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ABSTRACT

We study the problem of learning a good set of policies, so that when combined
together, they can solve a wide variety of unseen reinforcement learning tasks
with no or very little new data. Specifically, we consider the framework of gen-
eralized policy evaluation and improvement, in which the rewards for all tasks of
interest are assumed to be expressible as a linear combination of a fixed set of
features. We show theoretically that, under certain assumptions, having access to
a specific set of diverse policies, which we call a set of independent policies, can
allow for instantaneously achieving high-level performance on all possible down-
stream tasks which are typically more complex than the ones on which the agent
was trained. Based on this theoretical analysis, we propose a simple algorithm
that iteratively constructs this set of policies. In addition to empirically validating
our theoretical results, we compare our approach with recently proposed diverse
policy set construction methods and show that, while others fail, our approach is
able to build a behavior basis that enables instantaneous transfer to all possible
downstream tasks. We also show empirically that having access to a set of in-
dependent policies can better bootstrap the learning process on downstream tasks
where the new reward function cannot be described as a linear combination of the
features. Finally, we demonstrate how this policy set can be useful in a lifelong
reinforcement learning setting.

1 INTRODUCTION

Reinforcement learning (RL) studies the problem of building rational decision-making agents that
maximize long term cumulative reward through trial-and-error interaction with a given environment.
In recent years, RL algorithms combined with powerful function approximators such as deep neural
networks have achieved significant successes in a wide range of challenging domains (see e.g. Mnih
et al. (2015); Vinyals et al. (2019); Silver et al. (2017; 2018)). However, these algorithms require
substantial amounts of data for performing very narrowly-defined tasks. In addition to being data-
hungry, they are also very brittle to changes in the environment, such as changes in the tasks over
time. The most important reasons behind these two shortcomings is that RL algorithms usually learn
to perform a task from scratch, without leveraging any form of prior knowledge, and they are trained
to optimize performance on only a single task.

A promising approach to tackle both of these shortcomings is to learn multiple ways of behaving,
i.e., multiple policies that optimize different reward functions, and to reuse them as needed. Having
access to multiple pre-learned policies can allow an agent to quickly solve reoccurring tasks in a
lifelong RL setting. It can also allow for learning to combine the existing policies via a meta-policy
to quickly learn new tasks, as in hierarchical RL. Recently, Barreto et al. (2020) have proposed the
“generalized policy updates” framework, which generalizes the classical policy evaluation and pol-
icy improvement operations that underlie many of today’s RL algorithms. Its goal is to allow reusing
policies resulting from previously learned tasks in order to perform well on downstream tasks, while
also being data-efficient. More precisely, after learning the successor features of several policies in
a policy set, also referred to as a behavior basis, they were able to instantaneously “synthesize”, in
a zero-shot manner, new policies to solve downstream tasks, via generalized policy improvement.
However, this work leaves open two important questions: (i) what set of policies should the agent
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learn so that its instantaneous performance on all possible downstream tasks is guaranteed to be
good, and (ii) under what conditions does such a set of policies exist.

In this paper, we provide answers to the questions above by proving that under certain assumptions
about the environment dynamics and features, learning a diverse set of policies, which we call a set of
independent policies, indeed guarantees good instantaneous performance on all possible downstream
tasks. After providing an iterative algorithm for the construction of this set, we perform several
experiments that validate our theoretical findings. In addition to the validation experiments, we
compare this algorithm with recently proposed diverse policy set construction methods (Eysenbach
et al., 2018; Zahavy et al., 2020; 2021) and show that, unlike these methods, our approach is able
to construct a behavior basis that enables instantaneous transfer to all possible tasks. We also show
empirically that learning a set of independent policies can better bootstrap the learning process on
downstream tasks where the reward function cannot be described by a linear combination of the
features. Finally, we demonstrate the usefulness of this set in a lifelong RL scenario, in which the
agent faces different tasks over its lifetime. We hope that our study will bring the community a
step closer to building lifelong RL agents that are able to perform multiple tasks and are able to
instantaneously/quickly adapt to new ones during its lifetime.

2 BACKGROUND

Reinforcement Learning. In RL (Sutton & Barto, 2018), an agent interacts with its environment
by choosing actions to get as much as cumulative long-term reward. The interaction between the
agent and its environment is usually modeled as a Markov Decision Process (MDP). An MDP is a
tuple M ≡ (S,A, P, r, d0, γ), where S is the (finite) set of states, A is the (finite) set of actions,
P : S × A × S → [0, 1] is the transition distribution, r : S × A × S → R is the reward function,
which specifies the task of interest, d0 : S → [0, 1] is the initial state distribution and γ ∈ [0, 1)
is the discount factor. In RL, typically the agent does not have any knowledge about P and r
beforehand, and its goal is to find, through pure interaction, a policy π : S → A that maximizes
the expected sum of discounted rewards Eπ,P [

∑∞
t=0 γ

tr(St, At, St+1)|S0 ∼ d0], where Eπ,P [·]
denotes the expectation over trajectories induced by π and P .

Successor Features. The successor representation for a state s under a policy π allows s to be
represented by the (discounted) distribution of states encountered when following π from s (Dayan,
1993). Given a policy, successor features (SF, Barreto et al., 2017) are a generalization of the idea
of successor representations from the tabular setting to function approximation. Following Barreto
et al. (2017), we define SFs of a policy π for state-action (s, a) as:

ψπ(s, a) ≡ Eπ,P

[ ∞∑
i=0

γiφ(St+i, At+i, St+i+1)
∣∣∣St = s,At = a

]
, (1)

where the ith component of ψπ gives the expected discounted sum of the ith component of the
feature vector, φi, when following policy π, starting from the state-action pair (s, a).

