how the MCD learning principle was exploited in
previous works. In (Saito et al., 2018) they explicitly introduce two classifier networks h(x) =
g(ϕ(x)) and h′(x) = g′(ϕ(x)), where the classification heads g, g′ and the feature extractor ϕ are
cooperatively updated to minimise the error on S (thus implicitly obtainingH|S), they are updated
adversarially to maximise (minimise) the MCD loss on T with respect to g and g′ (ϕ, respectively).
In (Kim et al., 2019), they build a Gaussian process (GP) classifier on the feature space ϕ(x), in which
H|S is attained by GP posterior inference. Minimisation of the MCD term is then accomplished by
the maximum margin learning which essentially enforces minimal overlap between the two largest
posterior modes. Note that (Saito et al., 2018)’s strategy requires adversarial optimisation, and hence
it is less suitable for our DG algorithm which will require adversarial generator learning: Having two
adversarial learning components would make the training difficult since we need to find two nested
equilibrium (saddle) points. We instead adopt the Bayesian hypothesis modeling approach of (Kim
et al., 2019). In the next section, we describe our approach in greater detail.

3 ADVERSARIAL GENERATION OF FOURIER AMPLITUDE (AGFA)

Defining and optimising a hypothesis space. Our DG approach aims to minimise the MCD loss,
MCD(H|S ;T ) defined in (2). The first challenge is that the target domain data T is not available in
DG. Before we address it, we clarify the optimisation problem (i.e., what is the MCD loss optimised
for?) and how the hypothesis spaces (H and H|S) are represented. The MCD loss is a function of
hypothesis space H (or H|S), not a function of individual classifier h in it. Hence, minimising the
MCD loss amounts to choosing the best hypothesis space H. To this end, we need to parametrise
the hypothesis space (so as to frame it as a continuous optimisation), and our choice is the Bayesian
linear classifier with deterministic feature extractor.

We consider the conventional neural-network feed-forward classifier modeling: we have the feature
extractor network ϕθ(x) ∈ Rd (with the weight parameters θ) followed by the linear classification
head W = [w1, . . . , wC ] (C-way classification, each wj ∈ Rd), where the class prediction is done
by the softmax likelihood:

P (y = j|x, θ,W ) ∝ ew
⊤
j ϕθ(x), j = 1, . . . , C. (3)

So each configuration (θ,W ) specifies a particular classifier h. To parametrise the hypothesis
space H (∋ h), ideally we can consider a parametric family of distributions over (θ,W ). Each
distribution Pβ(θ,W ) specified by the parameter β corresponds to a particular hypothesis spaceH,
and each sample (θ,W ) ∼ Pβ(θ,W ) corresponds to a particular classifier h ∈ H. Although this is
conceptually simple, to have a tractable model in practice, we define θ to be deterministic parameters
and only W to be stochastic. A reasonable choice for P (W ), without any prior knowledge, is the
standard Gaussian, P (W ) =

∏C
j=1N (wj ; 0, I).

Now, we can represent a hypothesis space as H = {P (y|x, θ,W ) | W ∼ P (W )}. Thus H is
parametrised by θ, and with θ fixed (H fixed), each sample W from P (W ) instantiates a classifier
h ∈ H. The main benefit of this Bayesian hypothesis space modeling is that we can induce the
source-confined hypothesis space H|S (i.e., the set of classifiers that perform well on the source
domain) in a principled manner by the posterior,

P (W |S, θ) ∝ P (W ) ·
∏

(x,y)∼S

P (y|x, θ,W ). (4)

The posterior places most of its probability density on those samples (classifiers) W that attain high
likelihood scores on S (under given θ) while being smooth due to the prior. To ensure that the source
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domain S is indeed explained well by the model, we further impose high data likelihood on S as
constraints for θ,

θ ∈ ΘS where ΘS := {θ | logP (S|θ) ≥ Lth}, (5)
where Lth is the (constant) threshold that guarantees sufficient fidelity of the model to explaining
S. Then it is reasonable to representH|S by the support of P (W |S, θ) for θ ∈ ΘS , postulating that
H|S exclusively contains smooth classifiers h that perform well on S. Formally, the source-confined
hypothesis space can be parametrised as:

H|S(θ) = {P (y|x, θ,W ) |W ∼ P (W |S, θ)} for θ ∈ ΘS , (6)
where we use the notationH|S(θ) to emphasise its dependency on θ. Intuitively, the hypothesis space
H|S is identified by choosing the feature space (i.e., choosing θ ∈ ΘS), and individual classifiers
h ∈ H|S are realised by the Bayesian posterior samples W ∼ P (W |S, θ) (inferred on the chosen
feature space). Since the posterior P (W |S, θ) in (6) and the marginal likelihood logP (S|θ) in (5) do
not admit closed forms in general, we adopt the variational inference technique to approximate them.
We defer the detailed derivations (Sec. 3.1) for now, and return to the MCD minimisation problem
since we have defined the hypothesis space representation.

Optimising a worst-case target domain. For the DG problem, we cannot directly apply the MCD
learning principle since the target domain T is unknown during the training stage. Our key idea is to
consider the worst-case scenario where the target domain T maximises the MCD loss. This naturally
forms minimax-type optimisation,

min
θ∈ΘS

max
T

MCD(H|S(θ);T ). (7)

To solve the saddle-point optimisation (7), we adopt the adversarial learning strategy with a generator
network (Goodfellow et al., 2014). The generator for T has to synthesise samples x of T that need to
satisfy three conditions: (C1) The generated samples maximally baffle the classifiers inH|S to have
least consensus in prediction (for inner maximisation); (C2) T still retains the same semantic class
information as the source domain S (for the definition of DG); and (C3) The generated samples in T
need to be distinguishable along their classes2.

Paramaterising domains. To meet these conditions, we generate target domain images using
Fourier frequency spectra. We specifically build a generator network that synthesises amplitude
images in the Fourier frequency domain. The synthesised amplitude images are then combined
with the phase images sampled from the source domain S to construct new samples x ∈ T by
inverse Fourier transform. This is motivated by signal processing where it is widely believed that
the frequency phase spectra capture the semantic information of signals, while the amplitudes take
charge of non-semantic (e.g., style) aspects of the signals (Oppenheim & Lim, 1981). Denoting the
amplitude generator network as Gν(ϵ) with parameters ν and random noise input ϵ ∼ N (0, I), our
target sampler (x, y) ∼ T are generated as follows:

1. (xS , yS) ∼ S (Sample an image and its class label from S)
2. AS∠PS = F(xS) (Fourier transform to have amplitude and phase for xS)
3. A = Gν(ϵ), ϵ ∼ N (0, I) (Generate an amplitude image from G)
4. x = F−1(A∠PS), y = yS (Construct target data with the synthesised A)

Here, F(·) is the 2D Fourier transform, F (u, v) = F(x) =
∫∫

x(h,w)e−i(hu+wv)dhdw, and A∠P
stands for the polar representation of the Fourier frequency responses (complex numbers) for the
amplitude image A and the phase image P . That is, A∠P = A · ei·P = A · (cosP + i sinP ) with
i =
√
−1, where all operations are element/pixel-wise. Note that we set y = yS in step 4 since the

original phase (semantic) information PS is retained in the synthesised x.

Algorithm summary. Finally the worst-case target MCD learning can be solved by adversarial
learning, which can be implemented as an alternating optimisation:

(Fix ν) min
θ∈ΘS

MCD(H|S(θ);T (ν)) (8)

(Fix θ) max
ν

MCD(H|S(θ);T (ν)) (9)

2This condition naturally originates from the solvability of the DG problem.
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We used T (ν) to emphasise functional dependency of target images on the generator parameters ν.
Note that although the MCD loss in DA can be computed without the target domain labels (recall the
definition (2)), in our DG case the class labels for the generated target data are available, as induced
from the phase PS (i.e., y = yS in step 4). Thus we can modify the MCD loss by incorporating the
target class labels. In the following we provide concrete derivations using the variational posterior
inference, and propose a modified MCD loss that takes into account the induced target class labels.

3.1 CONCRETE DERIVATIONS USING VARIATIONAL INFERENCE

Source-confined hypothesis space by variational inference. The posterior P (W |S, θ) does not
admit a closed form, and we approximate P (W |S, θ) by the Gaussian variational density,

Qλ(W ) =

C∏
j=1

N (wj ;mj , Vj), (10)

where λ := {mj , Vj}Cj=1 constitutes the variational parameters. To enforce Qλ(W ) ≈ P (W |S, θ),
we optimise the evidence lower bound (ELBO),

ELBO(λ, θ;S) :=
∑

(x,y)∼S

EQλ(W )

[
logP (y|x,W, θ)

]
− KL

(
Qλ(W )||P (W )

)
, (11)

which is the lower bound of the marginal data likelihood logP (S|θ) (Appendix A.3 for derivations).
Hence maximising ELBO(λ, θ;S) with respect to λ tightens the posterior approximation Qλ(W ) ≈
P (W |S, θ), while maximising it with respect to θ leads to high data likelihood logP (S|θ). The latter
has the very effect of imposing the constraints θ ∈ ΘS in (8) since one can transform constrained
optimisation into a regularised (Lagrangian) form equivalently (Boyd & Vandenberghe, 2004).

