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Abstract

Breast magnetic resonance imaging (MRI) is a common modality for diagnostic imaging in
breast cancer, creating the need for automated image analysis to assist in early detection
and diagnosis. In this study, we compared multiple deep learning-based segmentation and
detection algorithms for lesion detection in dynamic contrast-enhanced (DCE) breast MRI.
We used a large multicentric dataset comprising T1-weighted DCE MR images from nine
clinical sites in seven countries, which encompassed diverse imaging characteristics and
scanner types. We evaluated several models, including the standard nnU-Net, an adapted
nnU-Net with modifications to reduce false positives, a coarse resolution version of it, the
transformer-based SwinUNETR-V2 and nnDetection.

The standard nnU-Net achieved a high lesion-level sensitivity of 83.8% but produced
an average of 3.334 false positives per case, which is impractical for clinical use. The
adapted (coarse) nnU-Net significantly reduced false positives to 0.666 (0.397) per case
with a slight decrease in sensitivity to 79.9% (75.8%). SwinUNETR-V2 achieved perfor-
mance comparable to that of the adapted nnU-Net. nnDetection outperformed nnU-Net
in the high-sensitivity region, but performed worse than the adapted models in the lower-
sensitivity region, with respect to false positives. In conclusion, nnU-Net again provides a
good baseline, but our lesion detection task motivates adaptations to reduce the number
of false positives.
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1. Introduction

Breast cancer is the most common cancer type in women worldwide and ranks fifth in terms
of mortality (Sung et al., 2021). In many countries, breast MRI is part of recommenda-
tions and guidelines for the early detection of breast cancer in high-risk patients (Selamoglu
and Gilbert, 2020). For women with extremely dense breast tissue, the European Society
of Breast Imaging recently recommended MRI-based screening (Mann et al., 2022). This
creates a high demand for automated analysis of breast magnetic resonance imaging (MRI)
examinations. For diagnostic imaging, breast MRI protocols are the standard of care in
many countries, although under different conditions. In this study, we compare multiple
deep learning-based segmentation and detection algorithms to detect lesions on dynamic
contrast enhanced (DCE) MRI. These automated detection approaches may help radiolo-
gists perform the task more accurately and efficiently.

Many studies have already investigated the task of tumor detection / segmentation in
breast MRI. Dalmış et al. (2018) developed a lesion detection model on 385 MRI scans
based on the search for lesion proposals and subsequent classification. They achieved an
average sensitivity of 0.6429 when averaging over operating points from 0.125 to 8 false
positives. Zhang et al. (2018) used multiple stages of U-Nets to train a lesion segmentation
model on 285 patients. They achieved a Dice score of 0.7176. Counting a lesion overlap
of at least 0.50 as true positive, they achieved a sensitivity of 0.9286 with a precision of
0.6783. Zhu et al. (2022) developed a V-Net-based segmentation model on 2,823 patients
from 2 clinical sites, achieving a Dice score of 0.860. Zhang et al. (2023) developed a lesion
segmentation model on 2,190 patients from 7 clinical sites who achieved a Dice score of
0.724. Park et al. (2024) developed a lesion segmentation model on examinations of 736
women from a single institution. They used manual regions of interest with a combination
of manual and automatic correction and achieved a Dice score of 0.75 when evaluated over
the entire volume and a Dice score of 0.89 when evaluated per tumor. The majority of the
work is based on lesion segmentation models similar to those mentioned so far. A study
using detection architectures (Zhang et al., 2022) trained a Mask-RCNN for lesion detection
on 241 patients. They achieved a slice level sensitivity of 0.81 at 2 false positives per image
and a slice level Dice score of 0.79.

In this study, we train models for lesion detection based on nnDetection (Baumgartner
et al., 2021), SwinUNETR-V2 (He et al., 2023), nnU-Net (Isensee et al., 2021), and adapted
versions of the latter. They are trained and evaluated on a large multi-centric dataset.

