
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

BOUNDLESS SOCRATIC LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

An agent trained within a closed system can master any desired capability, as long
as the following three conditions hold: (a) it receives sufficiently informative and
aligned feedback, (b) its coverage of experience/data is broad enough, and (c) it
has sufficient capacity and resource. In this position paper, we justify these condi-
tions, and consider what limitations arise from (a) and (b) in closed systems, when
assuming that (c) is not a bottleneck. Considering the special case of agents with
matching input and output spaces (namely, language), we argue that such pure
recursive self-improvement, dubbed ‘Socratic learning,’ can boost performance
vastly beyond what is present in its initial data or knowledge, and is only limited
by time, as well as gradual misalignment concerns. Furthermore, we propose a
constructive framework to implement it, based on the notion of language games.

1 INTRODUCTION

On the path between now and artificial superhuman intelligence (ASI; Morris et al., 2023; Grace
et al., 2024) lies a tipping point, namely when the bulk of a system’s improvement in capabilities
is driven by itself instead of human sources of data, labels, or preferences (which can only scale
so far). As yet, few systems exhibit such recursive self-improvement, so now is a prudent time to
discuss and characterize what it is, and what it entails.

We focus on one end of the spectrum, the clearest but not the most practical one, namely pure
self-contained settings of ‘Socratic’ learning, closed systems without the option to collect new in-
formation from the external world. We articulate conditions, pitfalls and upper limits, as well as a
concrete path towards building such systems, based on the notion of language games.

The central aim of this position paper is to clarify terminology and frame the discussion, with an
emphasis on the long run. It is not to propose new algorithms, nor survey past literature; we pay no
heed to near-term feasibility or constraints. We start with a flexible and general framing, and refine
and instantiate these definitions over the course of the paper.

DEFINITIONS

Consider a closed system (no inputs, no outputs) that evolves over time (see Figure 1 for an illus-
tration). Within the system is an entity with inputs and outputs, called agent, that also changes over
time. External to the system is an observer whose purpose is to assess the performance of the
agent. If performance keeps increasing, we call this system-observer pair an improvement process.

The dynamics of this process are driven by both the agent and its surrounding system, but setting
clear agent boundaries is required to make evaluation well-defined: in fact an agent is what can be
unambiguously evaluated. Similarly, for separation of concerns, the observer is deliberately located
outside of the system: As the system is closed, the observer’s assessment cannot feed back into
the system. Hence, the agent’s learning feedback must come from system-internal proxies such as
losses, reward functions, preference data, or critics.

The simplest type of performance metric is a scalar score that can be measured in finite time, that
is, on (an aggregation of) episodic tasks. Mechanistically, the observer can measure performance
in two ways, by passively observing the agent’s behaviour within the system (if all pertinent tasks
occur naturally), or by copy-and-probe evaluations where it confronts a cloned copy of the agent
with interactive tasks of its choosing.
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Figure 1: Cartoon depiction of the key definitions. An observer (gold) external to a closed sys-
tem (black) assesses the performance (green) of an agent (red) over time. The process is one of
self-improvement if agent outputs affect future agent inputs (i.e., some path like blue exists), and
performance improves. Further, self-improvement is recursive if the agent input and output spaces
are compatible, and the process is called ‘Socratic learning’ if that space is language.

Without loss of generality, the elements within an agent can be partitioned into three types: Fixed
elements are unaffected by learning, such as its substrate or unmodifiable code. Transient elements
do not carry over between episodes, or across to evaluation (e.g., activations, the state of a random
number generator). And finally learned elements (e.g., weights, parameters, knowledge) change
based on a feedback signal, and their evolution maps to performance differences (Lu et al., 2023).
We can distinguish improvement processes by their implied lifetime; some are open-ended and
keep improving without limit (Hughes et al., 2024), while others converge onto their asymptotic
performance after some finite time.1

2 THREE NECESSARY CONDITIONS FOR SELF-IMPROVEMENT

Self-improvement is an improvement process as defined above, but with the additional criterion
that the agent’s own outputs (actions) influence its future learning. In other words, systems in which
agents shape (some of) their own experience stream, potentially enabling unbounded improvement
in a closed system. This setting may look familiar to readers from the reinforcement learning com-
munity (RL; Sutton, 2018): RL agents’ behaviour changes the data distribution it learns on, which
in turn affects its behaviour policy, and so on. Another prototypical instance of a self-improvement
process is self-play, where the system (often a symmetric game) slots the agent into the roles of both
player and opponent, to generate an unlimited experience stream annotated with feedback (who
won?) that provides direction for ever-increasing skill-learning.