Optimising the MCD loss. The next thing is to minimise the MCD loss, MCD(H|S(θ);T ) with
the current target domain T generated by the generator network Gν . That is, solving (8). We follow
the maximum margin learning strategy from (Kim et al., 2019), where the idea is to enforce the
prediction consistency for different classifiers (i.e., posterior samples) W ∼ Qλ(W ) on x ∼ T
by separating the highest class score from the second highest by large margin. To understand the
idea, let j∗ be the model’s predicted class label for x ∼ T , or equivalently let j∗ have the highest
class score j∗ = argmaxj w

⊤
j ϕ(x) as per (3). (We drop the subscript in ϕθ(x) for simplicity in

notation.) We let j† be the second most probable class, i.e., j† = argmaxj ̸=j∗ w
⊤
j ϕ(x). Our model’s

class prediction would change if w⊤
j∗ϕ(x) < w⊤

j†ϕ(x) for some W ∼ Qλ(W ), which leads to
discrepancy of classifiers. To avoid such overtaking, we need to ensure that the (plausible) minimal
value of w⊤

j∗ϕ(x) is greater than the (plausible) maximal value of w⊤
j†ϕ(x). Since the score (logit)

fj(x) := w⊤
j ϕ(x) is Gaussian under Qλ(W ), namely

fj(x) ∼ N (µj(x), σj(x)
2) where µj(x) = m⊤

j ϕ(x), σ
2
j (x) = ϕ(x)⊤Vjϕ(x), (12)

the prediction consistency is achieved by enforcing: µj∗(x)− ασj∗(x) > µj†(x) + ασj†(x), where
we can choose α = 1.96 for 2.5% rare one-sided chance. By introducing slack variables ξ(x) ≥ 0,

µj∗(x)− ασj∗(x) ≥ 1 + max
j ̸=j∗

(
µj(x) + ασj(x)

)
− ξ(x). (13)

Satisfying the constraints amounts to fulfilling the desideratum of MCD minimisation, essentially
imposing prediction consistency of classifiers. Note that we add the constant 1 in the right hand side
of (13) for the normalisation purpose to prevent the scale of µ and σ from being arbitrary small. The
constraints in (13) can be translated into the following MCD loss (as a function of θ):

MCD(θ;T ) := Ex∼T

(
1 + T 2

(
µj(x) + ασj(x)

)
− T 1

(
µj(x)− ασj(x)

))
+

(14)

where T k is the operator that selects the top-k element, and (a)+ = max(0, a).

Modified MCD loss. The above MCD loss does not utilise the target domain class labels y = yS
that are induced from the phase information PS (Recall the target domain data generation steps 1 ∼ 4
above). To incorporate the supervised data {(x, y)} ∈ T in the generated target domain, we modify
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Figure 2: Illustration of the SMCD loss on three different hypothesis spaces H|S shown in three
panels. For C = 3-way classification case, each panel shows the class logit scores (Gaussian
random) fj(x) ∼ N (µj(x), σj(x)

2) for j = 1, 2, 3, at some input x ∈ T . We assume that the
true (induced) class label y = 2. (Left) Since the mean logit for class 2, µ2(x) is the maximum
among others, the prediction is marginally correct (from softmax). Beyond that, the logit of the
worst plausible hypothesis for class 2, µ2(x)− 1.96σ2(x) is greater than that of the runner-up class
1, µ1(x) + 1.96σ1(x) by some positive margin (green arrow), meaning there is little chance of
prediction overtaking (so, consistent); equivalently, the SMCD loss is small. (Middle) Prediction
is marginally correct, but prediction overtaking is plausible, indicated by the negative margin (red
arrow); the SMCD loss is large. (Right) Incorrect marginal prediction (to class 1) with more severe
negative margin (red arrow); the SMCD loss is even larger.

the MCD loss as follows: First, instead of separating the margin between the two largest logit scores
as in the MCD, we maximise the margin between the logit for the given class y and the largest logit
among the classes other than y. That is, we replace the constraints (13) with the following:

µy(x)− ασy(x) ≥ 1 + max
j ̸=y

(
µj(x) + ασj(x)

)
− ξ(x), (15)

where y is the class label (induced from the phase information) for the generated instance x. See
Fig. 2 for illustration of the idea. Consequently, our new MCD loss (coined supervised MCD or
SMCD for short) is defined as follows:

SMCD(θ;T ) := E(x,y)∼T

(
1 + max

j ̸=y

(
µj(x) + ασj(x)

)
−

(
µy(x)− ασy(x)

))
+
. (16)

Here the variational parameters λ is treated as constant since the only role of λ is to maximise the
ELBO. It should be noted that (16) essentially aims at maximising the logit for the given class y (the
last term), or equivalently, classification error minimisation on T , and at the same time minimising the
logit for the runner-up class (the middle max term). Surprisingly, the former amounts to minimising
the minimal source-target error term e∗(H;S, T ) in the generalisation bound (1), which we have left
out so far. That is, e∗(H;S, T ) = minh∈H eS(h) + eT (h) ≈ minh∈H|S eT (h), and the last term of
the SMCD loss leads to θ that makes eT (h) small for all h ∈ H|S(θ). Moreover, minimising the logit
for the runner-up class (the middle max term of the SMCD) has the effect of margin maximisation.

Algorithm summary. Our AGFA algorithm can be understood as MCD-based DA with adversarial
amplitude generated target domain. It entails the following alternating optimisation (η > 0 is the
trade-off hyperparameter for SMCD):

1. minλ,θ −ELBO(λ, θ;S) + ηSMCD(θ;T ) (model learning + VI; ν fixed)
2. maxν SMCD(θ;T ) (adversarial generator learning; θ, λ fixed)

Our algorithm is summarised in Alg. 1 (in Appendix) and illustrated schematically in Fig. 1. At
test time, we can apply the classifier (3) with the learned θ and any sample W ∼ Qλ(W ) to target
domain inputs to predict class labels. In our experiments, we take the posterior means wj = mj

instead of sampling from Qλ(W ).

3.2 FURTHER CONSIDERATIONS

Post-synthesis mixup of generated amplitude images. In our adversarial learning, the ampli-
tude generator network Gν synthesises target domain image samples that have highly challenging
amplitude spectra to the current model. Although we retain the phase information from source
domains, unconstrained amplitude images can potentially alter the semantic content destructively
(e.g., a constant zero amplitude image would zero out the image content), rendering it impossible to
classify. To this end, instead of using the generator’s output A = Gν(ϵ) directly, we combine it with
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the source domain amplitude image corresponding to the phase image by simple mixup. That is, by
letting AS be the amplitude spectra corresponding to the phase PS , we alter A as:

A← λA+ (1− λ)AS where λ ∼ Uniform(0, α). (17)

This post-synthesis mixup can address our desideratum C3 that we discussed before, that is, the
generated samples for the target domain need to be distinguishable by class to solve the DG problem.
Post-synthesis mixup, ensures synthesised amplitude images lie closer to the amplitude manifold of
the source data, ensuring the model can solve the classification problem.

Dense model averaging (SWAD). We found that the DG training becomes more stable and the
target-domain test performance becomes more consistent when we use the dense model averaging
strategy SWAD (Cha et al., 2021). We adopt the SWAD model averaging for the variational and
model parameters (λ, θ) while the generator network is not averaged.

Amplitude image structures. From the definition of the Fourier transform, the frequency domain
function should be even-conjugate, i.e., F (−u,−v) = F (u, v), for the real-valued images. This
implies that amplitude images are symmetric. Conversely, if the amplitude images are symmetric,
inverse Fourier transform returns real-valued signals. Thus when generating amplitude images, we
only generate the non-redundant part (frequencies) of the amplitude images. Also, the amplitude
should be non-negative. We keep these constraints in mind when designing the generator network.

4 RELATED WORK

MCD. Several studies have used the MCD principle for domain adaptation, to align a source model
to unlabeled target data (Saito et al., 2018; Kim et al., 2019; Lu et al., 2020). We uniquely exploit
the MCD principle for the DG problem, in the absence of target data, by using MCD to synthesise
worst-case target domain data, as well as to adapt the model to that synthesised domain.

Augmentation approaches to DG. Several DG approaches have been proposed based on data
augmentation. Existing approaches either define augmentation heuristics (Zhou et al., 2021b; Xu
et al., 2021), or exploit domain adversarial learning – i.e., confusing a domain classifier (Shankar
et al., 2018; Zhou et al., 2020). Our adversarial learning is based on the much stronger (S)MCD
principle that confuses a category classifier. This provides much harder examples for robust learning,
while our Fourier amplitude synthesis ensures the examples are actually recognisable.

Alignment approaches to DG. Several approaches to DG are based on aligning between multiple
source domains (Sun & Saenko, 2016; Ganin et al., 2016; Li et al., 2018c;b), under the assumption
that a common feature across all source domains will be good for a held out target domain. Differently,
we use the MCD principle to robustify our source trained model by aligning it with the synthesised
worst-case target domain.

5 EXPERIMENTS

We test our approach on the DomainBed benchmark (Gulrajani & Lopez-Paz, 2021), including:
PACS (Li et al., 2017), VLCS (Fang et al., 2013), OfficeHome (Venkateswara et al., 2017), Ter-
raIncognita (Beery et al., 2018), and DomainNet (Peng et al., 2019). For each dataset, we adopt the
standard leave-one-domain-out source/target domain splits. The overall training/test protocols are
similar to (Gulrajani & Lopez-Paz, 2021; Cha et al., 2021). We use the ResNet-50 (He et al., 2016)
as our feature extractor backbone, which is initialised by the pretrained weights on ImageNet (Deng
et al., 2009). For the generator network, we found that a linear model performed the best for the noise
dimension 100. Our model is trained by the Adam optimiser (Kingma & Ba, 2015) on machines
with single Tesla V100 GPUs. The hyperparameters introduced in our model (e.g., SMCD trade-off
η) and the general ones (e.g., learning rate, SWAD regime hyperparameters, maximum numbers
of iterations) are chosen by grid search on the validation set according to the DomainBed protocol
(Gulrajani & Lopez-Paz, 2021). For instance, η = 0.1 for all datasets. The implementation details
including chosen hyperparameters can be found in Appendix A.1.

5.1 MAIN RESULTS

The test accuracies averaged over target domains are summarised in Table 1, where the results for
individual target domains are reported in Appendix A.2. The proposed approach performs the best
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Table 1: Average accuracies on DomainBed datasets. Note: † indicates that the results are excerpted
from the published papers or (Gulrajani & Lopez-Paz, 2021). Our own runs are reported without
†. Note that FACT (Xu et al., 2021) adopted a slightly different data/domain split protocol from
DomainBed’s, explaining discrepancy on PACS.

Algorithm PACS VLCS OfficeHome TerraInc. DomainNet Avg.

