
Improving Transformer-based Program Repair Models through False
Behavior Diagnosis

Youngkyoung Kim
Department of Electrical and

Computer Engineering,
Sungkyunkwan University

agnes66@skku.edu

Misoo Kim
Department of Artificial

Intelligence Convergence,
Chonnam National University

misoo.kim@jnu.ac.kr

Eunseok Lee∗
College of Computing

and Informatics,
Sungkyunkwan University

leees@skku.edu

Abstract

Research on automated program repairs using
transformer-based models has recently gained
considerable attention. The comprehension of
the erroneous behavior of a model enables the
identification of its inherent capacity and pro-
vides insights for improvement. However, the
current landscape of research on program re-
pair models lacks an investigation of their false
behavior. Thus, we propose a methodology
for diagnosing and treating the false behaviors
of transformer-based program repair models.
Specifically, we propose 1) a behavior vector
that quantifies the behavior of the model when
it generates an output, 2) a behavior discrimina-
tor (BeDisc) that identifies false behaviors, and
3) two methods for false behavior treatment.
Through a large-scale experiment on 55,562 in-
stances employing four datasets and three mod-
els, the BeDisc exhibited a balanced accuracy
of 86.6% for false behavior classification. The
first treatment, namely, early abortion, success-
fully eliminated 60.4% of false behavior while
preserving 97.4% repair accuracy. Furthermore,
the second treatment, namely, masked bypass-
ing, resulted in an average improvement of
40.5% in the top-1 repair accuracy. These ex-
perimental results demonstrated the importance
of investigating false behaviors in program re-
pair models.

1 Introduction

Automated program repair (APR), a technique
that has attracted substantial attention from both
academia and industry, can mitigate the costs asso-
ciated with bug fixing during software development
and maintenance by automatically generating fix-
ing patches. Transformers have received enormous
attention and have been applied to APR, showing
effectiveness in fixing defects, bugs, errors, and vul-
nerabilities 1 (Fu et al., 2022; Pearce et al., 2022;

∗corresponding author
1We refer to these as bugs in a broad sense.

Ahmad et al., 2021; Mashhadi and Hemmati, 2021;
Prenner and Robbes, 2021).

Because existing APR studies have primarily
focused on developing and improving the APR
model, the internal decision-making process behind
patch generation is often overlooked. Investigating
the inner workings of a model can offer valuable in-
sights by identifying its capabilities and limitations
(Mohammadkhani et al., 2023; Palacio et al., 2023;
Borowski et al., 2020; Gunning and Aha, 2019;
Voita et al., 2019; Ribeiro et al., 2016a,b; Katuwal
and Chen, 2016). Specifically, false behaviors of
the model can provide a direction for improvement.
For example, Kim et al. improved bug localization
accuracy by eliminating the input tokens that the
model considers when it fails to localize (Kim et al.,
2022c).

Similarly, an examination of the internal behav-
ior of the model during the generation of incor-
rect patches can provide direction for improvement.
Current studies on incorrect patches primarily fo-
cus on distinguishing incorrect patches by rely-
ing primarily on the embedding vectors of the in-
put buggy code (Phung et al., 2022; Csuvik et al.,
2020). However, because of the repeated reformu-
lation of these vectors within the inner layers of
the transformer-based model, the embedding vector
lacks sufficient information to discern the process
that causes incorrect patch generation. Moreover,
once an incorrect patch is identified, determining
directions to improve becomes challenging. There-
fore, research must be conducted with a focus on
identifying and addressing false inner workings
(that is, false behaviors), in which the model gener-
ates incorrect patches.

Applying the methods and findings of previous
studies that analyzed the model behavior may ap-
pear like an intuitive solution. However, directly
utilizing them becomes challenging because of the
disparity between our target task, program repair,
and the tasks investigated in previous studies. Code



fixing is a generation task that poses difficulties
when the results or methodologies typically used in
classification tasks are applied (Kim et al., 2022c;
Ribeiro et al., 2016a). Among the various genera-
tion tasks (Voita et al., 2019), code fixing focuses
specifically on eliminating bugs from the source
code.

To ensure consistency in the input/output lan-
guage and preserve the correct structure and se-
mantics of the code, the majority of the inputs must
remain unchanged. Furthermore, as most existing
studies focus on comprehending the successful or
overall behaviors of a model (Rabin et al., 2021;
Voita et al., 2019; Ribeiro et al., 2016a), a defi-
ciency exists in understanding false behaviors and
identifying their characteristics for automatic detec-
tion. Therefore, it is essential to conduct research to
comprehend false behaviors, along with their iden-
tification and subsequent treatment for the APR
domain.

This study proposes a methodology for diag-
nosing and treating false behaviors in transformer-
based program repair models. We propose a be-
havior vector to represent the internal behavior of
the model. The proposed behavior vector is gener-
ated by extracting the attention weights and value
vectors from each attention head inside the trans-
former model. This approach enables us to capture
the model behavior in terms of the way it consid-
ers or neglects the input tokens during the patch
generation steps. Additionally, we introduce a be-
havior discriminator (BeDisc) that distinguishes the
patterns between successful and false behaviors ex-
hibited by the model. Based on this, we introduce
two treatments 1) early abortion and 2) masked
bypassing. Our contributions are as follows:

• We introduce a novel perspective for improving
program repair tasks by analyzing the internal
behavior of a transformer-based program repair
model.

• We present a methodology for representing the
internal behavior of a transformer-based program
repair model and propose an approach for diag-
nosing and mitigating false behaviors exhibited
by models for the APR task.

• The results of a large-scale experiment on
55,562 instances using seven pairs of models and
datasets showed average identification rates of
86.9% for true patches and 86.4% for incorrect
patches by a BeDisc.