Successor features allow a decoupling between the reward function and the environment dynamics.
More concretely, if the reward function for a task can be represented as a linear combination of a
feature vector φ(s, a, s′) ∈ Rn:

rw(s, a, s′) = φ(s, a, s′)> ·w, (2)

where w ∈ Rn, then, as we will detail below, the state-action value function Qπrw can be computed
immediately as the dot-product of ψπ and w. The elements of w, wi, can be viewed as indicating
a “preference” towards each of the features. Thus, we refer to w interchangeably as either the
preference vector or the task. Intuitively, the elements φi of the feature vector φ can be viewed as
salient events that maybe desirable or undesirable to the agent, such as picking up or leaving objects
of certain type, and reaching and/or avoiding certain states.

Generalized Policy Evaluation and Improvement. Generalized Policy Evaluation (GPE) and
Generalized Policy Improvement (GPI), together referred to as Generalized Policy Updates, are
generalizations of the well-known policy evaluation and policy improvement operations in standard
dynamic programming to a set of tasks and a set of policies (Barreto et al., 2020). They are used as
a transfer mechanism in RL to quickly construct a solution for a newly given task. One particularly
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efficient instantiation of GPE & GPI is through the use of SFs and value-based action selection.
More concretely, given a set of MDPs having the following form:

Mφ ≡ {(S,A, P, rw = φ ·w, d0, γ)|w ∈ Rn}, (3)

and given SFs ψπ(s, a) of a policy π, an efficient form of GPE on the task rw for policy π can be
performed as follows:

ψπ(s, a)> ·w = Qπrw(s, a), (4)
where Qπrw(s, a) is the state-action value function of π on the task rw. And, after performing GPE
for all the policies π in a finite policy set Π, following Barreto et al. (2017), an efficient form of GPI
can be performed as follows:

πGPI
Π (s) ∈ arg max

a∈A
max
π∈Π

Qπrw(s, a). (5)

We will refer to this specific use of SFs and value-based action selection for performing GPE & GPI
as simply GPE & GPI throughout the rest of this study. Note that πGPI will in general outperform
all the policies in Π, and that the actions selected by πGPI on a state may not coincide with any of
the actions selected by π ∈ Π on that state. Hence, the policy space that can be attained by GPI can
in principle be a lot larger than, e.g., the space accessible by calling policies sequentially from the
original set.

3 PROBLEM FORMULATION AND THEORETICAL ANALYSIS

GPE & GPI provide a guarantee that, for any reward function linear in the features, πGPI is at
least as good as any of the policies π from the “base set” which was used to construct it. While
this is an appealing guarantee of monotonic improvement, it does not say much, for two reasons.
First, it is not clear how big an improvement can be expected for different tasks. More importantly,
it leaves open the question of how one should choose base policies in order to ensure as much
improvement as possible. After all, if we had a weak set of policies and we simply matched their
value with πGPI, this may not be very useful. We will now show that, under certain assumptions,
having access to a specific set of diverse policies, which we call a set of independent policies, can
allow for instantaneously achieving high-level performance on all possible downstream tasks.

Let us start by assuming that we are interested in a set of MDPsMφ, as defined in (3), with deter-
ministic transition functions (the reason for the determinism assumption will become clear by the
end of this section). For convenience, we also restrict the possible w values from Rn toW , where
W is the surface of the `2 n-dimensional ball. Note that this choice does not alter the optimal poli-
cies of the MDPs inMφ, as an optimal policy is invariant with respect to the scale of the reward and
W contains all possible directions. Next, we assume that the features φi that make up the feature
vectors φ form a set of independent features (SIF), defined as follows:
Definition 1 (SIF). A set of features Φ = {φi|φi : S × A × S → {0, C}, C ∈ R+}ni=1 is called
independent if, for any feature φi ∈ Φ and any initial state s0 ∼ d0, we have: (i) φi(s0, a0, s1) = 0
∀a0 ∈ A and ∀s1 ∼ P (s0, a0, ·), and (ii) there exists at least one trajectory, starting from s0, in
which all the states associated with φi(st, at, st+1) = C are visited, while the states associated with
φj(st, at, st+1) = C, ∀j 6= i, are not visited.

It should be noted that a specific instantiation of this definition is the case where each feature is set
to a positive constant at certain independently reachable state/states and zero elsewhere, which is the
most common instantiation of feature vectors used in previous related work (Barreto et al., 2017;
2020).

We define the performance of an arbitrary policy π on a task rw as:

Jπrw ≡ Eπ,P

[ ∞∑
t=0

rw(St, At, St+1)
∣∣∣S0 ∼ d0

]
, (6)

whereEπ,P [·] denotes the expectation over trajectories induced by π and P . Note that Jπrw is a scalar
corresponding to the expected undiscounted return of policy π under the initial state distribution d0,
which is the expected total reward obtained by π when starting from s0 ∼ d0. We are now ready to
formalize the problem we want to tackle:
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Problem Formulation. Given a set of MDPsMφ with deterministic transition functions and a SIF,
we want to construct a set of n policies Πn = {πi}ni=1, such that the performance of the policy πGPI

Πn

obtained by performing GPI on that set will maximize (6) for all rewards rw, where w ∈ W . That
is, we want to solve the following problem:

arg max
Πn⊆Π

J
πGPI

Πn
rw for all w ∈ W. (7)

It should be noted that the performance measure provided in (6) only measures the expected total
reward and thus cannot capture the optimality of the GPI policy. For instance, this measure cannot
distinguish between two policies that achieve the same expected total reward in a different number
of time steps. However, Theorem 2 in Barreto et al. (2017) implies that, in general, the only way to
guarantee the optimality of the GPI policy is to construct a behavior basis that contains all possible
policies induced by all w ∈ W . Since there are infinitely many w values, this is impractical. Thus,
in this study, we only consider GPI policies that maximize the expected total reward (6).

As a solution candidate to the problem in (7), we now focus on a specific set of deterministic policies,
called set of independent policies (SIP), that are able to obtain features independently of each other:
Definition 2 (SIP). Let Φ = {φi}ni=1 be a SIF and let Π = {πi}ni=1 be a set of deterministic policies
that are induced by each of the features in Φ. Π is defined to be a SIP if its elements, πi, satisfy:

φj(st, at, st+1) = φj(s0, a0, s1) ∀j 6= i,∀i,∀s0 ∼ d0 and ∀t ∈ {1, . . . , T}, (8)

where T is the horizon in episodic environments and T → ∞ in non-episodic ones, a0 = πi(s0)
and (st, at, st+1)Tt=1 is the sequence of state-action-state triples generated by πi’s interaction with
the environment.

