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ABSTRACT

In marked event streams, Marked Temporal Point Process (MTPP) is central to
predicting when and what mark the next event will occur based on the history. In
various real-world applications, the mark distribution is significantly imbalanced,
i.e., some marks are frequent, and others are rare. We unveil that such imbalance
can cause the rare mark missing issue when predicting the next event – frequent
marks are dominant, and rare marks often have no chance. However, rare marks can
be essential in some applications (e.g., the occurrence of a 7-magnitude earthquake),
and missing such rare marks in the next event prediction is risky. To address this
issue, we tackle a novel Rare-mark-aware Next Event Prediction problem (RM-
NEP), answering two questions for each mark m: “what is the probability that
the mark of the next event is m? and if m, when will the next event happen?”.
Solving RM-NEP gives rare marks equal opportunity as frequent marks in the
next event prediction. This guarantees that rare marks are always included in
the predicted results. Moreover, RM-NEP allows arbitrary number of rare marks
samples for time prediction without interference from frequent marks, ensuring
the time prediction is accurate. To solve RM-NEP effectively, we first unify the
improper integration of two different functions into one and then develop a novel
Integral-free Neural Marked Temporal Point Process (IFNMTPP) to approximate
the target integral directly. Extensive experiments on real-world and synthetic
datasets demonstrate the superior performance of our solution for RM-NEP against
various baselines.

1 INTRODUCTION

Events have been generated continuously in human activities or observed from natural phenomena.
The Temporal Point Process (TPP) models point sequences that represent the arrival time of events.
TPPs are built upon rich theoretical foundations, with early work dating back to many decades ago,
where they were used to model the arrival of insurance claims and telephone traffic(Shchur et al.,
2020), till now widely applied in social network analysis(Farajtabar et al., 2017; Rizoiu et al., 2017;
Zeng & Gao, 2022), neural logic inference(Mei et al., 2020; Li et al., 2020; 2022), and biological
activity modeling(Tagliazucchi et al., 2012).

The Marked Temporal Point Process (MTPP) models scenarios where each event comes with a
mark and its arrival time. The mark can be categorical, such as the small/large earthquakes,
mild/moderate/critical and symptoms of patients visiting an emergency department, sell/buy in
financial transactions; it can also be numerical, such as temperature in the weather forecast, the
longitude and latitude of observations in ecology. As often encountered in practice, the MTPP has
attracted much attention from the research community (See Shchur et al. (2021) for a comprehensive
review). Most existing studies assume that events in sequences are correlated, and therefore MTPPs
are conditioned on history, i.e., the events that occurred so far.

MTPP is central to modeling the sequence of events and predicting the mark and time of the next
event, based on the conditional joint Probability Distribution Function (PDF), denoted as p∗(m, t) 1,
learned from history by encoding the interconnection between event mark m and inter-event time t.
Typically, a single mark and a single time are returned as the prediction. For the sake of description,

1The asterisk reminds the probability is conditioned on history.
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we name it Next-event Prediction problem (NEP) in this study. Most existing MTPP studies first
predict when the next event will occur and then what mark the next event is at the time predicted(Mei
& Eisner, 2017; Zhang et al., 2020; Zuo et al., 2020; Mei et al., 2022). Few studies first predict what
the mark of the next event is and then when it will occur(Waghmare et al., 2022). Some recent studies
solve NEP by directly generating the time and mark of the next event simultaneously(Yuan et al.,
2023; Lüdke et al., 2023).

In various real-world scenarios, the mark distribution is significantly imbalanced, i.e., some marks
are highly frequent and others are rare. The distribution imbalance may significantly impact the
solution of NEP - the frequent marks are dominant so that rare marks have no chance in the next
event prediction. However, rare marks are often significant for real-world applications, and neglect of
such rare marks is risky. Let us consider the following scenario. Major earthquakes with significant
magnitude (for example, bigger than 7.0 on the Richter scale) are rare but considered devastating
as they can cause heavy damage to the city and lots of casualties2. Therefore, with an MTPP-based
earthquake predictor for a region, people are interested in when it will occur if the next earthquake is
a major one, even rare but possible. However, the small earthquakes are frequent. Following the NEP,
it predicts when the next earthquake will happen, denoted as t, and then what kind of earthquake it
might be at t. As shown in Figure 1, small earthquakes will dominate the next event prediction and
the major ones may be never predicted, making it impossible to inform the time of major earthquake
if it will occur next. We name it the rare mark missing issue in NEP.

Our study shows that the rare mark missing issue is intrinsic in NEP and is hard to tackle if predicting
a single mark and a single time like NEP. To address the root cause of the rare mark missing issue, we
propose the new Rare-mark-aware Next Event Prediction problem (RM-NEP). Different from NEP,
RM-NEP gives rare marks an equal chance as frequent marks in the next prediction by answering two
questions for each mark m “what is the probability that the mark of the next event is m? and “if m,
when will it happen? This guarantees that rare marks are consistently included in the predicted results.
Furthermore, RM-NEP allows an arbitrary number of samples for rare marks in the next event time
prediction without the interference of frequent marks, so the time prediction for rare marks is accurate.
Solving RM-NEP faces the unique challenge of improper integration over the infinite time interval
for estimation of the probability of marks and their time. Classical numeric integration methods such
as Monte Carlo integration are computationally heavy and can only estimate integrals on a finite
interval. To attack the challenge, we first propose to unify two improper integral functions into one
and then develop a novel MTPP model specifically designed to efficiently solve improper integral
function, called IFNMTPP (Integral-free Neural Marked Temporal Point Process). Contributions of
this study are threefold:

• This study identifies the rare mark missing issue in the Next-event Prediction problem (NEP)
and propose a novel Rare-mark-aware Next Event Prediction problem (RM-NEP) to give
rare marks equal chance as frequent marks in the next event prediction.

• For an efficient solution of RM-NEP, we unify the two improper integral functions involved
into one.

• To improve the improper integration, we develop a novel model IFNMTPP to directly
approximate the integration via a simple monotonically decreasing neural network.

2 PRELIMINARIES AND PROBLEM STATEMENT

2.1 PRELIMINARIES

The Marked Temporal Point Process (MTPP) is a random process whose embodiment is a sequence
of discrete events, S = {(mi, ti)}li=1, where i ∈ Z+ is the sequence order, ti ∈ R+ is the time
when the ith event occurs, mi is the mark of the ith event. This study only concerns a finite set of
categorical marks M = {k1, k2, · · · , k|M|}, and the simple MTPP, which allows at most one event
at every time, thus ti < tj if i < j. The time of the most recent event is tl, and the current time
is t > tl. The time interval between two adjacent events is the inter-event time. We assume that
an event with a particular mark at a particular time may be triggered by past events. Let Htl be the
history up to (including) the most recent event, and Ht− be the history up to (excluding) the current

2http://earthquake.usgs.gov/earthquakes/eqarchives/year/eqstats.php
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time(Rasmussen, 2018). With these definitions, we can define the Conditional Intensity Function
(CIF) of MTPP:

λ∗(m = ki, t) = λ(m = ki, t|Ht−) = lim
∆t→0

P (m = ki, t ∈ [t, t+∆t)|Ht−)

∆t
. (1)

With λ∗(m, t), the conditional joint PDF of the next event can be defined:

p∗(m, t) = p(m, t|Htl) = λ∗(m, t)F ∗(t) = λ∗(m, t) exp(−
∫ t

tl

∑
n∈M

λ∗(n, τ)dτ). (2)

where τ means time. F ∗(t) is the conditional PDF that no event has ever happened up to time t since
tl. The detailed elaboration of how to obtain Equation (2) from Equation (1) is in Appendix A.

The simplest form of MTPP is the homogeneous Poisson process whose CIF merely contains a
positive number, i.e., λ∗(m = ki, t) = c. Another example is the Hawkes process(HAWKES, 1971),
belonging to the self-exciting point process family. Its CIF is λ∗(m = ki, t) = µi +

∑
j:tj<t κi(t, tj)

where κi(t, tj) > 0 represents the excite from previous events. Because it meets the real-world
intuition that the influences of occurred events always drastically drops as time passes, the Hawkes
process is a widely used backbone process in various models(Cao et al., 2017; Salehi et al., 2019;
Arastuie et al., 2020; Li & Ke, 2020; Okawa et al., 2021; Idé et al., 2021; Huang et al., 2022).

With MTPP, NEP requires a single mark and a single time as the prediction of the next event.
The first method for solving NEP, utilized by most existing MTPP approaches, predicts when
the next event will occur and then its mark. Conceptually, the expected time of the next event is
t̄ =

∫∞
t=tl

τp∗(τ)dτ where p∗(t) =
∑

m∈M p∗(m, t). The numerical method is typically used to
calculate t̄ by sampling N times, denoted as {ti}N , from distribution p∗(t) following Thinning
Algorithm (TA) or Inverse Transform Sampling (ITS)(Rasmussen, 2018) so that t̄ = 1

N

∑
i t

i. Then,
mark of the next event at t̄ is predicted by mt̄ = argmaxm∈M p∗(m, t̄). The second method first
predicts the mark of the next event m = argmaxm∈M p∗(m) and then predicts time of the next
event t̄m =

∫∞
t=tl

τp∗(τ |m)dτ (Waghmare et al., 2022). The third method is to generate the time and
mark of the next event simultaneously. Yuan et al. (2023) and Lüdke et al. (2023) implement this
method by training a DDPM to enable sampling p∗(m, t) from a normal distribution.

2.2 NEP AND RARE MARK MISSING

With MTPP, NEP requires a single mark and a single time as the prediction of the next event. The
frequent marks dominate the results. Let us consider two marks k1 and k2 where k1 is much more
frequent than k2 in the observed event sequence. Suppose the next event is mark k2. Because k1 is
much more frequent than k2, it is very likely that p∗(k1, t) > p∗(k2, t) for most time t, including
t̄ =

∫∞
t=tl

τ
∑

m∈M p∗(m, τ)dτ . If so, k1 will be predicted as the next event. In the extreme case,
if p∗(k1, t) > p∗(k2, t) for every time t, k1 will always be predicted as the mark of the next event,
while k2 will never have the chance. This is true no matter the order that the time and mark of the
next event are predicted. We name this situation as rare mark missing in the results of NEP.