• Our first treatment filtered 60.4% of the incorrect
patches, significantly reducing the patch verifi-
cation time. Additionally, our second treatment,
namely, masked bypassing, increased the gener-
ation of correct patches by a minimum of 5.8%
and up to 130.4%.

2 Preliminaries and Related Works

2.1 Attentions in Transformer Architecture
Attention heads are the core elements of the trans-
former architecture (Hao et al., 2021; Wang et al.,
2020; Voita et al., 2019). The transformer exten-
sively utilizes an attention mechanism, representing
the input tokens in various context vectors. Con-
text vectors are used to compute the likelihood of
each vocabulary as the next token. In a transformer
model, each attention head AH lh (h-th head of l-
th layer) reformulates a context vector based on
the tokens in input string S = {x1, x2, ..., xn}. In
the first layer (block), embedding vector X is pro-
jected onto the query, key, and value spaces, with
projection weight WQ, WK , W V , respectively, as
shown in Equation 1. Notably, previous studies on
incorrect patches have employed the initial embed-
ding vector X before projection to evaluate patch
correctness.

Q,K, V = XWQ, XWK , XW V (1)

Q and K are used to calculate attention map
A that stores the relevancies between tokens. In
Attention is all you need, where the trans-
former is first proposed, relevancies are calculated
with a scaled dot product as in Equation 2 (Vaswani
et al., 2017). They proposed to scale the dot prod-
uct value by

√
dk, where dk represents the size of

the key vector, to prevent the dot product value
from becoming excessively large.

A = Softmax(
QK⊤
√
dk

) (2)

The relevance of tokens xi and xj is stored as
Aij in matrix A, which is real number αij ∈ R
denoting the attention that xi pays to xj . Owing
to the use of multiple attention heads with distinct
weight matrices WQ,WK ,W V in each AH lh, rel-
evance in diverse perspectives is stored in each map
A of the AH lh. Finally, context vector matrix C is
derived by applying Equation 3. Consequently, the
context vector corresponding to each token xi can
be expressed as shown in Equation 4 by decompos-
ing Equation 3 with respect to Ci.



C = AV (3)

Ci = Σn
j=0αijVj (4)

Within an attention block, multiple AH lhs
concurrently compute context vector matrix C lh,
which is subsequently treated as a new embedding
vector and propagated through the feed-forward
layer. The reformulation process is repetitively it-
erated in successive blocks. The behavior of the
model is influenced by these AH lhs. The AH lhs
make the model focus on different parts of the in-
put sequence for each token, considering their rel-
evance from various perspectives. In this study,
we propose a behavior vector to quantify model
behavior by analyzing the focus on target token xt
during the internal processes of each AH lh.

2.2 Transformer for Program Repair

The effectiveness of the transformer-based program
repair model has been experimentally demonstrated
in both encoder-decoder families 2 (Li et al., 2022;
Kim et al., 2022b; Wang et al., 2021; Berabi et al.,
2021) and decoder-only families(Jesse et al., 2023;
Joshi et al., 2022; Prenner and Robbes, 2021), with
their correct patch generation accuracy. The pro-
gram repair model is trained to transform the in-
put buggy code into a fixed code (that is, a patch).
The generated patches are verified through man-
ual or test case evaluations to filter out incorrect
patches. The developers apply a patch that success-
fully passes the verification.

In recent studies, repair model such as TFix,
demonstrated the repair ability of T5-based repair
model on 52 error types of JSLint(Berabi et al.,
2021), and Fu et al. utilized the T5 model for
vulnerability repair (Fu et al., 2022). PLBART
fixed 19.21% and 8.98% of bugs, respectively, in
the small and medium datasets of Patches in
wild (Ahmad et al., 2021). CodeT5 fixed 22.59%
and 14.18% of the bugs, respectively, for the same
datasets by incorporating a code-specific tokenizer
(Wang et al., 2021). Mashhadi et al. showed that
CodeBERT could fix simple bugs in Java with an
accuracy of 19 ∼ 72% (Mashhadi and Hemmati,
2021). Kim et al. empirically demonstrated 20%
bug-fixing accuracy for Kotlin bugs in an indus-
trial environment using TFix (Kim et al., 2022b).
Codex successfully resolved 23 bugs out of 40

2https://huggingface.co/docs/transformers/model_summary

Figure 1: Illustration of generating behavior vector rep-
resentation for the target token.

QuixBug benchmarks (Prenner and Robbes, 2021)
and was able to address security vulnerabilities
(Pearce et al., 2022). Overall, transformers have ex-
hibited promising results for program repair. How-
ever, improving the model without accounting for
its behavior during patch generation may result in
ineffective improvements (Mohammadkhani et al.,
2023).

2.3 Model Behavior: Existing Approaches

To understand and interpret the behavior of the
model, researchers in the fields of NLP and soft-
ware engineering have explored explainable ar-
tificial intelligence (XAI), specifically focusing
on the model consideration of input tokens and
the influential role of specific neurons in deter-
mining the model output(Jiarpakdee et al., 2020;
Wattanakriengkrai et al., 2020; Rabin et al., 2021;
Suneja et al., 2021). The attention weight, a com-
mon medium for interpreting the behavior of deep
learning models with attention mechanisms, pro-
vides insight into how the model refers to specific
tokens (Li et al., 2016). Prior studies on program
repair models demonstrated their code-fixing abil-
ity by utilizing attention maps, highlighting the
focused words during patch generation(Lutellier
et al., 2020, 2019; Jiang et al., 2021). However,
simply tracking the attention weight may be insuffi-
cient to capture the model behavior. This limitation
arises from neglecting the size of the token vectors
and misaligning their actual impacts (Kobayashi
et al., 2020). In Equation 4, the effect of the target
token xt when calculating Ci is related to attention
weight αit and vector Vt of token xt. Considering
all these factors, we propose a behavior vector that
indicates the reference level of the model for each
word. By leveraging this vector, we can identify
false behaviors and apply further treatments.