2. Methods

2.1. Data

We used a multi-centric dataset of T1-weighted dynamic contrast-enhanced MR images of
the female breast collected from 2,751 patients patients at 9 clinical sites in seven different
countries spanning Eastern and Western Europe, North America, and Asia. Data from five
sites were used to train breast segmentation models, while data from all sites were used to
train lesion segmentation models. The data cover a diverse set of imaging characteristics,
such as different fields of view, resolutions, voxel sizes, fat suppression (FS) settings, and
MR scanners. The MR scanners include models from Siemens Healthineers (Forchheim,
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Germany), GE HealthCare (Chicago, United States) and Philips (Best, The Netherlands).
An overview of the most important image characteristics and the number of images and
masks for all sites is shown in Table 1. Additional information on scanner vendors, MR se-
quence parameters and patient characteristics is shown in Table 4 in the appendix. A visual
impression of the different image characteristics is provided in Figure 3 in the appendix.

The dataset identified with ”Site 8” in Table 1 is a subset of the ACRIN-6698 dataset
(Newitt et al., 2021) for which we manually corrected the tumor segmentation masks, while
the remaining data are a proprietary collection.

215 breast masks were iteratively created by a radiologist, a radiological technologist,
and a research scientist. The cases were randomly selected. A deep learning model was used
to create segmentation proposals that were corrected by the annotators. After annotating
a certain number of images, the deep learning model was retrained from scratch to provide
better segmentation proposals. The first models were trained using breast masks created
by classical image processing. The masks were created on the data from sites 1–5 while the
data from sites 6–9 have no breast masks.

To train the lesion segmentation model, a radiologist and 3 radiological technologists
manually segmented 2,318 lesion masks on data from all available sites.

We divided all cases with masks into training, validation, and test groups using a 60-20-
20 percent split for training the segmentation and detection models. The annotation was
performed iteratively and the assignment of cases was done randomly. Since the assignment
algorithm did not stratify the sampling according to the site, the split proportions for each
site differ slightly.

2.2. Segmentation and Detection Models

Our lesion detection pipeline acts in two steps: First, a region of interest around the breast
region is cropped from the image. Then we apply a lesion segmentation (or detection)
algorithm to detect lesions in the breast region. All of the following methods work directly
on 3D MRI volumes using 3D deep learning architectures.

To segment the breast region of interest, we train a 3D U-Net which uses 5 levels with
only 6 base filters. We use an AdamW optimizer, a batch size of 2 and spatial dropout
with a drop rate of 0.2 on each level, except for the highest level in the encoder and the
decoder part of the U-Net. A learning rate of 0.0001 is used with a cosine annealing
learning rate scheduler and instance normalization. The input images are resampled to a
voxel size of 2× 2× 2 mm3 and only the T1 precontrast image is used as input. The model
hyperparameters and resampling settings are chosen by manual tuning to achieve a practical
trade-off between inference time and segmentation performance. For data augmentation,
we use the batch generators library (Isensee et al., 2020).

As baselines for our lesion detection, we train a low-resolution nnU-Net (Isensee et al.,
2021) and an nnDetection (Baumgartner et al., 2021) model. Both are self-configuring deep
learning models which use a mix of fixed parameters and heuristics to find well fitting train-
ing configurations for the given task. While nnU-Net produces a segmentation model with
dense voxel-wise output masks, nnDetection trains a detection model which provides out-
put boxes with classification scores for each detected box. Both models use the precontrast
image and the postcontrast image which is closest to 60 seconds after the first postcontrast
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Table 1: Data description per clinical site. *: Mean ± Standard Deviation

Site 1 Site 2 Site 3

Patients 930 44 60
Studies 936 44 60
Breast Masks (patients) 31 (31) 35 (35) 30 (30)
Lesion Masks (patients) 669 (452) 72 (42) 94 (60)
Fat Suppression Yes / No Yes / No Yes
Voxel Size (in-plane)* [mm] 0.44± 0.0 0.87± 0.07 1.02± 0.01
Slice Thickness* [mm] 1.8± 0.02 1.5± 0.0 1.2± 0.0
Resolution (in-plane)* 896.0± 0.0 432.0± 28.0 352.0± 0.0
Number of Slices* 112.4± 3.4 116.7± 4.0 160.8± 3.5
Country Austria Germany Poland