Figure 1 (a) demonstrates the mark frequency distribution in four datasets (see details in Section 4).
Figure 1 (b) shows p∗(m, t) for each mark m in these datasets. The envelope covers p∗(m, t) of
all instances in the datasets and the line is the average of p∗(m, t) across these instances. Figure 1
(c) presents the percentage of each mark in the results of NEP. Using Retweet as an example, the
frequent marks (mark 0 and 1 occupying around 50% and 45% of data) have a much higher p∗(m, t)
than the rare mark (mark 2 occupying around 5%) at almost every time t for almost all instances as
shown in Figure 1 (b) (leftmost). So, marks 0 and 1 are predicted as the next event mark while mark
2 has no chance, as evidenced in Figure 1 (c) (leftmost). A similar situation can be observed on other
datasets with other MTPP approaches.

2.3 PROBLEM STATEMENT

The Rare-mark-aware Next Event Prediction problem (RM-NEP) aims to allow arbitrary number of
rare marks samples for time prediction without the interference of frequent marks. Solving RM-NEP
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(a) The frequency distribution of marks in Retweet, USearthquake, Yelp, and StackOverflow(from left to right).

(b) The p∗(m, t) for each mark m in Retweet, USearthquake, Yelp, and StackOverflow(from left to right).

(c) The frequency distribution of marks in the results of NEP (i.e., predicted as the next event mark) using
SAHP(Zhang et al., 2020) in Retweet, USearthquake, Yelp, and StackOverflow(from left to right).

Figure 1: A demonstration of rare mark missing in the results of NEP on four real-world datasets. A
similar situation can be observed with other MTPP approaches.

answers two questions for each mark m: “what is the probability that the mark of the next event is m?
and “if m, when will the next event happen?”. The RM-NEP can be formulated as follows: For each
mark m, we first predict p∗(m), the probability that the mark of the next event is m, from p∗(m, t).
The expression of p∗(m) is:

p∗(m) =

∫ +∞

tl

p∗(m, τ)dτ (3)

The frequent mark has a high p∗(m) and the rare mark has a low p∗(m). Let p∗(t|m) be the PDF on
the time of the next event on the condition its mark is m. Based on p∗(t|m), we can assume the mark
of the next event is m and estimate the expected time of the next event:

t̄m = Et∼p∗(τ |m)[t] =

∫ +∞

tl

τp∗(τ |m)dτ (4)

t̄m is the expected time of the next event on the condition that the mark of the next event is m. The
result of RM-NEP is {(p∗(m), t̄m)}m∈M.

While related, RM-NEP and NEP are different problems. NEP requires a single pair of (m, t) as
the predicted mark and time of the next event. Since only one mark is returned by NEP, some
rare marks may never have a chance to be predicted as the next event. In this sense, the rare mark
missing issue is intrinsic to NEP and irrelevant to the methods solving NEP. In contrast, RM-NEP
returns {(p∗(m), t̄m)}m∈M so that rare marks have the equal chance as frequent marks in next event
prediction.

4
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3 METHODOLOGY

This section introduces our solution for RM-NEP. By the definition in Equation (3) and Equation (4),
solving RM-NEP involves the improper integration of p∗(m, τ) and τp∗(τ |m), respectively, for each
mark m. In general, improper integration does not have analytic solutions. This means directly
calculating p∗(m) and t̄m is impossible. The solution is to approximate p∗(m), and to approximate t̄
by the average of N samples {ti}mN from p∗(t|m) as Equation (5).

t̄m = Et∼p∗(τ |m)[t] ≈
1

N

N∑
i=1

ti (5)

3.1 UNIFYING INTEGRAL FUNCTIONS

The solution of RM-NEP involves the improper integration of two different functions in Equation (3)
and Equation (4), respectively. Separately solving each integration problem is computationally
inefficient. To address the challenge, we transform the improper integration of two different functions
into one for an effective solution.

Because the improper integration in Equation (4) does not have analytic solutions, directly calculating
t̄m is impossible. A viable way is to estimate it by the average of N samples {ti}mN from p∗(t|m)
as shown in Equation (5). To draw {ti}mN from p∗(t|m), we use Inverse Transform Sampling (ITS),
which takes the Cumulative Distribution Function (CDF) of the distribution that one wants to sample
from. In our case, let F ∗(t|m) be the CDF of p∗(t|m), i.e., F ∗(t|m) =

∫ t

tl
p∗(τ |m)dτ . F ∗(t|m)

refers to the probability of the next event happening in (tl, t] on the condition that its mark is m. To
draw a sample ti from p∗(t|m), we need to solve Equation (6).

F ∗(ti|m) = ui (6)

where ui is a random sample from a uniform distribution U(0, I). Since F ∗(t|m) is monotonic,
Equation (6) is solvable by the bisection method. For each mark m, we obtain {ti}mN by solving
Equation (6) N times, which allows acquiring arbitrary number of samples for time prediction no
matter rare or frequent the mark m is. We can express F ∗(t|m) as follows:

F ∗(t|m) =
F ∗(m, t)

p∗(m)
=

1∫ +∞
tl

p∗(m, τ)dτ

∫ t

tl

p∗(m, τ)dτ (7)

where p∗(m) =
∫ +∞
tl

p∗(m, τ)dτ is the probability that the mark of next event is m since tl, and

F ∗(m, t) =
∫ t

tl
p∗(m, τ)dτ is the probability that the next event is mark m and happens in time

interval (tl, t]. We can further breakdown F ∗(m, t) as shown Equation (8).

F ∗(m, t) =

∫ t

tl

p∗(m, τ)dτ =

∫ +∞

tl

p∗(m, τ)dτ −
∫ +∞

t

p∗(m, τ)dτ

= Γ∗(m, tl)− Γ∗(m, t)

(8)

For each mark m ∈ M, Γ∗(m, t) is the integration starting from time t, any time after tl or tl, to
positive infinity. Γ∗(m, t) is monotonically decreasing as its derivative −p∗(m, t) is always smaller
than 0. By definition, p∗(m) in Equation (3) is equivalent to Γ∗(m, tl). That is, if we can solve
Γ∗(m, t), p∗(m) can be solved by setting t = tl. It means two different target integrals in Equation
(3) and Equation (4) are now unified into one, i.e., Γ∗(m, t).

While sampling a set of times from a distribution can follow Thinning Algorithm (TA) or Inverse
Transform Sampling (ITS)(Rasmussen, 2018), only ITS is suitable for integral function unification
here. The basic idea in ITS is to simulate using CDF of p∗(t|m). Instead, Thinning Algorithm (TA)
explicitly requires the expression of p∗(t|m), which is unknown typically.

3.2 INTEGRAL-FREE NEURAL MARKED TEMPORAL POINT PROCESS (IFNMTPP)

Adopting Γ∗(m, t) simplifies the procedure of calculating p∗(m) and t̄m. However, Γ∗(m, t) is
an improper integration with infinitely long integration interval. In contrast, numeric integration

5
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methods that most CIF-based MTPP models use are computationally heavy and can only estimate
integrals on a finite interval. To effectively solve Γ∗(m, t), this section introduces Integral-free
Neural Marked Temporal Point Process (IFNMTPP). For each mark m ∈ M, IFNMTPP models the
relationship between p∗(m, t) and its integral Γ∗(m, t). IFNMTPP is inspired by, but different from,
FullyNN(Omi et al., 2019) that models the relationship between λ∗(m, t) and its integral3.

Integral
Estimation

Module
(IEM)

...

History
Encoder

Normalization

Fully-connected layers with
non-negative weights

Monotonic-increasing
activation function

IEM

Figure 2: Architecture of IFNMTPP. The solid arrows refer to forward propagation The history
encoder is an LSTM.

Figure 2 sketches the architecture of IFNMTPP. For each mark m ∈ M, we assign a vector vm

to prepare f(m, t) = vm(t − tl) + bm as input of the Integral Estimation Module (IEM). All
parameters in vm are non-negative. IEM contains multiple fully-connected layers with non-negative
weights and monotonic-increasing activation functions. It ends with a monotonically decreasing
function σ(x) = 1/(1 + ex) for each mark, so IFNMTPP is intrinsically monotonically decreasing
w.r.t. t, matching the feature of Γ∗(m, t). The outputs of IEM are scores s∗(m = k1, t), s

∗(m =
k2, t), · · · , s∗(m = k|M|, t). The value of

∑
m∈M s∗(m, t) is not guaranteed to be 1. To produce the

qualified probability distribution, they need to be normalized. This is achieved by the Normalization
module in Figure 2 that divides s∗(m, t) by the partition function Z(Htl) =

∑
m∈M s∗(m, tl) for

each m ∈ M . Finally, IFNMTPP outputs Γ∗(m, t) for each mark m at the given time t:

Γ∗(m, t) =
s∗(m, t)

Z(Htl)
(9)

With Γ∗(m, t) and p∗(m), we have F ∗(t|m) by Equation (7) and Equation (8). Next, we calculate
t̄m by drawing {ti}mN from F ∗(t|m) following Equation (6). The loss function of IFNMTPP is:

L = −
∑

(mi,ti)∈S

log p∗(mi, ti)− log(
∑
m∈M

Γ∗(m,T )). (10)

where p∗(mi, ti) is the predicted probability after (i− 1)th event, and log(
∑

m∈M Γ∗(m,T )) is the
survival term. In IFNMTPP, the expression of p∗(mi, ti) is:

p∗(mi, ti) = − 1

Z(Htl)

∂Γ∗(mi, ti)

∂s∗(mi, ti)

∂s∗(mi, ti)

∂f(mi, ti)

∂f(mi, ti)

∂ti
(11)

4 EXPERIMENTS

Datasets4 Six real-world datasets include BookOrder(BO)(Du et al., 2016), Retweet(Zhao et al.,
2015), StackOverflow(SO)(Leskovec & Krevl, 2014), Taobao User Behavior Data(Taobao)(Alibaba,
2018), Yelp5, and earthquake events over the Conterminous US(USearthquake)(Xue et al., 2023). We
split all marks of each dataset into two subsets, one containing frequent marks, denoted as Mf , the
other containing rare marks, denoted as Mr. Mr ∩Mf = ∅ and Mr ∪Mf = M. Marks in Mr have

3FullyNN considers the time point process (TPP) of events without mark which can be considered as MTPP
with the same mark, i.e., m.