3 Methodology

3.1 Behavior Vector Representation

We propose a behavior vector bt ∈ R|layers|·|heads|

that represents the internal process of the trans-
former model on a buggy input token xt when
generating a fixing code (that is, a patch). The
proposed behavior vector reflects the extent to
which the model considers or neglects token
xt during the generation of patch Sout =
{xn+1, xn+2, ..., xm} for an input with buggy code
Sin = {x1, x2, ..., xn}.

Figure 1 illustrates the proposed methodology to
obtain the behavior vector for target token xt from
a transformer-based repair model with a behavior
vector generator (BVG). To generate behavior vec-
tor bt, the BVG iterates each AH lh and calculates
the relative stake (RSlh) of xt in computing the
context vectors used to predict an output token at
each generation step. In the subsequent description,
note that the target token is referred to as xt, the in-
put tokens are denoted as xj , and the output tokens
are designated as xi.

Recalling Equation 4, calculating context vector
Ci for token xi in each AH lh can be interpreted
as a weighted sum of tokens ∀xj ∈ Sin. In other
words, each input token xj has a different stake in
calculating Ci for generation, and the values that
determine this stake are attention weight αij and
size of the value vector ∥Vj∥. Hence, the stake
of target token xt in calculating ∀Ci ∈ C in each
AH lh can be represented by Equation 5.

stake(xt) = Σ
|C|
t=0αit∥Vt∥ (5)

The relative stake of model reference to target
token xt compared with other input tokens ∀xj ∈
Sin during generation, denoted RSlh in Figure 1,
is calculated as Equation 6.

RSlh =
Σ
|C|
i=0αit∥Vt∥

Σ
|Sin|
j=0 Σ

|C|
i=0αij∥Vj∥

(6)

For calculation, we collect the Euclidean norm of
value vectors for every xj in AH lh. We process at-
tention maps at each generation step to construct an
attention map Alh ∈ R|Sout|×|Sin| where attention
weights αij for every xi and xj are stored. From
each generation step where token xi is selected
as the output token, we can extract the attention
weight that each xj received from token xi and con-
catenate them as a ∈ R|Sin|. Then, every a from

Figure 2: Program repair with false behavior diagnosis
and treatment.

the generation step is concatenated into the final
attention map Alh ∈ R|Sout|×|Sin|.

Consequently, a scalar value RSlh representing
the manner each AH lh considers xt during the gen-
eration step can be obtained. The obtained RSlh

values for each AH lh are then concatenated into
behavior vector bt ∈ R|layers|·|heads| of the model
for target token xt. The behavior vector for a multi-
token set Sa ⊆ Sin can be represented in two ways.
First, to represent the behavior in a fine-grained
manner, bt for all tokens can be concatenated as
Bt ∈ R|Sa|×|layers|·|heads|. Second, the vectors of
all tokens, ∀xt ∈ Sa, can be averaged and used
as a behavior vector to capture the behavior of the
model on tokens of the specific type as a collective
entity.

3.2 Program Repair with False Behavior
Diagnosis and Treatment

Figure 2 shows the program repair process using
the proposed false behavior diagnosis and treat-
ment. The uncolored portion in the figure corre-
sponds to the typical program repair method de-
scribed in Section 2.2. Instead of directly passing
the model-generated patch to the subsequent valida-
tion step (indicated by the dotted line), which can
be a significant bottleneck, the proposed method
incorporates the process of diagnosing and treat-
ing false behaviors, as depicted in the gray boxes.



Treatment methods T1 and T2 can be selected
based on the development environment.

False Behavior Diagnosis. The box labeled D in
Figure 2 represents the diagnosis of the false behav-
iors when the model generates a patch. The BeDisc
is a binary classifier that uses the behavior vector
(BV) of the model as input and determines whether
it corresponds to a behavior that could result in gen-
erating an incorrect patch (that is, a false behavior).
The generated patch is returned if the BeDisc pre-
dicts that the behavior is true. Otherwise, the next
treatment step follows. The validation (or training)
data used to train (or validate) the patch generation
model can be used to train the BeDisc. The label of
the behavior vector is assigned a value of 1 if the
repair model successfully generates a correct patch
for the input buggy code; otherwise, it is set to 0.

Treatment 1: Abortion. An effective treatment
for false behaviors is early abortion, as denoted
by the T1 box in Figure 2. This method immedi-
ately aborts the patch before the validation stage.
After generating a patch, the APR model under-
goes a validation process to assess the patch. This
can be conducted manually by the developer or
by employing a test suite to verify the compliance
with all test cases. Manual validation can be labo-
rious, and test suites can incur significant costs to
build and compile the entire software to execute
test cases. Therefore, aborting an incorrect patch
without proceeding to the validation stage can save
considerable time.

Treatment 2: Masked Bypassing. This method
prevents the model from referencing a suspicious
target token that might have caused the false be-
havior when generating the patch. We use an at-
tention mask to assign a value of zero to the target
tokens, thereby avoiding their influence. The atten-
tion mask can indicate the model in which tokens
should be attended to (Hugging Face, 2020; Kim
et al., 2022a). For example, when we want to disre-
gard the token b for a token sequence {a b c}, we
can use the masking array {1, 0, 1}. Then, based
on the given masking array, the model will use {a
_ c} as the input instance. To bypass the effect
of the target token without altering the positional
information of the remaining tokens, we use an
attention mask instead of replacing the token with
alternative tokens such as <MASK>.