Site 4 Site 5 Site 6

Patients 960 230 194
Studies 1159 231 194
Breast Masks (patients) 32 (32) 19 (19) 0 (0)
Lesion Masks (patients) 613 (479) 253 (230) 254 (193)
Fat Suppression No Yes Yes
Voxel Size (in-plane)* [mm] 0.75± 0.02 0.8± 0.12 0.89± 0.07
Slice Thickness* [mm] 2.38± 0.24 1.06± 0.34 1.0± 0.03
Resolution (in-plane)* 512.0± 0.0 411.8± 137.3 372.9± 23.7
Number of Slices* 46.0± 0.4 187.3± 32.6 147.6± 7.8
Country Germany Japan Japan

Site 7 Site 8 Site 9

Patients 36 194 103
Studies 36 194 104
Breast Masks (patients) 1 (1) 0 (0) 0 (0)
Lesion Masks (patients) 37 (24) 234 (132) 92 (84)
Fat Suppression Yes Yes Yes
Voxel Size (in-plane)* [mm] 0.75± 0.07 0.67± 0.07 0.86± 0.09
Slice Thickness* [mm] 1.44± 0.15 1.8± 0.47 1.5± 0.0
Resolution (in-plane)* 434.8± 33.0 509.3± 46.4 442.0± 45.5
Number of Slices* 116.2± 11.6 113.8± 33.8 154.2± 8.9
Country India USA Israel
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image, provided as two input channels. The postcontrast timepoint is selected based on
the heuristic that contrast agent is applied roughly 60 seconds before the first post-contrast
image, as the timing of contrast agent application was lost during data anonymization.

We compare these models with our reimplementation of the nnU-net training setup, of
which we adapt some parts. First, we switch from a channel-wise normalization of the input
images to one that uses the same normalization parameters for all channels. The reason
is that in contrast-enhanced images most tissues (such as bones, muscles, and fat) do not
change their intensities, while the heart, vessels, and breast tissue enhance after contrast
agent application. Second, we change the patch sampling to sample all sites equally often,
to reduce the bias towards the larger sites during patch sampling. Patches with and without
foreground (lesion) voxels are sampled equally often for each site. For sites for which the
data contains cases without lesions (i.e. BI-RADS 1 cases or BI-RADS 2 cases without
enhancing lesions), the background patches are sampled only from these cases. We do this
because in some cases with lesions, only the index lesion has been marked and not all the
lesions present in the case, as this is the clinically most relevant lesion. Thus, we try to
avoid including these false negative lesions in the training data. The model with these two
modifications is called Adapted nnU-Net in the following.

The original low-resolution nnU-Net model still acts on a relatively small voxel size of
0.74× 0.74× 1.8mm3. As this leads to long inference times, we train an additional model
using a coarse voxel size of 1 × 1 × 2mm3. This model will be called Coarse nnU-Net.
While we change the data preprocessing, we use the same neural network architecture for
all nnU-Net models.

Transformer-based segmentation models have been shown to provide superior perfor-
mance over purely convolutional segmentation models in several studies (Xiao et al., 2023).
Therefore, we also train a SwinUNETR-V2 (He et al., 2023) which uses a shifted window
transformer as the encoder and convolutional layers for its decoder part. We use the same
training pipeline as our adapted nnU-Net model. The learning rate is changed from 0.01 to
0.0004.

A summary of data pre-processing for all models is provided in Table 5 in the appendix.