From its connection to RL, we can derive necessary conditions for self-improvement to work, and
help clarify some assumptions about the system. The first two conditions, feedback and coverage,
are about feasibility in principle, the third (scale) is about practice.

2.1 FEEDBACK

Feedback is what gives direction to learning; without it, the process is merely one of self-
modification. In a closed system where the true purpose resides in the external observer, but can
not be accessed directly, feedback can only come from a proxy. This creates the fundamental chal-
lenge for system-internal feedback is be aligned with the observer, and remain aligned throughout
the process. It places a significant burden on the system at set-up time, with the most common pitfall
being a poorly designed critic or reward function that becomes exploitable over time, resulting in
a process that deviates from the observer’s intent. RL’s famed capability for self-correction is not
applicable here: what can self-correct is behaviour given feedback, but not feedback itself. Addi-

1Neither case needs to invoke a notion of optimality (Abel et al., 2024).
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tionally, ideal feedback should be efficient, i.e., contain enough information (not too sparse, not too
noisy, not too delayed) for learning to be feasible within the time horizon of the system.

2.2 COVERAGE

By definition, a self-improving agent determines the distribution of data it learns from. To prevent
issues like collapse, drift, exploitation or overfitting, it needs to preserve2 sufficient coverage of the
data distribution everywhere the observer cares about. In most interesting cases, where performance
includes a notion of generalisation, that target distribution is not given (the test tasks are withheld),
so the system needs to be set up to intrinsically seek coverage, a sub-process classically called
exploration (Ladosz et al., 2022). Note that aligned feedback is not enough for this on its own:
even if a preferred behaviour is never ranked lower than a dispreferred one, that is not tantamount to
guaranteeing that the agent will find the preferred behaviour.

2.3 SCALE

The research field of RL has produced a lot of detailed knowledge about how to train agents, which
algorithms work in which circumstances, an abundance of neat tricks that address practical concerns,
as well as theoretical results that characterize convergence, learning dynamics, rates of progress,
etc. It would be futile to try and summarize such a broad body of work here. However, one general
observation that matters for our argument is that ‘RL works at scale’: in other words, when scaling
up experience and compute sufficiently, even relatively straightforward RL algorithms can solve
problems previously thought out of reach (high-profile examples include: Tesauro et al., 1995; Mnih
et al., 2015; Silver et al., 2016; 2018; Vinyals et al., 2019; AlphaProof & AlphaGeometry, 2024).
For any specific, well-defined practical problem, the details matter (and differ), and greatly impact
the efficiency of the learning dynamics; but the asymptotic outcome seems a foregone conclusion.
The ‘bitter lesson’ of Sutton (2019) argues a related point: betting on scaling up computation (as
opposed to building in human knowledge) has consistently paid off in the history of AI. Hence, with
an availability of compute that keeps expanding, the resource constraints of agents (memory and
compute) may be a transient concern; not all inefficiencies need to be fixed fully.3

3 SOCRATIC LEARNING

The specific type of self-improvement process we consider here is recursive self-improvement,
where the agent’s inputs and outputs are compatible (i.e., live in the same space), and outputs become
future inputs.4 This is more restrictive but less mediated than the general case where outputs merely
influence the input distribution, most commonly instantiated by a (complex) environment that maps
agent outputs into inputs. This type of recursion is an attribute of many open-ended processes, and
open-ended improvement is arguably a central feature of ASI (see Hughes et al., 2024). On the other
hand, compatibility is less restrictive than homoiconic self-modification, see Section 6.