Treatment 1 is recommended for software with
numerous test cases or large-scale systems to
streamline the validation process. Otherwise, Treat-

Test Validation
Idx L H Model Data #Input #Fix #Input #Fix
1 6 8 TFixS JSLint 10,504 4,670 9,454 4,245
2 12 12 TFixB JSLint 10,504 5,004 9,454 4,480
3 12 12 CT5 WS 5,835 1,246 5,835 1,253
4 12 12 CT5 WM 6,545 777 6,546 765
5 12 12 CT5 WSna 5,835 1,513 5,835 1,424
6 20 16 CGen WS 5,835 853 5,835 755
7 20 16 CGen JSLint 10,504 3,258 9,454 2,937

Total 55,562 17,321 52,413 15,859

Table 1: Experimental datasets and models. TFixS indi-
cates TFix-small, TFixB indicates TFix-base, CT5 in-
dicates CodeT5-base, CGen indicates CodeGen-350M-
multi, WS indicates Wild-small, WM indicates Wild-
medium. Validation data of the APR model are used to
train the BeDisc.

ment 2 could be preferable for maximizing the num-
ber of correct patches, prioritizing repair accuracy
over saving validation time.

4 Experimental Setup

4.1 Models and Datasets
We conducted experiments using four mod-
els (TFix-small, TFix-base, CodeT5-base, and
CodeGen-350M-multi) on three publicly available
datasets (Table 1). Pairs 1-4 were validated in
previous studies (Berabi et al., 2021; Wang et al.,
2021), whereas pairs 5-7 were added for our ex-
periments. To analyze the effect of the proposed
method with and without token abstraction, we
introduced the fifth pair, Wild-smallna, using the
Wild-small dataset without abstraction. The sixth
and seventh pairs involved the CodeGen model (Ni-
jkamp et al., 2022), which is designed specifically
for software-related text generation. The |layers|
and |heads| of each model are listed in columns
L and H. The #Input and #Fix columns represent
number of inputs and the number of inputs exhibit-
ing true behavior (correct fixing code generated as
top-1), respectively. Instances with false behaviors
outnumbered those with true behaviors. Input and
output for each model are available in Appendix
A.2.

4.2 Metrics
BeDisc Accuracy. To evaluate the BeDisc, we
used classification evaluation metrics including the
F1 score, sensitivity (true positive rate; TPR), speci-
ficity (true negative rate; TNR), and balanced accu-
racy (Brodersen et al., 2010) where higher values
indicate better performance.
Top-k Fixing Accuracy. To evaluate the repair
performance, we examined the top-k generated



Idx neuron thres TPR TNR F1 Bal_Acc
1 420 0.64 94.87 70.78 82.28 82.82
2 410 0.61 90.26 80.64 85.54 85.45
3 440 0.67 86.65 91.13 80.86 88.89
4 460 0.84 89.16 95.22 81.56 92.19
5 480 0.60 80.34 90.79 78.78 85.57
6 430 0.66 80.76 87.94 67.34 84.35
7 390 0.60 85.90 88.08 80.95 86.99

Average 86.85 86.37 79.62 86.61

Table 2: Diagnosis accuracy of the BeDisc with the
proposed behavior vector. The best performance of
each metric is marked in bold.

patches for each instance and considered them to
be a successful fix if any patch within the top-k was
correct. In accordance with previous studies (Wang
et al., 2021; Berabi et al., 2021; Kim et al., 2022b),
an exact match with the developer’s patch was con-
sidered as a correct patch. For k > 1, an effort
to determine the first correct patch was evaluated
using a mean reciprocal rank (MRR).

4.3 Hyperparameters
We employed a single hidden layer MLP as BeDisc
to assess the performance achievable using a simple
classifier. We selected need-fix token sets among
the input tokens and used the average vector as
the final behavior vector; these are crucial tokens
among the buggy codes for fixing. We evaluated the
results on the test dataset using the hyperparameters
obtained from a three-fold validation process. The
hyperparameter setting with the highest average
value across the three-fold validation was selected.
The model was then trained on the entire validation
dataset and used to make inferences on the test
dataset to obtain the final results. Further details
on hyperparameters are available in Appendix A.1.

5 Results

5.1 Accuracy of Behavior Discriminator
Table 2 lists the classification performances of the
proposed BeDisc. We selected the hyperparameters
with F1 score. In the experimental data, a threshold
of 0.6 or higher was selected for all pairs because
those with false behaviors outnumbered instances
with true behaviors. The neuron size of the opti-
mal model can indicate the complexity of the target
task because larger models have more expressive
capacity (Hu et al., 2021). The selected neuron
range (390∼480) was relatively large within the
hyperparameter search space, suggesting that learn-
ing behavioral patterns is a non-trivial task. Fur-

ther studies are required to effectively distinguish
false behavior patterns. Nevertheless, the proposed
single-layer BeDisc achieved a classification accu-
racy of 86.61% by balanced accuracy (Bal_Acc)
and 79.61% by F1 score on average, surpassing
50% Bal_Acc of the random classifier.

The first pair, which showed the second-best
F1 score and best TPR, had the worst TNR and
Bal_Acc. Overall, a higher TPR corresponded to
a lower TNR performance. Classifiers with a high
TNR can better filter the false behavior but might
result in degradation in the fixing ability. Therefore,
the hyperparameters for the classifier should be
selected based on the development environment,
considering factors such as the software scale.

The BeDisc demonstrated its effectiveness in
both the encoder-decoder and decoder-only mod-
els, albeit with certain distinctions. When com-
paring the model architectures, the order of perfor-
mance based on the F1 score was TFix > CodeT5
> CodeGen, whereas that based on the Bal_Acc
standard was CodeT5 > CodeGen > TFix. When
comparing the two pairs with the same wild-small
dataset but different architecture (the third and sixth
pairs), CodeT5 exhibited better classification accu-
racy across all four evaluation metrics. However,
for the same JSLint dataset (the first, second, and
seventh pairs), CodeGen exhibited better Bal_Acc.