4BookOrder, Retweet, StackOverflow, Taobao, and USearthquake are released under Apache-2.0 license(Xue
et al., 2023). Yelp is released under private license, but the license allows academic use.

5https://www.yelp.com/dataset
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frequency lower than 5% in StackOverflow, lower than 30% in Yelp, lower than 50% in BookOrder,
and lower than 10% in Taobao, Retweet, and USearthquake. We set different rare marks thresholds
for different datasets based on their mark distribution, which can be found in Appendix C.5. Five
synthetic datasets include Hawkes 1, Hawkes 2, Poisson, Self-correct, and Stationary Renewal(Omi
et al., 2019). Details of these datasets are available in Appendix C.1.

Baseline Models6 IFNMTPP is benchmarked against baselines. Among the state-of-the-art CIF-based
MTPP models, four can be adapted to solve RM-NEP as baselines and we explain why the others
cannot in Appendix C.4. The four CIF-based MTPP models are FullyNN(Omi et al., 2019), FENN7,
THP(Zuo et al., 2020), and SAHP(Zhang et al., 2020). These baselines use their own methods to
model p∗(m, t). Next, they approximate Γ∗(m, t) using the numerical method by limiting the upper
bound of the integration interval from infinity to a very large number. For a fair comparison, baselines
estimate one improper integration Γ∗(m, t) to predict p∗(m) and t̄m as our method in Section 3.1.
Besides these four, another baseline Marked-LNM(Waghmare et al., 2022) models p∗(m) using a
classifier to predict the mark of the next event and models p∗(t|m) using LogNormMix to predict the
time of the event. More details of these baselines are available in Appendix C.4.

We do not include the intensity-free MTPP model(Shchur et al., 2020) and RMTPP(Recurrent Marked
Temporal Point Process)(Du et al., 2016) because it does not model p∗(m, t) but model p∗(m) and
p∗(t) separately, and thus not suitable for RM-NEP. Also, we do not consider DDPM-based MTPP
model(Yuan et al., 2023; Lüdke et al., 2023) because it directly generates the time and mark of the
next event simultaneously by training a DDPM to enable a process to sample p∗(m, t) from a normal
distribution, and does not work for the particular mark as needed in RM-NEP.

Evaluation Metrics For synthetic datasets, because the true distribution p̂∗(m, t) is known, we can
compare the learned p∗(m, t) against the real one to evaluate the fidelity of a MTPP model. Most
papers report the relative NLL loss, the average of the absolute difference between − log p̂∗(m, t) and
− log p∗(m, t) on the observed events(if markers are unavailable, − log p̂∗(t) and − log p∗(t)(Omi
et al., 2019; Shchur et al., 2020)). The lower relative NLL loss indicates a better performance.
However, such a metric only evaluates performance at discrete events, which cannot gauge the overall
discrepancy between p̂∗(m, t) and p∗(m, t). Therefore, we select Spearman Coefficient, L1 distance
and the relative NLL loss to measure the discrepancy between p̂∗(m, t) and p∗(m, t) over time.
Details of these metrics are available in Appendix C.3.

To measure the performance of RM-NEP solutions on real-world datasets, we use macro-F1 and
MMAE (Mark-wise MAE). MMAE is a variant of MAE with consideration of marks. The test dataset
T contains many real next events. We denote Tm=ki ⊂ T as those real next events where the mark is
ki ∈ M. The number of events in Tm=ki is |Tm=ki |. For each real next event (m = ki, t) ∈ Tm=ki ,
the task of RM-NEP is to predict p∗(m) and time t̄m=ki

if the next event has mark m. Here, we are
interested in evaluating the predicted time. The absolute difference between t and t̄m=ki

, |t− t̄m=ki
|,

is the prediction error for the real next event (m = ki, t). Consider all real next events in Tm=ki
,

MMAEm=ki
can be defined:

MMAEm=ki
=

1

|Tm=ki
|

∑
(m=ki,t)∈Tm=ki

|t− t̄m=ki
| (12)

MMAEM∗ is the geometric mean of MMAEm=ki
across all marks in M∗. M∗ can be M, Mf , or Mr:

MMAEM∗ = |M∗|

√ ∏
ki∈M∗

MMAEm=ki (13)

where |M∗| is the number of marks in M∗. We also report macro-F1 on marks in M, Mf , and Mr. We
run every experiment 3 times with different random seeds and report the mean and standard deviation
(1-sigma) of all results.

4.1 PERFORMANCE OF IFNMTPP FOR TIME PREDICTION

The performance of IFNMTPP and baselines are reported in Table 1. First, we observe that MMAEMf

usually outperforms MMAEMr
across different MTPP approaches and datasets, except for BookOrder.

6Our codes will be released under MIT license.
7A variant FullyNN for handling marks, see Appendix B
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Table 1: Time prediction performance on real-world datasets measured by MMAE, lower is better.
The bold and underline indicate the best and the second-best values, respectively.

BO Retweet SO Taobao USearthquake Yelp

IFNMTPP
(Ours)

MMAEM 1.1967±0.0076 2515.1±6.5029 0.5212±0.0142 0.3324±0.0579 0.6856±0.0063 5.3271±0.0066

MMAEMr 1.1211±0.0120 3291.2±29.097 0.4986±0.0175 0.3385±0.0627 0.6966±0.0081 5.3888±0.0078

MMAEMf 1.2775±0.0093 2198.7±2.4798 0.6063±0.0001 0.2529±0.0055 0.6713±0.0048 5.2059±0.0071

FENN
MMAEM 124.15±1.1459 4449.5±20.281 1.0078±0.1321 2.0505±0.0579 0.8498±0.0567 5.3398±0.0045

MMAEMr 124.08±1.2262 6561.3±554.04 1.1430±0.1922 2.0648±0.4467 0.8422±0.0886 5.3587±0.0057

MMAEMf 124.20±1.1011 3674.7±173.54 0.6632±0.0062 1.8393±0.2966 0.8622±0.0291 5.3024±0.0041

FullyNN
MMAEM 125.70±0.9306 4704.4±104.82 0.6907±0.0076 2.4075±0.1788 0.9212±0.1057 5.3023±0.0029

MMAEMr 125.42±0.9863 6985.0±224.54 0.7098±0.0094 2.4146±0.1858 0.9791±0.1132 5.3541±0.0068

MMAEMf 125.98±0.8747 3860.9±67.116 0.6299±0.0148 2.2993±0.0746 0.8495±0.0977 5.2001±0.0047

SAHP
MMAEM 5.3994±0.0329 3387.4±144.84 0.7974±0.0538 1.0461±0.1901 0.7317±0.0244 5.3174±0.0172

MMAEMr 3.0312±0.4705 5010.0±575.18 0.7827±0.0657 1.1346±0.2164 0.7474±0.0278 5.3674±0.0206

MMAEMf 9.8680±3.5641 2791.1±15.472 0.8515±0.0108 0.2888±0.0174 0.7112±0.0204 5.2187±0.0114

THP
MMAEM 2.0856±0.5256 4096.7±444.75 0.6750±0.0138 2.7307±0.5392 0.9488±0.0148 5.3706±0.0392

MMAEMr 1.9560±0.5065 4701.3±441.66 0.6909±0.0152 2.6824±0.5545 0.9680±0.0072 5.4238±0.0424

MMAEMf 2.2246±0.5474 3824.6±443.47 0.6238±0.0100 3.6884±0.1286 0.9241±0.0270 5.2657±0.0332

Marked-LNM
MMAEM 1.7400±0.5093 2559.8±5.9380 0.9067±0.3687 0.2058±0.0079 0.7646±0.0026 5.3291±0.0046

MMAEMr 2.1514±1.0044 3314.3±1.2460 1.0520±0.5330 0.2043±0.0091 0.7773±0.0057 5.3783±0.0032

MMAEMf 1.4618±0.1414 2249.7±7.4050 0.6084±0.0007 0.2318±0.0128 0.7480±0.0013 5.2322±0.0072

Table 2: The evaluation time measured in seconds on the test datasets. Lower is better.

IFNMTPP (Ours) FENN FullyNN SAHP THP Marked-LNM

BO 10.104 362.01 356.82 136.82 54.305 16.859
Retweet 255.40 6490.6 6312.4 1838.6 1682.4 329.29
SO 140.69 27078 26638 956.49 1252.9 797.77
Taobao 79.610 25810 25237 1238.6 770.35 279.42
USearthquake 86.374 476.58 469.95 254.02 262.26 185.44
Yelp 38.678 703.05 680.99 176.53 161.17 51.630

This is expected since frequent marks have more training data than rare marks, leading to a more
accurate estimation of p∗(m, t) for frequent marks. This finding does not fit the BookOrder. One
possible reason is that the mark distribution of BookOrder is balanced. Second, compared with
CIF-based baselines, IFNMTPP demonstrates superior performances in most cases. As discussed
in Section 3.1, the time prediction for each mark m is sampled from p∗(t|m) based on the values
of Γ∗(m, t) at many different times. The accurate approximation of Γ∗(m, t) leads to accurate time
prediction. Besides, IFNMTPP also outperforms Marked-LNM. This demonstrates that modeling
Γ∗(m, t) is better than directly modeling p∗(t|m) by the composition of log-normal distributions.

Table 2 reports the evaluation time of all MTPP models. Compared with CIF baselines, IFNMTPP is
faster by 1-2 orders of magnitude. Section 3.2 tells that the CIF-based baselines are computationally
heavy because they use the numerical method to calculate Γ∗(m, t). In contrast, IFNMTPP directly
models Γ∗(m, t), which is more straightforward with low and consistent computation cost. Marked-
LNM does not involve integral estimation during modeling and drawing samples from p∗(m) and
p∗(t|m). So, it is faster than all CIF-based baselines and should be comparable with our IFNMTPP.
We reckon that the speed difference between Marked-LNM and IFNMTPP is due to implementation.
These experiment results focus on the accuracy and efficiency of calculating p∗(t|m) and its integral
F ∗(t|m). IFNMTPP also has strong performances on modeling p∗(m, t) and p∗(m) against other
baselines. These results are available in Appendix D.