3. Results

The lesion-level results on our test data are shown in Table 2. The nnU-Net model achieves
a lesion-level sensitivity of 0.838 with an average of 3.334 false positives per case. The
adapted (coarse) nnU-Net model achieves a sensitivity of 0.799 (0.758) with an average
amount of false positives of 0.666 (0.397). SwinUNETR-V2 achieves a sensitivity of 0.792
with an average false positive amount of 0.722. We evaluated nnDetection at 3 different
thresholds on its confidence scores: 0.50, 0.90 and 0.98. It achieves a sensitivity of 0.942,
0.846 and 0.699, respectively, while finding 3.538, 1.685 and 0.920 false positives on average.

With respect to per-lesion segmentation performance, all segmentation models perform
very similar, ranging from 0.742 (Coarse nnU-Net) to 0.752 (nnU-Net) in terms of per-
lesion bounding box intersection over union. The Dice per lesion ranges from 0.584 (coarse
nnU-Net) to 0.599 (nnU-Net). nnDetection achieves smaller bounding box overlaps ranging
from 0.409 to 0.507, depending on the confidence threshold. The qualitative results of the
lesion segmentation / detection models are shown in Figure 1.
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Table 2: Lesion level evaluation on test set. The mean and 90% confidence interval are
shown (computed via bootstrapping).
(AFP: Average False Positives Per Case, BBIoU: Bounding Box Intersection over
Union per Lesion, pL Dice: Per Lesion Dice)

Model Sensitivity AFP BBIoU pL Dice

nnU-Net 0.838[0.809,0.867] 3.334[3.168,3.501] 0.752[0.737,0.768] 0.599[0.580,0.619]

Adapted nnU-Net 0.799[0.769,0.829] 0.666[0.597,0.739] 0.746[0.729,0.763] 0.594[0.573,0.614]

Coarse nnU-Net 0.758[0.728,0.788] 0.397[0.346,0.447] 0.742[0.724,0.759] 0.584[0.564,0.604]

SwinUNETR-V2 0.792[0.761,0.823] 0.722[0.647,0.802] 0.742[0.725,0.759] 0.592[0.572,0.612]

nnDetection@0.50 0.942[0.928,0.956] 3.538[3.484,3.592] 0.409[0.394,0.425] -
nnDetection@0.90 0.846[0.824,0.869] 1.685[1.638,1.730] 0.474[0.458,0.491] -
nnDetection@0.98 0.699[0.669,0.727] 0.920[0.880,0.959] 0.507[0.489,0.525] -

Table 3: Case level evaluation on internal dataset. The mean and 90% confidence interval
are shown (computed via bootstrapping).
(FPR: False Positive Rate)

Model Sensitivity FPR

nnU-Net 0.959[0.941,0.976] 0.974[0.955,0.991]

Adapted nnU-Net 0.918[0.894,0.941] 0.364[0.311,0.417]

Coarse nnU-Net 0.885[0.858,0.912] 0.281[0.233,0.329]

SwinUNETR-V2 0.902[0.876,0.927] 0.355[0.302,0.408]

nnDetection@0.50 0.939[0.920,0.956] 0.727[0.684,0.769]

nnDetection@0.90 0.860[0.834,0.886] 0.491[0.443,0.540]

nnDetection@0.98 0.740[0.707,0.774] 0.225[0.186,0.266]

We also compute the detection performance on the case level. The resulting metrics are
shown in Table 3. nnU-Net achieves a case-level sensitivity of 0.959 with a false positive
rate of 0.974. Our adapted (coarse) nnU-Net achieves a sensitivity of 0.918 (0.885) with
a false positive rate of 0.364 (0.281). SwinUNETR-V2 performs similarly to the adapted
nnU-Net, having a sensitivity of 0.902 at a false positive rate of 0.355. When evaluating
nnDetection at a confidence threshold of 0.5 (0.98), it achieves a case-level sensitivity of
0.939 (0.740) at a false positive rate of 0.727 (0.225).