The behavior vector size for the first and sec-
ond pairs, TFix-small and TFix-base, were 48 and
144, respectively, with TFix-base being three times
larger than TFix-small. However, they displayed
only a marginal difference of approximately 3p%
for both F1 and Bal_Acc. The seventh pair, which
utilized the JSLint dataset, had a behavior vector
size of 320, exceeding TFix-small by more than six
times. However, the difference in the performance
was less than 5p%. The results indicated that the
BeDisc could effectively discriminate false behav-
iors using the proposed behavior vectors across
transformer models of different sizes.

The third and fifth were pairs with and without
text abstraction on the wild-small dataset, and the
BeDisc classified better for code that performed
abstraction than for raw code with a marginal dif-
ference. The sixth and seventh pairs used differ-
ent data on the same model. The JSLint data that
had more instances for the BeDisc to learn, per-
formed better than the wild-small data. This trend
remained when comparing the first and second
pairs that used JSLint and the third–fifth pairs that



Intended Tolerance for Search
-1% -2% -3% -4% -5%

1
RealTol -2.2 -2.8 -4.2 -9.2 -11.7

TNR 61.1 67.0 71.0 78.7 81.1

2
RealTol -1.5 -3.1 -4.8 -6.4 -7.5

TNR 51.5 56.3 68.9 72.2 75.0

3
RealTol -0.9 -1.5 -0.8 -2.6 -3.1

TNR 61.6 62.6 58.9 74.0 74.4

4
RealTol -0.6 -3.0 -2.2 -5.5 -6.9

TNR 48.9 82.0 81.7 90.5 91.5

5
RealTol -1.4 -4.3 -5.1 -7.0 -13.0

TNR 42.6 69.9 73.2 78.0 85.9

6
RealTol -2.0 -2.4 -2.9 -12.6 -9.7

TNR 35.7 42.7 50.2 72.8 72.8

7
RealTol -1.1 -1.1 -2.7 -10.6 -12.8

TNR 39.1 42.0 56.7 74.9 79.9

Average
RealTol -1.4 -2.6 -3.2 -7.7 -9.2

TNR 48.6 60.4 65.8 77.3 80.1

Table 3: Early abortion performance by different false
negative tolerances.

used the Wild dataset.

5.2 T1: Early Abortion

This section presents the results of the first treat-
ment, namely, early abortion. We selected the hy-
perparameters based on the highest FNR of the val-
idation dataset for each tolerance, aiming to max-
imize the early abortion of false behaviors while
meeting the degradation criteria. Therefore, we
examined the effectiveness of the early abortion
treatment in achieving accurate abortion while tol-
erating performance degradation within the range
of -1% to -5%. Table 3 lists the obtained experi-
mental results.

Disparities can exist between the intended toler-
ance and the real tolerance (RealTol), that indicates
the performance deterioration rate. Despite per-
formance degradation (-7.7% and -9.2%), BeDiscs
successfully aborted a substantial portion of false
behaviors, with success rates of 77.3% and 80.1%
for tolerance levels of -4% and -5%, respectively.
When aiming for a tolerance range of -1% to -3%,
only a slight additional performance degradation
(average of -0.4p% and maximum of -2.3p%) oc-
curred than intended and 48.6% to 65.8% of false
behaviors were successfully aborted. Additionally,
between -3% and -4%, a sharp increase was noted
in the performance degradation. In summary, we
recommended setting the tolerance for hyperpa-
rameter search to -4% to -5% for large-scale soft-
ware that requires significant time for building and
testing to minimize the time spent on validating

OG w/o BeDisc, w Mask w BeDisc, w Mask
#Input #Fix #Fix imp #Fix Imp

1 10,504 4,670 3,062 -34.4% 5,017 7.4%
2 10,504 5,004 1,748 -65.1% 5,272 5.4%
3 5,835 1,246 871 -30.1% 1,543 23.8%
4 6,545 777 1,640 111.1% 1,790 130.4%
5 5,835 1,513 1,271 -16.0% 1,900 25.6%
6 5,835 853 1,438 68.6% 1,559 82.8%
7 10,504 3,258 2,407 -26.1% 3,469 6.5%

Total 55,562 17,321 12,437 -28.2% 20,550 18.6%

Table 4: Fixing accuracy with and without the proposed
treatment, highlighting the best repair accuracy for each
pair in bold.

Intended Tolerance for Search
-1% -2% -3% -4% -5%

1 8.4% 8.9% 8.7% 7.9% 7.4%
2 5.8% 5.2% 5.8% 5.5% 5.4%
3 19.2% 19.0% 18.1% 23.8% 23.8%
4 74.1% 117.9% 116.2% 128.6% 130.4%
5 16.2% 24.9% 26.0% 26.6% 25.6%
6 46.1% 49.1% 58.6% 84.3% 82.8%
7 6.9% 7.1% 7.9% 6.7% 6.5%

Avg. 25.2% 33.2% 34.5% 40.5% 40.3%

Table 5: Repair performance improvement regarding
BeDisc hyperparameter search tolerance. The best im-
provement for each model is presented in bold.

incorrect patches. Conversely, we recommend a
tolerance range of -1% to -3% for the opposite
scenario.

5.3 T2: Masked Bypassing

5.3.1 Top-1 Accuracy

This section presents the results of the second treat-
ment, that is, masked bypassing. We used an identi-
cal BeDisc from the -5% column in Table 3. Table 4
compares the fixing accuracy of the original model
(OG column), the proposed method (w BeDisc, w
Mask column), and an ablation case in which the
target tokens are masked irrespective of the false
behavior judgment (w/o BeDisc, w Mask column)
of the model.