In general, having a SIP in a set of MDPs with stochastic transition functions is not possible, as the
stochasticity can prevent (8) from holding. Thus, the assumption of a set of MDPs with deterministic
transition functions is critical to our analysis. An immediate consequence of having this set of
policies is that the corresponding SFs can be expressed in a simpler form, as follows:
Lemma 1. Let Φ be a SIF and let πi be a policy that is induced by the feature φi ∈ Φ and is a
member of a SIP Π. Then, the entries of the SF ψπi of policy πi has the following form:

ψπi
j (s, a) =

{
ψπi
i (s, a), if i = j

0, otherwise
. (9)

Due to the space constraints, we provide all the proofs in the supp. material. Lemma 1 implies
that once we have a SIP, the SFs take the much simpler form (9), which can allow for the GPI
policy to maximize performance on all possible tasks according to the measure in (6), solving the
optimization objective in (7):
Theorem 1. Let Φ be a SIF and let Π be a SIP induced by each of the features in Φ. Then, the GPI
policy πGPI

Π is a solution to the optimization problem defined in (7).

Theorem 1 implies that having access to a SIP which consists of only n policies, where n is the
dimensionality of φ, and applying the policy composition operator GPI on top, allows for instan-
taneously achieving maximum performance across all possible downstream tasks. Considering the
fact that there are infinitely many such tasks, this provides a significant gain in the number of policies
that are required to be learned for full downstream task coverage.

4 CONSTRUCTING A SET OF INDEPENDENT POLICIES

Based on our theoretical analysis in Section 3, we now propose a simple algorithm that iteratively
constructs a SIP, given a SIF. Since independent policies can attain certain features without affecting
the others, a set of them can be constructed by simply learning policies for each of the appropriate
tasks and then by adding these learned policies one-by-one to an initially empty set. In particular,
by sequentially learning policies for each of the tasks in W = {wi}ni=1 ⊂ W , where wi is an
n-dimensional vector with a positive number in the ith coordinate and negative numbers elsewhere,
and then adding these policies to a policy set, one can construct a SIP. Algorithm 1 provides a step-
by-step description of this construction process. Note that the algorithm does not depend on the
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(a) Environment (b) Preference vectors (c) Trajectories

Figure 1: (a) The 2D item collection environment (Barreto et al., 2020). The environment consists of
10×10 cells and the shape (traingle and diamond) of the items represents their type. (b) Five distinct
preference vectors that lie on the surface of the `2 2D ball: w1 = (−

√
1/2 +

√
1/2) , w2 = (0 +1) ,

w3 = (+
√

1/2 +
√

1/2) , w4 = (+1 0) and w5 = (+
√

1/2 −
√

1/2) . (c) The trajectories taken by
the optimal policies (γ = 0.95) corresponding to the preference vectors w1, . . . ,w5 in a simplified
version of the environment with two items of each type.

particular values of wi ∈ W as long as the corresponding coordinate has a positive value and all
others are negative. Another thing to note is that the algorithm runs for only n iterations, where n is
the dimensionality of the feature vector φ.

5 EXPERIMENTS

Algorithm 1: Constructing a SIP
Require: a SIF Φ ;
Initialize: Π0 ← {}, t← 1, W ← {wi}ni=1 ;
while t ≤ n do

wt ←W [t] ;
πt ← solution of the task rwt

using RL ;
Πt ← Πt−1 + {πt} ;
t← t+ 1 ;

end
return: Πn

We start this section by performing experi-
ments to illustrate the theoretical results derived
in Section 3. Then, we compare the perfor-
mance of the policy construction approach pre-
sented in Algorithm 1 with recently proposed
diverse policy set construction methods (Eysen-
bach et al., 2018; Zahavy et al., 2020; 2021).
Next, we show that a SIP can better bootstrap
learning on new tasks where the reward func-
tion cannot in fact be expressed as a linear com-
bination of the features, a case that lies outside
of our assumptions. Finally, we demonstrate
that the set of policies produced by our approach can be useful in a lifelong RL setting. The ex-
perimental details together with more detailed results can be found in the supp. material.

Experimental Setup. Throughout this section, we perform experiments on the 2D item collection
environment proposed in Barreto et al. (2020) (see Fig. 1a), as it is a prototypical environment where
GPE & GPI is useful and it allows for easy visualization of performance across all downstream
tasks. Here, the agent, depicted by the yellow circle, starts randomly in one of the cells and has
to obtain/avoid 5 randomly placed red and green items, which are of different type. At each time
step, the agent receives an image that contains its own position and the position and type of each
item. Based on this, the agent selects an action that deterministically moves it to one of its four
neighboring cells (except if the agent is adjacent to the boundaries of the grid, it remains on the
same cell). By moving to the cells occupied by an item, the agent picks up that item and gets a
reward defined by that item type. The goal of the agent is to pick up the “good” items and avoid
the “bad” ones, depending on the preference vector w. The agent-environment interaction lasts for
50 time steps, after which the agent receives a “done” signal, marking the end of the episode. Note
that despite its small size, the cardinality of this environment’s state space is on the order of 1015

and thus requires the use of function approximation. More on the implementation details of the
environment and results on its stochastic version can be found in the supp. material.