An excellent example of such a compatible space of inputs and outputs is language. A vast range
of human behaviours are mediated by, and well-expressed,5 in language, especially in cognitive do-
mains (which are definitionally part of ASI). As argued by Chalmers (2024) and a few centuries of
rationalists before him (Cottingham, 1988), language may well be sufficient for thinking and under-
standing, and not require sensory grounding. Plus, language has the neat property of being a soup
of abstractions, encoding many levels of the conceptual hierarchy in a shared space (see also Colas
et al., 2022). A related feature of language is its extendability, i.e., it is possible to develop new

2This may entail conditions on how the system is initialised, as the agent needs to see a first set of inputs
before it can produce its own.

3Not fully maybe, but learning needs to be efficient enough to take advantage of scale without saturating. A
specific, timely tension here is around the role of the starting point of learning: some methods that attain mastery
while learning purely from scratch (e.g., AlphaZero) while others start with broad competence (LLMs), but may
not be as efficient in continuing to learn beyond that.

4Or at least some of them are fed back. Input and output spaces are not necessarily identical, but they in-
tersect. For example, the agent could be generating code, but perceive natural language, (partly self-generated)
code, and execution traces (Yang et al., 2023).

5“Whereof one cannot speak, thereof one must be silent.” (Wittgenstein, 1921)
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languages within an existing one, such as formal mathematics or programming languages that were
first developed within natural language. While special-purpose tools (e.g., interpreters) for these are
important for efficiency, natural language may be sufficient as a basis: just like humans can reason
‘manually’ through mathematical expressions when doing mental arithmetic, so can natural lan-
guage agents (OpenAI et al., 2024). And of course, it does not hurt that AI competence on language
domains has drastically improved recently, with a lot of momentum since the rise of LLMs.6

For the remainder of the paper, we will use ‘Socratic learning’ to refer to a recursive self-
improvement process that operates in language space. The name is alluding to Socrates’ approach
of finding or refining knowledge through questioning dialogue and repeated language interactions,
but, notably, without going out to collect observations in the real world—mirroring our emphasis on
the system being closed. We encourage the reader to imagine an unbroken process of deliberation
among a circle of philosophers, maybe starting with Socrates and his disciples, but expanding and
continuing undisturbed for millennia: what cultural artifacts, what knowledge, what wisdom could
such a process have produced by now?7 And then, consider a question that seems paradoxical at
first: In principle, how can a closed system produce open-ended improvement?

EXAMPLE

To help make these ideas more concrete, we describe a hypothetical but not a priori implausible
system (cf. Poesia et al., 2024). Consider the domain of mathematical statements (a subset
of language).a The observer’s performance metric is binary: has a proof for the Riemann
hypothesis been found? The agent reads and writes mathematical statements and proofs (which
are compatible input/output spaces). The system is closed, and contains the agent plus:

• a proof verifier (e.g., Lean)
• a collection C of theorems or conjectures.
• a proxy reward for the agent: +1 for each verified new proof of a statement in C.
• a second collection L of lemmas (or subgoals), initially empty.

The system allows the agent to produce proofs, verify them, formulate new statements, and
add those to L. Over time, the agent may learn to simplify and decompose existing theorems,
accumulate lemmas in L, learn to formulate lemmas that are more and more reusable, and
increase the fraction of theorems in C for which it can produce valid proofs. It self-improves.
At some point, the expanding frontier of verified mathematical knowledge reaches a proof of
the Riemann hypothesis, and the observer, satisfied, stops the system.

aNote the restriction to a domain like mathematics, with verifiable feedback, is not fully representative
of Socratic learning, as is sidesteps most of the challenge of feedback (Section 2.1).

4 THE FUNDAMENTAL LIMITS OF SOCRATIC LEARNING

Among the three necessary conditions for self-improvement, two of them, coverage and feedback
apply to Socratic learning in principle, and remain irreducible. To make their implications as clear
as possible, we ignore the third (the scale, practicality and efficiency concerns, see Section 2.3) in
this section. We motivate this simplification by taking the long view: if compute and memory keep
growing exponentially, scale constraints are but a temporary obstacle. If not, considering a resource-
constrained scenario for Socratic learning (akin to studying bounded rationality) may still produce
valid high-level insights.