Figure 2 shows the lesion level sensitivity per site and models, once clustered by models
and once by site. The respective tables with exact metrics per model and per site can be
found in Appendix D. We can observe that there is a certain variation in terms of sensitivity
and average false positives per site. This can be explained by the widely different image
characteristics and patient cohorts that originate from different sites. Still, we observe
that more sensitive (/specific) models tend to be more sensitive (/specific) across all sites.
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Analyzing whether the models learned any detrimental biases from the data will be the
subject of future work.

4. Discussion

In this study, we compared various deep learning-based segmentation and detection algo-
rithms for lesion detection in dynamic contrast-enhanced breast MRI using a large, multi-
centric dataset. Although the standard nnU-Net achieved a high lesion-level sensitivity of
83.8%, it produced an impractically high average of 3.334 false positives per case, limiting
its clinical utility.

By adapting nnU-Net with modifications to input normalization and sampling strategies,
we significantly reduced the average false positives to 0.666 per case, with only a slight
decrease in sensitivity to 79.9%. The coarse resolution version further reduced false positives
to 0.397 per case but saw a modest sensitivity drop to 75.8%. We hypothesize that the
reduction of the coarse nnU-Net is due to the lower resolution filtering out fine-grained
details that may contribute to false positive predictions. High-resolution images provide
detailed anatomical structures, which can sometimes lead the model to misinterpret normal
variations in tissue or imaging artifacts as lesions. By reducing the resolution, these fine
details are ”smoothed out”, allowing the model to focus on larger, more salient features
that are characteristic of true lesions. These results indicate that strategic adjustments to
the nnU-Net can enhance its practicality for clinical applications by reducing false positives
while maintaining acceptable sensitivity.

The transformer-based SwinUNETR-V2 performed comparably to the adapted nnU-
Net, with a sensitivity of 79.2% and 0.722 false positives per case, suggesting that trans-
former architectures are viable alternatives to traditional convolutional models for this task.
Yet in our experiments it does not improve over the solely convolutional architectures.

nnDetection achieved a higher lesion-level sensitivity than nnU-Net at a confidence
threshold of 0.50 while producing a similar amount of false positives. At a threshold of 0.90
it matches the lesion-level sensitivity of nnU-Net while producing only half as many false
positives. At a confidence threshold of 0.98 its sensitivity drops below the one of adapted and
coarse nnU-Net while still producing more false positives, indicating that it is most useful
in the high-sensitivity region. In general, the confidence scores associated to predictions of
detection models are beneficial when models are employed in clinical practice. They allow
their users to select a sensitivity-specificity trade-off that fits their needs, as different image
characteristics and patient cohorts will usually change the model behavior at least slightly.

Our findings highlight the challenge of balancing sensitivity and specificity in automated
lesion detection, as higher sensitivity tended to produce more false positives, and this trend
was consistent across the diverse imaging settings from different clinical sites. The adapted
nnU-Net models offer a good balance, reducing false positives to a clinically acceptable
level without substantially compromising sensitivity. The robustness of these models across
diverse imaging settings in our multi-centric dataset further underscores their potential
clinical applicability.
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Figure 1: 2D projections of the segmentation masks / detected bounding boxes with con-
fidences are overlayed on top of the maximum-intensity-projection (MIP) of the
difference image. (All methods work on 3D volumes using 3D models. MIPs are
shown to provide a better overview of the cases.)
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Figure 2: Per site lesion-level results, grouped by model (left) and by site (right). It is
visible that more sensitive or specific models are so across different sites, as they
cluster together to a certain extent. Also site 2 appears to be an outlier where all
models achieve a very low sensitivity. The star marks the mean for each model
(left) or each site (right).

5. Conclusion

This study compared segmentation and detection algorithms for lesion detection in breast
MRI using a large multi-centric dataset. The standard nnU-Net, despite its high sensitivity,
produced too many false positives for practical clinical use. By adapting nnU-Net, we
significantly reduced false positives to a clinically acceptable level with a small loss of
sensitivity. The coarse resolution nnU-Net further decreased false positives at the cost of
an additional sensitivity reduction. SwinUNETR-V2 performed similarly to the adapted
nnU-Net, indicating that transformer-based models are suitable alternatives but do not
provide a performance benefit on this dataset. nnDetection outperformed nnU-Net in the
high-sensitivity region but performed worse than the adapted nnU-Net models in the lower-
sensitivity region.