4.2 PERFORMANCE OF IFNMTPP FOR MARK PREDICTION

The accuracy of the mark predicted by p∗(m) from IFNMTPP and baselines are reported in Table 3.
The metric is macro-F1. The higher macro-F1 indicates more marks are predicted correctly. For
calculating macro-F1, the mark with the highest p∗(m) is selected as the mark prediction. p∗(m) is

8
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the value of Γ∗(m, t) at a single time t = tl. More accurate Γ∗(m, t) should lead to more accurate
p∗(m), which can help correctly predict the mark. However, the accuracy improvement on p∗(m)
is limited compared with that on t̄m. The reason is the mark prediction only involves the value of
Γ∗(m, t) at a single time t = tl, while t̄m is based on the value of Γ∗(m, t) at many different times.

Table 3: Mark prediction performance, measured by macro-F1, on real-world datasets. Higher is
better. The bold and underline indicate the best and the second-best values, respectively.

BO Retweet SO Taobao USearthquake Yelp

IFNMTPP
(Ours)

All Marks 0.6003±0.0009 0.3569±0.0001 0.1519±0.0033 0.2338±0.0258 0.1795±0.0078 0.2524±0.0009

Rare Marks 0.7235±0.0032 0.0014±0.0002 0.1457±0.0076 0.1324±0.0054 0.0012±0.0008 0.0376±0.0019

Frequent Marks 0.7573±0.0043 0.5057±0.0004 0.1364±0.0009 0.3186±0.0541 0.2525±0.0110 0.7986±0.0107

FENN
All Marks 0.3923±0.0580 0.3673±0.0007 0.0938±0.0002 0.1283±0.0104 0.1835±0.0079 0.2436±0.0029

Rare Marks 0.0408±0.0062 0.0013±0.0000 0.0298±0.0015 0.0210±0.0129 0.0006±0.0004 0.0160±0.0066

Frequent Marks 0.9885±0.0031 0.5195±0.0015 0.1512±0.0003 0.4252±0.2559 0.2587±0.0101 0.8540±0.0754

FullyNN
All Marks 0.3339±0.0000 0.2316±0.0000 0.0121±0.0000 0.0194±0.0000 0.1621±0.0000 0.0953±0.0000

Rare Marks 0.0000±0.0000 0.0000±0.0000 0.0000±0.0000 0.0437±0.0000 0.0000±0.0000 0.2634±0.0000

Frequent Marks 1.0000±0.0000 0.3282±0.0000 0.0287±0.0000 0.0000±0.0000 0.2316±0.0000 0.0000±0.0000

SAHP
All Marks 0.5987±0.0021 0.3588±0.0007 0.1378±0.0038 0.1487±0.0111 0.1637±0.0005 0.2564±0.0034

Rare Marks 0.7177±0.0156 0.0013±0.0021 0.1184±0.0086 0.0094±0.0113 0.0007±0.0001 0.0446±0.0014

Frequent Marks 0.7586±0.0145 0.5082±0.0012 0.1427±0.0012 0.9446±0.0682 0.2327±0.0007 0.7056±0.0717

THP
All Marks 0.3904±0.0804 0.2365±0.0069 0.0965±0.0096 0.0100±0.0045 0.1627±0.0004 0.2534±0.0034

Rare Marks 0.9966±0.0004 0.0000±0.0000 0.0415±0.0266 0.0202±0.0087 0.0000±0.0000 0.0336±0.0099

Frequent Marks 0.0131±0.0004 0.3350±0.0097 0.1415±0.0215 0.0000±0.0000 0.2323±0.0005 0.6561±0.0375

Marked-LNM
All Marks 0.6003±0.0026 0.3566±0.0018 0.1484±0.0009 0.1729±0.0302 0.1674±0.0014 0.2538±0.0021

Rare Marks 0.7404±0.0030 0.0012±0.0002 0.1506±0.0025 0.0378±0.0343 0.0006±0.0003 0.0397±0.0050

Frequent Marks 0.7510±0.0055 0.5053±0.0028 0.1297±0.0003 0.6483±0.2459 0.2386±0.0014 0.7765±0.0202

4.3 EVALUATING MODEL FIDELITY ON SYNTHETIC DATASETS

On five synthetic datasets where real p∗(m, t) is known, IFNMTPP and baselines are compared in
their ability of p∗(m, t) modeling in Table 4. We select the Spearman coefficient, L1 distance, and
the relative NLL loss to gauge the difference between the learned p∗(m, t) and the ground truth
distribution p̂∗(m, t). Details of evaluation metrics are available in Appendix C.3. The result shows
that IFNMTPP consistently learns more accurate distributions than all baselines.

Table 4: Model fidelity test performance on synthetic datasets; higher Spearman, lower L1 and
relative NLL loss are better; the bold and underline indicate the best and the second-best values,
respectively.

Hawkes 1 Hawkes 2 Poisson Self-correct Stationary Renewal

Sp
ea

rm
an

IFNMTPP (Ours) 1.0000±0.0000 0.9999±0.0000 1.0000±0.0000 0.9551±0.0009 0.9999±0.0000

FENN 0.9946±0.0004 0.9964±0.0002 0.9736±0.0006 0.9473±0.0010 0.9998±0.0000

FullyNN 0.9952±0.0004 0.9963±0.0002 0.9722±0.0018 0.9477±0.0001 0.9998±0.0000

SAHP 0.9959±0.0047 0.9862±0.0000 0.9615±0.0025 0.9492±0.0014 0.9990±0.0007

THP 0.9266±0.0026 0.7366±0.0005 1.0000±0.0000 0.6969±0.0017 0.0413±0.0024

Marked-LNM 0.9924±0.0007 0.9971±0.0001 0.9713±0.0024 0.9491±0.0005 0.9999±0.0000

L
1

IFNMTPP (Ours) 0.1480±0.0085 0.3105±0.0432 0.0133±0.0091 0.5163±0.0290 0.0654±0.0018

FENN 0.6248±0.0052 3.0398±0.0693 0.2919±0.0051 1.2139±0.1652 0.0703±0.0058

FullyNN 0.6235±0.0227 3.1048±0.0763 0.2973±0.0098 1.1889±0.0244 0.0710±0.0099

SAHP 1.0245±0.2967 4.7867±0.2735 0.6893±0.0238 1.3363±0.0196 0.4872±0.1833

THP 12.003±0.2069 25.500±0.3642 0.0203±0.0067 10.656±0.0965 9.9230±0.0451

Marked-LNM 0.6994±0.0117 2.6446±0.0633 0.3620±0.0044 0.7406±0.0168 0.0402±0.0001

R
el

at
iv

e
N

L
L IFNMTPP (Ours) 0.0000±0.0000 0.0001±0.0000 0.0000±0.0000 0.0007±0.0003 0.0000±0.0000

FENN 0.0003±0.0000 0.0009±0.0001 0.0002±0.0000 0.0016±0.0006 0.0000±0.0000

FullyNN 0.0003±0.0000 0.0008±0.0001 0.0002±0.0000 0.0015±0.0001 0.0000±0.0000

SAHP 0.0086±0.0017 0.0312±0.0193 0.0092±0.0002 0.0072±0.0009 0.0034±0.0010

THP 0.2137±0.0001 0.6663±0.0029 0.0000±0.0000 0.1262±0.0004 0.0771±0.0000

Marked-LNM 0.0004±0.0000 0.0010±0.0000 0.0006±0.0000 0.0018±0.0001 0.0000±0.0000
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5 RELATED WORK

To solve NEP, most MTPP studies specify a separate Conditional Intensity Function (CIF) λ∗(m, t)
for each categorical mark m, based on which p∗(m, t) can be formulated(Daley & Vere-Jones, 2003;
Mei & Eisner, 2017; Zuo et al., 2020; Zhang et al., 2020; Enguehard et al., 2020; Mei et al., 2022). All
these studies assume λ∗(m, t) has a specific functional form which can be integrated to infer p∗(m, t).
As pointed out by Shchur et al. (2020), requirement of integration is the intrinsic shortcomings of
CIF models due to the trade-off between efficiency and effectiveness. A more sophisticated intensity
function(Mei & Eisner, 2017; Zuo et al., 2020; Zhang et al., 2020; Mei et al., 2022) can better capture
the system dynamics but will require approximating the integral of λ∗(m, t) using a numerical
method such as Monte Carlo. Recurrent Marked Temporal Point Process(RMTPP)(Du et al., 2016)
eludes numerical integral approximation as the CIF and its integral have a closed form, which makes
the log-likelihood easy to compute. However, RMTPP ignores the relation between mark and time
because of factorizing p∗(m, t) into two independent distribution p∗(t) and p∗(m). Moreover, the
predefined closed-form CIF usually has limited expressiveness.

Recent studies move away from directly modeling CIF. Shchur et al. (2020) proposed an intensity-free
solution, called LogNormMix, to infer the density function p∗(t) from a simple distribution such as
the mixture of log-normal distributions. In the scenarios of multiple marks, the intensity-free solution
factorizes p∗(m, t) into a product of two independent distributions p∗(t) and p∗(m). Omi et al. (2019)
proposed FullyNN to model the integral of CIF using a neural network where CIF can be derived by
differentiation, an operation computationally much easier compared with integration. FullyNN was
proposed for TPP rather than MTPP, which does not consider event marks. Also, FullyNN cannot
guarantee essential mathematical restrictions(Shchur et al., 2020). The idea of FullyNN inspired
integral-based Spatio-temporal Point Process (STPP) models(Zhang et al., 2023; Zhou & Yu, 2023),
where the marks are locations in a continuous spatial space.

All MTPP studies discussed so far predict the time of the next event first and then predict the mark.
Recently, Waghmare et al. (2022) proposes to model p∗(m) using a classifier to predict the mark of
the next event and modeling p∗(t|m) to predict the time of the event based on LogNormMix. Besides
the classic MTPP approaches, some researchers explore approaches that directly generate the time
and mark of the next event simultaneously. Yuan et al. (2023) and Lüdke et al. (2023) suggest to
represent the conditional distribution by a Denoising Diffusion Probabilistic Model (DDPM)(Ho et al.,
2020). Lüdke et al. (2023) applied denoising diffusion to convert a long event sequence sampled from
a predefined Poisson distribution to any given distribution. Meanwhile, Yuan et al. (2023) proposed
DSTPP, which employs DDPM to represent STPP.