The coverage condition implies that the Socratic learning system must keep generating (language)
data, while preserving or expanding diversity over time. In the LLM age this has come to not
seem too far-fetched: We can envision a generative agent initialized with a very broad internet-like
distribution that produces a never-ending stream of novel language utterances. However preventing

6In fact the meta-prompts of Fernando et al. (2023) and the ‘action programs’ in Voyager’s skill library
Wang et al. (2023) can be seen as early instances of LLM-mediated recursive self-improvement.

7To make this thought experiment compatible with our setting of a the single agent being evaluated, assume
that the circle maintains the role of spokesperson, whose statements are judged by the observer, and who could
be actively queried for evaluation.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

drift, collapse or just narrowing of the generative distribution in a recursive process may be highly
non-trivial (Lewis et al., 2017; Shi et al., 2024).

The feedback condition requires the system to (a) continue producing feedback about (some subset
of) the agent’s outputs, which structurally requires a critic that can assess language, and (b) that
feedback remains sufficiently aligned with the observer’s evaluation metric (Christiano et al., 2018;
Bai et al., 2022b). This is challenging for a number of reasons: Well-defined, grounded metrics
in language space are often limited to narrow tasks, while more general-purpose mechanisms like
AI-feedback are exploitable, especially so if the input distribution is permitted to shift. For example,
none of the current LLM training paradigms have a feedback mechanism that is sufficient for So-
cratic learning. Next-token prediction loss is grounded, but insufficiently aligned with downstream
usage, and unable to extrapolate beyond the training data. Human preferences are aligned by defini-
tion, but prevent learning in a closed system. Caching such preferences into a learned reward model
makes it self-contained, but exploitable and potentially misaligned in the long-run, as well as weak
on out-of-distribution data.

In other words, pure Socratic learning is possible, but it requires broad data generation with a robust
and aligned critic. When those conditions hold, however, the ceiling of its potential improvement
is only limited by the amount of resource applied. Current research has not established successful
recipes for this yet, so the next section endeavours to make a concrete but quite general proposal for
how to go about it.

5 LANGUAGE GAMES ARE ALL YOU NEED . . .

Fortunately, language, learning and grounding are well-studied topics. A particularly useful concept
for us to draw on is Wittgenstein’s notion of language games.8 For him, it is not the words that
capture meaning, but only the interactive nature of language can do so. To be concrete here, define
a language game as an interaction protocol (a set of rules, expressible in code) that specifies the
interaction of one or more agents (‘players’) that have language inputs and language outputs, plus a
scalar scoring function for each player at the end of the game.9

Language games, thus defined, address the two primary needs of Socratic learning; namely, they
provide a scalable mechanism for unbounded interactive data generation and self-play, while au-
tomatically providing an accompanying feedback signal (the score). In fact, they are the logical
consequence of the coverage and feedback conditions, almost tautologically so: there is no form of
interactive data generation with tractable feedback that is not a language game.10 As a bonus, seeing
the process as one of game-play immediately lets us import the potential of rich strategic diversity
arising from multi-agent dynamics (as spelled out in depth in Leibo et al., 2019; Duéñez-Guzmán
et al., 2023), which is likely to address at least part of the coverage condition. It also aligns with
our intuition that dynamic, social co-construction (e.g., the circle of philosophers) has an edge over
the self-talk of a single person that lives for millennia. Pragmatically too, games are a great way
to get started, given the vast human track record of creating and honing a vast range of games and
player skills (Berne, 1968); with Nguyen (2020) framing this richness as a demonstration of the flu-
idity of human agency and (local) motivations. Derrida might even argue that under the right lens,
discourse is already structured as a game.11 Colas et al. (2022) discuss a related set of ideas under
the terminology of Vygotskian autotelic agents; while they do not assume a closed system, many
of their ‘internalised social interactions’ could be cast as language games. A number of common
LLM interaction paradigms are also well represented as language games, for example debate (Irving
et al., 2018; Liang et al., 2023; Du et al., 2023), role-play (Vezhnevets et al., 2023), theory of mind
(Kim et al., 2023), negotiation (Lewis et al., 2017; FAIR et al., 2022), jailbreak defense (Zeng et al.,
2024), or outside of closed systems, paradigms like RL from human feedback (RLHF, Ouyang et al.,
2022; Bai et al., 2022a; OpenAI et al., 2023).