ERM (Cha et al., 2021)† 84.2 77.3 67.6 47.8 44.0 64.2

IRM (Arjovsky et al., 2019)† 83.5 78.6 64.3 47.6 33.9 61.6

GroupDRO (Sagawa et al., 2020)† 84.4 76.7 66.0 43.2 33.3 60.7

I-Mixup (Xu et al., 2020; Yan et al., 2020; Wang et al., 2020b)† 84.6 77.4 68.1 47.9 39.2 63.4

MLDG (Li et al., 2018a)† 84.9 77.2 66.8 47.8 41.2 63.6

CORAL (Sun & Saenko, 2016)† 86.2 78.8 68.7 47.7 41.5 64.5

MMD (Li et al., 2018b)† 84.7 77.5 66.4 42.2 23.4 58.8

DANN (Ganin et al., 2016)† 83.7 78.6 65.9 46.7 38.3 62.6

CDANN (Li et al., 2018c)† 82.6 77.5 65.7 45.8 38.3 62.0

MTL (Blanchard et al., 2021)† 84.6 77.2 66.4 45.6 40.6 62.9

SagNet (Nam et al., 2021)† 86.3 77.8 68.1 48.6 40.3 64.2

ARM (Zhang et al., 2020)† 85.1 77.6 64.8 45.5 35.5 61.7

VREx (Krueger et al., 2020)† 84.9 78.3 66.4 46.4 33.6 61.9

RSC (Huang et al., 2020)† 85.2 77.1 65.5 46.6 38.9 62.7

Mixstyle (Zhou et al., 2021b)† 85.2 77.9 60.4 44.0 34.0 60.3

FACT (Xu et al., 2021)† 88.2 − 66.6 − − −
FACT (Xu et al., 2021) 86.4 76.6 66.6 45.4 42.6 63.5

Amp-Mixup (Xu et al., 2021) 84.7 75.9 64.0 46.8 42.0 62.7

SWAD (Cha et al., 2021)† 88.1 79.1 70.6 50.0 46.5 66.9

FACT+SWAD 88.1 77.7 70.6 51.0 46.7 66.8

Amp-Mixup+SWAD 88.1 78.2 70.3 51.2 46.4 66.8

(Proposed) AGFA 89.3 79.5 71.5 52.4 47.1 68.0

for all datasets among the competitors, and the difference from the second best model (SWAD) is
significant (about 1.1% margin). We particularly contrast with two recent approaches: SWAD (Cha
et al., 2021) that adopts the dense model averaging with the simple ERM loss and FACT (Xu
et al., 2021) that uses the Fourier amplitude mixup as means of data augmentation with additional
student-teacher regularisation.

First, SWAD (Cha et al., 2021) is the second best model in Table 1, implying that the simple ERM loss
combined with the dense model averaging that seeks for flat minima is quite effective, also observed
previously (Gulrajani & Lopez-Paz, 2021). FACT (Xu et al., 2021) utilises the Fourier amplitude
spectra similar to our approach, but their main focus is data augmentation, producing more training
images by amplitude mixup of source domain images. FACT also adopted the so-called teacher
co-regularisation which forces the orders of the class prediction logits to be consistent between
teacher and student models on the amplitude-mixup data. To disentangle the impact of these two
components in FACT, we ran a model called Amp-Mixup that is simply FACT without teacher
co-regularisation. The teacher co-regularisation yields further improvement in the average accuracy
(FACT > Amp-Mixup in the last column of Table 1), verifying the claim in (Xu et al., 2021), although
FACT is slightly worse than Amp-Mixup on VLCS and TerraIncognita.

We also modified FACT and Amp-Mixup models by incorporating the SWAD model averaging
(FACT+SWAD and Amp-Mixup+SWAD in the table). Clearly they perform even better in combi-
nation with SWAD. Since Amp-Mixup+SWAD can be seen as dropping the teacher regularisation
and adopting the SWAD (regularisation) strategy instead, we can say that SWAD is more effective
regularisation than student-teacher. Nevertheless, despite the utilisation of amplitude-mixup augmen-
tation, it appears that FACT and Amp-Mixup have little improvement over the ERM loss even when
the SWAD strategy is used. This signifies the effect of the adversarial Fourier-based target domain
generation in our approach which exhibits significant improvement over ERM and SWAD.

5.2 FURTHER ANALYSIS

Sensitivity to η (SMCD strength). We analyze sensitivity of the target domain generalisation
performance to the SMCD trade-off hyperparameter η. We run our algorithm with different values of
η. The results are shown in Fig. 3. Note that η = 0 ignores the SMCD loss term (thus generator has
no influence on the model training), which corresponds to the ERM approach. The test accuracy of
the proposed approach remains significantly better than ERM/SWAD for all those η with moderate
variations around the best value. See Appendix A.2 for the results on individual target domains.

Sensitivity to α (post-synthesis mixup strength). We mix up the generated amplitude images and
the source domain images as in (17) to make the adversarial target domain classification task solvable.
The task becomes easier for small α (less impact of the generated amplitudes), and vice versa. Note
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Figure 3: Sensitivity to η (SMCD trade-off) on PACS and OfficeHome.
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Figure 4: Sensitivity to α (post-mixup strength) on PACS and OfficeHome.

Table 2: Ablation study: 1) unsupervised MCD (instead of SMCD), 2) without post-mixup, 3) without
SWAD, and 4) pixel-based target image generation (instead of amplitude generation).

Art Cartoon Photo Sketch Average
Unsupervised MCD 88.94 ± 0.23 83.83 ± 0.19 97.27 ± 0.10 81.77 ± 0.36 87.95

Without post-mixup 88.90 ± 0.16 81.80 ± 0.17 97.43 ± 0.14 80.86 ± 0.31 87.25

Without SWAD 84.20 ± 0.68 81.56 ± 0.55 94.83 ± 0.12 79.28 ± 0.94 84.97

Pixel-based generation 88.85 ± 0.15 83.62 ± 0.26 97.23 ± 0.15 82.10 ± 0.63 87.95

(Proposed) AGFA 89.80 ± 0.34 85.16 ± 0.65 97.59 ± 0.27 84.67 ± 0.82 89.30

that α = 0 ignores generated amplitude images completely in post-mixup, and the training becomes
close to ERM learning where the only difference is that we utilise more basic augmentation (e.g., flip,
rotation, color jittering). As shown in Fig. 4, the target test performance is not very sensitive around
the best selected hyperparameters. See also ablation study results on the impact of post-mixup below.

Impact of SMCD (vs. unsupervised MCD). We verify the positive effect of the proposed super-
vised MCD loss (SMCD in (16)) that exploits the induced target domain class labels, compared to
the conventional (unsupervised) MCD loss (14) without using the target class labels. The result in
Table 2 supports our claim that exploiting target class labels induced from the phase information is
quite effective, improving the target generalisation performance.

Impact of post-synthesis mixup. We argued that our post-synthesis mixup of the generated
amplitude images makes the class prediction task easier for the generated target domain, for the
solvability of the DG problem. To verify this, we compare two models, with and without the
post-mixup strategy in Table 2. The model trained with post-mixup performs better.

Impact of SWAD. We adopted the SWAD model averaging scheme (Cha et al., 2021) for improving
generalisation performance. We verify the impact of the SWAD as in Table 2 where the model without
SWAD has lower target test accuracy signifying the importance of the SWAD model averaging.

Impact of amplitude generation. The amplitude image generation in our adversarial MCD learning
allows us to separate the phase and amplitude images and exploit the class labels induced by the
phase information. However, one may be curious about how the model would work if we instead
generate full images without phase/amplitude separation in an adversarial way. That is, we adopt a
pixel-based adversarial image generator, and in turn replace our SMCD by the conventional MCD loss
(since there are no class labels inducible in this strategy). We consider two generator architectures:
linear (from 100-dim input noise to full image pixels) and nonlinear (a fully connected network with
one hidden layer of 100 units), where the former slightly performs better. Table 2 shows that this
pixel-based target image generation underperforms our amplitude generation.

6 CONCLUSION

We tried to address the domain generalisation problem from the perspective of maximum classifier
discrepancy: Improving robustness by synthesising a worst-case target domain for learning, and
training the model to be robust to that domain with the (S)MCD objective. To provide an approxima-
tion to style and content separation for synthesis, the worst-case domain is synthesised in Fourier
amplitude space. Our results provide a clear improvement on the state-of-the-arts on the challenging
DomainBed benchmark suite.

9



Published as a conference paper at ICLR 2023

REFERENCES

Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization.
arXiv preprint arXiv:1907.02893, 2019.

Yogesh Balaji, Swami Sankaranarayanan, and Rama Chellappa. Metareg: Towards domain gen-
eralization using meta-regularization. In Advances in Neural Information Processing Systems,
2018.

Sara Beery, Grant Van Horn, and Pietro Perona. Recognition in terra incognita. European Conference
on Computer Vision, 2018.

S. Ben-David, J. Blitzer, K. Crammer, A. Kulesza, F. Pereira, and J. W. Vaughan. A theory of learning
from different domains. Machine Learning, 79(1–2):151–175, 2010.

Shai Ben-David, John Blitzer, Koby Crammer, and Fernando Pereira. Analysis of representations for
domain adaptation. In Advances in Neural Information Processing Systems, 2007.

Gilles Blanchard, Aniket Anand Deshmukh, Urun Dogan, Gyemin Lee, and Clayton Scott. Domain
generalization by marginal transfer learning. Journal of Machine Learning Research, 22(2):1–55,
2021.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge: Cambridge University Press, 2004.

Junbum Cha, Sanghyuk Chun, Kyungjae Lee, Han-Cheol Cho, Seunghyun Park, Yunsung Lee, and
Sungrae Park. SWAD: Domain Generalization by Seeking Flat Minima. In Advances in Neural
Information Processing Systems (NeurIPS), 2021.

Prithvijit Chattopadhyay, Yogesh Balaji, and Judy Hoffman. Learning to balance specificity and
invariance for in and out of domain generalization. European Conference on Computer Vision,
2020.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale
hierarchical image database. In IEEE Conference on Computer Vision and Pattern Recognition,
2009.

Qi Dou, Daniel C Castro, Konstantinos Kamnitsas, and Ben Glocker. Domain generalization via
model-agnostic learning of semantic features. In Advances in Neural Information Processing
Systems, 2019.