In summary, the existing studies in the current literature return a single mark and a single time as the
prediction of the next event, i.e., NEP. None of them consider the imbalanced distribution of marks.
The frequent marks dominate the results of NEP and rare marks are mostly missing in the next event
prediction as shown in Figure 1. This is unacceptable in many application scenarios as discussed in
Section 1. Our study aims to address this issue.

6 LIMITATION AND CONCLUSION

Limitation One limitation is the experiment results on efficiency are measured by the total evaluation
time on the test datasets instead of the expected FLOP counting. However we carefully managed the
experiment environment and every run has the same computation resources, so we believe that the
evaluation time can properly demonstrate the efficiency of the models.

Conclusion In the existing MTPP studies, the results of Next-event Prediction problem (NEP) are
dominated by frequent marks, and the rare marks may be never present. This situation is unacceptable
in many applications if the rare mark is critical such as major earthquakes. To fill the gap, this
study tackles the novel Rare-mark-aware Next Event Prediction problem (RM-NEP) to answer two
questions for each mark m: “what is the probability that the mark of the next event is m? and “if m,
when will the next event happen?”. This study solves RM-NEP accurately and efficiently by unifying
two different improper integration functions into Γ∗(m, t) and developing a novel Integral-free Neural
Marked Temporal Point Process (IFNMTPP) to directly calculate Γ∗(m, t). Extensive experiments on
real-world and synthetic datasets demonstrate the superior performance of our solution for RM-NEP
against various baselines.
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A Review. In Zhou, Z.-H. (ed.), Proceedings of the Thirtieth International Joint Conference on
Artificial Intelligence, IJCAI 2021, Virtual Event / Montreal, Canada, 19-27 August 2021, pp.
4585–4593. ijcai.org, 2021. doi: 10.24963/ijcai.2021/623.

Tagliazucchi, E., Balenzuela, P., Fraiman, D., and Chialvo, D. Criticality in Large-Scale Brain fMRI
Dynamics Unveiled by a Novel Point Process Analysis. Frontiers in Physiology, 3, 2012. ISSN
1664-042X. doi: 10.3389/fphys.2012.00015.

Waghmare, G., Debnath, A., Asthana, S., and Malhotra, A. Modeling Inter-Dependence Between
Time and Mark in Multivariate Temporal Point Processes. In Hasan, M. A. and Xiong, L. (eds.),
Proceedings of the 31st ACM International Conference on Information & Knowledge Management,
Atlanta, GA, USA, October 17-21, 2022, pp. 1986–1995. ACM, 2022. doi: 10.1145/3511808.
3557399. URL https://doi.org/10.1145/3511808.3557399.

Xue, S., Shi, X., Chu, Z., Wang, Y., Zhou, F., Hao, H., Jiang, C., Pan, C., Xu, Y., Zhang, J. Y., Wen,
Q., Zhou, J., and Mei, H. EasyTPP: Towards Open Benchmarking the Temporal Point Processes,
2023.

Yuan, Y., Ding, J., Shao, C., Jin, D., and Li, Y. Spatio-temporal Diffusion Point Processes. In
Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
KDD ’23, pp. 3173–3184. Association for Computing Machinery, 2023. ISBN 9798400701030.
doi: 10.1145/3580305.3599511.

Zeng, F. and Gao, W. Early rumor detection using neural Hawkes process with a new benchmark
dataset. In Proceedings of the 2022 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, pp. 4105–4117. Association for
Computational Linguistics, 2022. doi: 10.18653/v1/2022.naacl-main.302.

Zhang, Q., Lipani, A., Kirnap, O., and Yilmaz, E. Self-Attentive Hawkes Process. In Proceedings of
the 37th International Conference on Machine Learning, pp. 11183–11193. PMLR, November
2020. ISSN: 2640-3498.

Zhang, Y., Kong, Q., and Zhou, F. Integration-free Training for Spatio-temporal Multimodal Covariate
Deep Kernel Point Processes, 2023.

Zhao, Q., Erdogdu, M. A., He, H. Y., Rajaraman, A., and Leskovec, J. SEISMIC: A Self-Exciting
Point Process Model for Predicting Tweet Popularity. In Cao, L., Zhang, C., Joachims, T.,
Webb, G. I., Margineantu, D. D., and Williams, G. (eds.), Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, Sydney, NSW, Australia,
August 10-13, 2015, pp. 1513–1522. ACM, 2015. doi: 10.1145/2783258.2783401.

Zhou, Z. and Yu, R. Automatic Integration for Spatiotemporal Neural Point Processes, 2023.

Zuo, S., Jiang, H., Li, Z., Zhao, T., and Zha, H. Transformer Hawkes Process. In Proceedings of the
37th International Conference on Machine Learning, pp. 11692–11702. PMLR, November 2020.
ISSN: 2640-3498.

13

https://doi.org/10.1145/3511808.3557399


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A THE CONDITIONAL JOINT PDF

This study concerns events with categorical marks. For mark m, we define a conditional intensity
function λ∗(m, t):

λ∗(m = ki, t) = λ(m = ki, t|Ht)

= lim
∆t→0

P (m = ki, t ∈ [t, t+∆t)|Ht−)

∆t

= lim
∆t→0

p(m = ki, t ∈ [t, t+∆t)|Htl)∆t

P (∀j ∈ N+, tj /∈ (tl, t)|Htl)∆t

= lim
∆t→0

p(m = ki, t ∈ [t, t+∆t)|Htl)

P (∀j ∈ N+, tj /∈ (tl, t)|Htl)

=
p(m = ki, t ∈ [t, t+ dt)|Htl)

P (∀j ∈ N+, tj /∈ (tl, t)|Htl)

(14)

where Htl is the history up to (including) the most recent event, Ht− is the history up to (excluding)
the current time, P (∀j ∈ N+, tj /∈ (tl, t)|Htl) represents the probability that no event is observed in
time interval (tl, t) given Htl .

We denote P
′

m((t1, t2)|Htl) for the conditional probability that an event m happens in (t1, t2).
Following the definition of simple TPP that at most one event happens at every timestamp t, the
probability that no event occurs in (tl, t) is:

P (∀j ∈ N+, tj /∈ (tl, t)|Htl)

=1−
∑
m∈M

P
′

m((tl, t)|Htl)
∏

n∈M,n̸=m

(1− P
′

n((tl, t)|Htl))

=1−
∑
m∈M

P
′

m((tl, t)|Htl)

1− P ′
m((tl, t)|Htl)

∏
n∈M

(1− P
′

n((tl, t)|Htl))

=1−
∑
m∈M

F (m, t|Htl) = 1−
∑
m∈M

F ∗(m, t)

(15)

where

F ∗(m, t) =
P

′

m((tl, t)|Htl)

1− P ′
m((tl, t)|Htl)

∏
n∈M

(1− P
′

n((tl, t)|Htl)) (16)

The conditional joint PDF that the next event is m and occurs in [t, t+ dt) is:

p(m = ki, t ∈ [t, t+∆t)|Htl) =
dF ∗(m = ki, t)

dt
(17a)∫ t

tl

p(m = ki, t ∈ [t, t+∆t)|Htl)dτ = F ∗(m = ki, t) (17b)

In this study, p∗(m, t), shorthand of p(m, t|Htl), is the formal representation of p(m = ki, t ∈
[t, t+∆t)|Htl). Note F ∗(m, t) in Equation (16) is the probability that only one event happens in
interval [t, t+ dt) and the mark is m. This ensures the MTPP represented by p∗(m, t) is simple. By
integrating Equation (17a) and Equation (15) in Equation (14), we have

p∗(m, t) = λ∗(m, t)(1−
∑
w∈M

F ∗(w, t)) (18)

where
∑

w∈M F ∗(w, t) is calculated from the sum of Equation (14) over marker m:∑
w∈M

F ∗(w, t) = 1− exp(−
∫ t

tl

∑
n∈M

λ∗(n, τ)dτ) (19)

Then, we solve p∗(m, t):

p∗(m, t) = λ∗(m, t) exp(−
∫ t

tl

∑
n∈M

λ∗(n, τ)dτ) (20)

which is equivalent with Equation (2).
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B ANALYSIS ON FULLYNN AND FENN

B.1 FULLYNN AND ITS SHORTCOMING

FullyNN sets the learning target of NNs to Λ∗(t), the integral of intensity functions λ∗(t). This idea
works when no event mark information is present. However, when we require FullyNN to learn
different intensity functions for different event marks, the limitation emerges as FullyNN cannot
allocate different computation graphs for different marks.

To understand this, we should recognize how FullyNN calculates the intensity function. Following
the definition in (Omi et al., 2019), a FullyNN can be written in the following expression:

Λ∗(t) = FullyNN(t,h) = IEM(f(t),h) (21)

where f(t) represents a monotonic-increasing function mapping the time t into a vector, h is the
history embedding, and IEM refers to the integral estimation module. From Equation (21), we could
derive the intensity function as:

λ∗(t) =
∂Λ∗(t)

∂t
=

∂ IEM(f(t),h)

∂f(t)

∂f(t)

∂t
(22)

If one generalizes the FullyNN from mark-agnostic to mark-aware by simply expanding the input
time from t to t = [t, t, t, · · · , t]⊤, each for one of the |M| marks, and they share the same vector
v for generating the same f(t)s as input of IEM. By letting the corresponding intensity integral be
Λ∗(t) = [Λ∗(m = k1, t),Λ

∗(m = k2, t),Λ
∗(m = k3, t), · · · ,Λ∗(m = k|M|, t)]

⊤, we could find
the Jacobian Matrix DtΛ

∗(t) is:

DtΛ
∗(t)

=
∂[Λ∗(m = k1, t),Λ

∗(m = k2, t), · · · ,Λ∗(m = k|M |, t)]
⊤

∂t

=


∂ IEM(f(t),h)

∂f(t) v 0 · · · 0

0 ∂ IEM(f(t),h)
∂f(t) v · · · 0

...
...

. . .
...