In order to use GPE & GPI in this environment, we must first define: (i) the features φ and (ii) a
set of policies Π. Following Barreto et al. (2020), we define each feature φi as an indicator function
signalling whether an item of type i has been picked up by the agent. That is, φi(s, a, s′) = 1 if
taking action a in state s results in picking up an item of type i, and φi(s, a, s′) = 0 otherwise. Note
that these form a SIF, as there exist trajectories which start as φ(s0, a0, s1) = 0 and in which all the
features associated with a certain item type can be obtained without affecting the others. We now

5



Published as a conference paper at ICLR 2022

w2

w3

w4

w5

w1

0.2
0.4

0.6
0.8

1.0
Normalized sum of rewards

3

24

15

(a) Disjoint sets

w2

w3

w4

w5

w1

0.2
0.4

0.6
0.8

1.0
Normalized sum of rewards

15

152

1523

15234

(b) Incrementally growing sets

Figure 2: The normalized sum of rewards over 17 evenly spread tasks over the nonnegative quadrants
of the unit circle. The plots are obtained by averaging over 10 runs with 1000 episodes for each task.
The performance comparison of Π15 (a) with disjoint sets Π24 and Π5, and (b) with incrementally
growing sets Π152, Π1523 and Π15234.

turn to the question on how to determine the set of policies Π. We restrict the policies in Π to be
solutions of the tasks w ∈ W . With Algorithm 1, we have already provided one way of constructing
this set. Throughout the rest of this section we will compare Algorithm 1 with alternative policy set
construction methods.

Following Barreto et al. (2020), we use an algorithm analogous to Q-learning to approximate the
SFs induced by φ and Π. Similarly, we represent the SFs using multilayer perceptrons with two
hidden layers. More details can be found in Barreto et al. (2020).

5.1 ILLUSTRATIVE EXPERIMENTS

Question 1. Do the theoretical results, derived in Section 3, also hold empirically?

In order to answer this question, we constructed a policy set using Algorithm 1 and evaluated it
using the evaluation scheme proposed by Barreto et al. (2020). Specifically, after initializing W =
{w1,w5} and running Algorithm 1, we obtained the SIP Π15 = {π1, π5}, whose elements are
solutions to the tasks w1 and w5, respectively (see Fig. 1b). Then, we ran an evaluation scheme
that evaluates the GPI policy πGPI

Π15
, over 17 evenly spread tasks over the nonnegative quadrants of

the unit circle in Fig. 1b. We did not perform evaluations in the negative quadrant, as the tasks there
are not interesting. Results are shown in Fig. 2a. As can be seen, πGPI

Π15
performs well across all the

downstream tasks, empirically verifying Theorem 1.

Question 2. Is having a SIP essential for full downstream task coverage?

Items

R
G 1
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15

Items

R
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e

0
1
2

24

Figure 3: The learned SFs of the poli-
cies in Π15 and Π24 for the state in
Fig. 1c and the left action. Here, each
row corresponds to a different pol-
icy and each column corresponds to
a different item (‘R’ed and ‘G’reen).

According to Theorem 1, having a SIP is a requirement
for guaranteeing good performance across all downstream
tasks. However, in order to see how well the GPI policy
performs when this is not the case, similar to Barreto et al.
(2020), we compared Π15 with two other possible policy
sets: Π24 = {π2, π4} and Π3 = {π3}, whose policies cor-
respond to the tasks w2, w4 and w3, respectively. It should
be noted that Π24 is a default policy set used in prior stud-
ies on SFs (Barreto et al., 2017; 2018; 2020; Borsa et al.,
2018). The results, in Fig. 2a, show that πGPI

Π24
and πGPI

Π3

are not able to perform well across all downstream tasks,
specifically failing on quadrants II and IV. This justifies the
requirement of learning a SIP for full downstream task cov-
erage.

Question 3. Do the SFs of the policies in a SIP have a simple form?

According to Lemma 1, the SFs of the policies in a SIP should have a simple form. To empirically
verify this, in Fig. 3, we visualize the SFs of the policies in the sets Π15 and Π24 for the simplified
environment depicted in Fig. 1c. We can see that the SFs of the policies in Π15 indeed have a simple
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form, in which the off-diagonal entries have values that are very close to zero, while this is not the
case for Π24.

Question 4. Does adding more policies to a SIP have any effect on its downstream task coverage?

Theorem 1 implies that, given a SIF, having a SIP is enough to guarantee good performance across
all possible tasks. To test empirically whether adding more policies to a SIP has any effect on
its performance across all tasks, we compare the performance of the policy set Π15 with policy sets
Π152, Π1523 and Π15234, formed by adding one-by-one the policies π2, π3 and π4 to Π15. Results are
shown in Fig. 2b. As expected, adding more policies to the SIP Π15 has no effect on its downstream
task coverage.

5.2 COMPARATIVE AND LIFELONG LEARNING EXPERIMENTS

Question 5. How does Algorithm 1 compare to prior diverse policy set construction methods?

w2

w3

w4

w5

w1

0.2
0.4

0.6
0.8

1.0
Normalized sum of rewards

DIAYN
SMP
DSP

15

Figure 4: The normalized sum of re-
wards of Π15, and the policy sets con-
structed by DIAYN, SMP and DSP.
Since the policy sets constructed by the
prior methods depend on their particular
initialization, their plots are obtained by
running each of the constructed policy
sets for 5 runs and then averaging over
their results. For each task, the agent
was evaluated on 1000 episodes. The
plot for Π15 is obtained in a similar way
as in Fig. 2.

Prior work has shown that having access to a diverse set
of policies can help transfer to downstream tasks. Al-
gorithm 1 can also be seen as a diverse policy set con-
struction method, as it constructs a policy set that is di-
verse in the feature visitation profile. In order to see
how well it compares to prior work, we compare Al-
gorithm 1 with three recently proposed diverse policy
set construction methods: (i) DIAYN1 (Eysenbach et al.,
2018) which constructs a policy set by collectively train-
ing policies with information-theoretic reward functions
that encourage discriminablity among the policies in the
set based on their state visitation profile, (ii) SMP (Za-
havy et al., 2020) which constructs a policy set by itera-
tively adding policies trained on the worst-case linear re-
ward with respect to the previous policies in the set, and
(iii) DSP (Zahavy et al., 2021) which constructs a pol-
icy set by iteratively adding policies that are trained on
tasks wn = −(1/n)

∑n
k=0ψk, where n is the number of

policies in the current policy set. More on the specific im-
plementation details of these methods can be found in the
supp. material. The comparison results, shown in Fig. 4,
indicate that none of the prior diverse policy set construc-
tion methods are able to consistently construct a policy
set that enables full downstream task coverage.