Chen Fang, Ye Xu, and Daniel N. Rockmore. Unbiased metric learning: On the utilization of multiple
datasets and web images for softening bias. International Conference on Computer Vision, 2013.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François
Laviolette, Mario Marchand, and Victor Lempitsky. Domain-adversarial training of neural networks.
Journal of Machine Learning Research, 17(1):1–35, 2016.

Robert Geirhos, Jörn-Henrik Jacobsen, Claudio Michaelis, Richard Zemel, Wieland Brendel, Matthias
Bethge, and Felix A Wichmann. Shortcut learning in deep neural networks. Nature Machine
Intelligence, 2(11):665–673, 2020.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and
Y. Bengio. Generative adversarial nets. In Advances in Neural Information Processing Systems,
2014.

Ishaan Gulrajani and David Lopez-Paz. In search of lost domain generalization. International
Conference on Learning Representations, 2021.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2016.

Zeyi Huang, Haohan Wang, Eric P. Xing, and Dong Huang. Self-challenging improves cross domain
generalization. European Conference on Computer Vision, 2020.

10



Published as a conference paper at ICLR 2023

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon Wilson.
Averaging weights leads to wider optima and better generalization. In Uncertainty in Artificial
Intelligence, 2018.

Minyoung Kim, Pritish Sahu, Behnam Gholami, and Vladimir Pavlovic. Unsupervised Visual Domain
Adaptation: A Deep Max-Margin Gaussian Process Approach. Computer Vision and Pattern
Recognition, 2019.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. International
Conference on Learning Representations, 2015.

Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay Balsub-
ramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, Tony Lee, Etienne
David, Ian Stavness, Wei Guo, Berton Earnshaw, Imran Haque, Sara M Beery, Jure Leskovec,
Anshul Kundaje, Emma Pierson, Sergey Levine, Chelsea Finn, and Percy Liang. Wilds: A bench-
mark of in-the-wild distribution shifts. In ICML, volume 139 of Proceedings of Machine Learning
Research, pp. 5637–5664. PMLR, 2021.

David Krueger, Ethan Caballero, Joern-Henrik Jacobsen, Amy Zhang, Jonathan Binas, Remi Le
Priol, and Aaron Courville. Out-of-distribution generalization via risk extrapolation (REx). arXiv
preprint arXiv:2003.00688, 2020.

Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M. Hospedales. Deeper, broader and artier domain
generalization. International Conference on Computer Vision, 2017.

Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy Hospedales. Learning to generalize: Meta learning
for domain generalization. AAAI Conference on Artificial Intelligence, 2018a.

Da Li, Jianshu Zhang, Yongxin Yang, Cong Liu, Yi-Zhe Song, and Timothy M. Hospedales. Episodic
training for domain generalization. In ICCV, 2019.

Haoliang Li, Sinno Jialin Pan, Shiqi Wang, and Alex C Kot. Domain generalization with adversarial
feature learning. IEEE Conference on Computer Vision and Pattern Recognition, 2018b.

Ya Li, Mingming Gong, Xinmei Tian, Tongliang Liu, and Dacheng Tao. Domain generalization via
conditional invariant representations. AAAI Conference on Artificial Intelligence, 2018c.

Zhihe Lu, Yongxin Yang, Xiatian Zhu, Cong Liu, Yi-Zhe Song, and Tao Xiang. Stochastic classifiers
for unsupervised domain adaptation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 9111–9120, 2020.

Hyeonseob Nam, HyunJae Lee, Jongchan Park, Wonjun Yoon, and Donggeun Yoo. Reducing domain
gap by reducing style bias. IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2021.

Oren Nuriel, Sagie Benaim, and Lior Wolf. Permuted AdaIN: Reducing the bias towards global statis-
tics in image classification. IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2021.

Alan V Oppenheim and Jae S Lim. The importance of phase in signals. Proceedings of the IEEE, 69
(5):529–541, 1981.

Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang. Moment matching
for multi-source domain adaptation. International Conference on Computer Vision, 2019.

Shiori Sagawa, Pang Wei Koh, Tatsunori B. Hashimoto, and Percy Liang. Distributionally robust
neural networks. International Conference on Learning Representations, 2020.

Kuniaki Saito, Kohei Watanabe, Yoshitaka Ushiku, and Tatsuya Harada. Maximum classifier
discrepancy for unsupervised domain adaptation. Computer Vision and Pattern Recognition, 2018.

Seonguk Seo, Yumin Suh, Dongwan Kim, Jongwoo Han, and Bohyung Han. Learning to optimize
domain specific normalization for domain generalization. European Conference on Computer
Vision, 2020.

11



Published as a conference paper at ICLR 2023

Shiv Shankar, Vihari Piratla, Soumen Chakrabarti, Siddhartha Chaudhuri, Preethi Jyothi, and Sunita
Sarawagi. Generalizing across domains via cross-gradient training. In ICLR, 2018.

Baochen Sun and Kate Saenko. Deep coral: Correlation alignment for deep domain adaptation.
European Conference on Computer Vision, 2016.

Ramakrishna Vedantam, David Lopez-Paz, and David J. Schwab. An Empirical Investigation of
Domain Generalization with Empirical Risk Minimizers. In Advances in Neural Information
Processing Systems (NeurIPS), 2021.

Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethuraman Panchanathan. Deep
hashing network for unsupervised domain adaptation. Computer Vision and Pattern Recognition,
2017.

Shujun Wang, Lequan Yu, Caizi Li, Chi-Wing Fu, and Pheng-Ann Heng. Learning from extrinsic
and intrinsic supervisions for domain generalization. European Conference on Computer Vision,
2020a.

Yufei Wang, Haoliang Li, and Alex C Kot. Heterogeneous domain generalization via domain mixup.
IEEE International Conference on Acoustics, Speech and Signal Processing, 2020b.

Minghao Xu, Jian Zhang, Bingbing Ni, Teng Li, Chengjie Wang, Qi Tian, and Wenjun Zhang.
Adversarial domain adaptation with domain mixup. AAAI Conference on Artificial Intelligence,
2020.

Qinwei Xu, Ruipeng Zhang, Ya Zhang, Yanfeng Wang, and Qi Tian. A Fourier-based Framework for
Domain Generalization. In IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), June 2021.

Shen Yan, Huan Song, Nanxiang Li, Lincan Zou, and Liu Ren. Improve unsupervised domain
adaptation with mixup training. arXiv preprint arXiv:2001.00677, 2020.

Hongyi Zhang, Moustapha Cisse, Yann N. Dauphin, and David Lopez-Paz. Mixup: Beyond Empirical
Risk Minimization. International Conference on Learning Representations, 2018.

Marvin Zhang, Henrik Marklund, Abhishek Gupta, Sergey Levine, and Chelsea Finn. Adaptive risk
minimization: A meta-learning approach for tackling group shift. arXiv preprint arXiv:2007.02931,
2020.

Yabin Zhang, Minghan Li, Ruihuang Li, Kui Jia, and Lei Zhang. Exact Feature Distribution Matching
for Arbitrary Style Transfer and Domain Generalization. IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2022.

Shanshan Zhao, Mingming Gong, Tongliang Liu, Huan Fu, and Dacheng Tao. Domain generalization
via entropy regularization. In Advances in Neural Information Processing Systems, 2020.

Kaiyang Zhou, Yongxin Yang, Timothy Hospedales, and Tao Xiang. Deep domain-adversarial
image generation for domain generalisation. In Proceedings of the AAAI Conference on Artificial
Intelligence, 2020.

Kaiyang Zhou, Ziwei Liu, Yu Qiao, Tao Xiang, and Chen Change Loy. Domain generalization: A
survey. arXiv preprint arXiv:2103.02503, 2021a.

Kaiyang Zhou, Yongxin Yang, Yu Qiao, and Tao Xiang. Domain generalization with mixstyle.
International Conference on Learning Representations, 2021b.

12



Published as a conference paper at ICLR 2023

A APPENDIX

The Appendix consists of the following contents:

• Implementation Details (Sec. A.1)
• Full Results (Sec. A.2)
• Derivation of ELBO in Variational Inference (Sec. A.3)
• Additional Experimental Results (Sec. A.4)

A.1 IMPLEMENTATION DETAILS

We adopt the ResNet50 (He et al., 2016) architecture (removing the final classification layer) as
the feature extractor network. For the amplitude generator network, we have tested several fully-
connected network architectures with different numbers of hidden layers and hidden units, and the
simple linear network peformed the best. The input noise dimension for the generator is chosen as
100. The covariance matrices of the variational parameters are restricted to be diagonal. The number
of MC samples from Qλ(W ) in the ELBO optimisation is chosen as 50.

The optimisation hyperparameters are chosen by the same strategy as (Cha et al., 2021), where we
employ the Adam optimiser (Kingma & Ba, 2015) with learning rate 5 × 10−5, and no dropout,
weight decay used. The batch size was 32 (for each training domain) in ERM/SWAD (Cha et al.,
2021), but we halved it in our model since the remaining half are constructed by the adversarial target
generation. The standard basic data augmentation is also applied to the input images. Following the
suggestion from (Cha et al., 2021), we run our model up to 5000 iterations for all datasets except for
DomainNet. But the algorithm may stop earlier before the maximum iterations if SWAD termination
condition is met (See Sec. A.1.1 below). Since DomainNet is a large-scale dataset, and it is required
to have a even larger number of iterations to go through the entire data at least several times. In (Cha
et al., 2021), they used 15000 iterations which roughly corresponds to 3 to 10 data epochs. In our
model, since we halved the number of input images in the batch, in order to have the same training
epochs as (Cha et al., 2021), we increase it up to 30000 iterations for DomainNet. The details of the
SWAD implementation follows in the next section.

A.1.1 SWAD MODEL AVERAGING

We adopt the SWAD model averaging strategy (Cha et al., 2021) to have a more robust model that is
less affected by overfitting. We apply the SWAD to the feature extractor network parameters θ and
the variational parameters λ, but not the adversarial generator network. Since SWAD is an important
component in our model, we provide more details here.