0 0 · · · ∂ IEM(f(t),h)
∂f(t) v


(23)

which implies that the intensity functions for different marks receive identical distributions, and the
event prediction performance would be stuck at 1

|M| . We believe this might explain the shockingly
bad event prediction performance in (Enguehard et al., 2020).

(a) FullyNN on Retweet dataset. (b) FENN on Retweet dataset. (c) IFNMTPP on Retweet dataset.

Figure 3: The L1 distance between distribution p∗(mi, t) and distribution p∗(mj , t), for each pair of
marks (mi,mj) in M, generated by FullyNN, FENN and IFNMTPP on an event sequence in Retweet
dataset. FullyNN generates the identical distribution for different marks as the L1 distance between
p∗(mi, t) and p∗(mj , t) is 0 for each pair of marks (mi,mj) in M. In contrast, FENN and IFNMTPP
generate different distributions for different marks.
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Integral
Estimation

Module
(IEM)

...

History
Encoder

IEM

Fully-connected layers with
non-negative weights

Monotonic-increasing
activation function

Figure 4: Architecture of Fully Event Neural Network (FENN). The solid arrows refer to forward
propagation. FENN models Λ∗(t) and obtains λ∗(m, t) by backpropagation.

B.2 FULLY EVENT NEURAL NETWORK

To handle marks in a better way, FullyNN can be extended to FENN (Fully Event Neural Network),
which models p∗(m, t) based on the conditional intensity λ∗(m, t) as defined in Equation (2). FENN
is sketched in Figure 4. The history Htl is represented as an embedding h using a LSTM encoder(Omi
et al., 2019). FENN needs to model |M| conditional intensity functions, i.e., λ∗(m, t) for all m ∈ M.
The integral of conditional intensity functions across all marks, from the time of the latest event tl to
the current time t, is denoted as Λ∗(t). The definition of Λ∗(t) is given in Equation (24a), and the
relationship between Λ∗(t) and λ∗(m, t) is presented in Equation (24b):

Λ∗(t) =

∫ t

tl

∑
n∈M

λ∗(n, τ)dτ = IEMFENN(f(m = k1, t), t), · · · , f(m = k|M|, t),h), (24a)

λ∗(m, t) =
∂Λ∗(t)

∂f(m, t)

∂f(m, t)

∂t
, for m ∈ M. (24b)

where f(m, t) is defined as vm(t−tl) for mark m ∈ M. FENN utilizes vm to distinguish event marks
to avoid sharing the same computation graph as FullyNN. The integral estimation module (IEM) of
FENN contains multiple fully-connected layers with non-negative weights and monotonic-increasing
activation functions and ends with an unbounded above softplus function softplus(x) = log(1 + ex).
IEM receives history embedding h and f(m = k1, t), f(m = k2, t), · · · , f(m = k|M|, t), outputs
Λ∗(t). The loss function of FENN is the negative logarithm of p∗(m, t) at every known event
(mi, ti) ∈ S, as shown in Equation (25).

L =
∑

(mi,ti)∈S

− log p∗(mi, ti)

=
∑

(mi,ti)∈S

(− log λ∗(mi, ti) +

∫ ti

tl

λ∗(m, τ)dτ)
(25)

FENN inherits from FullyNN the capability to instantaneously provide accurate λ∗(m, t) and the
integral Λ∗(t), and FENN solves the computation graph overlap issue in FullyNN as evidenced
by the test results in Figure 3. However, FENN also inherits the weakness of FullyNN: it violates
several essential mathematical restrictions(Shchur et al., 2020). To elaborate on this, we first rewrite
Equation (24a) by expanding IEMFENN(·).

Λ∗(t) =
∑
m∈M

softplus(Ω∗(m, t) + b) (26a)

Ω∗(m, t) = w⊤ tanh(Fl(· · · F2(F1([vm(t− tl),h])))). (26b)
Fi(x) = tanh(Wix+ bi) (26c)

where Wi and w are matrices and vectors, respectively, without negative numbers, bi and b are
biases, and l is the number of non-negative fully-connected layers. With the two expressions above,
we reveal the restrictions that FENN fails to compel:
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1. The IEM must output 0 when the input is exactly tl. Otherwise, the model allows future
events to occur before the latest historical event, which is unreasonable. Unfortunately, as
softplus(x) = log(1 + ex) is always positive, Λ∗(tl) would be close to, but never be 0.

2. The model’s output must be unbounded, in other words, limt→+∞ Λ∗(t) = +∞ because
the cumulative distribution function, P ∗(t) =

∫ t

tl

∑
n∈M p∗(n, τ)dτ = 1− exp(−Λ∗(t)),

must converge to 1 as t → +∞ if assuming the next event always happens. However,
similar to FullyNN, because FENN’s activation function between the fully-connected layers
is tanh(x), whose value domain is (−1, 1), the upper bound of Λ∗(t) exists as shown in
Equation (27), resulting in an unnormalized probability distribution.

Λ∗(t)max =
∑
m∈M

softplus(w⊤
1 1+ b1) < +∞ (27)

Moreover, these restrictions are parameter-independent, meaning that one must directly impose them
into the model structure, making them more difficult to deal with. In conclusion, although FENN can
provide the conditional joint PDF p∗(m, t), its structure is still faulty, which could lead to inferior
performance.

C EXPERIMENT SETTINGS

C.1 REAL-WORLD DATASETS

We use the following six datasets to evaluate the performance of RM-NEP solutions.

• BookOrder dataset(BO)(Du et al., 2016) logs the frequent stock transactions from NYSE.
Each event (i.e., transaction) belongs to one of the two event types8: buy or sell. The number
of events is 400K, and the average sequence length is 3,319 for the training and evaluation
set and 829 for the test set. This dataset is released under the Apache-2.0 license(Xue et al.,
2023).

• Retweet dataset(Zhao et al., 2015) records when users Retweet a particular message on
Twitter. This dataset distinguishes all users into three different types: (1) normal user, whose
followers count is lower than the median, (2) influence user, whose followers count is higher
than the median but lower than the 95th percentile, (3) famous user, whose followers count
is higher than the 95th percentile. About 2 million Retweets are recorded, and the average
sequence length is 108.This dataset is released under the Apache-2.0 license(Xue et al.,
2023).

• StackOverflow dataset(SO)(Leskovec & Krevl, 2014) was collected from Stackoverflow9, a
popular question-answering website about various topics. Users providing decent answers
will receive different badges as rewards. This dataset collects the timestamps when people
obtain 22 badges from the website, and the average sequence length is 72.This dataset is
released under the Apache-2.0 license(Xue et al., 2023).

• Taobao(Alibaba, 2018) records users’ interactions on Taobao, an online shopping website
from China. These actions include user clicking and buying online items, viewing reviews
and comments, or searching for items. The average length of sequences in this dataset is
58, and 17 different marks are available. This dataset is released under the Apache-2.0
license(Xue et al., 2023).

• USearthquake(Xue et al., 2023) records all earthquakes happened in the continental US
from USGS10. This dataset has 7 marks, referring to earthquakes with magnitude 2.0 to 2.9,
3.0 to 3.9, 4.0 to 4.9, 5.0 to 5.9, 6.0 to 6.9, 7.0 to 7.9, or 8 and higher. The average sequence
length is 16.This dataset is released under the Apache-2.0 license(Xue et al., 2023).

• Yelp11 records user comments mainly about restaurants in the United States. We
categorize users into three groups: (1) users whose number of comments is lower

8In this study, event types and event marks are equivalent
9https://StackOverflow.com/

10http://earthquake.usgs.gov/earthquakes/eqarchives/year/eqstats.php
11https://www.Yelp.com/dataset
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than the median (5 comments), (2) users whose number of comments is higher than
the median but lower than the 95th percentile(92 comments), (3) users whose number
of comments is higher than the 95th percentile. We pick stores which receive over
75 comments from Jan 1, 2020, and all comments of a store construct a sequence.
This dataset includes 410,447 reviews involving 4,028 stores from 12 states. The
average sequence length is 102. This dataset is released under Yelp’s private license
at https://s3-media0.fl.yelpcdn.com/assets/srv0/engineering_
pages/f64cb2d3efcc/assets/vendor/Dataset_User_Agreement.pdf.

C.2 SYNTHETIC DATASETS

All synthetic datasets are generated so we do not have any licenses information for them. The code to
generate all synthetic datasets comes from the codebase of (Omi et al., 2019) at https://github.
com/omitakahiro/NeuralNetworkPointProcess which is publicly accessible without
any licenses.

• Hawkes process dataset Hawkes 1 was generated utilising Hawkes process:

λ∗(t) = µ0 +
∑
ti<t

a exp(−b(t− ti)) (28)

where µ = 0.2, a = 0.8, and b = 1.0.
• Hawkes process dataset Hawkes 2 was generated utilising Hawkes process:

λ∗(t) = µ0 +
∑
ti<t

a1 exp(−b1(t− ti)) + a2 exp(−b2(t− ti)) (29)

where µ = 0.2, a1 = a2 = 0.4, b1 = 1.0, and b2 = 20.
• Homogeneous Poisson process dataset was generated using the Homogeneous Poisson

process where the conditional intensity function λ∗(t) is constant over the entire timeline.
This paper assumes λ∗(t) = 1.

• Self-correct process dataset was generated using the temporal point process whose intensity
significantly drops when an event happens. The definition of the conditional intensity
function is λ∗(t) = exp(µ(t− ti)− αN) where N is the number of occurred events, and µ
and α are fixed parameters. In our experiments, we set α = µ = 1.

• Stationary renewal process dataset was generated using stationary renewal process, which
directly defines the probability distribution over time p∗(t) as a log-normal distribution as
shown in Equation (30).

p∗(t|σ) = 1

σt
√
2π

exp(− log2(t)

2σ2
) (30)

where σ is the standard deviation. Here, we set σ = 1. With Equation (30) and TPP’s
definition, one could solve the corresponding intensity function by Wolframalpha12:

λ∗(t) =
−0.797885 exp(−0.5 log2(t))

−t+ t erf(0.707107 log(t))
(31)

where erf(x) = 2√
π

∫ x

0
exp(−t2)dt.

These five synthetic distributions cooperate with a synthetic marking methods. This method generates
discrete marks sampled from a uniform distribution. All synthetic datasets have 5 different marks.