The proposed treatment method (w BeDisc, w
Mask) resulted in an average improvement of
18.6% in the repair accuracy across all seven pairs,
with the best case generating 130.4% more cor-
rect patches. In contrast, when masking was ap-
plied to all instances without considering false be-
haviors (w/o BeDisc, w Mask), the performance
deteriorated in five of the seven combinations, re-
sulting in an average decrease of -28.2%. Com-
pared with the proposed method, a -65.2% (≈
(20,550−12,437)×100

12,437 ) decrease was observed in re-



MRR Ranks in Original Model
OG OG+T2 Imp. 1 2 3 4 5 6∼50 N/A

1 0.50 0.53 7% 2 109 33 32 13 174 164
2 0.52 0.55 5% 0 80 21 13 5 97 155
3 0.31 0.35 12% 0 36 18 5 8 108 104
4 0.19 0.27 39% 0 74 33 36 26 298 207
5 0.32 0.36 13% 0 20 13 8 4 74 167
6 0.27 0.32 19% 63 30 22 12 8 143 157

Total 0.35 0.40 16% 65 349 140 106 64 894 954

Table 6: Investigation result of false behaviors with top-
50 accuracies. N/A denotes the scenario in which the
correct patch is not found among the generated patches.

pair accuracy because the ability of the proposed
method to assess true/false behaviors on target to-
kens enabled their preservation when they led to
correct patch generation.

The repair performance of CodeGen (the sixth
pair) improved from 853 to 1,559 on the wild-small
dataset, whereas that of CodeT5 (the third pair) im-
proved from 1,246 to 1,543. Before the proposed
treatment, CodeT5 showed a better repair accuracy;
however, with the proposed treatment, CodeGen
could fix more defects. The target token caused
more false behaviors in CodeT5 models than in
CodeGen, which is a more recent model. Even
without BeDisc (w/o BeDisc, w Mask), 68.6%
more fixes were possible in the sixth pair. Fur-
ther investigation is required because the type of
input that leads to significant false behaviors can
vary across models.

Table 5 presents the fixing accuracy improve-
ment rate corresponding to BeDiscs with differ-
ent tolerance. For each tolerance, the same model
shown in Table 3 was used. Irrespective of the tol-
erance we selected for the hyperparameter search,
the second treatment improved the repair accuracy.
Across the first, second, and seventh pairs, for each
model using the JSLint dataset, the variation in im-
provement between the least and the most was less
than 2p%. Pairs using the wild dataset exhibited
greater variation, yet consistently achieved optimal
performance with tolerances of -4% and -5%.

5.3.2 Top-k Accuracy
We assessed the ranking of correct patches within
the top-k generated patches of the model. This eval-
uation demonstrated the efficacy of the proposed
treatment method and highlighted the negative im-
pact of false behaviors on accurate patch generation.
Considering the capacity of the experimental envi-
ronment, we set k as 50 and used a beam size of 50.
The seventh pair was excluded because of the ca-
pacity limitations of the experimental environment.

This pair incorporates the largest model and text
input, posing a computational capacity issue when
generating top-50 patches with a beam size of 50.
This caused the model to fail in some cases due to
an out-of-memory error, making it unsuitable for
a comprehensive comparison. In this section, we
used a BeDisc with a tolerance of 1%.

We compared the effort required to find the first
correct patch with (OG+T2 column) and without
(OG column) the proposed treatment, using the
MRR metric. In contrast to OG, where developers
receive the initial top-50 patches from the original
model, OG+T2 employs a subsequent process to
restructure the patch rankings. Following the gen-
eration by the original model, the model’s behavior
is evaluated using BeDisc. If the behavior is deter-
mined erroneous (i.e., when the current top-1 patch
is identified as incorrect), two steps are taken. In
the first step, a patch is generated using masked
attention, employing T2’s treatment. Then, in the
second step, the original top-1 patch is replaced
with the top-1 patch from T2. On the other hand, if
the behavior is determined as accurate (i.e., the cur-
rent top-1 patch is considered correct), no changes
are made to the top-50 patches, and they remain
unchanged.

The results are presented in the MRR columns
of Table 6. The OG+T2 column shows the MRR of
the top-50 ranked patch list following the applica-
tion of treatment T2. This evaluates the efficiency
of finding a correct fixed patch within the ranked
patches. A higher MRR indicates a quicker iden-
tification of the correct fixed patch, consequently
reducing the effort required for validation. The
higher the MRR, the less effort is required until the
developer encounters the correct fixed patch. For
example, if the correct patch is ranked 10th, vali-
dation of the preceding nine patches is necessary.
Conversely, if the correct patch is ranked top-1, no
effort will be consumed for validation. The Imp.
column denotes the performance improvement rate
of OG+T2 compared with that of OG. Top-50 re-
pair attempts on the APR model revealed that the
original model achieved an MRR of 0.35. However,
by avoiding false behaviors, a 16% higher MRR
was achieved. This improvement was achieved by
lowering the ranks of incorrect patches, facilitating
the prompt identification of correct patches. The
experimental results shed light on the impact of
false behaviors on patch generation.

To conduct a thorough analysis, we examined



2,572 instances that were identified as false be-
haviors but could be fixed to generate the correct
patch as top-1 by applying the second treatment.
We investigated the rankings of the corresponding
patches in the original model.A small number of the
examined instances (3% ≈ 65×100

2572 ) were initially
generated with the correct patch as the top-1 but
were classified as false behavior owing to judgment
errors in the BeDisc. However, the majority (97%
≈ 2507×100

2572 ) were cases where the patch could not
be generated as the top-1 owing to false behaviors.