8“I shall also call the whole, consisting of language and the actions into which it is woven, the ‘language-
game’.” (Wittgenstein, 1953)

9For simplicity, assume that games are guaranteed to terminate in finite time.
10Carse (2011)’s terminology is handy here too: we mean games of the ‘finite’ type that are played to win,

as distinguished from ‘infinite games’ whose aim is to continue playing.
11“Every discourse, even a poetic or oracular sentence, carries with it a system of rules for producing analo-

gous things and thus an outline of methodology.” (Derrida, 1995).
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. . . IF YOU HAVE ENOUGH OF THEM . . .

Returning to our circle of deliberating philosophers: is there any one language game we could imag-
ine them playing for millennia? Instead, maybe, they are more likely to escape a narrow outcome
when playing many language games. It turns out that Wittgenstein (him again) proposed this same
idea: he adamantly argued against language having a singular essence or function.12

Using many narrow but well-defined language games instead of a single universal one resolves a
key dilemma: For each narrow game, a reliable score function (or critic) can be designed, whereas
getting the single universal one right is more elusive (even if possible in principle, as argued by
Silver et al., 2021).13 From that lens, the full process of Socratic learning is then a meta-game,
which schedules the language games that the agent plays and learns from (which is an ‘infinite’
game as per Carse (2011)). We posit that in principle, this idea is sufficient to address the issue of
coverage (Section 2.2). Concretely, if a proxy of the observer’s distribution of interest is available
(e.g., a validation set of tasks), that can be used to drive exploration in the meta-game.

. . . AND YOU PLAY THE RIGHT ONES

Socrates was famously sentenced to death and executed for ‘corrupting the youth.’ We can take this
as a hint that a Socratic process is not guaranteed to remain aligned with external observers’ intent.
Language games as a mechanism do not side-step this either, but they arguably reduce the precision
needed: instead of a critic that is aligned at the fine granularity of individual inputs and outputs, all
that is needed is a ‘meta-critic’ that can judge which games should be played: maybe no individ-
ual language game is perfectly aligned, but what is doable is to filter the many games according to
whether they make an overall net-positive contribution (when played and learned about). Further-
more, the usefulness of a game does not need to be assessed a priori, but can be judged post-hoc,
after playing it for a while. Relatedly, a beneficial asymmetry is that it may be much easier to detect
deviant emergent behaviour post-hoc than to design games that prevent it. All of these properties
are forms of structural leniency that give the language games framework a vast potential to scale.

Stepping out of our assumption of the closed system for a moment: when we actually build ASI, we
will almost surely want to not optimistically trust that alignment is preserved, but instead continually
check the process as carefully as possible, and probably intervene and adjust the system throughout
training. In that case, explicitly exposing the distribution of games (accompanied by interpretable
game descriptions and per-game learning curves) as knobs to the designer may be a useful level of
abstraction.

6 HIGHER-LEVEL RECURSIONS

So far, we discussed the minimal necessary form of recursion, a form of circularity that feeds (some
of) the agent’s outputs back to it. Within the framework of language games, two further types of
recursion come to mind. The first idea is to tell the agent which game it is playing, and give it the
choice to switch games, which game to switch to, and when to switch (Pislar et al., 2021). This is
related to hierarchical or goal-conditioned RL, providing the agent with more autonomy and a more
abstract action space. While shifting more responsibility into the agent, this setup could dramatically
improve outcomes, as compared to a hardwired game-selection process outside of the agent—but of
course this extra freedom could introduce additional risks of collapse or misalignment.