In summary, with appropriate modifications, segmentation-based deep learning models
such as the adapted nnU-Net provide a favorable balance between sensitivity and the amount
of false positives for lesion detection in breast MRI. These models are a good basis for further
developing computer-assisted diagnostic support for more efficient and accurate breast MRI
reading.
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Appendix A. Additional Data Information

Table 4: Additional data description of patient collectives, MRI scanners and MRI se-
quences per clinical site. *: Mean ± Standard Deviation, SHS: Siemens, Ph:
Philips

Site 1 Site 2 Site 3 Site 4 Site 5

Age* [years] 52.0± 13.0 47.8± 14.3 49.3± 10.8 55.5± 10.7 53.2± 12.1
TR* [ms] 4.89± 0.0 6.0± 0.41 3.35± 0.0 8.45± 0.07 3.51± 0.57
TE* [ms] 1.8± 0.01 3.2± 1.09 1.11± 0.0 4.05± 0.04 1.5± 0.36
Field Strength [T] 3 1.5, 3 1.5 1.5 1.5, 3
Manufacturer SHS SHS SHS GE SHS,Ph,GE
Flip Angle [°] 9, 10 8-10 10 10 8, 10-15
BI-RADS 1-6 2, 6 2-6 1-5 3-5

Site 6 Site 7 Site 8 Site 9

Age* [years] 58.9± 13.5 44.9± 13.3 - 55.3± 13.1
TR* [ms] 4.03± 0.61 4.65± 0.23 6.79± 1.59 5.19± 0.24
TE* [ms] 1.58± 0.38 1.84± 0.25 3.41± 1.06 1.82± 0.54
Field Strength [T] 1.5, 3 1.5, 3 1.5, 3 3
Manufacturer SHS SHS SHS,Ph,GE SHS
Flip Angle [°] 9, 10 10 10-17 10
BI-RADS 1, 3-5 1-6 6 2-4, 6
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Appendix B. Example Images

Pre-Contrast Post-Contrast Subtraction
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Figure 3: Central slices of exemplary MRI volumes for each site. Slices are cropped to
breast region. Lesion masks are contoured in blue. Pre-Constrast: MR im-
age before contrast injection. Post-Contrast: MR image after contrast injection.
Subtraction: Post-Contrast minus Pre-Contrast.
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Appendix C. Overview of Data Preprocessing

Table 5: Data preprocessing for the deep learning models.

nnU-Net Adapted nnU-Net Coarse nnU-Net

Voxel Size [mm] 0.74× 0.74× 1.8 0.74× 0.74× 1.8 1× 1× 2
Patch Size 288× 128× 56 288× 128× 56 288× 128× 56
Intensity Normalization per channel z-score percentile mapping percentile mapping
Patch Sampling nnU-Net strategy Our (see Sec. 2.2) Our (see Sec. 2.2)
Input Region breast crop breast crop breast crop
Implementation nnU-Net Our Our

SwinUNETR-V2 nnDetection

Voxel Size [mm] 0.74× 0.74× 1.8 0.74× 0.74× 1.8
Patch Size 288× 128× 64 224× 128× 64
Intensity Normalization percentile mapping per channel z-score
Patch Sampling Our (see Sec. 2.2) nnDetection strategy
Input Region breast crop breast crop
Implementation Our/MONAI* nnDetection

* We use the MONAI (Cardoso et al., 2022) implementation of the SwinUNETR-v2 architec-
ture with our own data processing and model training pipeline.

Appendix D. Metrics for Each Site Individually

For all tables in this section, we use the following abbreviations: Average FP: Average False
Positives Per Case, BBIoU: Bounding Box Intersection over Union per Lesion.