Question 6. Is learning a SIP also effective when the downstream task’s reward function cannot be
expressed a single linear combination of the features?

So far, we have considered the scenario where the GPI policy is evaluated on tasks whose reward
functions were obtained by linearly combining the features φ using a single, fixed w. We now
consider downstream tasks that do not satisfy this assumption, e.g. where w changes as a function
over the environment’s state. Note that Theorem 1 has nothing to say in this case. Nevertheless,
in order to test whether if learning a SIP can still be useful in this scenario, we consider a transfer
setting in which a meta-policy is trained to orchestrate the policies in this set when faced with a
downstream task. Specifically, after constructing the policy set, we learn a function that maps states
to preference vectors, ω : S → W ′, whose output is then used by GPE & GPI to synthesize a
policy for the downstream task of interest (see the “Preferences as Actions” section in Barreto et al.
(2020) and the Option Keyboard framework (Barreto et al., 2019) for more details). We define
W ′ = {w1,w2,w3,w4,w5} and use Q-learning to learn ω.

As an instantiation of the scenario discussed above, we consider two different downstream tasks:
(i) sequential reward collection, in which the agent must first pick up items of a certain type and
then collect the items of the other type, and (ii) balanced reward collection, in which the agent must
pick up the type of item that is more abundant in the environment. We compared the performance

1We use a GPE & GPI compatible version of DIAYN whose details are provided in the supp. material.
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(a) Sequential reward collection task
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(b) Balanced reward collection task

Figure 5: The normalized sum of rewards of the policy sets Π15 and Π24, and DQN on the (a)
sequential reward collection and (b) balanced reward collection tasks. Shadowed regions are one
standard error over 10 runs.

of the SIP Π15 with the policy set Π24. As a reference to the maximum reachable performance,
we also provided the learning curve of DQN (Mnih et al., 2015), whose specific implementation
details can be found in the supp. material. The results, shown in Fig. 5a and 5b, show that Π15

outperforms Π24 both in terms of the learning speed and asymptotic performance, reaching the
asymptotic performance of DQN. These results suggest that having access to a SIP can also be
effective in scenarios where the downstream task’s reward function cannot be described as a single
linear combination of the features.

Question 7. How can learning a SIP be useful in a lifelong RL setting?
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Figure 6: The normalized sum of rewards of the
policy sets Π15 and Π24, DQN, and MaxQInit in
a lifelong RL setting described in the text. Shad-
owed regions are one standard error over 100 runs.

Except for the last question, we have consid-
ered an idealistic scenario in which, during
transfer, the agent was provided with a sin-
gle preference vector w describing a station-
ary downstream task of interest. We now con-
sider a lifelong RL (LRL) setting, in which the
agent has to infer the current w from data and
has to quickly adapt to the changing w’s dur-
ing its lifetime.2 Concretely, we consider the
setting in which the agent infers w by follow-
ing the regression procedure provided in Bar-
reto et al. (2020) and the tasks change from w1

to w5 one-by-one in a clockwise fashion every
5×105 time steps. After the end of task w5, the
task resets back to w1 and this task cycle goes
on forever.

In Fig. 6, we compare the performance of Π15 with the policy set Π24, with DQN, and with a LRL
method MaxQInit (Abel et al., 2018). For fair comparison, we allow for MaxQInit to have access
to all of the tasks before each task change (see the supp. material for the implementation details).
We see that the policy set Π15 allows for better transfer to changing tasks compared to Π24. We
also see that, although MaxQInit outperforms DQN, they both fail in instantaneously adapting to the
changing tasks, and DQN sometimes catastrophically fails on tasks that it has already encountered
before (see the drastic drop in performance when the task transitions from w5 to w1). These results
illustrate how a SIP can also be useful in a LRL scenario.

6 RELATED WORK

Successor Features and GPI. In this study, we focused on relevant work that uses a set of SFs
together with GPI for performing transfer in RL (Barreto et al., 2017; 2018; 2019; 2020; Borsa
et al., 2018; Hansen et al., 2019). Among these studies, the study of Barreto et al. (2020) is the
closest to our work. We built on top of their approach and tried to answer the following questions:
(i) what behavior basis should be learned by the agent so that its instantaneous performance on

2We consider a setting in which the agent is allowed for a certain amount of pre-training before LRL starts.
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all possible downstream tasks is guaranteed to be good, and (ii) what are the conditions required
for this? In addition, we provided empirical results illustrating how a good behavior basis can be
useful in more realistic scenarios. Another closely related work is the study of Grimm et al. (2019)
which shows that having access to a set of policies that obtain certain disentangled features can
allow for achieving high level performance on exponentially many downstream goal-reaching tasks.
However, this study requires having access to disentangled features, which have a very specific form;
in contrast, we require a set of independent features, which are more general and commonly used
(Barreto et al., 2017; 2020). Additionally, we provide a more formal treatment of the instantaneous
transfer problem and our experiments address a broader range of questions.

Diverse Skill Discovery. Another related line of research is the information theoretic diverse skill
discovery literature (Gregor et al., 2016; Eysenbach et al., 2018; Achiam et al., 2018), in which
information theoretic objectives are used to construct a diverse policy set that enables better explo-
ration and transfer on downstream tasks. An important problem with learning these skills is that
most of the discovered policies end up being uninteresting, in the sense that they do not come to be
useful in solving downstream tasks of interest, filling up the set with not so interesting policies. Our
work prevents this by constructing a policy set in which every policy is trained to achieve only a
particular task so that when combined, can solve more complex downstream tasks of interest.