SWAD is motivated from stochastic weight averaging (SWA) (Izmailov et al., 2018), however, unlike
SWA’s model averaging for every epoch, SWAD takes dense model averaging for every (batch)
iteration. A key component of the SWAD algorithm is to determine the model averaging regime,
the interval of iterations for which the model averaging is performed. This regime is aimed to avoid
overfitting, and known as overfit-aware model averaging. The regime is specified by the start and end
iteration numbers, ts and te, respectively, and we take model averaging for iterations t ∈ [ts, te], that
is,

θSWAD =
1

te − ts + 1

te∑
t=ts

θt, λSWAD =
1

te − ts + 1

te∑
t=ts

λt, (18)

where θt and λt are the model parameters after iteration t. Here (θSWAD, λSWAD) are the final
model parameters returned by the training algorithm.

Now we describe how the regime is determined. Ideally, we expect the intermediate models during the
interval [ts, te] to be overfit-free, having high generalisation performance. To this end, we evaluate the
model on the validation set (held out from the source domain training data), and denote the validation
loss of the t-th model by ltval. Then the start iteration of the regime, ts is determined by the first t
where the validation loss is not improved for the next Ns iterations (e.g., Ns = 3). That is,

ts = min{t−Ns + 1 | lt−Ns+1
val ≤ ltval, l

t−1
val , . . . , l

t−Ns+1
val }. (19)
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Algorithm 1 AGFA Algorithm with SWAD Model Averaging.
Input: Source data S, SMCD trade-off η, post-mixup α, and learning rate γ, and

SWAD hyperparameters Ns, Ne, r.
Initialise: θ (feature extractor), λ (variational parameters), and ν (generator).

(flag) SWAD-Regime-Entered← FALSE, (iteration) t← 0.
Repeat:

0. Sample a minibatch SB = {(xS
i , y

S
i )}ni=1 from S.

1. Prepare {(AS
i , P

S
i )}ni=1 by Fourier transform AS

i ∠P
S
i = F(xS

i ).
2. Generate amplitude images AG

i = Gν(ϵi), ϵi ∼ N (0, I) for i = 1, . . . , n.
3. Post-mixup: AG

i ← λAG
i + (1− λ)AS

i , λ ∼ Uniform(0, α).
4. Construct a target batch TB = {(xT

i , y
T
i )}ni=1: xT

i = F−1(AG
i ∠P

S
i ), yTi = ySi .

5. Evaluate Lmodel := −ELBO(λ, θ;SB) + ηSMCD(θ;TB).
6. Update the model and variational parameters: (λ, θ)← (λ, θ)− γ∇(λ,θ)Lmodel.
7. Evaluate Lgen := −SMCD(θ;TB).
8. Update the generator network: ν ← ν − γ∇νLgen.
9. (SWAD procedure)

t← t+ 1, (λt, θt)← (λ, θ).
If SWAD-Regime-Entered == FALSE:

If lt−Ns+1
val = min0≤t′<Ns l

t−t′

val :
ts ← t−Ns + 1, lval ← 1

Ns

∑Ns−1
t′=0 lt−t′

val .
SWAD-Regime-Entered← True.

Else:
If r · lval < min0≤t′<Ne l

t−t′

val :
te ← t−Ne.
Return θSWAD = 1

te−ts+1

∑te
t=ts

θt, λSWAD = 1
te−ts+1

∑te
t=ts

λt.

Once we find ts, we compute the (average) starting validation loss,

lval =

∑ts+Ns−1
t=ts

ltval
Ns

, (20)

which is used as a reference when we decide the end iteration te. As we enter the regime, we start
model averaging every iteration. To determine when to stop, we inspect the validation losses to see if
the model starts overfitting. Specifically, if the validation losses are consecutively greater than lval by
some margin, we regard it as overfit signal. That is,

te = min{t−Ne | ltval, lt−1
val , . . . , l

t−Ne+1
val > r · lval}, (21)

where r and Ne are user-driven hyperparameters (e.g., r = 1.3, Ne = 6).

The pseudo code of our AGFA algorithm with the SWAD strategy is summarised in Alg. 1. There
are three hyperparameters in SWAD, (Ns, Ne, r), and following (Cha et al., 2021), we use Ns = 3,
Ne = 6, r = 1.3 for all datasets in DomainBed except r = 1.2 for VLCS. One technical issue is that
evaluating the validation loss every iteration is computationally demanding. Similarly as (Cha et al.,
2021), we compute the validation loss at every V -th iterations (e.g., V = 50 for VLCS, V = 500
for DomainNet, and V = 100 for the rest) although the model averaging is still performed every
iteration. Accordingly, the equations (19), (20), and (21) need to be changed where essentially all
iteration numbers in those equations should be changed to multiples of V . The model averaging in
Alg. 1 is implemented by the running (online) average and the use of (FIFO) queue data structures
similarly as (Cha et al., 2021), which does not incur significant extra computational overhead.

A.2 FULL RESULTS

The full results (test errors on individual target domains) on DomainBed datasets are summarised
in Table 3 (PACS), Table 4 (VLCS), Table 5 (OfficeHome), Table 6 (TerraIncognita), and Table 7
(DomainNet).

We also show the full results of the sensitivity analysis in Table 8 (the SMCD loss trade-off η) and
Table 9 (the post-synthesis mixup strength α). Moreover, we visualise in Fig. 5 the ablation study
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Table 3: Average accuracies on PACS. Note: † indicates that the results are excerpted from the
published papers or (Gulrajani & Lopez-Paz, 2021). Our own runs are reported without †. FACT (Xu
et al., 2021) adopted a slightly different data/domain split from DomainBed’s, explaining discrepancy.

Algorithm A C P S Avg

MASF (Dou et al., 2019)† 82.9 80.5 95.0 72.3 82.7

DMG (Chattopadhyay et al., 2020)† 82.6 78.1 94.5 78.3 83.4

MetaReg (Balaji et al., 2018)† 87.2 79.2 97.6 70.3 83.6

ER (Zhao et al., 2020)† 87.5 79.3 98.3 76.3 85.3

pAdaIN (Nuriel et al., 2021)† 85.8 81.1 97.2 77.4 85.4

EISNet (Wang et al., 2020a)† 86.6 81.5 97.1 78.1 85.8

DSON (Seo et al., 2020)† 87.0 80.6 96.0 82.9 86.6

ERM (Cha et al., 2021)† 85.7 ± 0.6 77.1 ± 0.8 97.4 ± 0.4 76.6 ± 0.7 84.2

IRM (Arjovsky et al., 2019)† 84.8 ± 1.3 76.4 ± 1.1 96.7 ± 0.6 76.1 ± 1.0 83.5

GroupDRO (Sagawa et al., 2020)† 83.5 ± 0.9 79.1 ± 0.6 96.7 ± 0.3 78.3 ± 2.0 84.4

I-Mixup (Xu et al., 2020; Yan et al., 2020; Wang et al., 2020b)† 86.1 ± 0.5 78.9 ± 0.8 97.6 ± 0.1 75.8 ± 1.8 84.6

MLDG (Li et al., 2018a)† 85.5 ± 1.4 80.1 ± 1.7 97.4 ± 0.3 76.6 ± 1.1 84.9

CORAL (Sun & Saenko, 2016)† 88.3 ± 0.2 80.0 ± 0.5 97.5 ± 0.3 78.8 ± 1.3 86.2

MMD (Li et al., 2018b)† 86.1 ± 1.4 79.4 ± 0.9 96.6 ± 0.2 76.5 ± 0.5 84.7

DANN (Ganin et al., 2016)† 86.4 ± 0.8 77.4 ± 0.8 97.3 ± 0.4 73.5 ± 2.3 83.7

CDANN (Li et al., 2018c)† 84.6 ± 1.8 75.5 ± 0.9 96.8 ± 0.3 73.5 ± 0.6 82.6

MTL (Blanchard et al., 2021)† 87.5 ± 0.8 77.1 ± 0.5 96.4 ± 0.8 77.3 ± 1.8 84.6

SagNet (Nam et al., 2021)† 87.4 ± 1.0 80.7 ± 0.6 97.1 ± 0.1 80.0 ± 0.4 86.3

ARM (Zhang et al., 2020)† 86.8 ± 0.6 76.8 ± 0.5 97.4 ± 0.3 79.3 ± 1.2 85.1

VREx (Krueger et al., 2020)† 86.0 ± 1.6 79.1 ± 0.6 96.9 ± 0.5 77.7 ± 1.7 84.9

RSC (Huang et al., 2020)† 85.4 ± 0.8 79.7 ± 1.8 97.6 ± 0.3 78.2 ± 1.2 85.2

Mixstyle (Zhou et al., 2021b)† 86.8 ± 0.5 79.0 ± 1.4 96.6 ± 0.1 78.5 ± 2.3 85.2

FACT (Xu et al., 2021)† 89.6 ± 0.5 81.8 ± 0.2 96.8 ± 0.1 84.5 ± 0.8 88.2

FACT (Xu et al., 2021) 87.8 ± 0.2 80.5 ± 1.1 96.2 ± 0.2 81.2 ± 0.6 86.4

Amp-Mixup (Xu et al., 2021) 84.7 ± 0.6 81.0 ± 1.1 95.0 ± 0.2 78.1 ± 1.0 84.7

SWAD (Cha et al., 2021)† 89.3 ± 0.2 83.4 ± 0.6 97.3 ± 0.3 82.5 ± 0.5 88.1

FACT+SWAD 89.6 ± 0.8 82.5 ± 0.3 96.6 ± 0.2 83.8 ± 0.8 88.1

Amp-Mixup+SWAD 88.7 ± 0.1 83.2 ± 0.4 96.4 ± 0.1 84.1 ± 0.5 88.1

(Proposed) AGFA 89.8 ± 0.3 85.2 ± 0.6 97.6 ± 0.3 84.7 ± 0.8 89.3

results for the four different modeling choices: 1) Impact of SMCD (vs. conventional unsupervised
MCD), 2) Impact of post-synthesis mixup, 3) Impact of SWAD, and 4) Impact of amplitude generation
(vs. pixel-based image generation). For the pixel-based image generation, we consider two generator
architectures: linear (from 100-dim input noise to full image pixels) and nonlinear (a fully connected
network with one hidden layer of 100 units).