Table 6: Metrics per Site for nnU-Net

Site Sensitivity Average FP BBIoU per Lesion Dice

Site 1 0.858 3.964 0.617 0.748
Site 2 0.696 5.000 0.424 0.694
Site 3 0.923 4.000 0.831 0.888
Site 4 0.859 3.085 0.581 0.748
Site 5 0.879 1.867 0.664 0.814
Site 6 0.904 1.600 0.557 0.715
Site 7 0.714 2.800 0.553 0.699
Site 8 0.711 3.184 0.638 0.753
Site 9 0.950 5.200 0.460 0.706
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Table 7: Metrics per Site for Adapted nnU-Net

Site Sensitivity Average FP BBIoU per Lesion Dice

Site 1 0.808 0.831 0.617 0.764
Site 2 0.591 0.583 0.412 0.650
Site 3 0.846 1.000 0.788 0.896
Site 4 0.838 0.661 0.543 0.722
Site 5 0.845 0.244 0.677 0.816
Site 6 0.865 0.225 0.590 0.720
Site 7 0.643 0.200 0.626 0.722
Site 8 0.733 0.895 0.626 0.741
Site 9 0.700 1.000 0.446 0.658

Table 8: Metrics per Site for Coarse nnU-Net

Site Sensitivity Average FP BBIoU per Lesion Dice

Site 1 0.776 0.470 0.589 0.749
Site 2 0.565 0.417 0.455 0.650
Site 3 0.923 0.300 0.703 0.832
Site 4 0.748 0.384 0.544 0.728
Site 5 0.879 0.244 0.660 0.783
Site 6 0.827 0.200 0.600 0.747
Site 7 0.643 0.200 0.605 0.729
Site 8 0.711 0.421 0.606 0.741
Site 9 0.550 0.650 0.440 0.627

Table 9: Metrics per Site for SwinUNETR-V2

Site Sensitivity Average FP BBIoU per Lesion Dice

Site 1 0.824 0.904 0.596 0.735
Site 2 0.609 1.083 0.422 0.674
Site 3 0.923 0.400 0.748 0.862
Site 4 0.769 0.634 0.551 0.725
Site 5 0.879 0.511 0.694 0.816
Site 6 0.904 0.275 0.591 0.741
Site 7 0.643 0.500 0.484 0.602
Site 8 0.747 1.079 0.599 0.725
Site 9 0.600 1.050 0.556 0.751

15



Geissler Wenzel Diekmann Busch Grimm Meine

Table 10: Metrics per Site for nnDetection@0.50

Site Sensitivity Average FP BBIoU

Site 1 0.944 2.925 0.392
Site 2 0.783 3.333 0.420
Site 3 0.867 5.200 0.507
Site 4 0.964 3.572 0.366
Site 5 1.000 2.622 0.538
Site 6 0.952 1.925 0.440
Site 7 0.923 2.700 0.433
Site 8 0.961 4.763 0.317
Site 9 0.933 5.855 0.445

Table 11: Metrics per Site for nnDetection@0.90

Site Sensitivity Average FP BBIoU

Site 1 0.805 1.308 0.474
Site 2 0.571 1.667 0.464
Site 3 0.857 2.400 0.501
Site 4 0.872 1.619 0.435
Site 5 0.948 1.711 0.564
Site 6 0.909 1.350 0.502
Site 7 0.900 1.600 0.518
Site 8 0.919 2.658 0.352
Site 9 0.815 2.623 0.508

Table 12: Metrics per Site for nnDetection@0.98

Site Sensitivity Average FP BBIoU

Site 1 0.634 0.677 0.493
Site 2 0.429 0.833 0.486
Site 3 0.714 1.500 0.542
Site 4 0.766 0.877 0.446
Site 5 0.852 1.244 0.619
Site 6 0.827 1.075 0.537
Site 7 0.667 1.000 0.542
Site 8 0.784 1.684 0.424
Site 9 0.673 1.348 0.543
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