Specifically, 72% (≈ (894+954)×100
2572 ) of the in-

stances that attained the correct patch as the top-1
result after applying the proposed treatment were
initially unable to generate the correct patch within
the top-5 ranks owing to false behavior in the orig-
inal model. Additionally, 50% of them, which
corresponded to 894 instances, failed to generate
the correct patch even when the search progressed
up to the top-50 patches. This suggested that false
behaviors could significantly hinder the ability of
a model to sort the necessary vocabulary for gen-
erating correct patches. Given that the proposed
treatment method simply aims to mitigate the im-
pact of false behaviors, further refinement of the
false behavior treatment method is expected to en-
able a higher rate of correct patch generation.

6 Conclusion

This study is the first to examine the inner workings
of program repair model failures and to introduce
a behavior vector for diagnosing false behaviors
in a transformer-based program repair model. We
proposed methods for diagnosing and addressing
the false behavior of the program repair model and
validated their effectiveness across three models
and four datasets. The proposed BeDisc and treat-
ment strategies improved the APR performance
by 18.6% on average and up to 130.4%. The ex-
perimental results demonstrated the necessity for
additional investigations into the false behavior of
program repair models. In future studies, we intend
to expand the proposed method to a wider range of
models and bugs. In Addition, we intend to investi-
gate false behaviors across broader target tokens to
develop an advanced treatment approach.

Limitations

Repair Model. We experimented with three
representative models, excluding the encoder-only
models owing to their sub-optimal nature (Wang

et al., 2021). Although certain repair models
may not have been trained with optimal hyperpa-
rameters, we used the CodeT5 and TFix models
with the same performance as in previous studies,
suggesting the anticipated effectiveness of the
proposed method in typical cases.
BeDisc Architecture. The BeDisc used in the
experiment may not be the best architecture for
identifying false behaviors. However, despite
its simplicity, the model identified 60.4% of
false behaviors with -2.6% of tolerance. Further
studies on advanced model architectures for
identifying false behaviors can lead to additional
improvements in the BeDisc.
Tolerance Setting. The selection of appropriate
tolerance is a human-driven process because it
may vary across developmental environments,
potentially leading to challenges in determining
tolerance settings. However, because we confirmed
that the proposed method was consistently
effective within a tolerance of -1% to -5%, we
recommended deciding based on the experimental
findings.
Behavior diagnosis target token type. Accurately
identifying the location of the target token (that is,
need-fix token) can pose challenges, particularly
in the present experiment, in which we assumed
perfect localization of the need-fix token. However,
this can be supplemented by techniques that locate
fixed locus (Phung and Lee, 2020; Chandra et al.,
2011). We plan to explore a wider range of tokens
to address this issue in future studies.
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A Implementation Detail

The code and data used for our experiment can be
found in the supplement. We modified Transform-
ers 4.12.33 to extract the normalized attention map.
The experiments were conducted with one GPU
(GeForce RTX 3090) with 24 GB RAM.

A.1 Hyperparameter Settings for training
Models

BeDisc. The hyperparameters for BeDisc included
a neuron range of 0 to 500 and a class determination
threshold range of 0.01 to 1. We used the default
settings of scikit-learn 4 for other hyperparameters.
It is important to note that hyperparameters are
searched using validation data and subsequently
applied to test data. Consequently, the performance
of the proposed method can be further enhanced by
utilizing optimized hyperparameters specific to the
test dataset.

APR Models. We followed previous studies
(Chen et al., 2023; Alexandr et al., 2021; Khan-
delwal et al., 2019) to train the CodeGen model
and fine-tuned it for one epoch because large lan-
guage models (LLMs) such as CodeGen are suscep-
tible to overfitting (Jiang et al., 2023; Fried et al.,
2022). We trained CodeGen-350M-multi 5 with
a learning rate of 5e-5 and batch size 4, with a
max length of 512. The pretrained tokenizer does
not have pad_token, so we have set eos_token
as pad_token. The repair model is trained with a
Transformers library 3. In the JSLint dataset, there
were 84,846 instances for training, 9,454 for val-
idation, and 10,504 for the test set. For the WS
dataset, the corresponding numbers were 46,680
for training, 5,835 for validation, and 5,835 for the
test set. The default values of PyTorch6 were used
for unspecified hyperparameters. For the CodeT5
model, the pre-trained CodeT5 model is fine-tuned
with small and medium datasets of Patches in
wild (Ahmad et al., 2021), independently with a
learning rate initialized to 10−4 with batch size 32.
TFix was trained with a learning rate initialized to
10−4 with batch size 32. The pre-trained T5-base
model is trained with ESLint javascript defects.

3https://pypi.org/project/transformers/4.12.3/
4https://scikit-learn.org/0.24/
5https://huggingface.co/Salesforce/codegen-350M-multi
6https://pytorch.org/docs/1.7.1/

Figure 3: Input and output format of the TFix model

A.2 Prompt and Post-process

Special tokens (e.g., eos, sos tokens) were excluded
from the string output of the model and employed
as the final output for evaluation. The input/output
settings for each model are as follows:

TFix. The JSLint dataset used in the TFix
model followed the prompt template of the orig-
inal study. As shown in Figure 3, the datasets
trained the model to output fixed code for the in-
put in the form “ fix {rule id} {error message}

{buggy line} :\n {buggy code} ”.
CodeT5. Wild datasets use buggy code as input,

with no additional prefixes or postfixes. Unlike
TFix, dataset, the dataset used only buggy code

as an input to output fixed code .
CodeGen. The CodeGen model is a decoder-

only model trained for causal language modeling,
predicting the next token in a sequence. Therefore,
fine-tuning was performed to learn the sequences
of "{original input format of the dataset} Fixed:
{fixed code} ". For inference, the original input

was provided to the model to generate the text. The
text returned by the model was split with “Fixed:”
and posterior tokens were treated as a generated
patch.