Visualisation of generated adversarial images. We visualise in Fig. 6 some synthesised amplitude
images and constructed target domain images from the learned model on the PACS dataset. Although
the generated amplitude images visually look like random noise, they appear to have the effect of
attenuating high frequency spectra (shown as darker pixels in the fifth column) when combined with
the source domain amplitude images by post-mixup. The constructed images from the generated
amplitude images alone without post-mixup (sixth column) look a lot like edge detection maps,
whereas the post-mixup constructed ones (seventh column) remain visually similar to the original
source domain images, promoting DG solvability.

A.3 DERIVATION OF ELBO IN VARIATIONAL INFERENCE

We derive the evidence lower bound (ELBO) in (11) in the main paper. To enforce Qλ(W ) ≈
P (W |S, θ), we minimise their KL divergence,

KL
(
Qλ(W )||P (W |S, θ)

)
= EQλ(W )

[
log

Qλ(W )

P (W |S, θ)

]
(22)

= EQλ(W )

[
log

Qλ(W )P (S|θ)
P (S|W, θ)P (W )

]
(23)

= logP (S|θ)− EQλ(W )

[
logP (S|W, θ)

]
+ EQλ(W )

[
log

Qλ(W )

P (W )

]
(24)

= logP (S|θ)− EQλ(W )

[
logP (S|W, θ)

]
+ KL

(
Qλ(W )||P (W )

)
. (25)

= logP (S|θ)−
∑

(x,y)∼S

EQλ(W )

[
logP (y|x,W, θ)

]
+ KL

(
Qλ(W )||P (W )

)
. (26)

15



Published as a conference paper at ICLR 2023

Table 4: Average accuracies on VLCS. The same interpretation as Table 3.
Algorithm C L S V Avg

ERM (Cha et al., 2021)† 98.0 ± 0.3 64.7 ± 1.2 71.4 ± 1.2 75.2 ± 1.6 77.3

IRM (Arjovsky et al., 2019)† 98.6 ± 0.1 64.9 ± 0.9 73.4 ± 0.6 77.3 ± 0.9 78.6

GroupDRO (Sagawa et al., 2020)† 97.3 ± 0.3 63.4 ± 0.9 69.5 ± 0.8 76.7 ± 0.7 76.7

I-Mixup (Xu et al., 2020; Yan et al., 2020; Wang et al., 2020b)† 98.3 ± 0.6 64.8 ± 1.0 72.1 ± 0.5 74.3 ± 0.8 77.4

MLDG (Li et al., 2018a)† 97.4 ± 0.2 65.2 ± 0.7 71.0 ± 1.4 75.3 ± 1.0 77.2

CORAL (Sun & Saenko, 2016)† 98.3 ± 0.1 66.1 ± 1.2 73.4 ± 0.3 77.5 ± 1.2 78.8

MMD (Li et al., 2018b)† 97.7 ± 0.1 64.0 ± 1.1 72.8 ± 0.2 75.3 ± 3.3 77.5

DANN (Ganin et al., 2016)† 99.0 ± 0.3 65.1 ± 1.4 73.1 ± 0.3 77.2 ± 0.6 78.6

CDANN (Li et al., 2018c)† 97.1 ± 0.3 65.1 ± 1.2 70.7 ± 0.8 77.1 ± 1.5 77.5

MTL (Blanchard et al., 2021)† 97.8 ± 0.4 64.3 ± 0.3 71.5 ± 0.7 75.3 ± 1.7 77.2

SagNet (Nam et al., 2021)† 97.9 ± 0.4 64.5 ± 0.5 71.4 ± 1.3 77.5 ± 0.5 77.8

ARM (Zhang et al., 2020)† 98.7 ± 0.2 63.6 ± 0.7 71.3 ± 1.2 76.7 ± 0.6 77.6

VREx (Krueger et al., 2020)† 98.4 ± 0.3 64.4 ± 1.4 74.1 ± 0.4 76.2 ± 1.3 78.3

RSC (Huang et al., 2020)† 97.9 ± 0.1 62.5 ± 0.7 72.3 ± 1.2 75.6 ± 0.8 77.1

Mixstyle (Zhou et al., 2021b)† 98.6 ± 0.3 64.5 ± 1.1 72.6 ± 0.5 75.7 ± 1.7 77.9

FACT (Xu et al., 2021) 97.6 ± 0.1 65.5 ± 0.5 69.2 ± 0.8 73.9 ± 0.7 76.6

Amp-Mixup (Xu et al., 2021) 97.4 ± 0.7 65.6 ± 0.3 70.5 ± 0.9 70.1 ± 0.8 75.9

SWAD (Cha et al., 2021)† 98.8 ± 0.1 63.3 ± 0.3 75.3 ± 0.5 79.2 ± 0.6 79.1

FACT+SWAD 98.4 ± 0.1 63.1 ± 0.3 72.4 ± 0.5 77.0 ± 0.4 77.7

Amp-Mixup+SWAD 98.7 ± 0.1 63.9 ± 0.5 73.5 ± 0.2 76.7 ± 0.2 78.2

(Proposed) AGFA 99.0 ± 0.1 64.5 ± 0.6 75.4 ± 0.3 78.9 ± 0.6 79.5

Table 5: Average accuracies on OfficeHome. The same interpretation as Table 3.
Algorithm C L S V Avg

ERM (Cha et al., 2021)† 63.1 ± 0.3 51.9 ± 0.4 77.2 ± 0.5 78.1 ± 0.2 67.6

IRM (Arjovsky et al., 2019)† 58.9 ± 2.3 52.2 ± 1.6 72.1 ± 2.9 74.0 ± 2.5 64.3

GroupDRO (Sagawa et al., 2020)† 60.4 ± 0.7 52.7 ± 1.0 75.0 ± 0.7 76.0 ± 0.7 66.0

I-Mixup (Xu et al., 2020; Yan et al., 2020; Wang et al., 2020b)† 62.4 ± 0.8 54.8 ± 0.6 76.9 ± 0.3 78.3 ± 0.2 68.1

MLDG (Li et al., 2018a)† 61.5 ± 0.9 53.2 ± 0.6 75.0 ± 1.2 77.5 ± 0.4 66.8

CORAL (Sun & Saenko, 2016)† 65.3 ± 0.4 54.4 ± 0.5 76.5 ± 0.1 78.4 ± 0.5 68.7

MMD (Li et al., 2018b)† 60.4 ± 0.2 53.3 ± 0.3 74.3 ± 0.1 77.4 ± 0.6 66.4

DANN (Ganin et al., 2016)† 59.9 ± 1.3 53.0 ± 0.3 73.6 ± 0.7 76.9 ± 0.5 65.9

CDANN (Li et al., 2018c)† 61.5 ± 1.4 50.4 ± 2.4 74.4 ± 0.9 76.6 ± 0.8 65.7

MTL (Blanchard et al., 2021)† 61.5 ± 0.7 52.4 ± 0.6 74.9 ± 0.4 76.8 ± 0.4 66.4

SagNet (Nam et al., 2021)† 63.4 ± 0.2 54.8 ± 0.4 75.8 ± 0.4 78.3 ± 0.3 68.1

ARM (Zhang et al., 2020)† 58.9 ± 0.8 51.0 ± 0.5 74.1 ± 0.1 75.2 ± 0.3 64.8

VREx (Krueger et al., 2020)† 60.7 ± 0.9 53.0 ± 0.9 75.3 ± 0.1 76.6 ± 0.5 66.4

RSC (Huang et al., 2020)† 60.7 ± 1.4 51.4 ± 0.3 74.8 ± 1.1 75.1 ± 1.3 65.5

Mixstyle (Zhou et al., 2021b)† 51.1 ± 0.3 53.2 ± 0.4 68.2 ± 0.7 69.2 ± 0.6 60.4

FACT (Xu et al., 2021)† 60.3 ± 0.1 54.9 ± 0.4 74.5 ± 0.1 76.6 ± 0.1 66.6

FACT (Xu et al., 2021) 61.2 ± 0.1 55.2 ± 0.1 74.0 ± 0.2 76.2 ± 0.4 66.6

Amp-Mixup (Xu et al., 2021) 57.1 ± 0.3 51.9 ± 0.1 72.5 ± 0.3 74.4 ± 0.2 64.0

SWAD (Cha et al., 2021)† 66.1 ± 0.4 57.7 ± 0.4 78.4 ± 0.1 80.2 ± 0.2 70.6

FACT+SWAD 66.4 ± 0.2 58.3 ± 0.2 78.0 ± 0.1 79.6 ± 0.1 70.6

Amp-Mixup+SWAD 65.9 ± 0.2 57.9 ± 0.4 77.8 ± 0.2 79.7 ± 0.1 70.3

(Proposed) AGFA 67.5 ± 0.3 58.5 ± 0.1 79.3 ± 0.1 80.7 ± 0.1 71.5

Since KL divergence is non-negative, re-arranging (26) yields:

logP (S|θ) ≥
∑

(x,y)∼S

EQλ(W )

[
logP (y|x,W, θ)

]
− KL

(
Qλ(W )||P (W )

)
, (27)

and the right hand side constitutes the ELBO.