Second, as games are interaction protocols that can be fully represented as code, they can live in
a language agent’s output space. Consequently, the agent could learn to generate games for itself
to play.14 Initially, it could simply produce local variations of exiting games, which adapt the dif-

12“But how many kinds of sentence are there? Say assertion, question, and command?—–There are countless
kinds: countless different kinds of use of what we call ‘symbols,’ ‘words,’ ‘sentences.’ And this multiplicity is
not something fixed, given once for all; but new types of language, new language-games, as we may say, come
into existence, and others become obsolete and get forgotten.” (Wittgenstein, 1953), emphasis in original.

13But, as a prescient Norbert Wiener was warning seven decades ago: “The machines will do what we ask
them to do and not what we ought to ask them to do. [. . . ] We can be humble and live a good life with the aid
of the machines, or we can be arrogant and die.” (Wiener, 1949 / 2013).

14Not strictly just for itself: by defining a language game and communicating its rules to other agents (or itself
in a different role) via language, it is possible to produce rich and meaningful multi-agent play. Arguably, the
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ficulty level of theme, later on crafting recombinations of games, and ultimately ending up with de
novo generation (Todd et al., 2024). This leads to second-order coverage concerns, in the space of
language games instead of the space of language, to be addressed with filtering, prioritization, or
curricula (Jaderberg et al., 2019; Parker-Holder et al., 2022).

The combination of both of these recursive extensions is an empowered agent that plays the full
meta-game of how to improve itself via game generation and play. While appealingly elegant, this
meta-game lacks the well-defined feedback mechanism of the inner language games, and it is an
open research question whether established proxy metrics like learning progress would be sufficient
to preserve both the coverage and alignment properties over time.

SELF-REFERENTIAL SYSTEMS

The next and final step of recursion is recursive self-modification, that is, agents whose actions
change their own internals, not merely influencing their input stream. These methods live on a
spectrum characterized by the scope of what can be modified in such a way (and which elements
remain fixed), and what amount of introspection, or access to its own workings, is available to the
agent (Schaul & Schmidhuber, 2010). At the extreme end, a fully self-referential agent can observe
and modify any15 aspect of itself, without indirection. In principle, this type of agent has the highest
capability ceiling; as asymptotic performance is capped by its fixed structure, unfreezing some of
it and making it modifiable can only increase that upper bound—in particular, it is always possible
to set the newly-flexible parameters to how they were while frozen, to recover the performance of
the less-flexible agent (modulo learning dynamics that could get into the way). Past proposals for
how to design self-referential systems were not (intended to be) practical (e.g., Schmidhuber, 1993;
2003; Schmidhuber et al., 1997; Kirsch & Schmidhuber, 2022), but modern LLMs’ competence in
code comprehension and generation is changing the playing field and may soon move these ideas
from esoteric to critical.

7 CONCLUSION: OPEN-ENDED SOCRATIC LEARNING IS POSSIBLE

We set out to investigate how far recursive self-improvement in a closed system can take us on
the path to AGI, and are now ready to conclude on an optimistic note. In principle, the potential
of Socratic learning is high, and the challenges we identified (feedback and coverage) are well
known. The framework of language games provides a constructive starting point that addresses
both, and helps clarify how a practical research agenda could look like. We leave the fleshing out
of that roadmap to future work, but the overall direction is becoming apparent. In particular, an
understudied dimension is the breadth and richness of the many such language games. We think a
great place to start is with processes capable of open-ended game generation. And not without seeing
the irony, we propose all these ideas to scrutiny within an academic setting instead of resorting to
self-talk in a closed system.
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Promptbreeder: Self-referential self-improvement via prompt evolution. arXiv preprint
arXiv:2309.16797, 2023.

Katja Grace, Harlan Stewart, Julia Fabienne Sandkühler, Stephen Thomas, Ben Weinstein-Raun,
and Jan Brauner. Thousands of ai authors on the future of ai. arXiv preprint arXiv:2401.02843,
2024.

Edward Hughes, Michael Dennis, Jack Parker-Holder, Feryal Behbahani, Aditi Mavalankar, Yuge
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