Other related literature includes the use of SFs to build a diverse skill set. Through using the criterion
of robustness, Zahavy et al. (2020) proposes a method that constructs a set of policies that do as well
as possible in the worst-case scenario, and shows that this set naturally becomes diverse. However,
a problem with this policy construction method is that it is sensitive to the initialization of the
preference vector and thus leads to policy sets that do not have full downstream task coverage. By
using explicit diversity rewards, Zahavy et al. (2021) proposes another method that aims to minimize
the correlation between the SFs of the policies in the constructed set. However, since this method
depends on the evolution of the policy set, it also fails in building a policy set with full downstream
tasks coverage; by contrast, Algorithm 1 does exactly this.

Policy Reuse for Transfer and Lifelong RL. Although there have been prior studies on policy
reuse for faster learning on downstream tasks (Pickett & Barto, 2002; Fernández & Veloso, 2006;
Machado et al., 2018; Barreto et al., 2018) and for achieving lifelong RL (Abel et al., 2018), none
of them tackle the problem of learning a set of policies for full downstream task coverage. Recently,
by building on top of Barreto et al. (2017), Nemecek & Parr (2021) proposes a policy set construc-
tion method that starts with a set of policies and gradually adds new ones based on a pre-defined
threshold. However, they also do not consider the full downstream task coverage problem. The most
closely related work however are the recent studies of Tasse et al. that improve on Van Niekerk et al.
(2019) and in which a set of pre-learned base policies are logically composed for super-exponential
downstream task coverage (Tasse et al., 2020) and lifelong RL (Tasse et al., 2022). Despite the
similarities in the motivation, there are important differences compared to our work: (i) while their
approach requires extensions to the reward and value function definitions, our approach builds on
top of the readily available GPE & GPI framework and (ii) while their approach only considers
goal-based tasks, where upon reaching a goal the episode terminates, our approach handles both
these tasks and the ones in which the agent has to achieve multiple goals within a single fixed-length
episode.

7 CONCLUSION AND FUTURE WORK

To summarize, in this study, we provided a theoretical analysis elucidating what counts as a good
behavior basis for performing GPE & GPI and showed that, under certain assumptions, having
access to a set of independent policies allows for instantaneously achieving high level performance
on all downstream tasks. Based on this analysis, we proposed a simple algorithm that iteratively
constructs this policy set. Our empirical results (i) validate our theoretical results, (ii) show that
the proposed algorithm compares favorably to prior methods, and (iii) demonstrate that a set of
independent policies can be useful in scenarios where the downstream task of interest cannot be
expressed with a single preference vector, which includes lifelong RL scenarios. Note that our
approach relies on the existence of an independent set of features, which are maximized to obtain
independent policies. In general, a feature extraction procedure may be needed as a preprocessing
step to obtain such features. We hope to tackle this problem in future work. We also hope to find
useful generalizations of our theoretical results to MDPs with stochastic transition functions.

9



Published as a conference paper at ICLR 2022

ACKNOWLEDGMENTS

This project has been partly funded by an NSERC Discovery grant and the Canada-CIFAR AI Chair
program. We would like to thank Shaobo Hou for clarifying some parts of the code and the anony-
mous reviewers for providing critical and constructive feedback.

REFERENCES

David Abel, Yuu Jinnai, Sophie Yue Guo, George Konidaris, and Michael Littman. Policy and value
transfer in lifelong reinforcement learning. In International Conference on Machine Learning,
pp. 20–29. PMLR, 2018.

Joshua Achiam, Harrison Edwards, Dario Amodei, and Pieter Abbeel. Variational option discovery
algorithms. arXiv preprint arXiv:1807.10299, 2018.
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A PROOFS

Lemma 1. Let Φ be a SIF and let πi be a policy that is induced by the feature φi ∈ Φ and is a
member of a SIP Π. Then, the entries of the SF ψπi of policy πi has the following form:

ψπi
j (s, a) =

{
ψπi
i (s, a), if i = j

0, otherwise
.

Proof. The proof follows directly from the definition of a SIP. Remember that for a policy πi that is
a member of a SIP, we have that:

φj(st, at, st+1) = φj(s0, a0, s1) ∀j 6= i, ∀i, ∀s0 ∼ d0 and ∀t ∈ {1, . . . , T},

where T is the horizon, a0 = πi(s0) and (st, at, st+1)Tt=1 is the sequence of state-action-state triples
that are generated by πi’s interaction with the environment. Thus, for j 6= i, we have:

ψπi
j (s, a) = Eπi,P

[ ∞∑
k=0

γkφj(St+k, At+k, St+k+1)
∣∣∣St = s,At = a

]

= EP

[ ∞∑
k=0

γkφj(St, At, St+1)
∣∣∣St = s,At = a

]
(by Definition 2)

=

∞∑
k=0

γkEP [φj(St, At, St+1)|St = s,At = a]

=

∞∑
k=0

γkφj(s, a)

=

∞∑
k=0

γkφj(s0, a0) (by Definition 2)

=
1

1− γ
φj(s0, a0)

= 0. (by Definition 1)

Theorem 1. Let Φ be a SIF and let Π be a SIP induced by each of the features in Φ. Then, the GPI
policy πGPI

Π is a solution to the optimization problem defined in (7).

Proof. Remember that the GPI policy for a downstream task w is obtained as:

πGPI
Π (s) ∈ arg max

a∈A
Qmax
rw (s, a),

where Qmax
rw (s, a) = maxπi∈ΠQ

πi
rw(s, a). By expressing Qπi

rw(s, a) as a weighted sum of the SFs of
policy πi, we have:

Qmax
rw (s, a) = max

i

 n∑
j=1

wjψ
πi
j (s, a)


= max

i

wiψπi
i (s, a) +

∑
j 6=i

wjψ
πi
j (s, a)


= max

i
[wiψ

πi
i (s, a)] . (by Lemma 1)

Thus, we have:

πGPI
Π (s) ∈ arg max

a∈A
Qmax
rw (s, a)

= arg max
a∈A

max
i

[wiψ
πi
i (s, a)] ,

12



Published as a conference paper at ICLR 2022

which implies that the GPI policy πGPI
Π will obtain all the features associated with a positive wi (in

an order that depends on the product wiψπi
i (s, a)), ignore the ones with a zero wi, and avoid the

ones with a negative wi. This in turn implies that the GPI policy πGPI
Π will solve the optimization

problem in (7).