A.4 ADDITIONAL EXPERIMENTAL RESULTS

A.4.1 RESULTS ON RESNET-18 BACKBONE

To test our approach on backbone networks other than ResNet-50, we run experiments with the
ResNet-18 backbone on the PACS dataset. The results are summarised in Table 10. Compared to the
recent approaches MixStyle (Zhou et al., 2021b) and EFDMix (Zhang et al., 2022), our approach
AGFA again shows higher performance even with the smaller ResNet-18 backbone.
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Table 6: Average accuracies on TerraIncognita. The same interpretation as Table 3.
Algorithm L100 L38 L43 L46 Avg

ERM (Cha et al., 2021)† 54.3 ± 0.4 42.5 ± 0.7 55.6 ± 0.3 38.8 ± 2.5 47.8

IRM (Arjovsky et al., 2019)† 54.6 ± 1.3 39.8 ± 1.9 56.2 ± 1.8 39.6 ± 0.8 47.6

GroupDRO (Sagawa et al., 2020)† 41.2 ± 0.7 38.6 ± 2.1 56.7 ± 0.9 36.4 ± 2.1 43.2

I-Mixup (Xu et al., 2020; Yan et al., 2020; Wang et al., 2020b)† 59.6 ± 2.0 42.2 ± 1.4 55.9 ± 0.8 33.9 ± 1.4 47.9

MLDG (Li et al., 2018a)† 54.2 ± 3.0 44.3 ± 1.1 55.6 ± 0.3 36.9 ± 2.2 47.8

CORAL (Sun & Saenko, 2016)† 51.6 ± 2.4 42.2 ± 1.0 57.0 ± 1.0 39.8 ± 2.9 47.7

MMD (Li et al., 2018b)† 41.9 ± 3.0 34.8 ± 1.0 57.0 ± 1.9 35.2 ± 1.8 42.2

DANN (Ganin et al., 2016)† 51.1 ± 3.5 40.6 ± 0.6 57.4 ± 0.5 37.7 ± 1.8 46.7

CDANN (Li et al., 2018c)† 47.0 ± 1.9 41.3 ± 4.8 54.9 ± 1.7 39.8 ± 2.3 45.8

MTL (Blanchard et al., 2021)† 49.3 ± 1.2 39.6 ± 6.3 55.6 ± 1.1 37.8 ± 0.8 45.6

SagNet (Nam et al., 2021)† 53.0 ± 2.9 43.0 ± 2.5 57.9 ± 0.6 40.4 ± 1.3 48.6

ARM (Zhang et al., 2020)† 49.3 ± 0.7 38.3 ± 2.4 55.8 ± 0.8 38.7 ± 1.3 45.5

VREx (Krueger et al., 2020)† 48.2 ± 4.3 41.7 ± 1.3 56.8 ± 0.8 38.7 ± 3.1 46.4

RSC (Huang et al., 2020)† 50.2 ± 2.2 39.2 ± 1.4 56.3 ± 1.4 40.8 ± 0.6 46.6

Mixstyle (Zhou et al., 2021b)† 54.3 ± 1.1 34.1 ± 1.1 55.9 ± 1.1 31.7 ± 2.1 44.0

FACT (Xu et al., 2021) 52.4 ± 1.2 42.3 ± 1.0 55.5 ± 0.3 31.3 ± 0.9 45.4

Amp-Mixup (Xu et al., 2021) 56.0 ± 0.8 38.9 ± 0.7 56.9 ± 0.2 35.7 ± 0.8 46.8

SWAD (Cha et al., 2021)† 55.4 ± 0.0 44.9 ± 1.1 59.7 ± 0.4 39.9 ± 0.2 50.0

FACT+SWAD 57.0 ± 0.6 46.6 ± 1.1 60.3 ± 0.5 40.1 ± 0.3 51.0

Amp-Mixup+SWAD 56.6 ± 0.6 46.3 ± 0.3 60.2 ± 0.6 41.8 ± 0.4 51.2

(Proposed) AGFA 61.0 ± 0.3 46.2 ± 2.3 60.3 ± 0.7 42.3 ± 0.9 52.4

Table 7: Average accuracies on DomainNet. The same interpretation as Table 3.
Algorithm C I P Q R S Avg

DMG (Chattopadhyay et al., 2020)† 65.2 22.2 50.0 15.7 59.6 49.0 43.6

MetaReg (Balaji et al., 2018)† 59.8 25.6 50.2 11.5 64.6 50.1 43.6

ERM (Cha et al., 2021)† 63.0 ± 0.2 21.2 ± 0.2 50.1 ± 0.4 13.9 ± 0.5 63.7 ± 0.2 52.0 ± 0.5 44.0

IRM (Arjovsky et al., 2019)† 48.5 ± 2.8 15.0 ± 1.5 38.3 ± 4.3 10.9 ± 0.5 48.2 ± 5.2 42.3 ± 3.1 33.9

GroupDRO (Sagawa et al., 2020)† 47.2 ± 0.5 17.5 ± 0.4 33.8 ± 0.5 9.3 ± 0.3 51.6 ± 0.4 40.1 ± 0.6 33.3

I-Mixup (Citation as before) 55.7 ± 0.3 18.5 ± 0.5 44.3 ± 0.5 12.5 ± 0.4 55.8 ± 0.3 48.2 ± 0.5 39.2

MLDG (Li et al., 2018a)† 59.1 ± 0.2 19.1 ± 0.3 45.8 ± 0.7 13.4 ± 0.3 59.6 ± 0.2 50.2 ± 0.4 41.2

CORAL (Sun & Saenko, 2016)† 59.2 ± 0.1 19.7 ± 0.2 46.6 ± 0.3 13.4 ± 0.4 59.8 ± 0.2 50.1 ± 0.6 41.5

MMD (Li et al., 2018b)† 32.1 ± 13.3 11.0 ± 4.6 26.8 ± 11.3 8.7 ± 2.1 32.7 ± 13.8 28.9 ± 11.9 23.4

DANN (Ganin et al., 2016)† 53.1 ± 0.2 18.3 ± 0.1 44.2 ± 0.7 11.8 ± 0.1 55.5 ± 0.4 46.8 ± 0.6 38.3

CDANN (Li et al., 2018c)† 54.6 ± 0.4 17.3 ± 0.1 43.7 ± 0.9 12.1 ± 0.7 56.2 ± 0.4 45.9 ± 0.5 38.3

MTL (Blanchard et al., 2021)† 57.9 ± 0.5 18.5 ± 0.4 46.0 ± 0.1 12.5 ± 0.1 59.5 ± 0.3 49.2 ± 0.1 40.6

SagNet (Nam et al., 2021)† 57.7 ± 0.3 19.0 ± 0.2 45.3 ± 0.3 12.7 ± 0.5 58.1 ± 0.5 48.8 ± 0.2 40.3

ARM (Zhang et al., 2020)† 49.7 ± 0.3 16.3 ± 0.5 40.9 ± 1.1 9.4 ± 0.1 53.4 ± 0.4 43.5 ± 0.4 35.5

VREx (Krueger et al., 2020)† 47.3 ± 3.5 16.0 ± 1.5 35.8 ± 4.6 10.9 ± 0.3 49.6 ± 4.9 42.0 ± 3.0 33.6

RSC (Huang et al., 2020)† 55.0 ± 1.2 18.3 ± 0.5 44.4 ± 0.6 12.2 ± 0.2 55.7 ± 0.7 47.8 ± 0.9 38.9

Mixstyle (Zhou et al., 2021b)† 51.9 ± 0.4 13.3 ± 0.2 37.0 ± 0.5 12.3 ± 0.1 46.1 ± 0.3 43.4 ± 0.4 34.0

FACT (Xu et al., 2021) 62.5 ± 0.3 19.4 ± 0.1 48.2 ± 0.4 13.9 ± 0.3 60.5 ± 0.7 51.0 ± 0.7 42.6

Amp-Mixup (Xu et al., 2021) 62.3 ± 0.1 19.0 ± 0.2 47.2 ± 0.4 12.9 ± 0.6 59.5 ± 0.3 51.0 ± 0.1 42.0

SWAD (Cha et al., 2021)† 66.0 ± 0.1 22.4 ± 0.3 53.5 ± 0.1 16.1 ± 0.2 65.8 ± 0.4 55.5 ± 0.3 46.5

FACT+SWAD 66.3 ± 0.1 22.7 ± 0.2 53.7 ± 0.1 16.3 ± 0.1 65.0 ± 0.6 55.9 ± 0.1 46.7

Amp-Mixup+SWAD 66.1 ± 0.1 22.4 ± 0.2 53.3 ± 0.1 16.2 ± 0.3 64.6 ± 0.5 55.6 ± 0.1 46.4

(Proposed) AGFA 66.7 ± 0.1 22.9 ± 0.2 54.0 ± 0.1 16.7 ± 0.2 65.9 ± 0.1 56.3 ± 0.1 47.1

A.4.2 RESULTS ON COLOURED-MNIST AND ROTATED-MNIST

Although relatively smaller and easier datasets in the DomainBed benchmark, we also test our
method on the Coloured-MNIST and Rotated-MNIST datasets. Following the experimental protocols
including the four-layer ConvNet backbone as in (Gulrajani & Lopez-Paz, 2021), the test accuracies
are reported in Table 11 (Colored-MNIST) and Table 12 (Rotated-MNIST). As shown, all approaches
including ours perform equally well on these datasets.

A.4.3 RESULTS ON SINGLE-SOURCE GENERALISATION

We have focused predominantly on the most popular leave-one-domain-out DG setting in our
empirical study. Another reasonable experimental setting is single source generalisation setting:
training on only one source domain and testing on the rest domains. Our single source domain results
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Table 8: Sensitivity analysis on the SMCD loss trade off η on PACS and OfficeHome.
(a) PACS

Art Cartoon Photo Sketch Average
η = 0.0 89.08 ± 0.14 83.55 ± 0.16 97.23 ± 0.19 82.55 ± 0.30 88.10

η = 0.01 89.24 ± 0.26 84.41 ± 0.53 97.17 ± 0.07 84.31 ± 0.37 88.78

η = 0.05 89.52 ± 0.26 84.83 ± 0.20 97.33 ± 0.17 83.75 ± 0.14 88.86

η = 0.1 89.80 ± 0.34 85.16 ± 0.65 97.59 ± 0.27 84.67 ± 0.82 89.30

η = 0.2 89.40 ± 0.60 84.57 ± 0.25 97.33 ± 0.15 83.88 ± 0.16 88.80

η = 0.5 89.00 ± 0.14 84.40 ± 0.38 97.03 ± 0.17 83.10 ± 0.80 88.38

η = 1.0 89.11 ± 0.36 84.20 ± 0.55 96.49 ± 0.22 82.39 ± 0.57 88.05

(b) OfficeHome

Art Clipart Product Real Average
η = 0.0 66.09 ± 0.28 57.72 ± 0.34 78.47 ± 0.16 80.19 ± 0.11 70.62