C.3 METRICS

C.3.1 METRICS FOR SYNTHETIC DATASETS

For synthetic datasets, the real distribution p̂∗(m, t) is known. We can compare the generated
p∗(m, t) against the real one. Most papers report the relative NLL loss, that is, the average of the

12https://www.wolframalpha.com
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absolute difference between − log p̂∗(m, t) and − log p∗(m, t) on the observed events(if markers are
unavailable, − log p̂∗(t) and − log p∗(t)(Omi et al., 2019; Shchur et al., 2020)). The lower relative
NLL loss indicates a better performance. However, such a metric only evaluates performance at
discrete events, which cannot gauge the overall discrepancy between p̂∗(m, t) and p∗(m, t). So, this
paper selects Spearman Coefficient ρ and L1 distance to measure the discrepancy between p̂∗(m, t)
and p∗(m, t) over time, while we also report the relative NLL loss for reference.

Spearman Coefficient ρ(X,Y ) measures the relationship between two arbitrary value sequences,
X and Y , as defined by Equation (32). If X and Y are more correlated, ρ(X,Y ) is higher; lower
otherwise. Compared with the Pearson coefficient which is suitable if the relationship between X
and Y is linear, Spearman coefficient could better deal with non-linear relationships. Because most
probability distributions of TPP are non-linear, we select Spearman coefficient.

ρ(X,Y ) =
Cov(Rank(X),Rank(Y ))

σXσY
∈ [−1, 1] (32)

where σX and σY are the standard deviations of the values in sequence X = {x1, x2, · · · , xn} and
Y = {y1, y2, · · · , yn}, respectively. We expect ρ between p̂∗(m, t) and p∗(m, t) is close to 1.

L1 distance measures how different two arbitrary functions are in interval [a, b].

L1(f, g) =

∫ b

a

|f(x)− g(x)|dx ⩾ 0 (33)

The smaller the L1 distance is, the more similar f(x) and g(x) are. When L1(f, g) = 0, f(x) almost
equals to g(x) in interval [a, b] for any f(x) and g(x), or f(x) = g(x) at every x ∈ [a, b] if both f(x)
and g(x) are continuous.

C.4 BASELINES

The details of baselines in Section 4 are introduced next.

• Fully Neural Network(FullyNN)(Omi et al., 2019) uses a neural network to estimate the inte-
gral of λ∗(t) for the history embedding h and inter-event time t. Then the density function
is formulated to predict the time of the next event. FullyNN is designed for TPP without
the information of event marks. To work with MTPP, FullyNN can be simply extended but
it has a performance issue. Details are available in Appendix B.1. We rewrote FullyNN
in PyTorch(Paszke et al., 2019) based on the official implementation available at https:
//github.com/omitakahiro/NeuralNetworkPointProcess, which is pub-
licly accessible without any license.

• Fully Event Neural Network(FENN) is an extension of FullyNN. FENN successfully over-
comes the computation graph overlap issue yet still inherits FullyNN’s drawback of failing
to comply with the mathematical restrictions. We believe sometimes such failure might be
responsible for the inferior performance of FENN. Detailed information about FENN is
available in Appendix B.2. The implementation of FENN is a direct modification of our
FullyNN implementation.

• Transformer Hawkes Process(THP)(Zuo et al., 2020) uses a Transformer-based encoder to
represent history as a hidden state h. The softplus-based intensity function and the density
function are modelled to predict the time of next event. We reproduce this model in PyTorch
based on the paper.

• Self-Attentive Hawkes Process(SAHP)(Zhang et al., 2020) is based on the same intuition as
Continuous-time LSTM(CTLSTM)(Mei & Eisner, 2017), which generalizes the classical
Hawkes process by parameterizing its intensity function with recurrent neural networks.
CTLSTM is an interpolated version of the standard LSTM, allowing us to generate outputs
in a continuous-time domain. SAHP further improves performance by replacing LSTM
with Transformers. Because the only difference between SAHP and CTLSTM is the history
encoder, and SAHP has reported achieving better performance than CTLSTM, we only
evaluate SAHP in this paper. We reproduce this model in PyTorch based on the paper.

• Marked LogNormMix(Marked-LNM)(Waghmare et al., 2022) is an MTPP extension of
the LogNormMix(Shchur et al., 2020). Marked-LNM also follows the MT paradigm by
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modeling p∗(m) first, then using a composition of log Gaussian distribution to represent
p∗(t|m). To the best of our knowledge, Marked-LNM is the only MTPP approach predicting
the mark of the next event first and then predicting the time of the event. However, Marked-
LNM limits the form of p∗(t|m) as the composition of log Gaussian distributions. This
setting introduces inductive biases into the model, which could compromise the model
prediction performance. We implement this model in PyTorch by modifying the official
LogNormMix code at https://github.com/shchur/ifl-tpp. The official codes
are released under the MIT license.

FENN, FullyNN, SAHP, and THP are CIF-based MTPP models. To solve RM-NEP with these
models, we first estimate the value of p∗(m) by the following equation:

p∗(m) =

∫ +∞

tl

p∗(m, τ)dτ

=

∫ +∞

tl

λ∗(m, τ) exp(−
∫ τ

tl

λ∗(m, t)dt)dτ

≈
∫ Tmax

tl

λ∗(m, τ) exp(−
∫ τ

tl

λ∗(m, t)dt)dτ

(34)

where Tmax is a predefined large value to approximate the infinity in the original expression of p∗(m).
We decide its value by the following equation.

Tmax = min(106, t̄+ 10σ) (35)
where t̄ and σ are the mean and the standard deviation of the time intervals extracted from a dataset.
This means every dataset has its Tmax. As for the integration functions in Equation (34), we use the
following equation to estimate them:∫ b

a

f(x)dx ≈
N−1∑
i=0

f(a+ i
b− a

N
)
b− a

N
(36)

where N means we equally divide the integral interval [a, b] into N sub-intervals. If increasing N ,
the estimation of p∗(m) is more accurate but the computation cost and storage requirement increase
quadruply, which quickly overwhelms an A100 GPU. Thus, we limit the value of N for each mark m
while calculating p∗(m) by the following equation:

Nm = min(Tmax × 200,
C

L
) (37)

Where C = 3× 107 controls the overall memory usage, L is the length of the event sequence. So,
if the event sequence is long, we use a smaller Nm to reduce compute resource requirement and
use a larger Nm if the event sequence is short. It allows us to fully exploit the capacity of the GPU.
Detailed information about the value of Nm and Tmax are available in Table 5.

Table 5: The value of Nm and Tmax of each real-world dataset used in experiments

BO Retweet SO Taobao USeq Yelp

Average of time interval t̄ 1.3273 2550.2 0.8167 4.1207 1.2187 7.2644
Standard deviation of time interval σ 20.240 16230 1.0333 25.176 1.8454 13.410
Tmax 203.73 164847 11.150 255.88 19.673 144.37
Nm(Average) 18094 113048 2593 31748 3934 28273
Nm(Maximum) 18094 200000 2593 51175 3934 28273
Nm(Minimum) 18094 37878 2593 27573 3934 28273

After we obtain p∗(m), we can calculate F ∗(t|m). According to the definition of MTPP and
Equation (7), we have:

F ∗(t|m) =
F ∗(m, t)

p∗(m)
=

1

p∗(m)

∫ t

tl

p∗(m, τ)dτ

=
1

p∗(m)

∫ t

tl

p∗(m, τ)dτ

=
1

p∗(m)

∫ t

tl

λ∗(m, τ) exp(−
∫ τ

tl

λ∗(m, t)dt)dτ

(38)
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Similar to p∗(m), we estimate all integrals in Equation (38) by Equation (36) where the setting of N
is needed. Here, N is denoted as Nt to distinguish from the one in Equation (36).

Nt = min(min(t̄× 200, 500),
C

L ∗ |M| ∗ |M|
) (39)

where t̄ is the same one in Equation (35), C and L share the same meaning and value as those in
Equation (37), and |M| is the number of marks in the dataset. Detailed information about Nt is
available in Table 6.

Table 6: The value of Nt and t̄ of each real-world dataset used in experiments

BO Retweet SO Taobao USeq Yelp

Average of time interval t̄ 1.3273 2550.2 0.8167 4.1207 1.2187 7.2644
Nt(Average) 265 500 174 500 243 500
Nt(Maximum) 265 500 174 500 243 500
Nt(Minimum) 265 500 174 500 243 500

With F ∗(t|m) finally available, we can solve Equation (6) for drawing samples from p∗(t|m) to
predict the time of the next event on the condition that its mark is m, as described in Section 3.1.

Different from CIF-based baselines discussed above, for each mark m, Marked-LNM(Waghmare
et al., 2022) directly learns p∗(m) by a classifier and p∗(t|m) by LogNormMix. That is, Marked-
LNM can give the value of p∗(m) straightforwardly and direly draws samples from p∗(t|m) to predict
the time of the next event on the condition that its mark is m.

C.5 DATA PREPROCESSING

We prepare synthetic and real-world datasets with normalization. For each dataset, normalization
scales the time t of every event in each event sequence by the time mean t̄ of all events in all event
sequences and standard deviation σ, as shown in Equation (40):

tscaled =
t− t̄

σ
(40)

Normalization is useful when the time is relatively large, such as in the Retweet dataset. Table 7
shows how normalization is applied on various datasets.

Table 7: Data preprocessing.

Dataset BookOrder Retweet StackOverflow Taobao USearthquake Yelp five synthetic datasets
Normalization ✓ ✓ ✓ ✓ ✓ ✓ ✗

Our work focuses on predicting when the next event will happen provided a mark, especially a rare
mark. For each dataset, we classify if one mark is rare or frequent. The percentages of marks in each
dataset are presented in Figure 5. Table 8 shows which marks are classified as frequent and which are
classified as rare. BookOrder does not have rare/frequent marks because it has equally distributed
marks.

Table 8: Rare marks and frequent marks.