B EXPERIMENTAL DETAILS

In this section, we provide the implementation details of the 2D item collection environment and the
experimental details of our policy construction method together with the prior methods that we have
used for comparison.

B.1 IMPLEMENTATION DETAILS OF THE 2D ITEM COLLECTION ENVIRONMENT

As described in the supplementary material of Barreto et al. (2020), at each step the agent receives
an 11×11× (n+ 1) tensor (an 11×11 image with (n+ 1) channels) representing the configuration
of the environment, where n is the number of items in the environment. The channels are used to
identify the items and the walls. Specifically, there is one channel for each of the n items and one
channel for the impassable walls around the edges of the grid.

The observations are “egocentric” in the sense that images are shifted so that the agent is always at
the top-left cell of the grid. Barreto et al. (2020) found that this representation helps the learning
process as each action taken by the agent results in larger changes in the observations. The observa-
tions are also toroidal in the sense that the images wrap around the edges so that the agent always
observes the environment, even though the walls prevent it from crossing one side to the other.

B.2 OUR METHOD AND DQN

For our experiments with GPE & GPI and DQN (Mnih et al., 2015), we have used the publicly
available code3 of Barreto et al. (2020). Thus, implementation details as the neural network archi-
tectures that are used, the hyperparameters (replay buffer sizes, learning rates etc.) and the way the
SFs and state-action value functions are learned can all be found both in the provided link and in
the supplementary material of Barreto et al. (2020). We have also followed the same experimental
protocol provided in the supplementary material of Barreto et al. (2020).

B.3 PRIOR DIVERSE POLICY SET CONSTRUCTION METHODS

Before moving on to the implementation details of the prior diverse policy set construction methods,
we start this section by defining the concept of reward equivalent policies (REP). This definition
allows for a simple representation of the policy sets that are constructed by these prior methods in
terms of the policy sets that can be induced by the nine preference vectors in Fig. 7.

Definition 3 (REP). Let πi and πj be two policies that are induced by tasks wi and wj , respectively.
πi and πj are defined to be REP if they achieve the same expected total reward on an arbitrary task
w, i.e. if:

Eπi,P

[ ∞∑
t=0

rw(St, At, St+1)
∣∣∣S0 ∼ d0

]
= Eπj ,P

[ ∞∑
t=0

rw(St, At, St+1)
∣∣∣S0 ∼ d0

]
.

It should be noted that even if two policies are induced by two different tasks, they can still be REP.
For instance, the policies induced by the tasks (0.6 0.8) and (0.8 0.6) are reward equivalent as they
achieve the same expected total reward by collecting all the items in the environment depicted in
Fig. 1a. Note that Definition 3 only takes into account what the policies achieve and not how they
exactly achieve it.

3https://github.com/deepmind/deepmind-research/tree/master/option_
keyboard
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Figure 7: Eight different preference vectors
that lie on the surface of the `2 2D ball and
a single preference vector (w9) that is at the
origin of this ball. The corresponding values
are: w1 = (−

√
1/2 +

√
1/2) , w2 = (0 +1) ,

w3 = (+
√

1/2 +
√

1/2) , w4 = (+1 0) ,
w5 = (+

√
1/2 −

√
1/2) , w6 = (0 −1) w7 =

(−
√

1/2 −
√

1/2) , w8 = (−1 0) , w9 = (0 0) .

Importantly, Definition 3 allows for defining equiva-
lences between policy sets. For instance, the policy
set induced by tasks (0.6 0.8) and (0.6 −0.8) contains
a policy that collects both of the items (reward equiv-
alent to π3) and a policy that collects the first item
while avoiding the second one (reward equivalent to
π5). The policy set Π35 also contains policies that
achieve the same tasks. Thus, the former policy set
can be considered to be reward equivalent to the pol-
icy set Π35. Note that another policy set induced by
tasks (0.8 0.6) and (0.8 −0.6) can also be considered
to be reward equivalent to the policy set Π35. In the
rest of this section, we will use this reward equiva-
lence relation for a simple representation of the pol-
icy sets constructed by prior methods (in terms of
the policy sets that can be induced by the preference
vectors in Fig. 7).

DIAYN (Eysenbach et al., 2018). Among the prior
diverse policy set construction methods that we have
used, all except DIAYN are compatible with the
GPE & GPI framework. Thus, in order to also make DIAYN compatible, while discovering a set
of diverse policies, we have concurrently learned the SFs of the policies in this set so that GPE &
GPI can be performed later on. Importantly, rather than encouraging diversity in the state visitation
profile, we have encouraged diversity in the feature visitation profile by feeding the visited feature
vectorsφ as input to the discriminator (as opposed to feeding the visited states as in regular DIAYN).
This is because we are interested in policies that are able to obtain certain features, as opposed to
ones that just push the agent to different parts of the state space. For the RL algorithm, we have used
a vanilla policy gradient algorithm with an additional entropy loss term, for preventing the policy
from becoming deterministic in the early stages of training.

After setting the number of policies to be discovered to 3 (as there are 3 possible feature vectors in
the environment depicted in Fig. 1a: (1 0) , (0 1) and (0 0) ), learning the SFs of these policies and
running the GPE & GPI compatible version of DIAYN described above, we have observed that the
discovered policies either end up being policies that obtain both of the items (reward equivalent to
π3) or policies that obtain none (reward equivalent to π7), corresponding to a policy set that is reward
equivalent to the policy set Π37 (see Fig. 7). Thus, the results presented in Fig. 4 corresponds to the
results obtained with the policy set Π37. We have also experimented with larger numbers of policies
to be discovered, however, we observed no difference in the qualitative behavior of the policies that
were discovered.

In our experiments, for the representation of the policy we have used the same neural network
architecture that was provided in Barreto et al. (2020). The hyperparameters of our implementation
are provided in Table 1.