B Effectiveness of Treatments in
Mitigating False Negatives of BeDisc

False negatives of BeDisc are the cases where the
repair model’s correct behavior is wrongly classi-
fied as false behavior. As our experimental results
in Table 2, whose hyperparameter search criteria
was F1-score, a false negative rate (FNR) of classi-
fication was 13.63% (≈ 100− 86.37). This dimin-
ishes the efficacy of the repair model by wrongly
discarding the correct patch. We introduced a In-
tended Tolerance for Search to address this issue.
By modifying the classifier hyperparameter search
criteria from F1-score to best TNR within speci-



Pair Impact on Repair Model -1% -2% -3% -4% -5%

1
Wrong Rejection (FN) 95 123 180 398 504
Additional Fix (T2FN ) 39 60 98 243 322
Additional Fix (T2TN ) 449 477 486 522 529

5
Wrong Rejection (FN) 18 56 65 90 167
Additional Fix (T2FN ) 2 16 21 33 63
Additional Fix (T2TN ) 261 417 437 460 490

7
Wrong Rejection (FN) 37 35 87 344 416
Additional Fix (T2FN ) 14 17 43 174 212
Additional Fix (T2TN ) 248 249 303 388 415

Table 7: Effectiveness of T2 recovering the negative
impact of FNs on the repair model.

fied Intended Tolerance for Search, we can find
a classifier that rejects correct patches within an
endurable range. As a result, our treatment T1 was
able to reject 48.6% to 80.1% of false behaviors
within -1.4% to -9.2% of repair accuracy (corre-
sponding to the average row in Table 3). Hence, T1
offers significant time savings for developers with
a minor trade-off. Given the subjective nature of a
"minor trade-off", developers have the flexibility to
establish an intended tolerance in accordance with
their requirements.

Regarding our second treatment (T2), both TNs
and FNs of the classifier trigger the repair model to
regenerate patches with masking. Regenerating the
patch for FNs may potentially compromise repair
accuracy as their correct patch has already been
generated. Nonetheless, T2 was able to recover the
negative impacts of FNs by successfully generat-
ing accurate patches for both FNs and TNs. We
present specific numbers and impacts on the repair
model across the 1st, 5th, and 7th pairs (one pair
per model) in Table 7. For the Intended tolerance
for search setting ranging from -1% to -5%, the
first rows of each pair show the number of wrong
rejections due to FNs. However, as shown in sub-
sequent rows, our proposed treatment T2 enabled
substantial additional fixes for both FNs (T2FN )
and TNs (T2TN ). Notably, the combined number
of T2TN and T2FN surpassed the number of FNs,
resulting in an overall improvement of the repair
model.

C Comparing Vector Representations for
Behavior Classification

For the purpose of behavior classification, employ-
ing the input/output vector (e.g., embedding vector,
context vector) of the model itself is feasible. How-
ever, our behavior vector offers an advantage in
terms of explicitness and compactness, resulting in
improved classification accuracy.

Vector Type F1 Bal_Acc TPR TNR
Last token 43.171 59.324 77.076 41.572

Avg of all tokens 43.17 59.71 74.04 45.39
Avg of NeedFix tokens 52.36 67.25 66.53 67.96
Behavior Vector (Ours) 78.78 85.57 80.34 90.79

Table 8: Classification accuracy comparison with other
vector representations.

Explicitness. Token vectors are the input/result
of inner workings, while our behavior vector encap-
sulates the process of inner workings. For instance,
context vector Ci for a token xi in each AH lh, is
a weighted sum of tokens ∀xj ∈ Sin (please refer
to Equation 3 and Equation 4 in Section 2). Such
tokens may capture contextual information of in-
put tokens, yet they cannot express how the model
handles the tokens. This inherent ambiguity poses
challenges in distinguishing between the correct
and incorrect approaches the model adopts for to-
ken handling. However, our behavior vector offers
a quantitative measure of the model’s utilization of
each token during its internal computations, conse-
quently providing a more explicit representation of
the model’s behavior.

Compactness. Our behavior vector depicts the
internal model behavior in a layer-wise and head-
wise manner. Achieving a similar representation
using token vectors significantly inflates the vector
size to |layers|×|heads|×embedding_size. For
instance, CodeT5-base requires a vector size of
110, 593(= 12× 12× 768), whereas our approach
entails a vector size of just 144(= 12 × 12). Uti-
lizing only the final context vector of the encoder
could reduce redundancy, but it would result in
significantly lower explicitness.

In table 8, we report additional experimental re-
sults on the CodeT5-base model with the WSna

dataset to compare the effectiveness of behavior
vectors against token vectors for false behavior
classification. We employed the final context vec-
tor(last hidden state of the encoder) of the last to-
ken, which was either ";" or "}". Specifically, we
selected the token that consistently appears in the
same location. Therefore, the last token, which
was either ";" or "}" was chosen. Hyperparame-
ters for the classifier were selected with validation
data that maximized the F1-score, which was the
same method we used in Table 2. The classifi-
cation accuracy was 43.17 of F1-score and 59.32
of Bal_Acc, which are 47% (≈ 80.86−43.17

80.86 ) and
33% (≈ 88.89−59.32

88.89 ) lower than our behavior vec-
tor. For further comparison, we have conducted



experiments using the average vector of all tokens,
which is another way to retrieve sentence embed-
ding (Choi et al., 2021; Huang et al., 2021). How-
ever, it resulted in lower accuracy; 43.17 for F1
and 59.71 for Bal_Acc. Additionally, we have con-
ducted experiments using NeedFix tokens, result-
ing in 52.36 for F1 and 67.25 for Bal_Acc. The
third and fourth rows in Table 8 summarizes the
results. These results show the need for a novel ap-
proach to detect false behaviors of the model upon
token vector embedding.