Dataset name The number of marks Rare Mark Frequent Mark

BookOrder 2 [1] [0]
Retweet 3 [2] [0, 1]

StackOverflow 22 [1, 2, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21] [0, 3, 4, 5, 8]
Taobao 17 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15] [16]

USearthquake 7 [3, 4, 5, 6] [0, 1, 2]
Yelp 3 [0, 2] [1]
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(a) BookOrder (b) Retweet (c) StackOverflow

(d) Taobao (e) USearthquake (f) Yelp

Figure 5: The frequency distribution of marks in real-world datasets.

C.6 MODEL TRAINING

This section introduces the hyperparameter settings for all MTPP models used in this paper. The two
values of “Steps” refer to the number of warm-up steps and total training steps, respectively. “BS”
refers to batch size, and “LR” refers to the learning rate. Unless otherwise specified, we repeatedly
train a model 3 times with different random seeds and report the mean and standard deviation of the
results. We conduct all experiments on an internal cluster. It includes Intel Xeon CPUs and NVIDIA
A100-PCIE GPUs. All codes will be release upon acceptance under the MIT license.

For each mark m, we sample N times {ti}mN from F ∗(t|m) to predict the time of the next event on
the condition that its mark is m by the inverse transform sampling:

F ∗(ti|m) = ui (41)

where ui is a random sample from a uniform distribution. The common practice samples ui from the
standard uniform distribution ui ∼ U(0, 1). MTPP allows ti to go to positive infinity. When ui is
very close to 1, the time drawn from Equation (41) will be meaninglessly big and cause a negative
impact to the accuracy of evaluation. To avoid this, we let ui ∼ U(0, 0.9). We find this trick can
significantly stabilize the sampling process.

C.6.1 IFNMTPP CONFIGURATIONS

Table 9 lists the hyperparameter settings for IFNMTPP. The three values of “MS” (model structure)
refer to the number of dimensions for history embedding h, the number of dimensions for vm and
bm

13, and the number of non-negative fully-connected layers in the IEM module, respectively.

C.6.2 FULLYNN AND FENN CONFIGURATIONS

Table 10 shows hyperparameter settings for FullyNN and FENN. The three numbers in column “MS”
share the same meaning as those in IFNMTPP.

C.6.3 THP CONFIGURATIONS

Table 11 shows all hyperparameter settings for THP. The six values of “MS” are the number of
dimensions of the Transformer input vectors, the number of dimensions of the hidden outputs from

13vm and bm always have the same number of dimensions.
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Table 9: Hyperparameter settings for IFNMTPP.

Datasets Steps MS BS LR

Retweet [80,000, 400,000] [32, 16, 4] 32 0.002
Stackoverflow [40,000, 200,000] [32, 32, 2] 32 0.002

Taobao [16,000, 80,000] [32, 16, 4] 32 0.002
BookOrder [4,000, 20,000] [32, 32, 2] 8 0.002

Yelp [40,000, 200,000] [32, 16, 4] 32 0.002
USearthquake [40,000, 200,000] [32, 16, 4] 32 0.002

Synthetic [20,000, 100,000] [32, 64, 3] 32 0.002

Table 10: Hyperparameter settings for FullyNN and FENN.

Datasets Steps MS BS LR

Retweet [80,000, 400,000] [32, 16, 4] 32 0.002
Stackoverflow [40,000, 200,000] [32, 32, 2] 32 0.002

Taobao [16,000, 80,000] [32, 16, 4] 32 0.002
BookOrder [4,000, 20,000] [32, 32, 2] 8 0.002

Yelp [40,000, 200,000] [32, 16, 4] 32 0.002
USearthquake [40,000, 200,000] [32, 16, 4] 32 0.002

Synthetic [20,000, 100,000] [32, 64, 3] 32 0.002

an RNN which is on top of the Transformer encoder, the number of dimensions of the vectors used
by self-attentions (q, k, and v), the number of Transformer layers, and heads.

Table 11: Hyperparameter settings for THP.

Datasets Steps MS BS LR

Retweet [80,000, 400,000] [16, 16, 32, 8, 3, 3] 32 0.002
Stackoverflow [40,000, 200,000] [16, 16, 32, 8, 3, 3] 32 0.002

Taobao [16,000, 80,000] [16, 16, 32, 8, 3, 3] 32 0.002
BookOrder [4,000, 20,000] [16, 16, 32, 8, 3, 4] 8 0.002

Yelp [40,000, 200,000] [16, 16, 32, 8, 3, 3] 32 0.002
USearthquake [40,000, 200,000] [16, 16, 32, 8, 3, 3] 32 0.002

Synthetic [20,000, 100,000] [16, 32, 64, 16, 3, 4] 32 0.002

C.6.4 SAHP CONFIGURATIONS

The hyperparameter settings for SAHP are available in Table 12. The first six values of “MS” share
the same meaning as those in THP while the last is the dropout rate.

Table 12: Hyperparameter settings for SAHP.

Datasets Steps MS BS LR

Retweet [80,000, 400,000] [16, 16, 32, 8, 3, 3, 0.1] 32 0.002
Stackoverflow [40,000, 200,000] [16, 16, 32, 8, 3, 3, 0.1] 32 0.002

Taobao [16,000, 80,000] [16, 16, 32, 8, 3, 3, 0.1] 32 0.002
BookOrder [4,000, 20,000] [16, 16, 32, 8, 3, 4, 0.1] 8 0.002

Yelp [40,000, 200,000] [16, 16, 32, 8, 3, 3, 0.1] 32 0.002
USearthquake [40,000, 200,000] [16, 16, 32, 8, 3, 3, 0.1] 32 0.002

Synthetic [20,000, 100,000] [16, 32, 64, 16, 3, 4, 0.1] 32 0.002

C.6.5 MARKED-LNM CONFIGURATIONS

The hyperparameter settings for Marked-LNM are presented in Table 13. The three values of “MS”
are the number of the dimensions of LSTM, the number of the dimensions of mark embedding, and
the number of Gaussian distributions, respectively.
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Table 13: Hyperparameter settings for Marked-LNM.

Datasets Steps MS BS LR

Retweet [80,000, 400,000] [32, 32, 16] 32 0.002
Stackoverflow [40,000, 200,000] [32, 32, 16] 32 0.002

Taobao [16,000, 80,000] [32, 32, 16] 32 0.002
BookOrder [4,000, 20,000] [32, 32, 16] 8 0.002

Yelp [40,000, 200,000] [32, 32, 16] 32 0.002
USearthquake [40,000, 200,000] [32, 32, 16] 32 0.002

Synthetic [20,000, 100,000] [32, 32, 16] 32 0.002

D ADDITIONAL EXPERIMENT RESULTS

D.1 PERFORMANCE OF IFNMTPP FOR MODELING p∗(m, t)

IFNMTPP is designed to solve RM-NEP. For a better solution, the main purpose of IFNMTPP is
to model the improper integration of p∗(m, t). The advantage has been verified by the experiment
results reported in Table 1. IFNMTPP models p∗(m, t) at the same time while modeling the improper
integration of p∗(m, t). Compared to other existing MTPP models, the performance of IFNMTPP
in modeling p∗(m, t) is evaluated and reported in Table 14. The evaluation metric is NLL loss,
the average of the − log p∗(m, t) at the observed events. The lower NLL loss indicates a better
performance. We can observe that IFNMTPP shows a competent performance.

Table 14: Accuracy of p∗(m, t) measured by NLL loss on real-world datasets. Lower is better.

IFNMTPP (Ours) FENN FullyNN SAHP THP Marked-LNM

BookOrder -0.0963±0.0151 -0.5504±0.0521 -0.4819±0.0195 -0.1580±0.0689 4.4523±0.8621 -1.8623±0.0231

Retweet 6.3225±0.0007 6.3535±0.0090 6.6437±0.0380 6.1935±0.0184 10.379±0.5349 6.5292±0.0064

Stackoverflow 2.0540±0.0029 2.9126±0.0078 3.6984±0.0022 2.0713±0.0028 2.5565±0.0216 2.0992±0.0014

Taobao -0.7762±0.0565 0.1644±0.1989 -0.0431±0.0484 -1.2779±0.0421 140.91±81.166 1.2720±0.1300

USearthquake 1.3278±0.0533 1.6582±0.0363 1.8664±0.0649 1.3544±0.0300 2.0744±0.3174 1.8514±0.0462

Yelp 3.6542±0.0003 3.7231±0.0027 3.7912±0.0024 3.6557±0.0004 3.7036±0.0144 3.6363±0.0040

D.2 TIME PREDICTIONS BY p∗(t|m) V.S. TIME PREDICTIONS BY p∗(t)

Is the time prediction by sampling p∗(t|m) more accurate than that by sampling p∗(t)? Specifically,
one might come up with an intuitive formulation of RM-NEP that treats the predicted time by p∗(t)
as the predicted time for all marks. We compare this intuitive formulation with ours by MMAEM on
six real-world datasets. To be fair, both p∗(t|m) and p∗(t) are produced using IFNMTPP. The results
are in the Table 15. We can observe that sampling from p∗(t|m) provides a generally more accurate
time prediction when solving RM-NEP.

Table 15: Time prediction by sampling p∗(t) v.s. that by sampling p∗(t|m) on real-world datasets,
measured by MMAE, lower is better, p∗(t|m) and p∗(t) are produced using IFNMTPP.

BO Retweet SO Taobao USearthquake Yelp

Time Prediction
by p∗(t|m)

MMAEM 1.1967±0.0076 2515.1±6.5029 0.5212±0.0142 0.3324±0.0579 0.6856±0.0063 5.3271±0.0066

MMAEMr 1.1211±0.0120 3291.2±29.097 0.4986±0.0175 0.3385±0.0627 0.6966±0.0081 5.3888±0.0078

MMAEMf 1.2775±0.0093 2198.7±2.4798 0.6063±0.0001 0.2529±0.0055 0.6713±0.0048 5.2059±0.0071

Time Prediction
by p∗(t)

MMAEM 1.2011±0.0064 2496.5±2.7826 0.6417±0.0127 0.2420±0.0227 0.8516±0.2378 5.3314±0.0135

MMAEMr 1.1189±0.0094 3215.7±4.3992 0.6515±0.0167 0.2411±0.0215 0.7008±0.0075 5.3670±0.0097

MMAEMf 1.2893±0.0050 2199.7±3.3627 0.6095±0.0008 0.2573±0.0429 1.2295±0.7947 5.2155±0.0031
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