Table 1: Hyperparameters of our DIAYN implementation.
Learning rate of the policy 1e− 3
Learning rate of the discriminator 1e− 3
Discount 0.95
Entropy coefficient 0.001
Gradient clip 1.00
Value function loss coefficient 0.05

SMP (Zahavy et al., 2020). After initializing the preference vector to an arbitrary vector on the
surface of the `2 2-dimensional ball (see Fig. 7) and running the SMP algorithm till termination, we
have observed that for each initialization of preference vector, different policy sets were constructed.
The resulting policy sets end up being reward equivalent to one of the following sets: Π37, Π17,
Π157, Π57, Π517, Π27, Π47, Π7, Π87, Π857, Π8517, Π617, Π6157 and Π67. Thus, the results presented
in Fig. 4 correspond to the average results obtained by these policy sets.
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DSP (Zahavy et al., 2021). After initializing the preference vector to an arbitrary vector on the
surface of the `2 2-dimensional ball (see Fig. 7), setting T = 2 (see Algorithm 1 in Zahavy et al.
(2021) for the details) and running the DSP algorithm, we have observed that for each initialization
of preference vector, different policy sets were constructed. The resulting policy sets end up being
reward equivalent to one of the following sets: Π37, Π58, Π16, Π27, Π47, Π79, Π68 and Π86. Thus,
the results presented in Fig. 4 correspond to the average results obtained by these policy sets.

We have also experimented with larger T values, however, after T = 2 the only policy to be added
to the set is a policy that is reward equivalent to π7. For instance, when T = 3, the resulting policy
sets end up being reward equivalent to one of the following sets: Π377, Π587, Π167, Π277, Π477,
Π797 and Π867. Since π7 is a policy that avoids the items in the environment depicted in Fig. 1a, it
is not a useful policy for the tasks considered in this study. Thus, we reported results only for the
case of T = 2.

B.4 MAXQINIT

MaxQInit (Abel et al., 2018) is a lifelong RL approach in which the value function of an agent is
initialized to the best possible value that minimizes the learning time in a new downstream tasks,
while at the same time preserving PAC guarantees. More specifically, before starting a new task, the
value function is initialized as follows:

Q̂max(s, a) = max
M∈M̂

QM (s, a) (10)

where M̂ is the set of MDPs that the agent has sampled so far, and QM is the value function that the
agent learned from interacting with each MDP. However, as the policy sets (Π15 and Π24) generated
by Algorithm 1 are obtained as a result of pre-training in the environment, fair a comparison with
these policy sets, we have allowed for M̂ to be equal toM, whereM is the set of all MDPs (see
(3)).

In the GPE & GPI framework, (10) corresponds to initializing the value functions using to the values
of the task w3 = (+

√
1/2 +

√
1/2) (see Fig. 7) as it is with this task thatQM is the maximized. Thus,

the results presented in Fig. 6 correspond to the results obtained by initializing the value function
of DQN (Mnih et al., 2015) to the value function of the task w3 right at the beginning of each new
task.

C UNNORMALIZED RESULTS

In this section, we provide the unnormalized results for the experiments in Section 5. The r- and
y-axis of the plots now indicates the sum of rewards as it is, without any normalization.
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(a) Disjoint sets
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(b) Incrementally growing sets

Figure 8: The unnormalized sum of rewards over 17 evenly spread tasks over the nonnegative quad-
rants of the unit circle. The plots are obtained by averaging over 10 runs with 1000 episodes for
each task. The performance comparison of (a) Π15 with disjoint sets Π24 and Π5, and (b) Π15 with
incrementally growing sets Π152, Π1523 and Π15234.
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Figure 9: The unnormalized sum of rewards of Π15, and the policy sets constructed by DIAYN,
SMP and DSP. Since the policy sets constructed by the prior methods depend on their particular
initialization, their plots are obtained by running each of the constructed policy sets for 5 runs and
then averaging over their results. For each task, the agent was evaluated on 1000 episodes. The plot
for Π15 is obtained in a similar way as in Fig. 8.
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(a) Sequential reward collection task
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(b) Balanced reward collection task

Figure 10: The unnormalized sum of rewards of the policy sets Π15 and Π24, and DQN on the (a)
sequential reward collection and (b) balanced reward collection tasks. Shadowed regions are one
standard error over 10 runs.
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Figure 11: The unnormalized sum of rewards of the policy sets Π15 and Π24, DQN, and MaxQInit
in a lifelong RL setting described in the text. Shadowed regions are one standard error over 100
runs.

D RESULTS FOR STOCHASTIC ENVIRONMENTS

Even though we have developed our theoretical results by assuming MDPs with deterministic tran-
sition functions, in order to test the applicability of our results with stochastic transition functions,
we also performed experiments in the stochastic version of the 2D item collection environment with
“slip” probabilities 0.125 and 0.25. Results are shown in Fig. 12 and 13. As can be seen, even in
the stochastic settings, πGPI

Π15
is able to perform better across all downstream tasks compared to πGPI

Π24
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and πGPI
Π3

. It can also be seen that adding more policies to the independent policy set Π15 again has
no effect on the downstream task coverage.
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Figure 12: The normalized sum of rewards over 17 evenly spread tasks over the nonnegative quad-
rants of the unit circle. The results provided in this figure are for the stochastic 2D item collection
environment with “slip” probability 0.125. The plots are obtained by averaging over 10 runs with
1000 episodes for each task. The performance comparison of Π15 (a) with disjoint sets Π24 and Π5,
and (b) with incrementally growing sets Π152, Π1523 and Π15234.
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(b) Incrementally growing sets

Figure 13: The normalized sum of rewards over 17 evenly spread tasks over the nonnegative quad-
rants of the unit circle. The results provided in this figure are for the stochastic 2D item collection
environment with “slip” probability 0.25. The plots are obtained by averaging over 10 runs with
1000 episodes for each task. The performance comparison of Π15 (a) with disjoint sets Π24 and Π5,
and (b) with incrementally growing sets Π152, Π1523 and Π15234.
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