η = 0.01 66.86 ± 0.17 58.43 ± 0.34 78.53 ± 0.09 80.51 ± 0.31 71.08

η = 0.05 66.95 ± 0.09 58.56 ± 0.32 78.96 ± 0.28 80.46 ± 0.24 71.23

η = 0.1 67.46 ± 0.28 58.45 ± 0.13 79.27 ± 0.07 80.70 ± 0.11 71.47

η = 0.15 66.46 ± 0.33 58.31 ± 0.22 78.59 ± 0.33 80.51 ± 0.09 70.97

η = 0.2 66.05 ± 0.03 58.10 ± 0.11 78.69 ± 0.18 80.45 ± 0.06 70.82

η = 0.25 66.15 ± 0.17 58.29 ± 0.36 78.16 ± 0.04 79.87 ± 0.21 70.62

Table 9: Sensitivity analysis on the post-mixup trade off α on PACS and OfficeHome.
(a) PACS

Art Cartoon Photo Sketch Average
α = 0.0 89.29 ± 0.37 83.55 ± 0.20 97.11 ± 0.07 82.17 ± 0.91 88.03

α = 0.2 89.23 ± 0.22 83.80 ± 0.21 97.25 ± 0.05 82.59 ± 0.84 88.22

α = 0.4 89.37 ± 0.17 83.93 ± 0.07 97.27 ± 0.10 83.37 ± 0.43 88.49

α = 0.6 89.42 ± 0.48 84.30 ± 0.16 97.31 ± 0.13 83.71 ± 0.60 88.69

α = 0.8 89.47 ± 0.61 84.39 ± 0.18 97.41 ± 0.15 83.68 ± 0.15 88.74

α = 0.9 89.66 ± 0.23 85.04 ± 0.28 97.60 ± 0.13 84.27 ± 0.40 89.14

α = 1.0 89.80 ± 0.34 85.16 ± 0.65 97.59 ± 0.27 84.67 ± 0.82 89.30

(b) OfficeHome

Art Clipart Product Real Average
α = 0.0 65.99 ± 0.17 57.72 ± 0.16 78.36 ± 0.08 80.22 ± 0.09 70.57

α = 0.1 67.04 ± 0.15 58.09 ± 0.11 78.72 ± 0.15 80.36 ± 0.08 71.05

α = 0.2 67.46 ± 0.28 58.45 ± 0.13 79.27 ± 0.07 80.70 ± 0.11 71.47

α = 0.3 66.98 ± 0.24 58.50 ± 0.22 78.87 ± 0.18 80.45 ± 0.06 71.20

α = 0.4 67.04 ± 0.32 58.37 ± 0.26 78.57 ± 0.09 80.43 ± 0.09 71.10

α = 0.6 66.45 ± 0.33 57.99 ± 0.20 78.53 ± 0.21 80.22 ± 0.11 70.80

α = 0.8 66.56 ± 0.23 57.89 ± 0.18 78.50 ± 0.12 80.21 ± 0.18 70.79

α = 1.0 66.47 ± 0.30 57.96 ± 0.09 78.46 ± 0.30 79.97 ± 0.29 70.72
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Figure 5: Ablation study of four different modeling choices: SMCD, post-mixup, SWAD, and
amplitude generation (instead of pixel-based target image generation).

Figure 6: Visualisation of the generated amplitude and constructed images. The columns are (from
left to right): 1) original image, 2) phase and 3) amplitude spectra after Fourier transform, 4) generated
amplitude image, 5) post-mixup of 3 and 4, 6) constructed image from phase in 2) and generated
amplitude image in 4) (by inverse Fourier transform), and 7) constructed image from phase 2 and the
post-mixup amplitude 5.

on the PACS benchmark are shown in Table 13 for (a) ResNet-18 and (b) ResNet-50 backbones. The
results indicate that improvement of the proposed AGFA over the existing DG methods is even more
pronounced: averaged accuracies higher than the best prior method EFDMIX (Zhang et al., 2022) by
about 10% for ResNet-18 and by about 7% for ResNet-50.
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Table 10: Average accuracies on PACS with ResNet-18 backbone. Results on ERM, Mixup (Zhang
et al., 2018), MixStyle (Zhou et al., 2021b), and EFDMix (Zhang et al., 2022) are excerpted
from (Zhang et al., 2022).

Algorithm Art Cartoon Painting Sketch Avg

ERM 77.0± 0.6 75.9± 0.6 96.0± 0.1 69.2± 0.6 79.5

Mixup 76.8± 0.7 74.9± 0.7 95.8± 0.3 66.6± 0.7 78.5

MixStyle 83.1± 0.8 78.6± 0.9 95.9± 0.4 74.2± 2.7 82.9

EFDMix 83.9± 0.4 79.4± 0.7 96.8± 0.4 75.0± 0.7 83.9

(Proposed) AGFA 84.5± 0.6 78.5± 0.5 95.7± 0.1 80.9± 0.2 84.9

Table 11: Average accuracies on Colored-MNIST with the four-layer ConvNet backbone. Results on
competing methods are excerpted from (Gulrajani & Lopez-Paz, 2021).

Algorithm 0.1 0.2 0.9 Avg

ERM 72.7± 0.2 73.2± 0.3 10.0± 0.0 52.0

IRM 72.0± 0.2 73.2± 0.0 10.1± 0.2 51.8

DRO 72.7± 0.3 73.1± 0.3 10.0± 0.0 51.9

Mixup 72.4± 0.2 73.3± 0.3 10.0± 0.1 51.9

MLDG 71.4± 0.4 73.3± 0.0 10.0± 0.1 51.6

CORAL 71.8± 0.4 73.3± 0.2 10.1± 0.1 51.7

MMD 72.1± 0.2 72.8± 0.2 10.5± 0.2 51.8

ADA 72.0± 0.3 72.4± 0.5 10.0± 0.2 51.5

CondADA 72.2± 0.3 73.2± 0.2 10.4± 0.3 51.9

(Proposed) AGFA 72.6± 0.1 73.8± 0.1 10.5± 0.1 52.3

Table 12: Average accuracies on Rotated-MNIST with the four-layer ConvNet backbone. Results on
competing methods are excerpted from (Gulrajani & Lopez-Paz, 2021).

Algorithm 0 15 30 45 60 75 Avg

ERM 95.6± 0.1 99.0± 0.1 98.9± 0.0 99.1± 0.1 99.0± 0.0 96.7± 0.2 98.1

IRM 95.9± 0.2 98.9± 0.0 99.0± 0.0 98.8± 0.1 98.9± 0.1 95.5± 0.3 97.8

DRO 95.9± 0.1 98.9± 0.0 99.0± 0.1 99.0± 0.0 99.0± 0.0 96.9± 0.1 98.1

Mixup 96.1± 0.2 99.1± 0.0 98.9± 0.0 99.0± 0.0 99.0± 0.1 96.6± 0.1 98.1

MLDG 95.9± 0.2 98.9± 0.1 99.0± 0.0 99.1± 0.0 99.0± 0.0 96.0± 0.2 98.0

CORAL 95.7± 0.2 99.0± 0.0 99.1± 0.1 99.1± 0.0 99.0± 0.0 96.7± 0.2 98.1

MMD 96.6± 0.1 98.9± 0.0 98.9± 0.1 99.1± 0.1 99.0± 0.0 96.2± 0.1 98.1

DANN 95.6± 0.3 98.9± 0.0 98.9± 0.0 99.0± 0.1 98.9± 0.0 95.9± 0.5 97.9

C-DANN 96.0± 0.5 98.8± 0.0 99.0± 0.1 99.1± 0.0 98.9± 0.1 96.5± 0.3 98.0

(Proposed) AGFA 98.1± 0.1 98.9± 0.0 99.0± 0.0 98.8± 0.0 99.0± 0.0 96.4± 0.1 98.0

A.4.4 COMPARISON WITH PIXEL-BASED TARGET IMAGE GENERATION

Our Fourier-based target image generation is effective for preserving semantic class information
from the source domains, thanks to the phase/amplitude separation. To see if non-Fourier-based
generation also has similar property, we visualise adversarial target images generated by a purely
pixel-based manner without phase/amplitude separation. For the linear pixel-based generator model
(from 100-dim input noise to full image pixels), which performed slightly better than nonlinear ones
in test accuracy, we show some examples in Fig. 7. Whereas the pixel-based generation is visually
uninformative and looks like pure random noise, our Fourier-based generation contains salient object
edge information that is closely related to class semantics.
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Table 13: Single source domain generalisation results on PACS with (a) ResNet-18 and (b) ResNet-50
backbones. Each column shows test accuracies averaged over the rest three target domains. Results
on ERM, MixStyle (Zhou et al., 2021b), and EFDMix (Zhang et al., 2022) are excerpted from (Zhang
et al., 2022).

(a) ResNet-18
Algorithm Art Cartoon Painting Sketch Avg

ERM 58.6± 2.4 66.4± 0.7 34.0± 1.8 27.5± 4.3 46.6

MixStyle 61.9± 2.2 71.5± 0.8 41.2± 1.8 32.2± 4.1 51.7

EFDMix 63.2± 2.3 73.9± 0.7 42.5± 1.8 38.1± 3.7 54.4

(Proposed) AGFA 74.2± 1.1 77.5± 0.6 48.5± 2.6 58.3± 0.9 64.6

(b) ResNet-50
Algorithm Art Cartoon Painting Sketch Avg

ERM 63.5± 1.3 69.2± 1.6 38.0± 0.9 31.4± 1.5 50.5

MixStyle 73.2± 1.1 74.8± 1.1 46.0± 2.0 40.6± 2.0 58.6

EFDMix 75.3± 0.9 77.4± 0.8 48.0± 0.9 44.2± 2.4 61.2

(Proposed) AGFA 79.8± 0.9 81.7± 0.6 48.6± 0.5 64.6± 1.1 68.7

Figure 7: Comparison between pixel-based and our Fourier-based generated target images. Whereas
the pixel-based generation is visually uninformative and looks like pure random noise, our Fourier-
based generation contains salient object edge information that is closely related to class semantics.
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